1
|
Tang J, Xu Z, Wang F, Guan L, Qi B, Zou Y. Caffeine Inhibits Tau Aggregation and Destabilizes the Fibril Associated with Chronic Traumatic Encephalopathy: A REST2 and Conventional MD Simulations Study. J Chem Inf Model 2025; 65:2985-2998. [PMID: 40053114 DOI: 10.1021/acs.jcim.4c02353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Chronic traumatic encephalopathy (CTE) is a unique tauopathy mostly diagnosed in contact sports athletes, such as those active in American football, boxing, soccer, etc. The hyperphosphorylated fibrillar aggregates composed of self-assembled tau protein are the pathological hallmark of CTE, and inhibiting the aggregation or disassociating the fibrillar aggregates has been considered a promising avenue to prevent or treat CTE. Caffeine (CA) is a well-known psychostimulant and can be found in coffee, tea, and soft drinks. In vitro experiments revealed that CA could effectively inhibit wild-type tau aggregation and disassemble preformed fibrils. However, the atomic effect and the underlying molecular mechanisms remain largely elusive. In this study, we performed a multitude of replica exchange with solute tempering 2 (REST2) and conventional molecular dynamics (CMD) simulations of 43.8 μs in total on tau models with and without CA, including the third and fourth microtubule-binding repeats (R3-R4) tau monomer and CTE-related R3-R4 tau protofibril and fibril. The results revealed that CA could prominently inhibit the β-sheet formation of the monomer and disrupt the β-sheet structure of the protofibril, inducing the monomer and protofibril to adopt loosely packed or extended conformations. H-bonding and π-π stacking interactions drove the binding of CA on the monomer, while hydrophobic interactions made an extra contribution to the binding of CA on the protofibril. Strikingly, CA could stably bind to the hydrophobic cavity of the protofibril, which might occupy the space and prevent the entering of the aggregation cofactor. What is more, CA destabilized the fibril and played a role in reversing the liquid-to-solid phase transition (LSPT) of tau. Our study systematically uncovered the atomic-level effect of CA on tau aggregation, which offers a theoretical foundation for the design of drugs to prevent or treat CTE.
Collapse
Affiliation(s)
- Jiaxing Tang
- School of Physical Education, Xiangnan University, 889 Chenzhou Avenue, Chenzhou 423000, People's Republic of China
| | - Zhengdong Xu
- Department of Physical Education, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, People's Republic of China
| | - Feng Wang
- School of Physical Education, Xiangnan University, 889 Chenzhou Avenue, Chenzhou 423000, People's Republic of China
| | - Lulu Guan
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Bote Qi
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Yu Zou
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, People's Republic of China
| |
Collapse
|
2
|
Bhattacharya RS, Singh R, Panghal A, Thakur A, Singh L, Verma RK, Singh C, Goyal M, Kumar J. Multi-Targeting Phytochemicals for Alzheimer's Disease. Phytother Res 2025; 39:1453-1483. [PMID: 39815655 DOI: 10.1002/ptr.8435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/23/2024] [Accepted: 12/28/2024] [Indexed: 01/18/2025]
Abstract
Alzheimer's disease (AD) is a type of neurodegenerative illness in which β-amyloid (Aβ) and tau protein accumulate in neurons in the form of tangles. The pathophysiological pathway of AD consists of Aβ-amyloid peptides, tau proteins, and oxidative stress in neurons and increased neuro-inflammatory response. Food and Drug Administration in the United States has authorized various drugs for the effective treatment of AD, which include galantamine, rivastigmine, donepezil, memantine, sodium oligomannate, lecanemab, and aducanumab. The major disadvantage of these drugs is that they only provide "symptomatic" relief. They are most effective in the early stages or for mild to moderate cases of the disease, but are not suitable for long-term use. Besides conventional therapies, phytochemicals have the potential to stop the progression of AD. According to research, the use of potential phytochemicals against AD has gained attention due to their potent anti-inflammatory, antioxidant, anti-hyperphosphorylation of the tau protein, metal chelation, and anti-amyloid properties. This study seeks to provide an up-to-date compilation of the most current and promising breakthroughs in AD therapy using phytochemicals. It could be concluded that phytochemicals light serve as an effective therapy for AD. However, more mechanistic investigations are needed to determine the clinical implications of phytochemicals in AD treatment.
Collapse
Affiliation(s)
- Radha Shree Bhattacharya
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, India
| | - Raghuraj Singh
- Institute of Nano Science and Technology (INST), Mohali, Punjab, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Archna Panghal
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Punjab, India
| | - Ashima Thakur
- Faculty of Pharmaceutical Sciences, Himachal Pradesh, India
| | - Lachhman Singh
- Faculty of Pharmacy, Government Pharmacy College, Seraj, V.P.O. Bagsaid, Mandi, Himachal Pradesh, India
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology (INST), Mohali, Punjab, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, India
| | - Manoj Goyal
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, India
| | - Jayant Kumar
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, India
| |
Collapse
|
3
|
Barbagallo M, Springer A, Vanetta C, Allemann M, Lee P, Saeedi S, Aeschbacher S, Luciani M, Bonati LH, Moschovitis G, Scheu V, Rutishauser J, Kobza R, Di Valentino M, Meyre PB, Rodondi N, Conen D, Kühne M, Osswald S, Beer JH, the Swiss‐AF investigators. Coffee Consumption Correlates With Better Cognitive Performance in Patients With a High Incidence for Stroke. J Am Heart Assoc 2025; 14:e034365. [PMID: 39673298 PMCID: PMC12054421 DOI: 10.1161/jaha.124.034365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/08/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Atrial fibrillation is an independent risk factor for the development of cognitive impairments. Regular coffee consumption has shown cognitive benefits in healthy individuals. Whether regular consumption reduces cognitive decline in vulnerable patients is controversial. We investigated the association in elderly people with atrial fibrillation. METHODS AND RESULTS Daily coffee consumption was assessed using a structured nutrition questionnaire, and cognitive function was evaluated by a detailed neurocognitive-test-battery, including the Montreal Cognitive Assessment, Trail-Making Test, semantic fluency, and Digit-Symbol-Substitution Test. The cognitive construct score combines all neurocognitive tests mentioned and provides an overall cognitive performance indicator. Hs-CRP (high-sensitivity C-reactive protein) and IL-6 (interleukin-6) were measured to explore an association with inflammation. Results were estimated using linear mixed-effects-models with detailed adjustments for confounders. The <1 cup/day consumers (reference group) reached a cognitive construct score of -0.24 (95% CI, -0.27 to -0.16), and the group with the highest consumption (>5 cups/day) was at -0.10 (95% CI, -0.10 to 0.04; p=0.048). Montreal Cognitive Assessment score in the reference group was 24.58 (95% CI, 24.58-25.32); the group with the highest intake achieved 25.25 (95% CI, 24.98-26.85; p=0.163). Inflammatory markers decreased with higher coffee consumption (hs-CRP with 5 compared with <1 cup/day by factor 0.78 [95% CI, 0.54-1.13], p= 0.188, IL-6 significantly by factor 0.73 [95% CI, 0.57-0.95], p=0.017). CONCLUSIONS Coffee consumption in patients with atrial fibrillation may be associated with improved cognitive performance and reduced inflammatory markers. Further research is needed to confirm these findings and to consider implementation in dietary counseling for atrial fibrillation management. REGISTRATION URL: https://www.clinicaltrials.gov; Identifier: NCT02105844.
Collapse
Affiliation(s)
- Massimo Barbagallo
- Department of Internal MedicineCantonal Hospital of BadenBadenSwitzerland
- Institute of Intensive Care MedicineUniversity Hospital ZurichZurichSwitzerland
| | - Anne Springer
- Cardiovascular Research Institute BaselUniversity Hospital of BaselBaselSwitzerland
- Department of Plastic, Reconstructive, Aesthetic and Hand SurgeryUniversity Hospital of BaselBaselSwitzerland
| | | | - Meret Allemann
- Department of Internal MedicineCantonal Hospital of BadenBadenSwitzerland
- Center for Molecular Cardiology, Laboratory for Platelet ResearchUniversity of ZurichZurichSwitzerland
| | - Pratintip Lee
- Department of Internal MedicineCantonal Hospital of BadenBadenSwitzerland
- Center for Molecular Cardiology, Laboratory for Platelet ResearchUniversity of ZurichZurichSwitzerland
| | - Soheil Saeedi
- Department of Internal MedicineCantonal Hospital of BadenBadenSwitzerland
- Center for Molecular Cardiology, Laboratory for Platelet ResearchUniversity of ZurichZurichSwitzerland
| | - Stefanie Aeschbacher
- Cardiovascular Research Institute BaselUniversity Hospital of BaselBaselSwitzerland
- Department of CardiologyUniversity Hospital of BaselBaselSwitzerland
| | - Marco Luciani
- Department of Internal MedicineCantonal Hospital of BadenBadenSwitzerland
- Center for Molecular Cardiology, Laboratory for Platelet ResearchUniversity of ZurichZurichSwitzerland
- Department of CardiologyUniversity Hospital ZurichZurichSwitzerland
| | - Leo H. Bonati
- Rehabilitation Center RheinfeldenRheinfeldenSwitzerland
| | - Giorgio Moschovitis
- Division of Cardiology, Ente Ospedaliero Cantonale (EOC), Istituto Cardiocentro Ticino (ICCT)Regional Hospital of LuganoLuganoTicinoSwitzerland
| | - Victor Scheu
- Department of General Internal MedicineBern University Hospital, University of BernBernSwitzerland
- Institute of Primary Health Care (BIHAM)University of BernBernSwitzerland
| | | | - Richard Kobza
- Department of CardiologyCantonal Hospital of LucerneLucerneSwitzerland
| | - Marcello Di Valentino
- Division of Cardiology, Ente Ospedaliero Cantonale (EOC), Istituto Cardiocentro Ticino (ICCT)Regional Hospital of BellinzonaBellinzonaTicinoSwitzerland
| | - Pascal B. Meyre
- Cardiovascular Research Institute BaselUniversity Hospital of BaselBaselSwitzerland
- Department of CardiologyUniversity Hospital of BaselBaselSwitzerland
| | - Nicolas Rodondi
- Department of General Internal MedicineBern University Hospital, University of BernBernSwitzerland
- Institute of Primary Health Care (BIHAM)University of BernBernSwitzerland
| | - David Conen
- Cardiovascular Research Institute BaselUniversity Hospital of BaselBaselSwitzerland
- Population Health Research InstituteMcMaster UniversityHamiltonCanada
| | - Michael Kühne
- Department of CardiologyUniversity Hospital of BaselBaselSwitzerland
| | - Stefan Osswald
- Department of CardiologyUniversity Hospital of BaselBaselSwitzerland
| | - Jürg H. Beer
- Department of Internal MedicineCantonal Hospital of BadenBadenSwitzerland
- Center for Molecular Cardiology, Laboratory for Platelet ResearchUniversity of ZurichZurichSwitzerland
- Clinical Trial UnitCantonal Hospital of BadenBadenSwitzerland
| | | |
Collapse
|
4
|
Antonijevic M, Dallemagne P, Rochais C. Indirect influence on the BDNF/TrkB receptor signaling pathway via GPCRs, an emerging strategy in the treatment of neurodegenerative disorders. Med Res Rev 2025; 45:274-310. [PMID: 39180386 DOI: 10.1002/med.22075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2022] [Accepted: 08/04/2024] [Indexed: 08/26/2024]
Abstract
Neuronal survival depends on neurotrophins and their receptors. There are two types of neurotrophin receptors: a nonenzymatic, trans-membrane protein of the tumor necrosis factor receptor (TNFR) family-p75 receptor and the tyrosine kinase receptors (TrkR) A, B, and C. Activation of the TrkBR by brain-derived neurotrophic factor (BDNF) or neurotrophin 4/5 (NT-4/5) promotes neuronal survival, differentiation, and synaptic function. It is shown that in the pathogenesis of several neurodegenerative conditions (Alzheimer's disease, Parkinson's disease, Huntington's disease) the BDNF/TrkBR signaling pathway is impaired. Since it is known that GPCRs and TrkR are regulating several cell functions by interacting with each other and generating a cross-communication in this review we have focused on the interaction between different GPCRs and their ligands on BDNF/TrkBR signaling pathway.
