1
|
Rybka KA, Lafrican JJ, Rosinger ZJ, Ariyibi DO, Brooks MR, Jacobskind JS, Zuloaga DG. Sex differences in androgen receptor, estrogen receptor alpha, and c-Fos co-expression with corticotropin releasing factor expressing neurons in restrained adult mice. Horm Behav 2023; 156:105448. [PMID: 38344954 PMCID: PMC10861933 DOI: 10.1016/j.yhbeh.2023.105448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 02/15/2024]
Abstract
Gonadal hormone actions through androgen receptor (AR) and estrogen receptor alpha (ERα) regulate sex differences in hypothalamic-pituitary-adrenal (HPA) axis responsivity and stress-related behaviors. Here we tested whether corticotropin releasing factor (CRF) expressing neurons, which are widely known to regulate neuroendocrine and behavioral stress responses, co-express AR and ERα as a potential mechanism for gonadal hormone regulation of these responses. Using Crh-IRES-Cre::Ai9 reporter mice we report high co-localization of AR in CRF neurons within the medial preoptic area (MPOA), bed nucleus of the stria terminalis (BST), medial amygdala (MeA), and ventromedial hypothalamus (VMH), moderate levels within the central amygdala (CeA) and low levels in the paraventricular hypothalamus (PVN). Sex differences in CRF/AR co-expression were found in the principal nucleus of the BST (BSTmpl), CeA, MeA, and VMH (males>females). CRF co-localization with ERα was generally lower relative to AR co-localization. However, high co-expression was found within the MPOA, AVPV, and VMH, with moderate co-expression in the arcuate nucleus (ARC), BST, and MeA and low levels in the PVN and CeA. Sex differences in CRF/ERα co-localization were found in the BSTmpl and PVN (males>females). Finally, we assessed neural activation of CRF neurons in restraint-stressed mice and found greater CRF/c-Fos co-expression in females in the BSTmpl and periaqueductal gray, while co-expression was higher in males within the ARC and dorsal CA1. Given the known role of CRF in regulating behavioral stress responses and the HPA axis, AR/ERα co-expression and sex-specific activation of CRF cell groups indicate potential mechanisms for modulating sex differences in these functions.
Collapse
Affiliation(s)
- Krystyna A Rybka
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Jennifer J Lafrican
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Zachary J Rosinger
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Deborah O Ariyibi
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Mecca R Brooks
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Jason S Jacobskind
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Damian G Zuloaga
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America.
| |
Collapse
|
2
|
Piriyaprasath K, Kakihara Y, Kurahashi A, Taiyoji M, Kodaira K, Aihara K, Hasegawa M, Yamamura K, Okamoto K. Preventive Roles of Rice- koji Extracts and Ergothioneine on Anxiety- and Pain-like Responses under Psychophysical Stress Conditions in Male Mice. Nutrients 2023; 15:3989. [PMID: 37764773 PMCID: PMC10535605 DOI: 10.3390/nu15183989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
This study determined the effect of daily administration of Rice-koji on anxiety and nociception in mice subjected to repeated forced swim stress (FST). In a parallel experiment, it was determined whether ergothioneine (EGT) contained in Rice-koji displayed similar effects. Anxiety and nociception were assessed behaviorally using multiple procedures. c-Fos and FosB immunoreactivities were quantified to assess the effect of both treatments on neural responses in the paraventricular nucleus of the hypothalamus (PVN), nucleus raphe magnus (NRM), and lumbar spinal dorsal horn (DH). FST increased anxiety- and pain-like behaviors in the hindpaw. Rice-koji or EGT significantly prevented these behaviors after FST. In the absence of formalin, both treatments prevented decreased FosB expressions in the PVN after FST, while no effect was seen in the NRM and DH. In the presence of formalin, both treatments prevented changes in c-Fos and FosB expressions in all areas in FST mice. Further, in vitro experiments using SH-SY5Y cells were conducted. Rice-koji and EGT did not affect cell viability but changed the level of brain-derived neurotrophic factor. In conclusion, Rice-koji could reduce anxiety and pain associated with psychophysical stress, possibly mediated by the modulatory effects of EGT on neural functions in the brain.
Collapse
Affiliation(s)
- Kajita Piriyaprasath
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan or (K.P.); (M.H.); (K.Y.)
- Department of Restorative Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok 650000, Thailand
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan;
- Sakeology Center, Niigata University, Niigata 951-8514, Japan
| | - Atsushi Kurahashi
- Hakkaisan Brewery Co., Ltd., Minamiuonuma, Niigata 949-7112, Japan; (A.K.); (K.K.)
| | - Mayumi Taiyoji
- Food Research Center, Niigata Agricultural Research Institute, Kamo 959-1381, Japan; (M.T.); (K.A.)
| | - Kazuya Kodaira
- Hakkaisan Brewery Co., Ltd., Minamiuonuma, Niigata 949-7112, Japan; (A.K.); (K.K.)
| | - Kotaro Aihara
- Food Research Center, Niigata Agricultural Research Institute, Kamo 959-1381, Japan; (M.T.); (K.A.)
| | - Mana Hasegawa
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan or (K.P.); (M.H.); (K.Y.)
- Division of General Dentistry and Dental Clinical Education Unit, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan or (K.P.); (M.H.); (K.Y.)
| | - Keiichiro Okamoto
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan or (K.P.); (M.H.); (K.Y.)
- Sakeology Center, Niigata University, Niigata 951-8514, Japan
| |
Collapse
|
3
|
De Guzman RM, Rosinger ZJ, Parra KE, Jacobskind JS, Justice NJ, Zuloaga DG. Alterations in corticotropin-releasing factor receptor type 1 in the preoptic area and hypothalamus in mice during the postpartum period. Horm Behav 2021; 135:105044. [PMID: 34507241 PMCID: PMC8653990 DOI: 10.1016/j.yhbeh.2021.105044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 01/24/2023]
Abstract
Corticotropin-releasing factor (CRF) signaling through CRF receptor 1 (CRFR1) regulates autonomic, endocrine, and behavioral responses to stress, as well as behavioral changes during the maternal period. Previous work in our lab reported higher levels of CRFR1 in female, compared to male, mice within the rostral anteroventral periventricular nucleus (AVPV/PeN), a brain region involved in maternal behaviors. In this study, we used CRFR1-GFP reporter mice to investigate whether the reproductive status (postpartum vs. nulliparous) of acutely stressed females affects levels of CRFR1 in the AVPV/PeN and other regions involved in maternal functions. Compared to nulliparous, postpartum day 14 females showed increased AVPV/PeN CRFR1-GFP immunoreactivity and an elevated number of restraint stress-activated AVPV/PeN CRFR1 cells as assessed by immunohistochemical co-localization of CRFR1-GFP and phosphorylated CREB (pCREB). The medial preoptic area (MPOA) and paraventricular hypothalamus (PVN) of postpartum mice showed modest decreases in CRFR1-GFP immunoreactivity, while increased CRFR1-GFP/pCREB co-expressing cells were found in the PVN following restraint stress relative to nulliparous mice. Tyrosine hydroxylase (TH) and CRFR1-GFP co-localization was also assessed in the AVPV/PeN and other regions and revealed a decrease in co-localized neurons in the AVPV/PeN and ventral tegmental area of postpartum mice. Corticosterone analysis of restrained mice revealed blunted peak, but elevated recovery, levels in postpartum compared to nulliparous mice. Finally, we investigated projection patterns of AVPV/PeN CRFR1 neurons using female CRFR1-Cre mice and revealed dense efferent projections to several preoptic, hypothalamic, and hindbrain regions known to control stress-associated and maternal functions. Together, these findings contribute to our understanding of the neurobiology that might underlie changes in stress-related functions during the postpartum period.