Collapse
|
5
|
Li T, Fili M, Mohammadiarvejeh P, Dawson A, Hu G, Willette AA. Associations of Coffee and Tea Consumption on Neural Network Connectivity: Unveiling the Role of Genetic Factors in Alzheimer's Disease Risk. Nutrients 2024; 16:4303. [PMID: 39770924 PMCID: PMC11677865 DOI: 10.3390/nu16244303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Coffee and tea are widely consumed beverages, but their long-term effects on cognitive function and aging remain largely unexplored. Lifestyle interventions, particularly dietary habits, offer promising strategies for enhancing cognitive performance and preventing cognitive decline. METHODS This study utilized data from the UK Biobank cohort (n = 12,025) to examine the associations between filtered coffee, green tea, and standard tea consumption and neural network functional connectivity across seven resting-state networks. We focused on networks spanning prefrontal and occipital areas that are linked to complex cognitive and behavioral functions. Linear mixed models were used to assess the main effects of coffee and tea consumption, as well as their interactions with Apolipoprotein E (APOE) genetic risk-the strongest genetic risk factor for Alzheimer's disease (AD). RESULTS Higher filtered coffee consumption was associated with increased functional connectivity in several networks, including Motor Execution, Sensorimotor, Fronto-Cingular, and a Prefrontal + 'What' Pathway Network. Similarly, greater green tea intake was associated with enhanced connectivity in the Extrastriate Visual and Primary Visual Networks. In contrast, higher standard tea consumption was linked to reduced connectivity in networks such as Memory Consolidation, Motor Execution, Fronto-Cingular, and the "What" Pathway + Prefrontal Network. The APOE4 genotype and family history of AD influenced the relationship between coffee intake and connectivity in the Memory Consolidation Network. Additionally, the APOE4 genotype modified the association between standard tea consumption and connectivity in the Sensorimotor Network. CONCLUSIONS The distinct patterns of association between coffee, green tea, and standard tea consumption and resting-state brain activity may provide insights into AD-related brain changes. The APOE4 genotype, in particular, appears to play a significant role in modulating these relationships. These findings enhance our knowledge of how commonly consumed beverages may influence cognitive function and potentially AD risk among older adults.
Collapse
Affiliation(s)
- Tianqi Li
- Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA;
| | - Mohammad Fili
- School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK 74078, USA; (M.F.); (P.M.); (G.H.)
| | - Parvin Mohammadiarvejeh
- School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK 74078, USA; (M.F.); (P.M.); (G.H.)
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA 50011, USA
| | - Alice Dawson
- Chestnut Health Systems, Lighthouse Institute, Chicago, IL 60610, USA;
| | - Guiping Hu
- School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK 74078, USA; (M.F.); (P.M.); (G.H.)
| | - Auriel A. Willette
- Department of Neurology, Rutgers University, New Brunswick, NJ 08854, USA
| |
Collapse
|
6
|
Jäger R, Abou Sawan S, Orrú M, Tinsley GM, Purpura M, Wells SD, Liao K, Godavarthi A. Paraxanthine enhances memory and neuroplasticity more than caffeine in rats. Exp Brain Res 2024; 243:8. [PMID: 39617850 PMCID: PMC11609120 DOI: 10.1007/s00221-024-06954-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 10/30/2024] [Indexed: 02/05/2025]
Abstract
Paraxanthine (PXN) is the main metabolite of caffeine (CAF). PXN supplementation has been shown to increase measures of cognition, memory, reasoning, response time, and sustained attention; however, no preclinical study has compared the effects of PXN with those of CAF. The aim of this study was to compare the effects of PXN and CAF on memory and related biomarkers in rats. The effects of two different doses of PXN (PXN LOW, PXN HIGH), CAF (CAF HIGH), and a control group on cognition (escape latency in the Morris water maze test), neurotransmitters (acetylcholine, dopamine, and gamma-aminobutyric acid), and neurochemicals (BDNF, catalase, glutathione, and cyclic GMP) were analyzed from whole brain samples in young (8 weeks old) and aged (16 months old) rats. Compared to the control group, escape latency improved in PXN LOW, PXN HIGH, and CAF HIGH (all P < 0.05) in young animals, and in PXN HIGH and CAF HIGH in older animals (P < 0.001). PXN HIGH improved escape latency compared to CAF HIGH in both young (P < 0.001) and old animals (P = 0.003). BDNF levels increased in PXN LOW, PXN HIGH, and CAF HIGH (all P < 0.001), with PXN HIGH increasing BDNF to a greater extent compared to CAF HIGH (P = 0.03). PXN HIGH also significantly increased BDNF levels compared to PXN LOW (P < 0.001). All other neurotransmitters and neurochemicals significantly increased in the PXN HIGH and CAF HIGH groups compared to the control. In conclusion, PXN showed greater improvements in cognition and BDNF levels compared to CAF, further substantiating PXN as a nootropic with greater benefits compared to CAF.
Collapse
Affiliation(s)
- Ralf Jäger
- Ingenious Ingredients L.P, Lewisville, TX, 75056, USA.
- Increnovo LLC, Whitefish Bay, WI, 53217, USA.
| | | | - Marco Orrú
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Grant M Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Martin Purpura
- Ingenious Ingredients L.P, Lewisville, TX, 75056, USA
- Increnovo LLC, Whitefish Bay, WI, 53217, USA
| | - Shawn D Wells
- Ingenious Ingredients L.P, Lewisville, TX, 75056, USA
| | - Kylin Liao
- Ingenious Ingredients L.P, Lewisville, TX, 75056, USA
| | | |
Collapse
|
7
|
Song X, Singh M, Lee KE, Vinayagam R, Kang SG. Caffeine: A Multifunctional Efficacious Molecule with Diverse Health Implications and Emerging Delivery Systems. Int J Mol Sci 2024; 25:12003. [PMID: 39596082 PMCID: PMC11593559 DOI: 10.3390/ijms252212003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Natural caffeine is found in many plants, including coffee beans, cacao beans, and tea leaves. Around the world, many beverages, including coffee, tea, energy drinks, and some soft drinks, have this natural caffeine compound. This paper reviewed the results of meta-studies on caffeine's effects on chronic diseases. Of importance, many meta-studies have shown that regularly drinking caffeine or caffeinated coffee significantly reduces the risk of developing Alzheimer's disease, epilepsy, and Parkinson's disease. Based on the health supplements of caffeine, this review summarizes various aspects related to the application of caffeine, including its pharmacokinetics, and various functional health benefits of caffeine, such as its effects on the central nervous system. The importance of caffeine and its use in alleviating or treating cancer, diabetes, eye diseases, autoimmune diseases, and cardiovascular diseases is also discussed. Overall, consuming caffeine daily in drinks containing antioxidant and neuroprotective properties, such as coffee, prevents progressive neurodegenerative diseases, such as Alzheimer's and Parkinson's. Furthermore, to effectively deliver caffeine to the body, recently developed nanoformulations using caffeine, for instance, nanoparticles, liposomes, etc., are summarized along with regulatory and safety considerations for caffeine. The U.S. Department of Agriculture (USDA) and the Food and Drug Administration (FDA) recommended that healthy adults consume up to 400 mg of caffeine per day or 5~6 mg/kg body weight. Since a cup of coffee contains, on average, 100 to 150 mg of coffee, 1 to 3 cups of coffee may help prevent chronic diseases. Furthermore, this review summarizes various interesting and important areas of research on caffeine and its applications related to human health.
Collapse
Affiliation(s)
- Xinjie Song
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Mahendra Singh
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Kyung Eun Lee
- Sunforce Inc., 208-31, Gumchang-ro, Yeungcheon-si 31882, Republic of Korea;
| | - Ramachandran Vinayagam
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
8
|
Gill H, Patel N, Naik N, Vala L, Rana RK, Jain S, Sirekulam V, Jain SM, Khan T, Kinthada S, Patel RB, Nanjundappa A, Siripuram C, Patel U. An umbrella review of meta-analysis to understand the effect of coffee consumption and the relationship between stroke, cardiovascular heart disease, and dementia among its global users. J Family Med Prim Care 2024; 13:4783-4796. [PMID: 39723018 PMCID: PMC11668367 DOI: 10.4103/jfmpc.jfmpc_654_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 12/28/2024] Open
Abstract
Coffee has long been popular worldwide. The rise in lifestyle-related diseases such as cardiovascular disease, diabetes, stroke, dementia, and others has motivated coffee usage and illness prevalence studies. Some studies show coffee consumers are at risk for such diseases, whereas others show its active components protect them. Policymakers and the public need a comprehensive umbrella review to make healthy choices and enjoy coffee. Coffee consumption and stroke, CHD, and dementia outcomes have been distinguished using the PICO search strategy in PubMed with a filter for meta-analysis. We included 10 years of investigations until October 2023. MeSH terms "coffee intake," "stroke, dementia," and "transient ischemic attack," comparing stroke risk with coffee consumption were used. The study excluded case reports and non-human, non-English observational research. The stroke risk of coffee was examined using RevMan software. Coffee consumption's stroke risk ratio (RR), 95% CI, and I2 were estimated. Forest plots with P values ≤ 0.05 are significant. The umbrella review includes 11 meta-analyses from 457052 papers, totalling 11.96 million individuals. Drinking up to 4 cups of coffee daily reduced stroke risk by 12% compared with not drinking any coffee (0.88 (CI of 0.84-0.92, I2 of 13%, P < 0.00001)). Coffee drinkers had a 1.19 risk ratio for cardiovascular diseases compared to non-coffee drinkers (CI: 0.99-1.38, I2 = 84%, P < 0.00001). The dementia risk ratio for caffeine users was 0.90 (95% CI: 0.82-0.97, I2 = 46%, P < 0.00001) compared with non-consumers. Our analysis covering 5.42 million individuals found that 4 cups of coffee consumed a day reduced stroke risk by 12%. Coffee may reduce ischemic and haemorrhagic strokes by preserving endothelium and antioxidants. Coffee may lessen dementia risk, according to our study's 0.94 pooled risk ratio after sensitivity analysis. Heavy coffee drinkers had a greater CHD risk, as per our findings. Heavy coffee drinkers were more at risk.
Collapse
Affiliation(s)
- Harmeet Gill
- Department of Medicine, HopeHealth, Florence, SC, USA
| | - Neel Patel
- Department of Medicine, MBBS Medical Student, GMERS Medical College Gotri, Vadodara, Gujarat, India
| | - Nishthaben Naik
- Department of Health and Family Welfare, Primary Health Center, Navsari, Gujarat, India
| | - Lovekumar Vala
- Department of Anatomy, Shantabaa Medical College, Amreli, Gujarat, India
| | - Rishabh K. Rana
- Department of Preventive and Social Medicine, SNMMCH, Dhanbad, Jharkhand, India
| | - Sakshi Jain
- Department of Geriatrics, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Vaishnavi Sirekulam
- Department of Medicine, Vijaynagar Institute of Medical Sciences, Ballari, Karnataka, India
| | - Shika M. Jain
- Department of Medicine, MBBS Medical Student, MVJ Medical College and Research Hospital, Bengaluru, Karnataka, India
| | - Tanzina Khan
- Department of Medicine, MS Medical Student, Bangladesh Medical College, Dhaka, Bangladesh
- Department of Medicine, The University of Texas at Arlington, Arlington, TX, USA
| | - Sudharani Kinthada
- Department of Medicine, South East Health Hospital, Dothan, Alabama, USA
| | - Rashi B. Patel
- Department of Medicine, MBBS Medical Student, Tianjin Medical University, Heping Dist, Tianjin, China
| | - Athmananda Nanjundappa
- Department of Medicine, Medstar Franklin Square Medical Center, Baltimore, Maryland, USA
| | - Chandu Siripuram
- Department of Internal Medicine, Geisinger Community Medical Center, Scranton, Pennsylvania, USA
| | - Urvish Patel
- Department of Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Blum D, Cailliau E, Béhal H, Vidal J, Delaby C, Buée L, Allinquant B, Gabelle A, Bombois S, Lehmann S, Schraen‐Maschke S, Hanon O. Association of caffeine consumption with cerebrospinal fluid biomarkers in mild cognitive impairment and Alzheimer's disease: A BALTAZAR cohort study. Alzheimers Dement 2024; 20:6948-6959. [PMID: 39099181 PMCID: PMC11485411 DOI: 10.1002/alz.14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION We investigated the link between habitual caffeine intake with memory impairments and cerebrospinal fluid (CSF) biomarkers in mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients. METHODS MCI (N = 147) and AD (N = 116) patients of the Biomarker of AmyLoid pepTide and AlZheimer's diseAse Risk (BALTAZAR) cohort reported their caffeine intake at inclusion using a dedicated survey. Associations of caffeine consumption with memory impairments and CSF biomarkers (tau, p-tau181, amyloid beta 1-42 [Aβ1-42], Aβ1-40) were analyzed using logistic and analysis of covariance models. RESULTS Adjusted on Apolipoprotein E (APOE ε4), age, sex, education level, and tobacco, lower caffeine consumption was associated with higher risk to be amnestic (OR: 2.49 [95% CI: 1.13 to 5.46]; p = 0.023) and lower CSF Aβ1-42 (p = 0.047), Aβ1-42/Aβ1-40 (p = 0.040), and Aβ1-42/p-tau181 (p = 0.020) in the whole cohort. DISCUSSION Data support the beneficial effect of caffeine consumption to memory impairments and CSF amyloid markers in MCI and AD patients. HIGHLIGHTS We studied the impact of caffeine consumption in the BALTAZAR cohort. Low caffeine intake is associated with higher risk of being amnestic in MCI/AD patients. Caffeine intake is associated with CSF biomarkers in AD patients.
Collapse
Affiliation(s)
- David Blum
- University of Lille, Inserm, CHU LilleUMR‐S1172 Lille Neuroscience & Cognition (LilNCog)LilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | | | | | - Jean‐Sébastien Vidal
- Université Paris CitéINSERM U1144, GHU APHP CentreHopital Broca, Memory Resource and Research Centre de Paris‐Broca‐Ile de FranceParisFrance
| | - Constance Delaby
- Laboratoire et Plateforme de Protéomique CliniqueUniversité de MontpellierINM INSERM, IRMB CHU de Montpellier, 80 av FlicheMontpellierFrance
- Sant Pau Memory UnitHospital de la Santa Creu i Sant Pau ‐ Biomedical Research Institute Sant Pau ‐ Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Luc Buée
- University of Lille, Inserm, CHU LilleUMR‐S1172 Lille Neuroscience & Cognition (LilNCog)LilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | - Bernadette Allinquant
- Université Paris CitéInstitute of Psychiatry and Neuroscience, Inserm, UMR‐S 1266ParisFrance
| | - Audrey Gabelle
- Université de MontpellierCHU MontpellierMemory Research and Resources CenterDepartment of Neurology, Inserm INM NeuroPEPs TeamExcellence Center of Neurodegenerative DisordersMontpellierFrance
| | - Stéphanie Bombois
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
- Assistance Publique‐Hôpitaux de Paris (AP‐HP)Département de Neurologie, Centre des Maladies Cognitives et Comportementales, GH Pitié‐SalpêtrièreParisFrance
| | - Sylvain Lehmann
- Laboratoire et Plateforme de Protéomique CliniqueUniversité de MontpellierINM INSERM, IRMB CHU de Montpellier, 80 av FlicheMontpellierFrance
| | - Susanna Schraen‐Maschke
- University of Lille, Inserm, CHU LilleUMR‐S1172 Lille Neuroscience & Cognition (LilNCog)LilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | - Olivier Hanon
- Université Paris CitéINSERM U1144, GHU APHP CentreHopital Broca, Memory Resource and Research Centre de Paris‐Broca‐Ile de FranceParisFrance
| |
Collapse
|
10
|
Wang B, Ma T, Yang L, He S, Li J, Sun X. Association between coffee and tea consumption and the risk of dementia in individuals with hypertension: a prospective cohort study. Sci Rep 2024; 14:21063. [PMID: 39256489 PMCID: PMC11387621 DOI: 10.1038/s41598-024-71426-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
Many studies have shown that drinking coffee and tea may be associated with the risk of hypertension and dementia. Limited research exists on their impact on dementia risk in hypertensive patients. This study aimed to determine the association between coffee and tea consumption and the risk of dementia development in hypertensive population by utilizing Cox proportional risk modeling with 453,913 participants from a UK biobank. Our findings reveal a J-shaped and U-shaped association between the risk of all-cause dementia and the consumption of coffee and tea respectively in hypertensive people. The hypertensive patients who drink 0.5-1 cup of coffee or 4-5 cups of tea per day have the lowest risk of dementia. A U-shaped relationship was observed between daily caffeine consumption and the risk of developing all-cause dementia and vascular dementia in the hypertensive population. Furthermore, the significant association between the amount of coffee and tea consumed and the risk of all-cause and vascular dementia were more likely to be found in hypertensive patients than in the non-hypertensive population.
Collapse
Affiliation(s)
- Bo Wang
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University , Yinchuan, 750004, China
| | - Ting Ma
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University , Yinchuan, 750004, China
| | - Lingling Yang
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University , Yinchuan, 750004, China
| | - Shulan He
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University , Yinchuan, 750004, China
| | - Jiangping Li
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University , Yinchuan, 750004, China
| | - Xian Sun
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China.
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University , Yinchuan, 750004, China.
| |
Collapse
|
11
|
Laversin A, Dufossez R, Bolteau R, Duroux R, Ravez S, Hernandez-Tapia S, Fossart M, Coevoet M, Liberelle M, Yous S, Lebègue N, Melnyk P. Novel Quinazoline Derivatives as Highly Effective A2A Adenosine Receptor Antagonists. Molecules 2024; 29:3847. [PMID: 39202926 PMCID: PMC11357017 DOI: 10.3390/molecules29163847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
The adenosine A2A receptor (A2AR) has been identified as a therapeutic target for treating neurodegenerative diseases and cancer. In recent years, we have highlighted the 2-aminoquinazoline heterocycle as an promising scaffold for designing new A2AR antagonists, exemplified by 6-bromo-4-(furan-2-yl)quinazolin-2-amine 1 (Ki (hA2AR) = 20 nM). Here, we report the synthesis of new 2-aminoquinazoline derivatives with substitutions at the C6- and C7-positions, and the introduction of aminoalkyl chains containing tertiary amines at the C2-position to enhance antagonist activity and solubility properties. Compound 5m showed a high affinity for hA2AR with a Ki value of 5 nM and demonstrated antagonist activity with an IC50 of 6 µM in a cyclic AMP assay. Introducing aminopentylpiperidine and 4-[(piperidin-1-yl)methyl]aniline substituents maintained the binding affinities (9x, Ki = 21 nM; 10d, Ki = 15 nM) and functional antagonist activities (9x, IC50 = 9 µM; 10d, IC50 = 5 µM) of the synthesized compounds while improving solubility. This study provides insights into the future development of A2AR antagonists for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Patricia Melnyk
- Univ. Lille, Inserm, CHU Lille, U1172—LilNCog—Lille Neuroscience & Cognition, F-59000 Lille, France; (A.L.); (R.D.); (R.B.); (R.D.); (S.R.); (S.H.-T.); (M.F.); (M.C.); (M.L.); (S.Y.); (N.L.)
| |
Collapse
|
12
|
Zhang M, Liang C, Chen X, Cai Y, Cui L. Interplay between microglia and environmental risk factors in Alzheimer's disease. Neural Regen Res 2024; 19:1718-1727. [PMID: 38103237 PMCID: PMC10960290 DOI: 10.4103/1673-5374.389745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/09/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease, among the most common neurodegenerative disorders, is characterized by progressive cognitive impairment. At present, the Alzheimer's disease main risk remains genetic risks, but major environmental factors are increasingly shown to impact Alzheimer's disease development and progression. Microglia, the most important brain immune cells, play a central role in Alzheimer's disease pathogenesis and are considered environmental and lifestyle "sensors." Factors like environmental pollution and modern lifestyles (e.g., chronic stress, poor dietary habits, sleep, and circadian rhythm disorders) can cause neuroinflammatory responses that lead to cognitive impairment via microglial functioning and phenotypic regulation. However, the specific mechanisms underlying interactions among these factors and microglia in Alzheimer's disease are unclear. Herein, we: discuss the biological effects of air pollution, chronic stress, gut microbiota, sleep patterns, physical exercise, cigarette smoking, and caffeine consumption on microglia; consider how unhealthy lifestyle factors influence individual susceptibility to Alzheimer's disease; and present the neuroprotective effects of a healthy lifestyle. Toward intervening and controlling these environmental risk factors at an early Alzheimer's disease stage, understanding the role of microglia in Alzheimer's disease development, and targeting strategies to target microglia, could be essential to future Alzheimer's disease treatments.
Collapse
Affiliation(s)
- Miaoping Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Chunmei Liang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| |
Collapse
|
13
|
Gomez-Murcia V, Launay A, Carvalho K, Burgard A, Meriaux C, Caillierez R, Eddarkaoui S, Kilinc D, Siedlecki-Wullich D, Besegher M, Bégard S, Thiroux B, Jung M, Nebie O, Wisztorski M, Déglon N, Montmasson C, Bemelmans AP, Hamdane M, Lebouvier T, Vieau D, Fournier I, Buee L, Lévi S, Lopes LV, Boutillier AL, Faivre E, Blum D. Neuronal A2A receptor exacerbates synapse loss and memory deficits in APP/PS1 mice. Brain 2024; 147:2691-2705. [PMID: 38964748 PMCID: PMC11292904 DOI: 10.1093/brain/awae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 03/21/2024] [Indexed: 07/06/2024] Open
Abstract
Early pathological upregulation of adenosine A2A receptors (A2ARs), one of the caffeine targets, by neurons is thought to be involved in the development of synaptic and memory deficits in Alzheimer's disease (AD) but mechanisms remain ill-defined. To tackle this question, we promoted a neuronal upregulation of A2AR in the hippocampus of APP/PS1 mice developing AD-like amyloidogenesis. Our findings revealed that the early upregulation of A2AR in the presence of an ongoing amyloid pathology exacerbates memory impairments of APP/PS1 mice. These behavioural changes were not linked to major change in the development of amyloid pathology but rather associated with increased phosphorylated tau at neuritic plaques. Moreover, proteomic and transcriptomic analyses coupled with quantitative immunofluorescence studies indicated that neuronal upregulation of the receptor promoted both neuronal and non-neuronal autonomous alterations, i.e. enhanced neuroinflammatory response but also loss of excitatory synapses and impaired neuronal mitochondrial function, presumably accounting for the detrimental effect on memory. Overall, our results provide compelling evidence that neuronal A2AR dysfunction, as seen in the brain of patients, contributes to amyloid-related pathogenesis and underscores the potential of A2AR as a relevant therapeutic target for mitigating cognitive impairments in this neurodegenerative disorder.
Collapse
Affiliation(s)
- Victoria Gomez-Murcia
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - Agathe Launay
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - Kévin Carvalho
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - Anaëlle Burgard
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), University of Strasbourg, F-67000 Strasbourg, France
- UMR7364–Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), CNRS, F-67000 Strasbourg, France
| | - Céline Meriaux
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - Raphaëlle Caillierez
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - Sabiha Eddarkaoui
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - Devrim Kilinc
- Inserm U1167, LabEx DISTALZ, Université de Lille, Institut Pasteur de Lille, CHU Lille, F-59000 Lille, France
| | - Dolores Siedlecki-Wullich
- Inserm U1167, LabEx DISTALZ, Université de Lille, Institut Pasteur de Lille, CHU Lille, F-59000 Lille, France
| | - Mélanie Besegher
- Plateformes Lilloises en Biologie et Santé (PLBS)–UAR 2014–US 41, CNRS, Inserm, Université de Lille, Institut Pasteur de Lille, CHU Lille, F-59000 Lille, France
| | - Séverine Bégard
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - Bryan Thiroux
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - Matthieu Jung
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), University of Strasbourg, CNRS UMR7104, Inserm U1258—GenomEast Platform, F-67400 Illkirch, France
| | - Ouada Nebie
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - Maxence Wisztorski
- Inserm U1192, Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Université de Lille, Lille F-59000, France
| | - Nicole Déglon
- Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Neuroscience Research Center (CRN), 1011 Lausanne, Switzerland
| | - Claire Montmasson
- Institut du Fer à Moulin, Inserm UMR-S 1270, Sorbonne Université, F-75005 Paris, France
| | - Alexis-Pierre Bemelmans
- Laboratoire des Maladies Neurodégénératives: mécanismes, thérapies, imagerie, Université Paris-Saclay, CEA, CNRS, F-92265 Fontenay-aux-Roses, France
| | - Malika Hamdane
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - Thibaud Lebouvier
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
- Memory Clinic, CHU Lille, F-59000 Lille, France
| | - Didier Vieau
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - Isabelle Fournier
- Inserm U1192, Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Université de Lille, Lille F-59000, France
| | - Luc Buee
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - Sabine Lévi
- Institut du Fer à Moulin, Inserm UMR-S 1270, Sorbonne Université, F-75005 Paris, France
| | - Luisa V Lopes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Anne-Laurence Boutillier
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), University of Strasbourg, F-67000 Strasbourg, France
- UMR7364–Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), CNRS, F-67000 Strasbourg, France
| | - Emilie Faivre
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - David Blum
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| |
Collapse
|
14
|
Bhardwaj I, Ansari AH, Rai SP, Singh S, Singh D. Molecular targets of caffeine in the central nervous system. PROGRESS IN BRAIN RESEARCH 2024; 288:35-58. [PMID: 39168558 DOI: 10.1016/bs.pbr.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Caffeine is an alkaloid obtained from plants and is one of the most consumptive drug in the form of chocolate, coffee and beverages. The potential impact of caffeine within CNS can be easily understood by mechanism of action-antagonism of adenosine receptor, calcium influx, inhibits phosphodiesterases. Adenosine a neuromodulator for adenosine receptors, which are abundantly expressed within the central nervous system. Caffeine antagonized the adenosine receptor, hence stimulate expression of dopamine. It plays pivotal role in many metabolic pathways within the brain and nervous system, it reduced the amyloid-β-peptide (Aβ) accumulation, downregulation of tau protein phosphorylation, stimulate cholinergic neurons and inhibits the acetylcholinestrase (AChE). It also possess antioxidant and antiapoptotic activity. Caffeine act as nutraceutical product, improves mental health. It contains antioxidants, vitamins, minerals and dietary supplements, by reducing the risk factor of several neurodegenerations including Alzheimer's disease, migraine, gallstone, cancer, Huntington's disease and sclerosis. This act as a stimulant and have capability to increase the effectiveness of certain pain killer. Beside positive affects, over-consumption of caffeine leads to negative impact: change in sleep pattern, hallucinations, high blood pressure, mineral loss and even heartburn. This chapter highlights pros and cons of caffeine consumption.