Collapse
Affiliation(s)
- Rose M De Guzman
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Zachary J Rosinger
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Katherine E Parra
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Jason S Jacobskind
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Nicholas J Justice
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, TX, United States
| | - Damian G Zuloaga
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States.
| |
Collapse
|
4
|
Gao W, Wang Z, Wang H, Li H, Huang C, Shen Y, Ma X, Sun H. Neurons and Astrocytes in Ventrolateral Periaqueductal Gray Contribute to Restraint Water Immersion Stress-Induced Gastric Mucosal Damage via the ERK1/2 Signaling Pathway. Int J Neuropsychopharmacol 2021; 24:666-676. [PMID: 34000028 PMCID: PMC8378083 DOI: 10.1093/ijnp/pyab028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/15/2021] [Accepted: 05/12/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The restraint water immersion stress (RWIS) model includes both psychological and physical stimulation, which may lead to gastrointestinal disorders and cause gastric mucosal damage. The ventrolateral periaqueductal gray (VLPAG) contributes to gastrointestinal function, but whether it is involved in RWIS-induced gastric mucosal damage has not yet been reported. METHODS The expression of glial fibrillary acidic protein, neuronal c-Fos, and phosphorylated extracellular signal regulated kinase 1/2 in the VLPAG after RWIS was assessed using western blotting and immunocytochemical staining methods. Lateral ventricle injection of astrocytic toxin L-a-aminoadipate and treatment with extracellular signal-regulated kinase (ERK)1/2 signaling pathway inhibitor PD98059 were further used to study protein expression and distribution in the VLPAG after RWIS. RESULTS The expression of c-Fos, glial fibrillary acidic protein, and phosphorylated extracellular signal regulated kinase 1/2 in the VLPAG significantly increased following RWIS and peaked at 1 hour after RWIS. Lateral ventricle injection of the astrocytic toxin L-a-aminoadipate significantly alleviated gastric mucosal injury and decreased the activation of neurons and astrocytes. Treatment with the ERK1/2 signaling pathway inhibitor PD98059 obviously suppressed gastric mucosal damage as well as the RWIS-induced activation of neurons and astrocytes in the VLPAG. CONCLUSIONS These results suggested that activation of VLPAG neurons and astrocytes induced by RWIS through the ERK1/2 signaling pathway may play a critical role in RWIS-induced gastric mucosa damage.
Collapse
Affiliation(s)
- Wenting Gao
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Zepeng Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Hui Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Huimin Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Chenxu Huang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Yangyang Shen
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China,Correspondence: Xiaoli Ma, PhD, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University ()
| | - Haiji Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China,Haiji Sun, PhD, College of Life Science, Shandong Normal University ()
| |
Collapse
|
5
|
Arnsten AFT, Datta D, Del Tredici K, Braak H. Hypothesis: Tau pathology is an initiating factor in sporadic Alzheimer's disease. Alzheimers Dement 2021; 17:115-124. [PMID: 33075193 PMCID: PMC7983919 DOI: 10.1002/alz.12192] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
The etiology of the common, sporadic form of Alzheimer's disease (sAD) is unknown. We hypothesize that tau pathology within select projection neurons with susceptible microenvironments can initiate sAD. This postulate rests on extensive data demonstrating that in human brains tau pathology appears about a decade before the formation of Aβ plaques (Aβps), especially targeting glutamate projection neurons in the association cortex. Data from aging rhesus monkeys show abnormal tau phosphorylation within vulnerable neurons, associated with calcium dysregulation. Abnormally phosphorylated tau (pTau) on microtubules traps APP-containing endosomes, which can increase Aβ production. As Aβ oligomers increase abnormal phosphorylation of tau, this would drive vicious cycles leading to sAD pathology over a long lifespan, with genetic and environmental factors that may accelerate pathological events. This hypothesis could be testable in the aged monkey association cortex that naturally expresses characteristics capable of promoting and sustaining abnormal tau phosphorylation and Aβ production.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Heiko Braak
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| |
Collapse
|
6
|
Abstract
The regulation of brain cytochrome P450 enzymes (CYPs) is different compared with respective hepatic enzymes. This may result from anatomical bases and physiological functions of the two organs. The brain is composed of a variety of functional structures built of different interconnected cell types endowed with specific receptors that receive various neuronal signals from other brain regions. Those signals activate transcription factors or alter functioning of enzyme proteins. Moreover, the blood-brain barrier (BBB) does not allow free penetration of all substances from the periphery into the brain. Differences in neurotransmitter signaling, availability to endogenous and exogenous active substances, and levels of transcription factors between neuronal and hepatic cells lead to differentiated expression and susceptibility to the regulation of CYP genes in the brain and liver. Herein, we briefly describe the CYP enzymes of CYP1-3 families, their distribution in the brain, and discuss brain-specific regulation of CYP genes. In parallel, a comparison to liver CYP regulation is presented. CYP enzymes play an essential role in maintaining the levels of bioactive molecules within normal ranges. These enzymes modulate the metabolism of endogenous neurochemicals, such as neurosteroids, dopamine, serotonin, melatonin, anandamide, and exogenous substances, including psychotropics, drugs of abuse, neurotoxins, and carcinogens. The role of these enzymes is not restricted to xenobiotic-induced neurotoxicity, but they are also involved in brain physiology. Therefore, it is crucial to recognize the function and regulation of CYP enzymes in the brain to build a foundation for future medicine and neuroprotection and for personalized treatment of brain diseases.
Collapse
Affiliation(s)
- Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
7
|
Ghasemzadeh Z, Sardari M, Javadi P, Rezayof A. Expression analysis of hippocampal and amygdala CREB-BDNF signaling pathway in nicotine-induced reward under stress in rats. Brain Res 2020; 1741:146885. [PMID: 32417176 DOI: 10.1016/j.brainres.2020.146885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
Abstract
Extensive research has shown that individuals are more sensitive to develop addiction and drug taking under stress state. The present study includes an expression analysis to identify the possible role of hippocampal and amygdala CREB (cAMP response element-binding protein) and BDNF (Brain-derived neurotrophic factor) activation in nicotine-induced conditioned place preference (CPP) under exposure to acute or sub-chronic stress. Using western-blot technique, CREB phosphorylation was shown to increase in the hippocampus and the amygdala following nicotine-induced CPP. The hippocampal level of BDNF was increased following nicotine administration and in the nicotine-treated animals exposed to acute stress. In animals exposed to acute stress, the amygdala ratios of the pCREB/CREB decreased, while pre-treatment of the animals with nicotine (0.1 mg/kg) decreased this ratio only in the hippocampus. Sub-chronic stress decreased the pCREB/CREB ratios in the hippocampus and the amygdala. Interestingly, sub-chronic stress-induced increase of nicotine reward only decreased the hippocampal pCREB/CREB ratio. The levels of BDNF in the hippocampus and the amygdala decreased under acute stress. Acute stress-induced increase of nicotine reward increased BDNF levels in the hippocampus. Moreover, the animals' exposure to the CPP apparatus without any drug administration increased the ratios of pCREB/tCREB and BDNF/β-actin in the targeted sites. In summary, the present study indicate that the alterations of the ratio of pCREB/CREB and also the level of BDNF in the hippocampus may be critical for enhancing nicotine reward under stress condition. The evidence from this study suggests the distinct roles of the hippocampus and the amygdala in mediating nicotine reward under stress.
Collapse
Affiliation(s)
- Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Sardari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Parastoo Javadi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
8
|
Rosinger ZJ, De Guzman RM, Jacobskind JS, Saglimbeni B, Malone M, Fico D, Justice NJ, Forni PE, Zuloaga DG. Sex-dependent effects of chronic variable stress on discrete corticotropin-releasing factor receptor 1 cell populations. Physiol Behav 2020; 219:112847. [PMID: 32081812 DOI: 10.1016/j.physbeh.2020.112847] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/25/2020] [Accepted: 02/13/2020] [Indexed: 12/19/2022]
Abstract
Anxiety and depression are strikingly more prevalent in women compared with men. Dysregulation of corticotropin-releasing factor (CRF) binding to its cognate receptor (CRFR1) is thought to play a critical role in the etiology of these disorders. In the present study, we investigated whether there were sex differences in the effects of chronic variable stress (CVS) on CRFR1 cells using CRFR1-GFP reporter mice experiencing a 9-day CVS paradigm. Brains were collected from CVS and stress naïve female and male mice following exposure to the open field test. This CVS paradigm effectively increased anxiety-like behavior in female and male mice. In addition, we assessed changes in activation of CRFR1 cells (co-localization with c-Fos and phosphorylated CREB (pCREB)) in stress associated brain structures, including two sexually dimorphic CRFR1 cell groups in the anteroventral periventricular nucleus (AVPV/PeN; F>M) and paraventricular hypothalamus (PVN; M>F). CVS increased CRFR1-GFP cell number as well as the number of CRFR1/pCREB co-expressing cells in the female but not male AVPV/PeN. In the PVN, the number of CRFR1/pCREB co-expressing cells was overall greater in males regardless of treatment and CVS resulted in a male-specific reduction of CRFR1/c-Fos cells. In addition, CVS induced a female-specific reduction in CRFR1/c-Fos cells within the anteroventral bed nucleus of the stria terminalis and both sexes exhibited a reduction in CRFR1/c-Fos co-expressing cells following CVS within the ventral basolateral amygdala. Overall, these sex-specific effects of CVS on CRFR1 populations may have implications for sex differences in stress-induction of mood disorders.