Collapse
Affiliation(s)
- Ishita Bhardwaj
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Atifa Haseeb Ansari
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Swayam Prabha Rai
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Sippy Singh
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Durgesh Singh
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India.
| |
Collapse
|
15
|
Rai SP, Ansari AH, Singh D, Singh S. Coffee, antioxidants, and brain inflammation. PROGRESS IN BRAIN RESEARCH 2024; 289:123-150. [PMID: 39168577 DOI: 10.1016/bs.pbr.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Coffee is the most popular beverage in the world and, aside from tea and water, the most often consumed caffeine-containing beverage. Because of its high caffeine concentration, it is typically classified as a stimulant. There are other bioactive ingredients in coffee besides caffeine. The coffee beverage is a blend of several bioactive substances, including diterpenes (cafestol and kahweol), alkaloids (caffeine and trigonelline), and polyphenols (particularly chlorogenic acids in green beans and caffeic acid in roasted coffee beans). Caffeine has also been linked to additional beneficial benefits such as antioxidant and anti-inflammatory properties, which change cellular redox and inflammatory status in a dose-dependent manner. Pyrocatechol, a constituent of roasted coffee that is created when chlorogenic acid is thermally broken down, has anti-inflammatory properties as well. It is postulated that coffee consumption reduces neuroinflammation, which is intimately linked to the onset of neurodegenerative disorders like Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). This review provides an overview of the most recent studies regarding coffee's possible benefits in preventing brain inflammation and neurodegenerative disorders.
Collapse
Affiliation(s)
- Swayam Prabha Rai
- Department of Zoology, S.S. Khanna Girls' Degree College (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Atifa Haseeb Ansari
- Department of Zoology, S.S. Khanna Girls' Degree College (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Durgesh Singh
- Department of Zoology, S.S. Khanna Girls' Degree College (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Sippy Singh
- Department of Zoology, S.S. Khanna Girls' Degree College (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India.
| |
Collapse
|
16
|
Kumar Nelson V, Jha NK, Nuli MV, Gupta S, Kanna S, Gahtani RM, Hani U, Singh AK, Abomughaid MM, Abomughayedh AM, Almutary AG, Iqbal D, Al Othaim A, Begum SS, Ahmad F, Mishra PC, Jha SK, Ojha S. Unveiling the impact of aging on BBB and Alzheimer's disease: Factors and therapeutic implications. Ageing Res Rev 2024; 98:102224. [PMID: 38346505 DOI: 10.1016/j.arr.2024.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that has devastating effects on individuals, often resulting in dementia. AD is primarily defined by the presence of extracellular plaques containing insoluble β-amyloid peptide (Aβ) and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein (P-tau). In addition, individuals afflicted by these age-related illnesses experience a diminished state of health, which places significant financial strain on their loved ones. Several risk factors play a significant role in the development of AD. These factors include genetics, diet, smoking, certain diseases (such as cerebrovascular diseases, obesity, hypertension, and dyslipidemia), age, and alcohol consumption. Age-related factors are key contributors to the development of vascular-based neurodegenerative diseases such as AD. In general, the process of aging can lead to changes in the immune system's responses and can also initiate inflammation in the brain. The chronic inflammation and the inflammatory mediators found in the brain play a crucial role in the dysfunction of the blood-brain barrier (BBB). Furthermore, maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. Therefore, in this review, we discussed the role of age and its related factors in the breakdown of the blood-brain barrier and the development of AD. We also discussed the importance of different compounds, such as those with anti-aging properties, and other compounds that can help maintain the integrity of the blood-brain barrier in the prevention of AD. This review builds a strong correlation between age-related factors, degradation of the BBB, and its impact on AD.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Sandeep Kanna
- Department of pharmaceutics, Chalapathi Institute of Pharmaceutical Sciences, Chalapathi Nagar, Guntur 522034, India
| | - Reem M Gahtani
- Departement of Clinical Laboratory Sciences, King Khalid University, Abha, Saudi Arabia
| | - Umme Hani
- Department of pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Arun Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M Abomughayedh
- Pharmacy Department, Aseer Central Hospital, Ministry of Health, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - S Sabarunisha Begum
- Department of Biotechnology, P.S.R. Engineering College, Sivakasi 626140, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| |
Collapse
|
17
|
Mei SY, Zhang N, Wang MJ, Lv PR, Liu Q. Microglial purinergic signaling in Alzheimer's disease. Purinergic Signal 2024:10.1007/s11302-024-10029-8. [PMID: 38910192 DOI: 10.1007/s11302-024-10029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease. The prevalent features of AD pathogenesis are the appearance of β-amyloid (Aβ) plaques and neurofibrillary tangles, which cause microglial activation, synaptic deficiency, and neuronal loss. Microglia accompanies AD pathological processes and is also linked to cognitive deficits. Purinergic signaling has been shown to play a complex and tight interplay with the chemotaxis, phagocytosis, and production of pro-inflammatory factors in microglia, which is an important mechanism for regulating microglia activation. Here, we review recent evidence for interactions between AD, microglia, and purinergic signaling and find that the purinergic P2 receptors pertinently expressed on microglia are the ionotropic receptors P2X4 and P2X7, and the subtypes of P2YRs expressed by microglia are metabotropic receptors P2Y2, P2Y6, P2Y12, and P2Y13. The adenosine P1 receptors expressed in microglia include A1R, A2AR, and A2BR. Among them, the activation of P2X4, P2X7, and adenosine A1, A2A receptors expressed in microglia can aggravate the pathological process of AD, whereas P2Y2, P2Y6, P2Y12, and P2Y13 receptors expressed by microglia can induce neuroprotective effects. However, A1R activation also has a strong neuroprotective effect and has a significant anti-inflammatory effect in chronic neuroinflammation. These receptors regulate a variety of pathophysiological processes in AD, including APP processing, Aβ production, tau phosphorylation, neuroinflammation, synaptic dysfunction, and mitochondrial dysfunction. This review also provides key pharmacological advances in purinergic signaling receptors.
Collapse
Affiliation(s)
- Shu-Ya Mei
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Ning Zhang
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Meng-Jing Wang
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Pei-Ran Lv
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China.
| | - Qi Liu
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China.
| |
Collapse
|
18
|
Wang M, Guo W, Chen JF. Caffeine: a potential mechanism for anti-obesity. Purinergic Signal 2024:10.1007/s11302-024-10022-1. [PMID: 38802651 DOI: 10.1007/s11302-024-10022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Obesity refers to the excessive accumulation of fat caused by a long-term imbalance between energy intake (EI) and energy expenditure (EE). Over recent years, obesity has become a major public health challenge. Caffeine is a natural product that has been demonstrated to exert anti-obesity effects; however, the mechanisms responsible for the effect of caffeine on weight loss have yet to be fully elucidated. Most obesity-related deaths are due to cardiovascular disease. Recent research has demonstrated that caffeine can reduce the risk of death from cardiovascular disease; thus, it can be hypothesized that caffeine may represent a new therapeutic agent for weight loss. In this review, we synthesize data arising from clinical and animal studies over the last decade and discuss the potential mechanisms by which caffeine may induce weight loss, focusing particularly on increasing energy consumption, suppressing appetite, altering lipid metabolism, and influencing the gut microbiota. Finally, we summarize the major challenges associated with caffeine and anti-obesity research and highlight possible directions for future research and development.
Collapse
Affiliation(s)
- Meng Wang
- International Joint Research Center on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wei Guo
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
19
|
Lalo U, Pankratov Y. Astrocyte ryanodine receptors facilitate gliotransmission and astroglial modulation of synaptic plasticity. Front Cell Neurosci 2024; 18:1382010. [PMID: 38812795 PMCID: PMC11135129 DOI: 10.3389/fncel.2024.1382010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Intracellular Ca2+-signaling in astrocytes is instrumental for their brain "housekeeping" role and astroglial control of synaptic plasticity. An important source for elevating the cytosolic Ca2+ level in astrocytes is a release from endoplasmic reticulum which can be triggered via two fundamental pathways: IP3 receptors and calcium-induced calcium release (CICR) mediated by Ca2+-sensitive ryanodine receptors (RyRs). While the physiological role for glial IP3 became a focus of intensive research and debate, ryanodine receptors received much less attention. We explored the role for ryanodine receptors in the modulation of cytosolic Ca2+-signaling in the cortical and hippocampal astrocytes, astrocyte-neuron communication and astroglia modulation of synaptic plasticity. Our data show that RyR-mediated Ca2+-induced Ca2+-release from ER brings substantial contribution into signaling in the functional microdomains hippocampal and neocortical astrocytes. Furthermore, RyR-mediated CICR activated the release of ATP and glutamate from hippocampal and neocortical astrocytes which, in turn, elicited transient purinergic and tonic glutamatergic currents in the neighboring pyramidal neurons. The CICR-facilitated release of ATP and glutamate was inhibited after intracellular perfusion of astrocytes with ryanodine and BAPTA and in the transgenic dnSNARE mice with impaired astroglial exocytosis. We also found out that RyR-mediated amplification of astrocytic Ca2+-signaling enhanced the long-term synaptic potentiation in the hippocampus and neocortex of aged mice. Combined, our data demonstrate that ryanodine receptors are essential for astrocytic Ca2+-signaling and efficient astrocyte-neuron communications. The RyR-mediated CICR contributes to astrocytic control of synaptic plasticity and can underlie, at least partially, neuroprotective and cognitive effects of caffein.
Collapse
Affiliation(s)
| | - Yuriy Pankratov
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
20
|
Zhu C, Ren X, Liu C, Liu Y, Wang Y. Rbm8a regulates neurogenesis and reduces Alzheimer's disease-associated pathology in the dentate gyrus of 5×FAD mice. Neural Regen Res 2024; 19:863-871. [PMID: 37843222 PMCID: PMC10664127 DOI: 10.4103/1673-5374.382254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer's disease is a prevalent and debilitating neurodegenerative condition that profoundly affects a patient's daily functioning with progressive cognitive decline, which can be partly attributed to impaired hippocampal neurogenesis. Neurogenesis in the hippocampal dentate gyrus is likely to persist throughout life but declines with aging, especially in Alzheimer's disease. Recent evidence indicated that RNA-binding protein 8A (Rbm8a) promotes the proliferation of neural progenitor cells, with lower expression levels observed in Alzheimer's disease patients compared with healthy people. This study investigated the hypothesis that Rbm8a overexpression may enhance neurogenesis by promoting the proliferation of neural progenitor cells to improve memory impairment in Alzheimer's disease. Therefore, Rbm8a overexpression was induced in the dentate gyrus of 5×FAD mice to validate this hypothesis. Elevated Rbm8a levels in the dentate gyrus triggered neurogenesis and abated pathological phenotypes (such as plaque formation, gliosis reaction, and dystrophic neurites), leading to ameliorated memory performance in 5×FAD mice. RNA sequencing data further substantiated these findings, showing the enrichment of differentially expressed genes involved in biological processes including neurogenesis, cell proliferation, and amyloid protein formation. In conclusion, overexpressing Rbm8a in the dentate gyrus of 5×FAD mouse brains improved cognitive function by ameliorating amyloid-beta-associated pathological phenotypes and enhancing neurogenesis.