Collapse
Affiliation(s)
- Zachary J Rosinger
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Rose M De Guzman
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Jason S Jacobskind
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Brianna Saglimbeni
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Margaret Malone
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Danielle Fico
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Nicholas J Justice
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, TX, United States
| | - Paolo E Forni
- Department of Biological Sciences, The RNA Institute, and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, United States
| | - Damian G Zuloaga
- Department of Psychology, University at Albany, Albany, NY 12222, United States.
| |
Collapse
|
9
|
Boorman DC, Kang JWM, Keay KA. Peripheral nerve injury attenuates stress-induced Fos-family expression in the Locus Coeruleus of male Sprague-Dawley rats. Brain Res 2019; 1719:253-262. [PMID: 31194948 DOI: 10.1016/j.brainres.2019.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/26/2019] [Accepted: 06/09/2019] [Indexed: 11/26/2022]
Abstract
The ability to cope with acute stressors is impaired in people with chronic neuropathic injuries. The regulation of stress coping responses depends critically on several parallel interconnected neural circuits, one of which originates in the Locus Coeruleus. In rats, chronic constriction injury (CCI) and acute stress each modulate noradrenergic activity of the Locus Coeruleus (LC) although with different temporal patterns. This study investigated the effects of CCI on the neuronal activity of the LC to acute restraint stress using the immunohistochemical detection of Fos-family protein expression. Male Sprague-Dawley rats underwent CCI surgery and 11 days later were restrained for 15 min. The number and location of single-labelled neurons (c-Fos, FosB/ΔFosB and tyrosine hydroxylase (TH) immunoreactive) neurons and double labelled neurons (c-Fos, or FosB/ΔFosB with TH) were quantified for the LC and surrounding regions. Comparisons were made with rats that underwent sham surgery or anaesthesia (20 min). Restraint triggered a struggling response in all rats. CCI attenuated restraint-induced Fos expression in LC neurons. A significant proportion (30-50%) of these LC Fos positive neurons did not contain TH. These data suggest that nerve injury might impair the ordinary cellular response of the LC to an acute stress. The association of stress-related disorders in people with neuropathic injuries suggests that the observations made in this study may reflect a part of the mechanism underlying these clinical comorbidities.
Collapse
Affiliation(s)
- Damien C Boorman
- School of Medical Sciences, Discipline of Anatomy & Histology, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - James W M Kang
- School of Medical Sciences, Discipline of Anatomy & Histology, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Kevin A Keay
- School of Medical Sciences, Discipline of Anatomy & Histology, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
10
|
Maekawa T, Tsushima H, Kawakami F, Kawashima R, Kodo M, Imai M, Ichikawa T. Leucine-Rich Repeat Kinase 2 Is Associated With Activation of the Paraventricular Nucleus of the Hypothalamus and Stress-Related Gastrointestinal Dysmotility. Front Neurosci 2019; 13:905. [PMID: 31555076 PMCID: PMC6727664 DOI: 10.3389/fnins.2019.00905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/13/2019] [Indexed: 01/27/2023] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a molecule associated with familial and sporadic Parkinson's disease. It regulates many central neuronal functions, such as cell proliferation, apoptosis, autophagy, and axonal extension. Recently, it has been revealed that LRRK2 is related to anxiety/depression-like behavior, implying an association between LRRK2 and stress. In the present study, we investigated for the first time the stress pathway and its relationship to gastrointestinal motility in LRRK2-knockout (KO) mice. The mice were subjected to acute restraint stress, and analyzed for activation of the paraventricular nucleus of the hypothalamus (PVN) using an immunohistochemical approach. Phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) was assessed by Western blotting. The KO mice showed a lower number of c-Fos-positive cells and disruption of the ERK signaling pathway in the PVN in the presence of restraint stress. Stress responses in terms of both upper and lower gastrointestinal motility were alleviated in the mice, accompanied by lower c-Fos immunoreactivity in enteric excitatory neurons. Our present findings suggest that LRRK2 is a newly recognized molecule regulating the stress pathway in the PVN, playing a role in stress-related gastrointestinal dysmotility.
Collapse
Affiliation(s)
- Tatsunori Maekawa
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Hiromichi Tsushima
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Behavioral Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Fumitaka Kawakami
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Rei Kawashima
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Masaru Kodo
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Motoki Imai
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Takafumi Ichikawa
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| |
Collapse
|
11
|
Rosinger ZJ, Jacobskind JS, De Guzman RM, Justice NJ, Zuloaga DG. A sexually dimorphic distribution of corticotropin-releasing factor receptor 1 in the paraventricular hypothalamus. Neuroscience 2019; 409:195-203. [PMID: 31055007 DOI: 10.1016/j.neuroscience.2019.04.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022]
Abstract
Sex differences in neural structures are generally believed to underlie sex differences reported in anxiety, depression, and the hypothalamic-pituitary-adrenal axis, although the specific circuitry involved is largely unclear. Using a corticotropin-releasing factor receptor 1 (CRFR1) reporter mouse line, we report a sexually dimorphic distribution of CRFR1 expressing cells within the paraventricular hypothalamus (PVN; males > females). Relative to adult levels, PVN CRFR1-expressing cells are sparse and not sexually dimorphic at postnatal days 0, 4, or 21. This suggests that PVN cells might recruit CRFR1 during puberty or early adulthood in a sex-specific manner. The adult sex difference in PVN CRFR1 persists in old mice (20-24 months). Adult gonadectomy (6 weeks) resulted in a significant decrease in CRFR1-immunoreactive cells in the male but not female PVN. CRFR1 cells show moderate co-expression with estrogen receptor alpha (ERα) and high co-expression with androgen receptor, indicating potential mechanisms through which circulating gonadal hormones might regulate CRFR1 expression and function. Finally, we demonstrate that a psychological stressor, restraint stress, induces a sexually dimorphic pattern of neural activation in PVN CRFR1 cells (males >females) as assessed by co-localization with the transcription/neural activation marker phosphorylated CREB. Given the known role of CRFR1 in regulating stress-associated behaviors and hormonal responses, this CRFR1 PVN sex difference might contribute to sex differences in these functions.
Collapse
Affiliation(s)
- Zachary J Rosinger
- University at Albany, Department of Psychology, Albany, NY 12222, United States of America
| | - Jason S Jacobskind
- University at Albany, Department of Psychology, Albany, NY 12222, United States of America
| | - Rose M De Guzman
- University at Albany, Department of Psychology, Albany, NY 12222, United States of America
| | - Nicholas J Justice
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| | - Damian G Zuloaga
- University at Albany, Department of Psychology, Albany, NY 12222, United States of America.
| |
Collapse
|
12
|
Rosinger ZJ, Jacobskind JS, Bulanchuk N, Malone M, Fico D, Justice NJ, Zuloaga DG. Characterization and gonadal hormone regulation of a sexually dimorphic corticotropin-releasing factor receptor 1 cell group. J Comp Neurol 2018; 527:1056-1069. [PMID: 30499109 DOI: 10.1002/cne.24588] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/16/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022]
Abstract
Corticotropin-releasing factor binds with high affinity to CRF receptor 1 (CRFR1) and is implicated in stress-related mood disorders such as anxiety and depression. Using a validated CRFR1-green fluorescent protein (GFP) reporter mouse, our laboratory recently discovered a nucleus of CRFR1 expressing cells that is prominent in the female rostral anteroventral periventricular nucleus (AVPV/PeN), but largely absent in males. This sex difference is present in the early postnatal period and remains dimorphic into adulthood. The present investigation sought to characterize the chemical composition and gonadal hormone regulation of these sexually dimorphic CRFR1 cells using immunohistochemical procedures. We report that CRFR1-GFP-ir cells within the female AVPV/PeN are largely distinct from other dimorphic cell populations (kisspeptin, tyrosine hydroxylase). However, CRFR1-GFP-ir cells within the AVPV/PeN highly co-express estrogen receptor alpha as well as glucocorticoid receptor. A single injection of testosterone propionate or estradiol benzoate on the day of birth completely eliminates the AVPV/PeN sex difference, whereas adult gonadectomy has no effect on CRFR1-GFP cell number. These results indicate that the AVPV/PeN CRFR1 is regulated by perinatal but not adult gonadal hormones. Finally, female AVPV/PeN CRFR1-GFP-ir cells are activated following an acute 30-min restraint stress, as assessed by co-localization of CRFR1-GFP cells with phosphorylated (p) CREB. CRFR1-GFP/pCREB cells were largely absent in the male AVPV/PeN. Together, these data indicate a stress and gonadal hormone responsive nucleus that is unique to females and may contribute to sex-specific stress responses.
Collapse
Affiliation(s)
| | | | - Nicole Bulanchuk
- Department of Psychology, University at Albany, Albany, New York
| | - Margaret Malone
- Department of Psychology, University at Albany, Albany, New York
| | - Danielle Fico
- Department of Psychology, University at Albany, Albany, New York
| | - Nicholas J Justice
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, Texas
| | - Damian G Zuloaga
- Department of Psychology, University at Albany, Albany, New York
| |
Collapse
|
13
|
Seo JH. Treadmill exercise alleviates stress-induced anxiety-like behaviors in rats. J Exerc Rehabil 2018; 14:724-730. [PMID: 30443516 PMCID: PMC6222149 DOI: 10.12965/jer.1836442.221] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/08/2018] [Indexed: 11/23/2022] Open
Abstract
Stress is the physiological responses of organisms to harmful or threatening stimuli that allow appropriate behavioral responses to the stressor. In the present study, the effect of treadmill exercise on stress-induced anxiety was evaluated using rats. To induce stress, the rats were exposed to an inescapable electric foot shock. Exposure of rats to the electric foot shock was performed for 7 days. The rats in the exercise groups were made to run on a motorized treadmill for 30 min once a day for 4 weeks stating one day after last electric food shock. Anxiety-like behaviors were determined by open field test and elevated plus-maze test. The expressions of c-Fos and neuronal nitric oxide synthase (nNOS) in the hypothalamus and locus coeruleus were detected by immunohistochemistry. In the present results, locomotor activity in the center of the open field test and the number of entries and time in the open arms of the elevated plus-maze test were reduced in the rats with stress-induced anxiety. Treadmill running enhanced these locomotor activities, the number of entries and time in the stress-induced anxiety rats. c-Fos and nNOS expressions in the hypothalamus and locus coeruleus were increased in the stress-induced rats. Treadmill exercise reduced c-Fos and nNOS overexpressions in the stress-induced rats. In the present study, treadmill exercise ameliorated anxiety-like behaviors in the stress-induced rats. The improving effect of treadmill exercise on anxiety-like behaviors might be ascribed to the suppressing effect of exercise on c-Fos and nNOS expressions.
Collapse
Affiliation(s)
- Jin-Hee Seo
- Department of Adaptive Physical Education, Baekseok University, Cheonan, Korea
| |
Collapse
|
14
|
Park G, Jung YS, Park MK, Yang CH, Kim YU. Melatonin inhibits attention-deficit/hyperactivity disorder caused by atopic dermatitis-induced psychological stress in an NC/Nga atopic-like mouse model. Sci Rep 2018; 8:14981. [PMID: 30297827 PMCID: PMC6175954 DOI: 10.1038/s41598-018-33317-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/27/2018] [Indexed: 12/28/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with the hallmark characteristics of pruritus, psychological stress, and sleep disturbance, all possibly associated with an increased risk of attention-deficit/hyperactivity disorder (ADHD). However, the etiology of the possible association between AD and ADHD is still not well understood. 2,4-dinitrochlorobenzene or corticosterone was used to evaluate the atopic symptom and its psychologic stress in the atopic mice model. Melatonin, corticotropin-releasing hormone, corticotropin-releasing hormone receptor, urocortin, proopiomelanocortin, adrenocorticotropic hormone, corticosterone, cAMP, cAMP response element-binding protein, dopamine and noradrenaline were analyzed spectrophotometrically, and the expression of dopamine beta-hydroxylase and tyrosine hydroxylase were measured by Western blotting or immunohistochemistry. AD-related psychological stress caused an increase in the levels of dopamine beta-hydroxylase and tyrosine hydroxylase, degradation of melatonin, hyper-activity of the hypothalamic-pituitary-adrenal axis, and dysregulation of dopamine and noradrenaline levels (ADHD phenomena) in the locus coeruleus, prefrontal cortex, and striatum of the AD mouse brain. Notably, melatonin administration inhibited the development of ADHD phenomena and their-related response in the mouse model. This study demonstrated that AD-related psychological stress increased catecholamine dysfunction and accelerated the development of psychiatric comorbidities, such as ADHD.
Collapse
MESH Headings
- Animals
- Attention Deficit Disorder with Hyperactivity/chemically induced
- Attention Deficit Disorder with Hyperactivity/drug therapy
- Attention Deficit Disorder with Hyperactivity/metabolism
- Attention Deficit Disorder with Hyperactivity/pathology
- Brain/metabolism
- Brain/pathology
- Cell Line, Transformed
- Dermatitis, Atopic/chemically induced
- Dermatitis, Atopic/drug therapy
- Dermatitis, Atopic/metabolism
- Dermatitis, Atopic/pathology
- Disease Models, Animal
- Humans
- Melatonin/pharmacology
- Mice
- Stress, Psychological/chemically induced
- Stress, Psychological/drug therapy
- Stress, Psychological/metabolism
- Stress, Psychological/pathology
Collapse
Affiliation(s)
- Gunhyuk Park
- The K-herb Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Moon-Ki Park
- Department of Pharmaceutical Engineering, College of Biomedical Science, Daegu Haany University, 290 Yugok-dong, Gyeongsan-si, Gyeongsangbuk-do, 38610, Republic of Korea
| | - Chae Ha Yang
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
| | - Yong-Ung Kim
- Department of Pharmaceutical Engineering, College of Biomedical Science, Daegu Haany University, 290 Yugok-dong, Gyeongsan-si, Gyeongsangbuk-do, 38610, Republic of Korea.
| |
Collapse
|
15
|
Persistent Stress-Induced Neuroplastic Changes in the Locus Coeruleus/Norepinephrine System. Neural Plast 2018; 2018:1892570. [PMID: 30008741 PMCID: PMC6020552 DOI: 10.1155/2018/1892570] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/09/2018] [Accepted: 05/27/2018] [Indexed: 11/25/2022] Open
Abstract
Neural plasticity plays a critical role in mediating short- and long-term brain responses to environmental stimuli. A major effector of plasticity throughout many regions of the brain is stress. Activation of the locus coeruleus (LC) is a critical step in mediating the neuroendocrine and behavioral limbs of the stress response. During stressor exposure, activation of the hypothalamic-pituitary-adrenal axis promotes release of corticotropin-releasing factor in LC, where its signaling promotes a number of physiological and cellular changes. While the acute effects of stress on LC physiology have been described, its long-term effects are less clear. This review will describe how stress changes LC neuronal physiology, function, and morphology from a genetic, cellular, and neuronal circuitry/transmission perspective. Specifically, we describe morphological changes of LC neurons in response to stressful stimuli and signal transduction pathways underlying them. Also, we will review changes in excitatory glutamatergic synaptic transmission in LC neurons and possible stress-induced modifications of AMPA receptors. This review will also address stress-related behavioral adaptations and specific noradrenergic receptors responsible for them. Finally, we summarize the results of several human studies which suggest a link between stress, altered LC function, and pathogenesis of posttraumatic stress disorder.
Collapse
|
16
|
Chewing ameliorates the effects of restraint stress on pERK-immunoreactive neurons in the rat insular cortex. Neurosci Lett 2018. [DOI: 10.1016/j.neulet.2018.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Fan F, Li L, Liu W, Yang M, Ma X, Sun H. Astrocytes and neurons in locus coeruleus mediate restraint water immersion stress-induced gastric mucosal damage through the ERK1/2 signaling pathway. Neurosci Lett 2018; 675:95-102. [PMID: 29580882 DOI: 10.1016/j.neulet.2018.03.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 02/06/2023]
Abstract
Restraint water-immersion stress (RWIS) is considered to be a compound stress model that includes psychological and physical stimulation and may cause gastric mucosal damage. Studies have shown that locus coeruleus (LC) is involved in the gastrointestinal function, but whether it is involved in RWIS-induced gastric mucosal damage has not yet been reported. Here, we investigated the expression of glial fibrillary acidic protein (GFAP), c-Fos, and phosphorylation extracellular signal regulated kinase 1/2 (p-ERK1/2) in the LC after RWIS using immunocytochemical staining and western blotting in order to explore whether the ERK1/2 signaling pathway interacts with the neuron-astrocyte network in the LC during RWIS and whether it is involved in causing RWIS-induced gastric mucosal damage. Expression of c-Fos, GFAP, and p-ERK1/2 increased significantly following RWIS and peaked at 3 h after RWIS. After intracerebroventricular injection of c-Fos antisense oligodeoxynucleotides (ASO) and astrocytic toxin L-a-aminoadipate (L-AA), the gastric mucosal damage and the activation of neurons and astrocytes in the LC significantly decreased. Intracerebroventricular injection of ERK1/2 signaling pathway inhibitor PD98059 suppressed gastric mucosal damage as well as the RWIS-induced activation of neurons and astrocytes in the LC. Activation of LC neurons and astrocytes induced by RWIS through the ERK1/2 signaling pathway may play a critical role in RWIS-induced gastric mucosa damage.