Collapse
Affiliation(s)
- Chenlu Zhu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Xiao Ren
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Chen Liu
- Department of Neurology, Xiaogan City Central Hospital, Xiaogan, Hubei Province, China
| | - Yawei Liu
- Health Service Department of the Guard Bureau of the General Office of the Central Committee of the Communist Party of China, Beijing, China
| | - Yonggang Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Dey P, Biswas P. Effect of caffeine on the aggregation of amyloid-β-A 3D RISM study. J Chem Phys 2024; 160:125101. [PMID: 38516974 DOI: 10.1063/5.0202636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024] Open
Abstract
Alzheimer's disease is a detrimental neurological disorder caused by the formation of amyloid fibrils due to the aggregation of amyloid-β peptide. The primary therapeutic approaches for treating Alzheimer's disease are targeted to prevent this amyloid fibril formation using potential inhibitor molecules. The discovery of such inhibitor molecules poses a formidable challenge to the design of anti-amyloid drugs. This study investigates the effect of caffeine on dimer formation of the full-length amyloid-β using a combined approach of all-atom, explicit water molecular dynamics simulations and the three-dimensional reference interaction site model theory. The change in the hydration free energy of amyloid-β dimer, with and without the inhibitor molecules, is calculated with respect to the monomeric amyloid-β, where the hydration free energy is decomposed into energetic and entropic components, respectively. Dimerization is accompanied by a positive change in the partial molar volume. Dimer formation is spontaneous, which implies a decrease in the hydration free energy. However, a reverse trend is observed for the dimer with inhibitor molecules. It is observed that the negatively charged residues primarily contribute for the formation of the amyloid-β dimer. A residue-wise decomposition reveals that hydration/dehydration of the side-chain atoms of the charged amino acid residues primarily contribute to dimerization.
Collapse
Affiliation(s)
- Priya Dey
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
22
|
Sharo C, Zhai T, Huang Z. Investigation of Potential Drug Targets Involved in Inflammation Contributing to Alzheimer's Disease Progression. Pharmaceuticals (Basel) 2024; 17:137. [PMID: 38276010 PMCID: PMC10819325 DOI: 10.3390/ph17010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Alzheimer's disease has become a major public health issue. While extensive research has been conducted in the last few decades, few drugs have been approved by the FDA to treat Alzheimer's disease. There is still an urgent need for understanding the disease pathogenesis, as well as identifying new drug targets for further drug discovery. Alzheimer's disease is known to arise from a build-up of amyloid beta (Aβ) plaques as well as tangles of tau proteins. Along similar lines to Alzheimer's disease, inflammation in the brain is known to stem from the degeneration of tissue and build-up of insoluble materials. A minireview was conducted in this work assessing the genes, proteins, reactions, and pathways that link brain inflammation and Alzheimer's disease. Existing tools in Systems Biology were implemented to build protein interaction networks, mainly for the classical complement pathway and G protein-coupled receptors (GPCRs), to rank the protein targets according to their interactions. The top 10 protein targets were mainly from the classical complement pathway. With the consideration of existing clinical trials and crystal structures, proteins C5AR1 and GARBG1 were identified as the best targets for further drug discovery, through computational approaches like ligand-protein docking techniques.
Collapse
Affiliation(s)
| | | | - Zuyi Huang
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19085, USA
| |
Collapse
|
23
|
Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev 2024; 104:103-197. [PMID: 37843394 PMCID: PMC11281823 DOI: 10.1152/physrev.00030.2022] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the "OS hypothesis of AD," including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
24
|
Sahay S, Devine EA, McCullumsmith RE, O’Donovan SM. Adenosine Receptor mRNA Expression in Frontal Cortical Neurons in Schizophrenia. Cells 2023; 13:32. [PMID: 38201235 PMCID: PMC10778287 DOI: 10.3390/cells13010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Schizophrenia is a devastating neuropsychiatric disorder associated with the dysregulation of glutamate and dopamine neurotransmitter systems. The adenosine system is an important neuroregulatory system in the brain that modulates glutamate and dopamine signaling via the ubiquitously expressed adenosine receptors; however, adenosine A1 and A2A receptor (A1R and A2AR) mRNA expression is poorly understood in specific cell subtypes in the frontal cortical brain regions implicated in this disorder. In this study, we assayed A1R and A2AR mRNA expression via qPCR in enriched populations of pyramidal neurons, which were isolated from postmortem anterior cingulate cortex (ACC) tissue from schizophrenia (n = 20) and control (n = 20) subjects using laser microdissection (LMD). A1R expression was significantly increased in female schizophrenia subjects compared to female control subjects (t(13) = -4.008, p = 0.001). A1R expression was also significantly decreased in female control subjects compared to male control subjects, suggesting sex differences in basal A1R expression (t(17) = 2.137, p = 0.047). A significant, positive association was found between dementia severity (clinical dementia rating (CDR) scores) and A2AR mRNA expression (Spearman's r = 0.424, p = 0.009). A2AR mRNA expression was significantly increased in unmedicated schizophrenia subjects, suggesting that A2AR expression may be normalized by chronic antipsychotic treatment (F(1,14) = 9.259, p = 0.009). Together, these results provide novel insights into the neuronal expression of adenosine receptors in the ACC in schizophrenia and suggest that receptor expression changes may be sex-dependent and associated with cognitive decline in these subjects.
Collapse
Affiliation(s)
- Smita Sahay
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (R.E.M.)
| | - Emily A. Devine
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (R.E.M.)
- Neuroscience Institute Promedica, Toledo, OH 43606, USA
| | - Sinead M. O’Donovan
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (R.E.M.)
| |
Collapse
|
25
|
Aframian K, Yousef Yengej D, Nwaobi S, Raman S, Faas GC, Charles A. Effects of chronic caffeine on patterns of brain blood flow and behavior throughout the sleep-wake cycle in freely behaving mice. PNAS NEXUS 2023; 2:pgad303. [PMID: 37780231 PMCID: PMC10538474 DOI: 10.1093/pnasnexus/pgad303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
Caffeine has significant effects on neurovascular activity and behavior throughout the sleep-wake cycle. We used a minimally invasive microchip/video system to continuously record effects of caffeine in the drinking water of freely behaving mice. Chronic caffeine shifted both rest and active phases by up to 2 h relative to the light-dark cycle in a dose-dependent fashion. There was a particular delay in the onset of rapid eye movement (REM) sleep as compared with non-REM sleep during the rest phase. Chronic caffeine increased wakefulness during the active phase and consolidated sleep during the rest phase; overall, there was no net change in the amount of time spent in the wake, sleep, or REM sleep states during caffeine administration. Despite these effects on wakefulness and sleep, chronic caffeine decreased mean cerebral blood volume (CBV) during the active phase and increased mean CBV during the rest phase. Chronic caffeine also increased heart rate variability in both the sleep and wake states. These results provide new insight into the effects of caffeine on the biology of the sleep-wake cycle. Increased blood flow during sleep caused by chronic caffeine may have implications for its potential neuroprotective effects through vascular mechanisms of brain waste clearance.
Collapse
Affiliation(s)
- Kimiya Aframian
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| | - Dmitri Yousef Yengej
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| | - Sinifunanya Nwaobi
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| | - Shrayes Raman
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| | - Guido C Faas
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| | - Andrew Charles
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
Illes P, Ulrich H, Chen JF, Tang Y. Purinergic receptors in cognitive disturbances. Neurobiol Dis 2023; 185:106229. [PMID: 37453562 DOI: 10.1016/j.nbd.2023.106229] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Purinergic receptors (Rs) of the ATP/ADP, UTP/UDP (P2X, P2Y) and adenosine (A1, A2A)-sensitive classes broadly interfere with cognitive processes both under quasi normal and disease conditions. During neurodegenerative illnesses, high concentrations of ATP are released from the damaged neuronal and non-neuronal cells of the brain; then, this ATP is enzymatically degraded to adenosine. Thus, the primary injury in neurodegenerative diseases appears to be caused by various protein aggregates on which a superimposed damage mediated by especially P2X7 and A2AR activation develops; this can be efficiently prevented by small molecular antagonists in animal models of the above diseases, or are mitigated in the respective knockout mice. Dementia is a leading symptom in Alzheimer's disease (AD), and accompanies Parkinson's disease (PD) and Huntington's disease (HD), especially in the advanced states of these illnesses. Animal experimentation suggests that P2X7 and A2ARs are also involved in a number of psychiatric diseases, such as major depressive disorder (MDD), obsessive compulsive behavior, and attention deficit hyperactivity disorder. In conclusion, small molecular antagonists of purinergic receptors are expected to supply us in the future with pharmaceuticals which are able to combat in a range of neurological/psychiatric diseases the accompanying cognitive deterioration.
Collapse
Affiliation(s)
- Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditonal Chinese Medicine, Chengdu 610075, China; Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany; International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Henning Ulrich
- International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Biochemistry and Molecular Biology, Chemistry Institute, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Whenzhou 325000, China
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditonal Chinese Medicine, Chengdu 610075, China; International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Acupuncture and Chronobiology Key Laboratory of Sichuan Province, School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
27
|
Elgazar AA, El-Domany RA, Eldehna WM, Badria FA. Theophylline-based hybrids as acetylcholinesterase inhibitors endowed with anti-inflammatory activity: synthesis, bioevaluation, in silico and preliminary kinetic studies. RSC Adv 2023; 13:25616-25634. [PMID: 37649576 PMCID: PMC10463010 DOI: 10.1039/d3ra04867e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023] Open
Abstract
In this study, we investigated the conjugation of theophylline with different compounds of natural origin hoping to construct new hybrids with dual activity against cholinergic and inflammatory pathways as potential agents for the treatment of Alzheimer's disease (AD). Out of 28 tested hybrids, two hybrids, acefylline-eugenol 6d and acefylline-isatin 19, were able to inhibit acetylcholinesterase (AChE) at low micromolar concentration displaying IC50 values of 1.8 and 3.3 μM, respectively, when compared to the galantamine standard AChE inhibitor. Moreover, the prepared hybrids exhibited a significant anti-inflammatory effect against lipopolysaccharide induced inflammation in RAW 264.7 and reduced nitric oxide (NO), tumor necrosis alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) levels in a dose dependent manner. These hybrids demonstrated significant reductions in nitric oxide (NO), tumor necrosis alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) levels in RAW 264.7 cells induced by lipopolysaccharide (LPS). The findings of this study were further explained in light of network pharmacology analysis which suggested that AChE and nitric oxide synthase were the main targets of the most active compounds. Molecular docking studies revealed their ability to bind to the heme binding site of nitric oxide synthase 3 (NOS-3) and effectively occupy the active site of AChE, interacting with both the peripheral aromatic subsite and catalytic triad. Finally, the compounds demonstrated stability in simulated gastric and intestinal environments, suggesting potential absorption into the bloodstream without significant hydrolysis. These findings highlight the possible therapeutic potential of acefylline-eugenol 6d and acefylline-isatin 19 hybrids in targeting multiple pathological mechanisms involved in AD, offering promising avenues for further development as potential treatments for this devastating disease.
Collapse
Affiliation(s)
- Abdullah A Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University P.O. Box 33516 Kafrelsheikh Egypt
| | - Ramadan A El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University P.O. Box 33516 Kafrelsheikh Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University P.O. Box 33516 Kafrelsheikh Egypt
| | - Farid A Badria
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University Mansoura Egypt +20-1001762927
| |
Collapse
|
28
|
Zhao Y, Ning YL, Zhou YG. A 2AR and traumatic brain injury. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:225-265. [PMID: 37741693 DOI: 10.1016/bs.irn.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Accumulating evidence has revealed the adenosine 2A receptor is a key tuner for neuropathological and neurobehavioral changes following traumatic brain injury by experimental animal models and a few clinical trials. Here, we highlight recent data involving acute/sub-acute and chronic alterations of adenosine and adenosine 2A receptor-associated signaling in pathological conditions after trauma, with an emphasis of traumatic brain injury, including neuroinflammation, cognitive and psychiatric disorders, and other severe consequences. We expect this would lead to the development of therapeutic strategies for trauma-related disorders with novel mechanisms of action.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery and Daping Hospital, Army Medical University, P.R. China; Institute of Brain and Intelligence, Army Medical University, Chongqing, P.R. China
| | - Ya-Lei Ning
- Department of Army Occupational Disease, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery and Daping Hospital, Army Medical University, P.R. China; Institute of Brain and Intelligence, Army Medical University, Chongqing, P.R. China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery and Daping Hospital, Army Medical University, P.R. China; Institute of Brain and Intelligence, Army Medical University, Chongqing, P.R. China.
| |
Collapse
|
29
|
Tapias V, González-Andrés P, Peña LF, Barbero A, Núñez L, Villalobos C. Therapeutic Potential of Heterocyclic Compounds Targeting Mitochondrial Calcium Homeostasis and Signaling in Alzheimer's Disease and Parkinson's Disease. Antioxidants (Basel) 2023; 12:1282. [PMID: 37372013 DOI: 10.3390/antiox12061282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative diseases in the elderly. The key histopathological features of these diseases are the presence of abnormal protein aggregates and the progressive and irreversible loss of neurons in specific brain regions. The exact mechanisms underlying the etiopathogenesis of AD or PD remain unknown, but there is extensive evidence indicating that excessive generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with a depleted antioxidant system, mitochondrial dysfunction, and intracellular Ca2+ dyshomeostasis, plays a vital role in the pathophysiology of these neurological disorders. Due to an improvement in life expectancy, the incidence of age-related neurodegenerative diseases has significantly increased. However, there is no effective protective treatment or therapy available but rather only very limited palliative treatment. Therefore, there is an urgent need for the development of preventive strategies and disease-modifying therapies to treat AD/PD. Because dysregulated Ca2+ metabolism drives oxidative damage and neuropathology in these diseases, the identification or development of compounds capable of restoring Ca2+ homeostasis and signaling may provide a neuroprotective avenue for the treatment of neurodegenerative diseases. In addition, a set of strategies to control mitochondrial Ca2+ homeostasis and signaling has been reported, including decreased Ca2+ uptake through voltage-operated Ca2+ channels (VOCCs). In this article, we review the modulatory effects of several heterocyclic compounds on Ca2+ homeostasis and trafficking, as well as their ability to regulate compromised mitochondrial function and associated free-radical production during the onset and progression of AD or PD. This comprehensive review also describes the chemical synthesis of the heterocycles and summarizes the clinical trial outcomes.