Collapse
Affiliation(s)
- Fangcheng Fan
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Lei Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Wenkai Liu
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Mengzhu Yang
- Qingdao No.31 Middle School, Qingdao, 266041, China
| | - Xiaoli Ma
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250100, China.
| | - Haiji Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
18
|
Cortés R, Teles M, Oliveira M, Fierro-Castro C, Tort L, Cerdá-Reverter JM. Effects of acute handling stress on short-term central expression of orexigenic/anorexigenic genes in zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:257-272. [PMID: 29071448 DOI: 10.1007/s10695-017-0431-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Physiological mechanisms driving stress response in vertebrates are evolutionarily conserved. These mechanisms involve the activation of both the hypothalamic-sympathetic-chromaffin cell (HSC) and the hypothalamic-pituitary-adrenal (HPA) axes. In fish, the reduction of food intake levels is a common feature of the behavioral response to stress but the central mechanisms coordinating the energetic response are not well understood yet. In this work, we explore the effects of acute stress on key central systems regulating food intake in fish as well as on total body cortisol and glucose levels. We show that acute stress induced a rapid increase in total body cortisol with no changes in body glucose, at the same time promoting a prompt central response by activating neuronal pathways. All three orexigenic peptides examined, i.e., neuropeptide y (npy), agouti-related protein (agrp), and ghrelin, increased their central expression level suggesting that these neuronal systems are not involved in the short-term feeding inhibitory effects of acute stress. By contrast, the anorexigenic precursors tested, i.e., cart peptides and pomc, exhibited increased expression after acute stress, suggesting their involvement in the anorexigenic effects.
Collapse
Affiliation(s)
- Raul Cortés
- Deparment of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Torre la Sal s/n 12595, Ribera de Cabanes, Castellón, Spain
- Universidad Bernardo O'Higgins, Centro de Investigación en Recursos Naturales y Sustentabilidad, Fábrica1990, Santiago, Chile
| | - Mariana Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Miguel Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Camino Fierro-Castro
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - José Miguel Cerdá-Reverter
- Deparment of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Torre la Sal s/n 12595, Ribera de Cabanes, Castellón, Spain.
| |
Collapse
|
19
|
Park G, Lee SH, Oh DS, Kim YU. Melatonin inhibits neuronal dysfunction-associated with neuroinflammation by atopic psychological stress in NC/Nga atopic-like mouse models. J Pineal Res 2017; 63. [PMID: 28500766 DOI: 10.1111/jpi.12420] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/05/2017] [Indexed: 01/03/2023]
Abstract
Atopic dermatitis (AD), also known as atopic eczema, is chronic pruritic skin disease. AD can increase psychological stress as well, increasing glucocorticoid release and exacerbating the associated symptoms. Chronic glucocorticoid elevation disturbs neuroendocrine signaling and can induce neuroinflammation, neurotoxicity, and cognitive impairment; however, it is unclear whether AD-related psychological stress elevates glucocorticoids enough to cause neuronal damage. Therefore, we assessed the effects of AD-induced stress in a mouse AD model. AD-related psychological stress increased astroglial and microglial activation, neuroinflammatory cytokine expression, and markers of neuronal loss. Notably, melatonin administration inhibited the development of skin lesions, scratching behavior, and serum IgE levels in the model mice, and additionally caused a significant reduction in corticotropin-releasing hormone responsiveness, and a significant reduction in neuronal damage. Finally, we produced similar results in a corticosterone-induced AD-like skin model. This is the first study to demonstrate that AD-related psychological stress increases neuroendocrine dysfunction, exacerbates neuroinflammation, and potentially accelerates other neurodegenerative disease states.
Collapse
Affiliation(s)
- Gunhyuk Park
- The K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Seung Hoon Lee
- The K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Dal-Seok Oh
- The K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Yong-Ung Kim
- Department of Pharmaceutical Engineering, College of Biomedical Science, Daegu Haany University, Gyeongsan, Korea
| |
Collapse
|
20
|
Packard AEB, Di S, Egan AE, Fourman SM, Tasker JG, Ulrich-Lai YM. Sucrose-induced plasticity in the basolateral amygdala in a 'comfort' feeding paradigm. Brain Struct Funct 2017; 222:4035-4050. [PMID: 28597100 DOI: 10.1007/s00429-017-1454-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 05/12/2017] [Indexed: 01/01/2023]
Abstract
A history of intermittent, limited sucrose intake (LSI) attenuates the hypothalamic-pituitary-adrenocortical (HPA) axis stress response, and neuronal activity in the basolateral amygdala (BLA) is necessary for this HPA-dampening. LSI increases the expression of plasticity-associated genes in the BLA; however, the nature of this plasticity is unknown. As BLA principal neuron activity normally promotes HPA responses, the present study tests the hypothesis that LSI decreases stress-excitatory BLA output by decreasing glutamatergic and/or increasing GABAergic inputs to BLA principal neurons. Male rats with unlimited access to chow and water were given additional access to 4 ml of sucrose (30%) or water twice daily for 14 days, and BLA structural and functional plasticity was assessed by quantitative dual immunolabeling and whole-cell recordings in brain slices. LSI increased vesicular glutamate transporter 1-positive (glutamatergic) appositions onto parvalbumin-positive inhibitory interneurons, and this was accompanied by increased expression of pCREB, a marker of neuronal activation that is mechanistically linked with plasticity, within parvalbumin interneurons. LSI also increased the paired-pulse facilitation of excitatory, but not inhibitory synaptic inputs to BLA principal neurons, without affecting postsynaptic excitatory or miniature excitatory and inhibitory postsynaptic currents, suggesting a targeted decrease in the probability of evoked synaptic excitation onto these neurons. Collectively, these results suggest that LSI decreases BLA principal neuron output by increasing the excitatory drive to parvalbumin inhibitory interneurons, and decreasing the probability of evoked presynaptic glutamate release onto principal neurons. Our data further imply that palatable food consumption blunts HPA stress responses by decreasing the excitation-inhibition balance and attenuating BLA output.
Collapse
Affiliation(s)
- Amy E B Packard
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Metabolic Diseases Institute, 2170 East Galbraith Road, ML0506, Cincinnati, OH, 45237, USA
| | - Shi Di
- Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, New Orleans, LA, 70118, USA
| | - Ann E Egan
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Metabolic Diseases Institute, 2170 East Galbraith Road, ML0506, Cincinnati, OH, 45237, USA
| | - Sarah M Fourman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Metabolic Diseases Institute, 2170 East Galbraith Road, ML0506, Cincinnati, OH, 45237, USA
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, New Orleans, LA, 70118, USA.,Tulane Brain Institute, Tulane University, Flower Hall, New Orleans, LA, 70118, USA
| | - Yvonne M Ulrich-Lai
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Metabolic Diseases Institute, 2170 East Galbraith Road, ML0506, Cincinnati, OH, 45237, USA.
| |
Collapse
|
21
|
A role for leptin-regulated neurocircuitry in subordination stress. Physiol Behav 2016; 178:144-150. [PMID: 27887997 DOI: 10.1016/j.physbeh.2016.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/07/2016] [Accepted: 11/18/2016] [Indexed: 02/07/2023]
Abstract
The visible burrow system produces a distinct combination of psychological and metabolic stress on, primarily, subordinate individuals that results in pronounced physiologic and behavioral dysfunction. However, the mechanisms underlying the consequences of chronic subordination stress are largely unknown. The simplest mechanistic explanation is that adaptations within brain systems with overlapping functions of both psychological and metabolic control provide immediate benefits that result in lasting susceptibility to diseases, disorders, and increased mortality rates in subordinates. Circuits regulated by leptin adapt to fluctuating levels of energy storage, such that the loss of leptin action within leptin-regulated neurocircuitry results in dysfunction in physiologic and behavioral systems implicated in the consequences of chronic social subordination. Thus, leptin-regulated neurocircuitry may provide a window into understanding the consequences of social subordination stress. This review examines the neural systems of leptin physiology implicated in social subordination stress: energy balance, motivation, HPA axis, and glycemic control.