Collapse
Affiliation(s)
- Victor Tapias
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Paula González-Andrés
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Laura F Peña
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Asunción Barbero
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Lucía Núñez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Carlos Villalobos
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| |
Collapse
|
30
|
Babylon L, Meißner J, Eckert GP. Combination of Secondary Plant Metabolites and Micronutrients Improves Mitochondrial Function in a Cell Model of Early Alzheimer's Disease. Int J Mol Sci 2023; 24:10029. [PMID: 37373177 PMCID: PMC10297858 DOI: 10.3390/ijms241210029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by excessive formation of beta-amyloid peptides (Aβ), mitochondrial dysfunction, enhanced production of reactive oxygen species (ROS), and altered glycolysis. Since the disease is currently not curable, preventive and supportive approaches are in the focus of science. Based on studies of promising single substances, the present study used a mixture (cocktail, SC) of compounds consisting of hesperetin (HstP), magnesium-orotate (MgOr), and folic acid (Fol), as well as the combination (KCC) of caffeine (Cof), kahweol (KW) and cafestol (CF). For all compounds, we showed positive results in SH-SY5Y-APP695 cells-a model of early AD. Thus, SH-SY5Y-APP695 cells were incubated with SC and the activity of the mitochondrial respiration chain complexes were measured, as well as levels of ATP, Aβ, ROS, lactate and pyruvate. Incubation of SH-SY5Y-APP695 cells with SC significantly increased the endogenous respiration of mitochondria and ATP levels, while Aβ1-40 levels were significantly decreased. Incubation with SC showed no significant effects on oxidative stress and glycolysis. In summary, this combination of compounds with proven effects on mitochondrial parameters has the potential to improve mitochondrial dysfunction in a cellular model of AD.
Collapse
Affiliation(s)
| | | | - Gunter P. Eckert
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University, Schubertstr. 81, 35392 Giessen, Germany; (L.B.); (J.M.)
| |
Collapse
|
31
|
Merighi S, Travagli A, Nigro M, Pasquini S, Cappello M, Contri C, Varani K, Vincenzi F, Borea PA, Gessi S. Caffeine for Prevention of Alzheimer's Disease: Is the A 2A Adenosine Receptor Its Target? Biomolecules 2023; 13:967. [PMID: 37371547 DOI: 10.3390/biom13060967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent kind of dementia with roughly 135 million cases expected in the world by 2050. Unfortunately, current medications for the treatment of AD can only relieve symptoms but they do not act as disease-modifying agents that can stop the course of AD. Caffeine is one of the most widely used drugs in the world today, and a number of clinical studies suggest that drinking coffee may be good for health, especially in the fight against neurodegenerative conditions such as AD. Experimental works conducted "in vivo" and "in vitro" provide intriguing evidence that caffeine exerts its neuroprotective effects by antagonistically binding to A2A receptors (A2ARs), a subset of GPCRs that are triggered by the endogenous nucleoside adenosine. This review provides a summary of the scientific data supporting the critical role that A2ARs play in memory loss and cognitive decline, as well as the evidence supporting the protective benefits against neurodegeneration that may be attained by caffeine's antagonistic action on these receptors. They are a novel and fascinating target for regulating and enhancing synaptic activity, achieving symptomatic and potentially disease-modifying effects, and protecting against neurodegeneration.
Collapse
Affiliation(s)
- Stefania Merighi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Alessia Travagli
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Manuela Nigro
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Pasquini
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Martina Cappello
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Chiara Contri
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Katia Varani
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Fabrizio Vincenzi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | | | - Stefania Gessi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
32
|
Xiong S, Su X, Kang Y, Si J, Wang L, Li X, Ma K. Effect and mechanism of chlorogenic acid on cognitive dysfunction in mice by lipopolysaccharide-induced neuroinflammation. Front Immunol 2023; 14:1178188. [PMID: 37292216 PMCID: PMC10244504 DOI: 10.3389/fimmu.2023.1178188] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/11/2023] [Indexed: 06/10/2023] Open
Abstract
Background Neuroinflammation is an important factor causing numerous neurodegenerative pathologies. Inflammation can lead to abnormal neuronal structure and function and even death, followed by cognitive dysfunction. There is growing evidence that chlorogenic acid has anti-inflammatory effects and immunomodulatory activity. Purpose The aim of this study was to elucidate the potential targets and molecular mechanisms of chlorogenic acid in the treatment of neuroinflammation. Methods We used the lipopolysaccharide-induced neuroinflammation mouse model and the lipopolysaccharide-stimulated BV-2 cells in vitro model. Behavioral scores and experiments were used to assess cognitive dysfunction in mice. HE staining and immunohistochemistry were used to assess neuronal damage in the mouse brain. Immunofluorescence detected microglia polarization in mouse brain. Western blot and flow cytometry detected the polarization of BV-2 cells. The migration of BV-2 cells was detected by wound healing assay and transwell assay. Potential targets for chlorogenic acid to exert protective effects were predicted by network pharmacology. These targets were then validated using molecular docking and experiments. Results The results of in vivo experiments showed that chlorogenic acid had an obvious ameliorating effect on neuroinflammation-induced cognitive dysfunction. We found that chlorogenic acid was able to inhibit BV-2 cells M1 polarization and promote BV-2 cells M2 polarization in vitro while also inhibiting the abnormal migration of BV-2 cells. Based on the network pharmacology results, we identified the TNF signaling pathway as a key signaling pathway in which chlorogenic acid exerts anti-neuroinflammatory effects. Among them, Akt1, TNF, MMP9, PTGS2, MAPK1, MAPK14, and RELA are the core targets for chlorogenic acid to function. Conclusion Chlorogenic acid can inhibit microglial polarization toward the M1 phenotype and improve neuroinflammation-induced cognitive dysfunction in mice by modulating these key targets in the TNF signaling pathway.
Collapse
Affiliation(s)
- Siyuan Xiong
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- National Health Commission (NHC) Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Xuyang Su
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- National Health Commission (NHC) Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Yingjie Kang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- National Health Commission (NHC) Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Junqiang Si
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- National Health Commission (NHC) Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Lu Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- National Health Commission (NHC) Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Pharmacology and Clinical Pharmacy, Shihezi University School of Pharmacy, Shihezi, China
| | - Xinzhi Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- National Health Commission (NHC) Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- National Health Commission (NHC) Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
33
|
Ialongo D, Tudino V, Arpacioglu M, Messore A, Patacchini E, Costi R, Di Santo R, Madia VN. Synergistic Effects of Caffeine in Combination with Conventional Drugs: Perspectives of a Drug That Never Ages. Pharmaceuticals (Basel) 2023; 16:ph16050730. [PMID: 37242514 DOI: 10.3390/ph16050730] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Plants have been known since ancient times for their healing properties, being used as preparations against human diseases of different etiologies. More recently, natural products have been studied and characterized, isolating the phytochemicals responsible for their bioactivity. Most certainly, there are currently numerous active compounds extracted from plants and used as drugs, dietary supplements, or sources of bioactive molecules that are useful in modern drug discovery. Furthermore, phytotherapeutics can modulate the clinical effects of co-administered conventional drugs. In the last few decades, the interest has increased even more in studying the positive synergistic effects between plant-derived bioactives and conventional drugs. Indeed, synergism is a process where multiple compounds act together to exert a merged effect that is greater than that of each of them summed together. The synergistic effects between phytotherapeutics and conventional drugs have been described in different therapeutic areas, and many drugs are based on synergistic interactions with plant derivatives. Among them, caffeine has shown positive synergistic effects with different conventional drugs. Indeed, in addition to their multiple pharmacological activities, a growing body of evidence highlights the synergistic effects of caffeine with different conventional drugs in various therapeutic fields. This review aims to provide an overview of the synergistic therapeutic effects of caffeine and conventional drugs, summarizing the progress reported to date.
Collapse
Affiliation(s)
- Davide Ialongo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Valeria Tudino
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Merve Arpacioglu
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Antonella Messore
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Elisa Patacchini
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Roberta Costi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Roberto Di Santo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Valentina Noemi Madia
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
34
|
Garcia CP, Licht-Murava A, Orr AG. Effects of adenosine A 2A receptors on cognitive function in health and disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:121-154. [PMID: 37741689 DOI: 10.1016/bs.irn.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Adenosine A2A receptors have been studied extensively in the context of motor function and movement disorders such as Parkinson's disease. In addition to these roles, A2A receptors have also been increasingly implicated in cognitive function and cognitive impairments in diverse conditions, including Alzheimer's disease, schizophrenia, acute brain injury, and stress. We review the roles of A2A receptors in cognitive processes in health and disease, focusing primarily on the effects of reducing or enhancing A2A expression levels or activities in animal models. Studies reveal that A2A receptors in neurons and astrocytes modulate multiple aspects of cognitive function, including memory and motivation. Converging evidence also indicates that A2A receptor levels and activities are aberrantly increased in aging, acute brain injury, and chronic disorders, and these increases contribute to neurocognitive impairments. Therapeutically targeting A2A receptors with selective modulators may alleviate cognitive deficits in diverse neurological and neuropsychiatric conditions. Further research on the exact neural mechanisms of these effects as well as the efficacy of selective A2A modulators on cognitive alterations in humans are important areas for future investigation.
Collapse
Affiliation(s)
- Cinthia P Garcia
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, United States; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States; Pharmacology Graduate Program, Weill Cornell Medicine, New York, NY, United States
| | - Avital Licht-Murava
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, United States; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Anna G Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, United States; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
35
|
Zheng YB, Sun J, Shi L, Su SZ, Chen X, Wang QW, Huang YT, Wang YJ, Zhu XM, Que JY, Zeng N, Lin X, Yuan K, Yan W, Deng JH, Shi J, Bao YP, Lu L. Association of Caffeine Consumption and Brain Amyloid Positivity in Cognitively Normal Older Adults. J Alzheimers Dis 2023; 93:483-493. [PMID: 37038808 DOI: 10.3233/jad-220591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
BACKGROUND Several epidemiological studies have reported the protective role of caffeine on health outcomes; however, it remained debatable on caffeine consumption and brain amyloid positivity. OBJECTIVE We aimed to determine the relationship between caffeine consumption and brain amyloid pathology in cognitively normal older adults. METHODS The dataset used for analysis in this cross-sectional study was selected from the Anti-Amyloid Treatment in Asymptomatic Alzheimer's (A4) Study. Multivariable logistic regression analyses were performed to explore the association between caffeine consumption and amyloid positivity using odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS In total, 4,394 participants were included in the final analysis. No significant association between caffeine consumption and amyloid positivity was observed in the whole participants (OR, 0.95; 95% CI, 0.78-1.14; p = 0.558). Subgroup analysis showed that caffeine intake was significantly associated with decreased amyloid positivity in males (OR, 0.72; 95% CI, 0.54-0.97; p = 0.032) but not in females (OR, 1.14; 95% CI, 0.90-1.46; p = 0.280), and the association between caffeine and amyloid positivity was not affected by age or APOE genotypes. In addition, different levels of caffeine were not associated with amyloid positivity. CONCLUSION The findings suggest that caffeine consumption was not significantly associated with amyloid positivity in the whole sample. However, caffeine consumption may be inversely associated with amyloid positivity among males but not females. More studies are needed to explore the mechanisms underlying caffeine consumption and brain amyloid positivity.
Collapse
Affiliation(s)
- Yong-Bo Zheng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Jie Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
- Pain Medicine Center, Peking University Third Hospital, Beijing, China
| | - Le Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
| | - Si-Zhen Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
| | - Xuan Chen
- The First Affiliated Hospital of Xinxiang Medical University, Henan, China
| | - Qian-Wen Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
| | - Yue-Tong Huang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
| | - Yi-Jie Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Xi-Mei Zhu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
| | - Jian-Yu Que
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
| | - Na Zeng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- School of Public Health, Peking University, Beijing, China
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiao Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
| | - Wei Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
| | - Jia-Hui Deng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yan-Ping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- School of Public Health, Peking University, Beijing, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| |
Collapse
|
36
|
Launay A, Nebie O, Vijaya Shankara J, Lebouvier T, Buée L, Faivre E, Blum D. The role of adenosine A 2A receptors in Alzheimer's disease and tauopathies. Neuropharmacology 2023; 226:109379. [PMID: 36572177 DOI: 10.1016/j.neuropharm.2022.109379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Adenosine signals through four distinct G protein-coupled receptors that are located at various synapses, cell types and brain areas. Through them, adenosine regulates neuromodulation, neuronal signaling, learning and cognition as well as the sleep-wake cycle, all strongly impacted in neurogenerative disorders, among which Alzheimer's Disease (AD). AD is a complex form of cognitive deficits characterized by two pathological hallmarks: extracellular deposits of aggregated β-amyloid peptides and intraneuronal fibrillar aggregates of hyper- and abnormally phosphorylated Tau proteins. Both lesions contribute to the early dysfunction and loss of synapses which are strongly associated to the development of cognitive decline in AD patients. The present review focuses on the pathophysiological impact of the A2ARs dysregulation observed in cognitive area from AD patients. We are reviewing not only evidence of the cellular changes in A2AR levels in pathological conditions but also describe what is currently known about their consequences in term of synaptic plasticity, neuro-glial miscommunication and memory abilities. We finally summarize the proof-of-concept studies that support A2AR as credible targets and the clinical interest to repurpose adenosine drugs for the treatment of AD and related disorders. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
Affiliation(s)
- Agathe Launay
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France
| | - Ouada Nebie
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France
| | - Jhenkruthi Vijaya Shankara
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France
| | - Thibaud Lebouvier
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France; CHU Lille, Memory Clinic, Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France
| | - Emilie Faivre
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France
| | - David Blum
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France.
| |
Collapse
|
37
|
Ribeiro DE, Petiz LL, Glaser T, Oliveira-Giacomelli Á, Andrejew R, Saab FDAR, Milanis MDS, Campos HC, Sampaio VFA, La Banca S, Longo BM, Lameu C, Tang Y, Resende RR, Ferreira ST, Ulrich H. Purinergic signaling in cognitive impairment and neuropsychiatric symptoms of Alzheimer's disease. Neuropharmacology 2023; 226:109371. [PMID: 36502867 DOI: 10.1016/j.neuropharm.2022.109371] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
About 10 million new cases of dementia develop worldwide each year, of which up to 70% are attributable to Alzheimer's disease (AD). In addition to the widely known symptoms of memory loss and cognitive impairment, AD patients frequently develop non-cognitive symptoms, referred to as behavioral and psychological symptoms of dementia (BPSDs). Sleep disorders are often associated with AD, but mood alterations, notably depression and apathy, comprise the most frequent class of BPSDs. BPSDs negatively affect the lives of AD patients and their caregivers, and have a significant impact on public health systems and the economy. Because treatments currently available for AD are not disease-modifying and mainly aim to ameliorate some of the cognitive symptoms, elucidating the mechanisms underlying mood alterations and other BPSDs in AD may reveal novel avenues for progress in AD therapy. Purinergic signaling is implicated in the pathophysiology of several central nervous system (CNS) disorders, such as AD, depression and sleep disorders. Here, we review recent findings indicating that purinergic receptors, mainly the A1, A2A, and P2X7 subtypes, are associated with the development/progression of AD. Current evidence suggests that targeting purinergic signaling may represent a promising therapeutic approach in AD and related conditions. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
Affiliation(s)
- Deidiane Elisa Ribeiro
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil.
| | - Lyvia Lintzmaier Petiz
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Talita Glaser
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | | | - Roberta Andrejew
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | | | - Milena da Silva Milanis
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - Henrique Correia Campos
- Laboratory of Neurophysiology, Department of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Sophia La Banca
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - Beatriz Monteiro Longo
- Laboratory of Neurophysiology, Department of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Claudiana Lameu
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, 610075, China
| | - Rodrigo Ribeiro Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais Belo Horizonte, MG, Brazil
| | - Sergio T Ferreira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
38
|
Stazi M, Zampar S, Klafki HW, Meyer T, Wirths O. A Combination of Caffeine Supplementation and Enriched Environment in an Alzheimer's Disease Mouse Model. Int J Mol Sci 2023; 24:ijms24032155. [PMID: 36768476 PMCID: PMC9916825 DOI: 10.3390/ijms24032155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
A variety of factors has been associated with healthy brain aging, and epidemiological studies suggest that physical activity and nutritional supplements such as caffeine may reduce the risk of developing dementia and, in particular, Alzheimer's disease (AD) in later life. Caffeine is known to act as a cognitive enhancer but has been also shown to positively affect exercise performance in endurance activities. We have previously observed that chronic oral caffeine supplementation and a treatment paradigm encompassing physical and cognitive stimulation by enriched environment (EE) housing can improve learning and memory performance and ameliorate hippocampal neuron loss in the Tg4-42 mouse model of AD. Here, we investigated whether these effects were synergistic. To that end, previous findings on individual treatments were complemented with unpublished, additional data and analyzed in depth by ANOVA followed by Bonferroni multiple comparison post tests. We further evaluated whether plasma neurofilament light chain levels reflect neuropathological and behavioral changes observed in the experimental groups. While a treatment combining physical activity and caffeine supplementation significantly improved learning and memory function compared to standard-housed vehicle-treated Tg4-42 in tasks such as the Morris water maze, no major additive effect outperforming the effects of the single interventions was observed.
Collapse
Affiliation(s)
- Martina Stazi
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, 37075 Göttingen, Germany
| | - Silvia Zampar
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, 37075 Göttingen, Germany
| | - Hans-Wolfgang Klafki
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, 37075 Göttingen, Germany
| | - Thomas Meyer
- Department of Psychosomatic Medicine, University Medical Center (UMG), Georg-August-University, 37075 Göttingen, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, 37075 Göttingen, Germany
- Correspondence:
| |
Collapse
|
39
|
Effects of Chronic Caffeine Consumption on Synaptic Function, Metabolism and Adenosine Modulation in Different Brain Areas. Biomolecules 2023; 13:biom13010106. [PMID: 36671491 PMCID: PMC9855869 DOI: 10.3390/biom13010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Adenosine receptors mainly control synaptic function, and excessive activation of adenosine receptors may worsen the onset of many neurological disorders. Accordingly, the regular intake of moderate doses of caffeine antagonizes adenosine receptors and affords robust neuroprotection. Although caffeine intake alters brain functional connectivity and multi-omics analyses indicate that caffeine intake modifies synaptic and metabolic processes, it is unclear how caffeine intake affects behavior, synaptic plasticity and its modulation by adenosine. We now report that male mice drinking caffeinated water (0.3 g/L) for 2 weeks were behaviorally indistinguishable (locomotion, mood, memory) from control mice (drinking water) and displayed superimposable synaptic plasticity (long-term potentiation) in different brain areas (hippocampus, prefrontal cortex, amygdala). Moreover, there was a general preservation of the efficiency of adenosine A1 and A2A receptors to control synaptic transmission and plasticity, although there was a tendency for lower levels of endogenous adenosine ensuring A1 receptor-mediated inhibition. In spite of similar behavioral and neurophysiological function, caffeine intake increased the energy charge and redox state of cortical synaptosomes. This increased metabolic competence likely involved a putative increase in the glycolytic rate in synapses and a prospective greater astrocyte-synapse lactate shuttling. It was concluded that caffeine intake does not trigger evident alterations of behavior or of synaptic plasticity but increases the metabolic competence of synapses, which might be related with the previously described better ability of animals consuming caffeine to cope with deleterious stimuli triggering brain dysfunction.
Collapse
|
40
|
Khan SS, Khatik GL, Datusalia AK. Strategies for Treatment of Disease-Associated Dementia Beyond Alzheimer's Disease: An Update. Curr Neuropharmacol 2023; 21:309-339. [PMID: 35410602 PMCID: PMC10190146 DOI: 10.2174/1570159x20666220411083922] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/27/2022] [Accepted: 04/03/2022] [Indexed: 11/22/2022] Open
Abstract
Memory, cognition, dementia, and neurodegeneration are complexly interlinked processes with various mechanistic pathways, leading to a range of clinical outcomes. They are strongly associated with pathological conditions like Alzheimer's disease, Parkinson's disease, schizophrenia, and stroke and are a growing concern for their timely diagnosis and management. Several cognitionenhancing interventions for management include non-pharmacological interventions like diet, exercise, and physical activity, while pharmacological interventions include medicinal agents, herbal agents, and nutritional supplements. This review critically analyzed and discussed the currently available agents under different drug development phases designed to target the molecular targets, including cholinergic receptor, glutamatergic system, GABAergic targets, glycine site, serotonergic targets, histamine receptors, etc. Understanding memory formation and pathways involved therein aids in opening the new gateways to treating cognitive disorders. However, clinical studies suggest that there is still a dearth of knowledge about the pathological mechanism involved in neurological conditions, making the dropouts of agents from the initial phases of the clinical trial. Hence, a better understanding of the disease biology, mode of drug action, and interlinked mechanistic pathways at a molecular level is required.
Collapse
Affiliation(s)
- Sabiya Samim Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
| | - Gopal L. Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
| | - Ashok K. Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
| |
Collapse
|
41
|
Combined long-term enriched environment and caffeine supplementation improve memory function in C57Bl6 mice. Eur Arch Psychiatry Clin Neurosci 2023; 273:269-281. [PMID: 35676374 PMCID: PMC9958139 DOI: 10.1007/s00406-022-01431-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/15/2022] [Indexed: 11/03/2022]
Abstract
Regular physical activity has been associated with healthy brain aging, reflected by beneficial effects on cognition and learning and memory. Nutritional supplements such as caffeine have been shown to act as cognitive enhancers and may possess neuroprotective properties. Interestingly, caffeine also improves athletic capabilities and is widely used by athletes because of its performance-enhancing effect, while information on potential additive beneficial effects of physical activity and caffeine on cognitive performance is scarce. In the present study, the effects of caffeine supplementation in combination with prolonged physical and cognitive stimulation in the form of the enriched environment (EE) housing for a duration of 4 months were analyzed. We demonstrate that caffeine supplementation together with prolonged environmental enrichment led to enhanced memory function, resulting in improved recognition and spatial working memory in behavioral paradigms such as the novel object recognition task or the Morris water maze in C57Bl6 wild-type mice. Mice housed under EE conditions showed increased gene expression levels of brain-derived neurotrophic factor (BDNF) in the hippocampus. The present findings underscore the potential impact of continuous physical activity in the prevention of age-related cognitive decline and may offer new options for combinatorial approaches.
Collapse
|
42
|
Lopes Boschetti JC, Soares KL, Carvalho GR, Filho ACV, Ton AMM, Pereira TDMC, Scherer R. CGAs-Rich Conilon Coffee Consumption Improves Cognition and Reduces Oxidative Stress in Elderly with Alzheimer's Disease: A Pilot Study. J Alzheimers Dis 2023; 96:1547-1554. [PMID: 37980673 DOI: 10.3233/jad-230843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
BACKGROUND The consumption of coffee has been associated with beneficial effects when it comes to Alzheimer's disease (AD). However, to the best of our knowledge, there are no studies on Conilon coffee consumption in elderly people with AD. OBJECTIVE Evaluate the effects of Conilon coffee consumption in elderly with AD. METHODS The study was carried out with 9 participants who consumed a minimum of 2 cups (200 mL cup) of Conilon coffee per day for 90 days. Cognitive assessment was done before (T0) and after 90 days (T90). Blood analysis was conducted at T0 and T90, as well as the assessment of advanced oxidation protein products (AOPP) and thiobarbituric acid reactive species (TBARS). The levels of chlorogenic acids and caffeine in the coffee beverage were quantified by liquid chromatography. RESULTS During the treatment, the participants consumed at least 550 mg and 540 mg of CGAs and caffeine, respectively. A significant improvement in cognition between T0 and T90 was observed as per MMSE, CTP, and clock drawing tests. Furthermore, there was a significant reduction in AOPP (37%) and TBARS (60%), indicating a reduction in oxidative stress. The consumption of the coffee did not significantly alter any blood parameter, which confirms the safety of the coffee treatment during the 90 days. CONCLUSIONS Our study demonstrated for the first time that regular consumption of coffee with high amounts of CGAs and caffeine improves cognitive functions and reduces oxidative stress, without altering blood parameters that indicate possible signs of toxicity in classical target organs.