Collapse
|
22
|
Anxiety response and restraint-induced stress differentially affect ethanol intake in female adolescent rats. Neuroscience 2016; 334:259-274. [DOI: 10.1016/j.neuroscience.2016.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023]
|
23
|
Imbe H, Kimura A. Repeated forced swim stress affects the expression of pCREB and ΔFosB and the acetylation of histone H3 in the rostral ventromedial medulla and locus coeruleus. Brain Res Bull 2016; 127:11-22. [PMID: 27530066 DOI: 10.1016/j.brainresbull.2016.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 01/31/2023]
Abstract
The rostral ventromedial medulla (RVM) and locus coeruleus (LC) play crucial roles in descending pain modulation system. In the present study we examined the expression of phospho-cAMP response element-binding protein (pCREB) and ΔFosB and the acetylation of histone H3 in the RVM and LC after forced swim stress (FS) and complete Freund's adjuvant (CFA) injection to clarify changes in descending pain modulatory system in a rat model of stress-induced hyperalgesia. FS (day 1, 10min; days 2-3, 20min) induced a significant increase in the expression of pCREB and ΔFosB and the acetylation of histone H3 in the RVM, whereas the FS induced a significant increase only in the acetylation of histone H3 in the LC. CFA injection into the hindpaw did not induce a significant change in those expression and acetylation. Quantitative image analysis demonstrated that the numbers of pCREB-, acetylated histone H3- and ΔFosB-IR cells in the RVM were significantly higher in the FS group than those in the naive group. The CFA injection after the FS did not affect the FS-induced increases in the expression of pCREB and ΔFosB and the acetylation of histone H3 in the RVM even though nullified the increase in the acetylation of histone H3 in the LC. These findings suggest different neuroplasticities between the RVM and LC after the FS, which may be involved in activity change of descending pain modulatory system after the CFA injection.
Collapse
Affiliation(s)
- Hiroki Imbe
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City, 641-8509, Japan.
| | - Akihisa Kimura
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City, 641-8509, Japan
| |
Collapse
|
24
|
Donnerer J, Liebmann I. ERK1/2 Phosphorylation in the Rat Supraoptic Nucleus, Dorsal Raphe Nucleus, and Locus Coeruleus Neurons Following Noxious Stimulation to the Hind Paw. Pharmacology 2015; 97:57-62. [DOI: 10.1159/000442211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 11/19/2022]
|
25
|
Borges G, Berrocoso E, Mico JA, Neto F. ERK1/2: Function, signaling and implication in pain and pain-related anxio-depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2015; 60:77-92. [PMID: 25708652 DOI: 10.1016/j.pnpbp.2015.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/31/2015] [Accepted: 02/15/2015] [Indexed: 12/15/2022]
Abstract
Despite the increasing knowledge regarding pain modulation, the understanding of the mechanisms behind a complex and pathologic chronic pain condition is still insufficient. These knowledge gaps might result in ineffective therapeutic approaches to relieve painful sensations. As a result, severe untreated chronic pain frequently triggers the onset of new disorders such as depression and/or anxiety, and therefore, both the diagnosis and treatment of patients suffering from chronic pain become seriously compromised, prompting a self-perpetuating cycle of symptomatology. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) are molecules strongly implicated in the somatic component of pain at the spinal cord level and have been emerging as mediators of the emotional-affective component as well. Although these molecules might represent good biomarkers, their use as pharmacological targets is still open to discussion as paradoxical information has been obtained. Here we review the current scientific literature regarding ERK1/2 signaling in the modulation of pain, depression and anxiety, including the emotional-affective spheres of the pain experience.
Collapse
Affiliation(s)
- Gisela Borges
- Neuropsycopharmacology and Psychobiology Research Group, Department of Neuroscience (Pharmacology and Psychiatry), University of Cádiz, 11003 Cádiz, Spain; Departamento de Biologia Experimental, Centro de Investigação Médica da Faculdade de Medicina da Universidade do Porto (CIM-FMUP), 4200-319 Porto, Portugal; Grupo de Morfofisiologia do Sistema Nervoso, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
| | - Esther Berrocoso
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, University of Cádiz, 11510 Cádiz, Spain
| | - Juan Antonio Mico
- Neuropsycopharmacology and Psychobiology Research Group, Department of Neuroscience (Pharmacology and Psychiatry), University of Cádiz, 11003 Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Fani Neto
- Departamento de Biologia Experimental, Centro de Investigação Médica da Faculdade de Medicina da Universidade do Porto (CIM-FMUP), 4200-319 Porto, Portugal; Grupo de Morfofisiologia do Sistema Nervoso, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.
| |
Collapse
|
26
|
Yamada K, Narimatsu Y, Ono Y, Sasaguri KI, Onozuka M, Kawata T, Yamamoto T. Chewing suppresses the stress-induced increase in the number of pERK-immunoreactive cells in the periaqueductal grey. Neurosci Lett 2015; 599:43-8. [PMID: 25980997 DOI: 10.1016/j.neulet.2015.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 05/04/2015] [Accepted: 05/12/2015] [Indexed: 11/18/2022]
Abstract
We investigated the effects of chewing under immobilization stress on the periaqueductal gray (PAG) matter using phosphorylated extracellular signal-regulated kinase (pERK) as a marker of responding cells. Immobilization stress increased pERK-immunoreactive cells in the PAG. Among four subdivisions of the PAG, the increase of immunoreactive cells was remarkable in the dorsolateral and ventrolateral subdivisions. However, increase of pERK-immunoreactive cells by the immobilization stress was not so evident in the dorsomedial and lateral subdivisions. The chewing under immobilization stress prevented the stress-induced increase of pERK-immunoreactive cells in the dorsolateral and ventrolateral subdivisions with statistical significances (p<0.05). Again, chewing effects on pERK-immunoreactive cells were not visible in the dorsomedial and lateral subdivisions. These results suggest that the chewing alleviates the PAG (dorsolateral and ventrolateral subdivisions) responses to stress.
Collapse
Affiliation(s)
- Kentaro Yamada
- Department of Oral Science, Division of Brain Functions and Neuroscience, Kanagawa Dental University, Yokosuka, Japan
| | - Yuri Narimatsu
- Department of Oral Science, Division of Orthodontics, Kanagawa Dental University, Yokosuka, Japan
| | - Yumie Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Japan
| | - Ken-Ichi Sasaguri
- Department of Oral Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Minoru Onozuka
- Nittai Jyusei Medical College for Judo Therapeutics, Tokyo, Japan
| | - Toshitsugu Kawata
- Department of Oral Science, Division of Orthodontics, Kanagawa Dental University, Yokosuka, Japan
| | - Toshiharu Yamamoto
- Department of Oral Science, Division of Brain Functions and Neuroscience, Kanagawa Dental University, Yokosuka, Japan.
| |
Collapse
|
27
|
Activation of physiological stress responses by a natural reward: Novel vs. repeated sucrose intake. Physiol Behav 2015; 150:43-52. [PMID: 25747321 DOI: 10.1016/j.physbeh.2015.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/19/2015] [Accepted: 03/04/2015] [Indexed: 12/23/2022]
Abstract
Pharmacological rewards, such as drugs of abuse, evoke physiological stress responses, including increased heart rate and blood pressure, and activation of the hypothalamic-pituitary-adrenal (HPA) axis. It is not clear to what extent the natural reward of palatable foods elicits similar physiological responses. In order to address this question, HPA axis hormones, heart rate, blood pressure and brain pCREB immunolabeling were assessed following novel and repeated sucrose exposure. Briefly, adult, male rats with ad libitum food and water were given either a single (day 1) or repeated (twice-daily for 14 days) brief (up to 30 min) exposure to a second drink bottle containing 4 ml of 30% sucrose drink vs. water (as a control for bottle presentation). Sucrose-fed rats drank more than water-fed on all days of exposure, as expected. On day 1 of exposure, heart rate, blood pressure, plasma corticosterone, and locomotion were markedly increased by presentation of the second drink bottle regardless of drink type. After repeated exposure (day 14), these responses habituated to similar extents regardless of drink type and pCREB immunolabeling in the hypothalamic paraventricular nucleus (PVN) also did not vary with drink type, whereas basolateral amygdala pCREB was increased by sucrose intake. Taken together, these data suggest that while sucrose is highly palatable, physiological stress responses were evoked principally by the drink presentation itself (e.g., an unfamiliar intervention by the investigators), as opposed to the palatability of the offered drink.