Collapse
Affiliation(s)
| | - Karla Lírio Soares
- Pharmaceutical Sciences Graduate Program, Universidade Vila Velha, ES, Brazil
| | | | | | | | - Thiago de Melo Costa Pereira
- Pharmaceutical Sciences Graduate Program, Universidade Vila Velha, ES, Brazil
- Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - Rodrigo Scherer
- Pharmaceutical Sciences Graduate Program, Universidade Vila Velha, ES, Brazil
| |
Collapse
|
43
|
Effects of chronic caffeine intake and withdrawal on neural activity assessed via resting-state functional magnetic resonance imaging in mice. Heliyon 2022; 8:e11714. [DOI: 10.1016/j.heliyon.2022.e11714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/23/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022] Open
|
44
|
Preeti K, Sood A, Fernandes V. Metabolic Regulation of Glia and Their Neuroinflammatory Role in Alzheimer's Disease. Cell Mol Neurobiol 2022; 42:2527-2551. [PMID: 34515874 PMCID: PMC11421648 DOI: 10.1007/s10571-021-01147-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disorder. It is characterized clinically by progressive memory loss and impaired cognitive function. Its progression occurs from neuronal synapse loss to amyloid pathology and Tau deposit which eventually leads to the compromised neuronal function. Neurons in central nervous tissue work in a composite and intricate network with the glia and vascular cells. Microglia and astrocytes are becoming the prime focus due to their involvement in various aspects of neurophysiology, such as trophic support to neurons, synaptic modulation, and brain surveillance. AD is also often considered as the sequela of prolonged metabolic dyshomeostasis. The neuron and glia have different metabolic profiles as cytosolic glycolysis and mitochondrial-dependent oxidative phosphorylation (OXPHOS), especially under dyshomeostasis or with aging pertaining to their unique genetic built-up. Various efforts are being put in to decipher the role of mitochondrial dynamics regarding their trafficking, fission/fusion imbalance, and mitophagy spanning over both neurons and glia to improve aging-related brain health. The mitochondrial dysfunction may lead to activation in various signaling mechanisms causing metabolic reprogramming in glia cells, further accelerating AD-related pathogenic events. The glycolytic-dominant astrocytes switch to the neurotoxic phenotype, i.e., disease-associated astrocyte under metabolic stress. The microglia also transform from resting to reactive phenotype, i.e., disease-associated microglia. It may also exist in otherwise a misconception an M1, glycolytic, or M2, an OXPHOS-dependent phenotype. Further, glial transformation plays a vital role in regulating hallmarks of AD pathologies like synapse maintenance, amyloid, and Tau clearance. In this updated review, we have tried to emphasize the metabolic regulation of glial reactivity, mitochondrial quality control mechanisms, and their neuroinflammatory response in Alzheimer's progression.
Collapse
Affiliation(s)
- Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | - Anika Sood
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
45
|
Stefaniak O, Dobrzyńska M, Drzymała-Czyż S, Przysławski J. Diet in the Prevention of Alzheimer's Disease: Current Knowledge and Future Research Requirements. Nutrients 2022; 14:4564. [PMID: 36364826 PMCID: PMC9656789 DOI: 10.3390/nu14214564] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/23/2022] [Accepted: 10/25/2022] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease is a progressive brain disease that is becoming a major health problem in today's world due to the aging population. Despite it being widely known that diet has a significant impact on the prevention and progression of Alzheimer's disease, the literature data are still scarce and controversial. The application of the principles of rational nutrition for the elderly is suggested for Alzheimer's disease. The diet should be rich in neuroprotective nutrients, i.e., antioxidants, B vitamins, and polyunsaturated fatty acids. Some studies suggest that diets such as the Mediterranean diet, the DASH (Dietary Approaches to Stop Hypertension) diet, and the MIND (Mediterranean-DASH Intervention for Neurodegenerative Delay) diet have a beneficial effect on the risk of developing Alzheimer's disease.
Collapse
Affiliation(s)
| | - Małgorzata Dobrzyńska
- Department of Bromatology, Poznan University of Medical Science, Rokietnicka 3 Street, 60-806 Poznan, Poland
| | | | | |
Collapse
|
46
|
The Role of the Adenosine System on Emotional and Cognitive Disturbances Induced by Ethanol Binge Drinking in the Immature Brain and the Beneficial Effects of Caffeine. Pharmaceuticals (Basel) 2022; 15:ph15111323. [DOI: 10.3390/ph15111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Binge drinking intake is the most common pattern of ethanol consumption by adolescents, which elicits emotional disturbances, mainly anxiety and depressive symptoms, as well as cognitive alterations. Ethanol exposure may act on the adenosine neuromodulation system by increasing adenosine levels, consequently increasing the activation of adenosine receptors in the brain. The adenosine modulation system is involved in the control of mood and memory behavior. However, there is a gap in the knowledge about the exact mechanisms related to ethanol exposure’s hazardous effects on the immature brain (i.e., during adolescence) and the role of the adenosine system thereupon. The present review attempts to provide a comprehensive picture of the role of the adenosinergic system on emotional and cognitive disturbances induced by ethanol during adolescence, exploring the potential benefits of caffeine administration in view of its action as a non-selective antagonist of adenosine receptors.
Collapse
|
47
|
Ruggiero M, Calvello R, Porro C, Messina G, Cianciulli A, Panaro MA. Neurodegenerative Diseases: Can Caffeine Be a Powerful Ally to Weaken Neuroinflammation? Int J Mol Sci 2022; 23:ijms232112958. [PMID: 36361750 PMCID: PMC9658704 DOI: 10.3390/ijms232112958] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, there has been considerable research showing that coffee consumption seems to be beneficial to human health, as it contains a mixture of different bioactive compounds such as chlorogenic acids, caffeic acid, alkaloids, diterpenes and polyphenols. Neurodegenerative diseases (NDs) are debilitating, and non-curable diseases associated with impaired central, peripheral and muscle nervous systems. Several studies demonstrate that neuroinflammation mediated by glial cells—such as microglia and astrocytes—is a critical factor contributing to neurodegeneration that causes the dysfunction of brain homeostasis, resulting in a progressive loss of structure, function, and number of neuronal cells. This happens over time and leads to brain damage and physical impairment. The most known chronic NDs are represented by Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD). According to epidemiological studies, regular coffee consumption is associated with a lower risk of neurodegenerative diseases. In this review, we summarize the latest research about the potential effects of caffeine in neurodegenerative disorders prevention and discuss the role of controlled caffeine delivery systems in maintaining high plasma caffeine concentrations for an extended time.
Collapse
Affiliation(s)
- Melania Ruggiero
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
- Correspondence:
| |
Collapse
|
48
|
Ko H, Yoon SP. Optogenetic neuromodulation with gamma oscillation as a new strategy for Alzheimer disease: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2022; 39:269-277. [PMID: 35152662 PMCID: PMC9580057 DOI: 10.12701/jyms.2021.01683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 12/31/2022]
Abstract
The amyloid hypothesis has been considered a major explanation of the pathogenesis of Alzheimer disease. However, failure of phase III clinical trials with anti-amyloid-beta monoclonal antibodies reveals the need for other therapeutic approaches to treat Alzheimer disease. Compared to its relatively short history, optogenetics has developed considerably. The expression of microbial opsins in cells using genetic engineering allows specific control of cell signals or molecules. The application of optogenetics to Alzheimer disease research or clinical approaches is increasing. When applied with gamma entrainment, optogenetic neuromodulation can improve Alzheimer disease symptoms. Although safety problems exist with optogenetics such as the use of viral vectors, this technique has great potential for use in Alzheimer disease. In this paper, we review the historical applications of optogenetic neuromodulation with gamma entrainment to investigate the mechanisms involved in Alzheimer disease and potential therapeutic strategies.
Collapse
Affiliation(s)
- Haneol Ko
- Medical Course, Jeju National University School of Medicine, Jeju, Korea
| | - Sang-Pil Yoon
- Department of Anatomy, Jeju National University College of Medicine, Jeju, Korea
| |
Collapse
|
49
|
Dong R, Denier-Fields DN, Lu Q, Suridjan I, Kollmorgen G, Wild N, Betthauser TJ, Carlsson CM, Asthana S, Johnson SC, Zetterberg H, Blennow K, Engelman CD. Principal components from untargeted cerebrospinal fluid metabolomics associated with Alzheimer's disease biomarkers. Neurobiol Aging 2022; 117:12-23. [PMID: 35640460 PMCID: PMC9737218 DOI: 10.1016/j.neurobiolaging.2022.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/20/2022] [Accepted: 04/12/2022] [Indexed: 01/13/2023]
Abstract
Studying the correlation between cerebrospinal fluid (CSF) metabolites and the Alzheimer's Disease (AD) biomarkers may offer a window to the alterations of the brain metabolome and unveil potential biological mechanisms underlying AD. In this analysis, 308 CSF metabolites from 338 individuals of Wisconsin Registry for Alzheimer's Prevention and Wisconsin Alzheimer's Disease Research Center were included in a principal component analysis (PCA). The resulted principal components (PCs) were tested for association with CSF total tau (t-tau), phosphorylated tau (p-tau), amyloid β 42 (Aβ42), and Aβ42/40 ratio using linear regression models. Significant PCs were further tested with other CSF NeuroToolKit (NTK) and imaging biomarkers. Using a Bonferroni corrected p < 0.05, 5 PCs were significantly associated with CSF p-tau and t-tau and 3 PCs were significantly associated with CSF Aβ42. Pathway analysis suggested that these PCS were enriched in 6 pathways, including metabolism of caffeine and nicotinate and nicotinamide. This study provides evidence that CSF metabolites are associated with AD pathology through core AD biomarkers and other NTK markers and suggests potential pathways to follow up in future studies.
Collapse
Affiliation(s)
- Ruocheng Dong
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Diandra N Denier-Fields
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department Nutrition Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | - Tobey James Betthauser
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Cynthia M Carlsson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA; Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial VA Hospital, Madison, WI, USA
| | - Sanjay Asthana
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA; Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial VA Hospital, Madison, WI, USA
| | - Sterling C Johnson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA; Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial VA Hospital, Madison, WI, USA; Wisconsin Alzheimer's Institute, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, UK; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Corinne D Engelman
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
50
|
Trinh PNH, Baltos JA, Hellyer SD, May LT, Gregory KJ. Adenosine receptor signalling in Alzheimer’s disease. Purinergic Signal 2022; 18:359-381. [PMID: 35870032 PMCID: PMC9391555 DOI: 10.1007/s11302-022-09883-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/02/2022] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common dementia in the elderly and its increasing prevalence presents treatment challenges. Despite a better understanding of the disease, the current mainstay of treatment cannot modify pathogenesis or effectively address the associated cognitive and memory deficits. Emerging evidence suggests adenosine G protein-coupled receptors (GPCRs) are promising therapeutic targets for Alzheimer’s disease. The adenosine A1 and A2A receptors are expressed in the human brain and have a proposed involvement in the pathogenesis of dementia. Targeting these receptors preclinically can mitigate pathogenic β-amyloid and tau neurotoxicity whilst improving cognition and memory. In this review, we provide an accessible summary of the literature on Alzheimer’s disease and the therapeutic potential of A1 and A2A receptors. Although there are no available medicines targeting these receptors approved for treating dementia, we provide insights into some novel strategies, including allosterism and the targeting of oligomers, which may increase drug discovery success and enhance the therapeutic response.
Collapse
Affiliation(s)
- Phuc N. H. Trinh
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
- Department of Pharmacology, Monash University, Parkville, VIC 3052 Australia
| | - Jo-Anne Baltos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
- Department of Pharmacology, Monash University, Parkville, VIC 3052 Australia
| | - Shane D. Hellyer
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
| | - Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
- Department of Pharmacology, Monash University, Parkville, VIC 3052 Australia
| | - Karen J. Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
- Department of Pharmacology, Monash University, Parkville, VIC 3052 Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, 3052 Australia
| |
Collapse
|