Collapse
|
28
|
Hodges TE, McCormick CM. Adolescent and adult male rats habituate to repeated isolation, but only adolescents sensitize to partner unfamiliarity. Horm Behav 2015; 69:16-30. [PMID: 25510393 DOI: 10.1016/j.yhbeh.2014.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/24/2014] [Accepted: 12/08/2014] [Indexed: 12/29/2022]
Abstract
We investigated whether adolescent male rats show less habituation of corticosterone release than adult male rats to acute vs repeated (16) daily one hour episodes of isolation stress, as well as the role of partner familiarity during recovery on social behavior, plasma corticosterone, and Zif268 expression in brain regions. Adolescents spent more time in social contact than did adults during the initial days of the repeated stress procedures, but both adolescents and adults that returned to an unfamiliar peer after isolation had higher social activity than rats returned to a familiar peer (p=0.002) or undisturbed control rats (p<0.001). Both ages showed evidence of habituation, with reduced corticosterone response to repeated than acute isolation (p=0.01). Adolescents, however, showed sensitized corticosterone release to repeated compared with an acute pairing with an unfamiliar peer during recovery (p=0.03), a difference not found in adults. Consistent with habituation of corticosterone release, the repeated isolation groups had lower Zif268 immunoreactive cell counts in the paraventricular nucleus (p<0.001) and in the arcuate nucleus (p=0.002) than did the acute groups, and adolescents had higher Zif268 immunoreactive cell counts in the paraventricular nucleus than did adults during the recovery period (p<0.001), irrespective of stress history and partner familiarity. Partner familiarity had only modest effects on Zif268 immunoreactivity, and experimental effects on plasma testosterone concentrations were only in adults. The results highlight social and endocrine factors that may underlie the greater vulnerability of the adolescent period of development.
Collapse
Affiliation(s)
| | - Cheryl M McCormick
- Department of Psychology, Brock University, Canada; Department of Centre for Neuroscience, Brock University, Canada.
| |
Collapse
|
29
|
pERK1/2 immunofluorescence in rat dorsal horn and paraventricular nucleus neurons as a marker for sensitization and inhibition in the pain pathway. Tissue Cell 2015; 47:55-60. [DOI: 10.1016/j.tice.2014.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/11/2014] [Accepted: 11/17/2014] [Indexed: 12/27/2022]
|
30
|
Mustafa T, Jiang SZ, Eiden AM, Weihe E, Thistlethwaite I, Eiden LE. Impact of PACAP and PAC1 receptor deficiency on the neurochemical and behavioral effects of acute and chronic restraint stress in male C57BL/6 mice. Stress 2015; 18:408-18. [PMID: 25853791 PMCID: PMC4834918 DOI: 10.3109/10253890.2015.1025044] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Acute restraint stress (ARS) for 3 h causes corticosterone (CORT) elevation in venous blood, which is accompanied by Fos up-regulation in the paraventricular nucleus (PVN) of male C57BL/6 mice. CORT elevation by ARS is attenuated in PACAP-deficient mice, but unaffected in PAC1-deficient mice. Correspondingly, Fos up-regulation by ARS is greatly attenuated in PACAP-deficient mice, but much less so in PAC1-deficient animals. We noted that both PACAP- and PAC1-deficiency greatly attenuate CORT elevation after ARS when CORT measurements are performed on trunk blood following euthanasia by abrupt cervical separation: this latter observation is of critical importance in assessing the role of PACAP neurotransmission in ARS, based on previous reports in which serum CORT was sampled from trunk blood. Seven days of chronic restraint stress (CRS) induces non-habituating CORT elevation, and weight loss consequent to hypophagia, in wild-type male C57BL/6 mice. Both CORT elevation and weight loss following 7-day CRS are severely blunted in PACAP-deficient mice, but only slightly in PAC1-deficient mice. However, longer periods of daily restraint (14-21 days) resulted in sustained weight loss and elevated CORT in wild-type mice, and these effects of long-term chronic stress were attenuated or abolished in both PACAP- and PAC1-deficient mice. We conclude that while a PACAP receptor in addition to PAC1 may mediate some of the PACAP-dependent central effects of ARS and short-term (<7 days) CRS on the hypothalamo-pituitary-adrenal (HPA) axis, the PAC1 receptor plays a prominent role in mediating PACAP-dependent HPA axis activation, and hypophagia, during long-term (>7 days) CRS.
Collapse
Affiliation(s)
| | | | - Adrian M Eiden
- b Section on Functional Neuroanatomy, National Institute of Mental Health , Bethesda , MD USA , and
| | - Eberhard Weihe
- c Institute of Anatomy, Philipps University , Marburg , Germany
| | | | | |
Collapse
|
31
|
Effects of social context on endocrine function and Zif268 expression in response to an acute stressor in adolescent and adult rats. Int J Dev Neurosci 2014; 35:25-34. [PMID: 24613747 DOI: 10.1016/j.ijdevneu.2014.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/04/2014] [Accepted: 03/01/2014] [Indexed: 01/09/2023] Open
Abstract
There is a paucity of studies comparing social buffering in adolescents and adults, despite their marked differences in social behavior. We investigated whether greater effects of social buffering on plasma corticosterone concentrations and expression of Zif268 in neural regions after an acute stressor would be found in adolescent than adult rats. Samples were obtained before and after 1h of isolation stress and after either 1 or 3h of recovery back in the colony with either a familiar or unfamiliar cage partner. Adolescent and adult rats did not differ in plasma concentrations of corticosterone at any time point. Corticosterone concentrations were higher after 1h isolation than at baseline (p<0.001), and rats with a familiar partner during the recovery phase had lower corticosterone concentrations than did rats with an unfamiliar partner (p=0.02). Zif268 immunoreactive cell counts were higher in the arcuate nucleus in both age groups after isolation (p=0.007) and in the paraventricular nucleus of adolescents than adults during the recovery phase irrespective of partner familiarity. There was a significant decrease in immunoreactive cell counts after 1h isolation compared to baseline in the basolateral amygdala, central nucleus of the amygdala, and in the pyramidal layer of the hippocampus (all p<0.05). An effect of partner familiarity on Zif268 immunoreactive cell counts was found in the granule layer of the dentate gyrus irrespective of age (higher in those with a familiar partner, p=0.03) and in the medial prefrontal cortex in adolescents (higher with an unfamiliar partner, p=0.02). Overall, the acute stress and partner familiarity produced a similar pattern of results in adolescents and adults, with both age groups sensitive to the social context.
Collapse
|
32
|
Keshavarzy F, Bonnet C, Bezhadi G, Cespuglio R. Expression patterns of c-Fos early gene and phosphorylated ERK in the rat brain following 1-h immobilization stress: concomitant changes induced in association with stress-related sleep rebound. Brain Struct Funct 2014; 220:1793-804. [DOI: 10.1007/s00429-014-0728-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 02/07/2014] [Indexed: 12/23/2022]
|
33
|
Phosphodiesterase-2 inhibitor reverses corticosterone-induced neurotoxicity and related behavioural changes via cGMP/PKG dependent pathway. Int J Neuropsychopharmacol 2013; 16:835-47. [PMID: 22850435 DOI: 10.1017/s146114571200065x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Phosphodiesterase 2 (PDE2) is an enzyme responsible for hydrolysis of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) to restrict intracellular signalling of these second messenger molecules. This study investigated how PDE2 inhibitor Bay 60-7550 affects the dysregulated glucocorticoid signalling in neuronal cells and regulates depressive behaviours after chronic stress in mice. We found that exposure of hippocampal neurons to corticosterone resulted in time- and concentration-dependent increases in PDE2 expression. These intriguing findings were confirmed in the hippocampal cell line HT-22. After corticosterone exposure for 24 h, HT-22 cells showed a concentration-dependent increase in mRNA levels for PDE2 subtypes, PDE2A1 and 2A3, as well as for the total PDE2A protein expression. Bay 60-7550 was found to reverse the cell lesion induced by corticosterone (50 μm). This neuroprotective effect was blocked by pretreatment with protein kinase G inhibitor KT5823, but not protein kinase A inhibitor H89, suggesting the involvement of cGMP-dependent signalling. Although Bay 60-7550 treatment for 24 h did not change the levels of phosphorylated mitogen-activated protein kinases ERK1/2 (pERK) and phosphorylated cAMP response element-binding protein (pCREB), it down-regulated pERK at 2 h and up-regulated a CREB co-activator, CREB-binding protein, at 24 h. Both of these effects were blocked by KT 5823. Furthermore, Bay 60-7550 reversed corticosterone-induced down-regulation of brain-derived neurotrophic factor protein levels 24 h after corticosterone exposure. In behavioural testing, Bay 60-7550 produced antidepressant-like effects and reduced corticosterone levels in stressed mice, further supporting the involvement of a PDE2-dependent pathway in mediating Bay 60-7550's effect during stress hormone insults.
Collapse
|
34
|
Noradrenaline is a stress-associated metaplastic signal at GABA synapses. Nat Neurosci 2013; 16:605-12. [PMID: 23563580 PMCID: PMC3984240 DOI: 10.1038/nn.3373] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 03/05/2013] [Indexed: 12/12/2022]
Abstract
Exposure to a stressor sensitizes behavioral and hormonal responses to future stressors. Stress-associated release of noradrenaline enhances the capacity of central synapses to show plasticity (metaplasticity). We found noradrenaline-dependent metaplasticity at GABA synapses in the paraventricular nucleus of the hypothalamus in rat and mouse that controls the hypothalamic-pituitary-adrenal axis. In vivo stress exposure was required for these synapses to undergo activity-dependent long-term potentiation (LTPGABA). The activation of β-adrenergic receptors during stress functionally upregulated metabotropic glutamate receptor 1 (mGluR1), allowing for mGluR1-dependent LTPGABA during afferent bursts. LTPGABA was expressed postsynaptically and manifested as the emergence of new functional synapses. Our findings provide, to the best of our knowledge, the first demonstration that noradrenaline release during an in vivo challenge alters information storage capacity at GABA synapses. Because these GABA synapses become excitatory following acute stress, this metaplasticity may contribute to neuroendocrine sensitization to stress.
Collapse
|
35
|
Not all stress is equal: CREB is not necessary for restraint stress reinstatement of cocaine-conditioned reward. Behav Brain Res 2013; 246:63-8. [PMID: 23458740 DOI: 10.1016/j.bbr.2013.02.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/31/2013] [Accepted: 02/14/2013] [Indexed: 11/20/2022]
Abstract
Stress elicits relapse to cocaine seeking in humans and in animal models. Cyclic AMP response element binding protein (CREB) is required for swim stress-induced reinstatement of cocaine conditioned place preference. However, the role of CREB in other stress-induced reinstatement models has not been examined. To determine whether CREB is required across different stressors we examined the ability of restraint to elicit reinstatement of cocaine-conditioned place preference in wild-type and CREBαΔ mutant mice. In contrast to previously published differences in swim stress-induced reinstatement, both wild-type and CREBαΔ mutant mice demonstrated restraint stress elicited reinstatement of cocaine-conditioned reward. While CREB is necessary for swim stress-elicited zif268 expression within the nucleus accubmens (NAc) shell and prelimbic cortex (PrL), restraint-stress-elicited comparable increases in zif268 expression within these regions in both wild-type and CREBαΔ mutant mice. Our findings suggest that not all stressors engage the same circuits or molecular mechanisms to elicit reinstatement behavior.
Collapse
|
36
|
Seo JH, Kim TW, Kim CJ, Sung YH, Lee SJ. Treadmill exercise during pregnancy ameliorates post‑traumatic stress disorder‑induced anxiety‑like responses in maternal rats. Mol Med Rep 2012; 7:389-95. [PMID: 23174863 DOI: 10.3892/mmr.2012.1197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/20/2012] [Indexed: 11/05/2022] Open
Abstract
Post‑traumatic stress disorder (PTSD) is an anxiety disorder triggered by life‑threatening events that cause intense fear. Exercise is known to have protective effects on neuropsychiatric diseases. The present study investigated whether treadmill exercise during pregnancy reduced or alleviated symptoms of PTSD in maternal rats. To induce predator stress in pregnant rats, rats were exposed to a hunting dog in an enclosed room. Exposure time was three 10‑min daily sessions separated by 1 h, starting at week 1 of pregnancy until delivery. Pregnant rats in the exercise group were forced to run on a treadmill for 30 min once a day, starting one week following pregnancy until delivery. Rats receiving predator stress during pregnancy exhibited PTSD anxiety‑like behaviors following delivery. Expression of 5‑hydroxytryptamine (5‑HT) and its synthesizing enzyme tryptophan hydroxylase (TPH) in the dorsal raphe was increased compared with unstressed rats. Expression of c‑Fos and neuronal nitric oxide synthases (nNOS) in the hypothalamus and locus coeruleus were higher in the rats receiving stress during pregnancy compared with unstressed rats. By contrast, treadmill exercise during pregnancy ameliorated anxiety‑like behaviors and reduced the expression of 5‑HT, TPH, c‑Fos and nNOS in the PTSD maternal rats. The results of the present study indicate that exercise during pregnancy is suitable for use as a therapeutic strategy to reduce anxiety‑related disorders, including PTSD.
Collapse
Affiliation(s)
- Jin-Hee Seo
- Division of Sports Science, Baekseok University, Cheonan 330‑704, Republic of Korea
| | | | | | | | | |
Collapse
|
37
|
Griesbach GS, Tio DL, Vincelli J, McArthur DL, Taylor AN. Differential effects of voluntary and forced exercise on stress responses after traumatic brain injury. J Neurotrauma 2012; 29:1426-33. [PMID: 22233388 DOI: 10.1089/neu.2011.2229] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Voluntary exercise increases levels of brain-derived neurotrophic factor (BDNF) after traumatic brain injury (TBI) when it occurs during a delayed time window. In contrast, acute post-TBI exercise does not increase BDNF. It is well known that increases in glucocorticoids suppress levels of BDNF. Moreover, recent work from our laboratory showed that there is a heightened stress response after fluid percussion injury (FPI). In order to determine if a heightened stress response is also observed with acute exercise, at post-injury days 0-4 and 7-11, corticosterone (CORT) and adrenocorticotropic hormone (ACTH) release were measured in rats running voluntarily or exposed to two daily 20-min periods of forced running wheel exercise. Forced, but not voluntary exercise, continuously elevated CORT. ACTH levels were initially elevated with forced exercise, but decreased by post-injury day 7 in the control, but not the FPI animals. As previously reported, voluntary exercise did not increase BDNF in the FPI group as it did in the control animals. Forced exercise did not increase levels of BDNF in any group. It did, however, decrease hippocampal glucocorticoid receptors in the control group. The results suggest that exercise regimens with strong stress responses may not be beneficial during the early post-injury period.
Collapse
Affiliation(s)
- Grace S Griesbach
- Department of Neurosurgery, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California 90095-7039, USA.
| | | | | | | | | |
Collapse
|
38
|
Curtis AL, Leiser SC, Snyder K, Valentino RJ. Predator stress engages corticotropin-releasing factor and opioid systems to alter the operating mode of locus coeruleus norepinephrine neurons. Neuropharmacology 2011; 62:1737-45. [PMID: 22210331 DOI: 10.1016/j.neuropharm.2011.11.020] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 11/23/2011] [Indexed: 11/19/2022]
Abstract
The norepinephrine nucleus, locus coeruleus (LC), has been implicated in cognitive aspects of the stress response, in part through its regulation by the stress-related neuropeptide, corticotropin-releasing factor (CRF). LC neurons discharge in tonic and phasic modes that differentially modulate attention and behavior. Here, the effects of exposure to an ethologically relevant stressor, predator odor, on spontaneous (tonic) and auditory-evoked (phasic) LC discharge were characterized in unanesthetized rats. Similar to the effects of CRF, stressor presentation increased tonic LC discharge and decreased phasic auditory-evoked discharge, thereby decreasing the signal-to-noise ratio of the sensory response. This stress-induced shift in LC discharge toward a high tonic mode was prevented by a CRF antagonist. Moreover, CRF antagonism during stress unmasked a large decrease in tonic discharge rate that was opioid mediated because it was prevented by pretreatment with the opiate antagonist, naloxone. Elimination of both CRF and opioid influences with an antagonist combination rendered LC activity unaffected by the stressor. These results demonstrate that both CRF and opioid afferents are engaged during stress to fine-tune LC activity. The predominant CRF influence shifts the operational mode of LC activity toward a high tonic state that is thought to facilitate behavioral flexibility and may be adaptive in coping with the stressor. Simultaneously, stress engages an opposing opioid influence that restrains the CRF influence and may facilitate recovery toward pre-stress levels of activity. Changes in the balance of CRF:opioid regulation of the LC could have consequences for stress vulnerability.
Collapse
Affiliation(s)
- Andre L Curtis
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | | | | | | |
Collapse
|
39
|
Osterlund CD, Jarvis E, Chadayammuri A, Unnithan R, Weiser MJ, Spencer RL. Tonic, but not phasic corticosterone, constrains stress activatedextracellular-regulated-kinase 1/ 2 immunoreactivity within the hypothalamic paraventricular nucleus. J Neuroendocrinol 2011; 23:1241-51. [PMID: 21929693 PMCID: PMC3220802 DOI: 10.1111/j.1365-2826.2011.02220.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The negative-feedback actions of corticosterone (CORT) depend on both phasic and tonic CORT secretion patterns to regulate hypothalamic-pituitary-adrenal (HPA) axis activity. How these two different CORT secretion pattens influence specific intracellular signal transduction pathway activity within the cellular elements of the HPA axis has not been determined. For example, it is unknown whether CORT has suppressive actions over signal transduction events within medial parvocellular paraventricular nucleus (PVN) corticotrophin-releasing hormone (CRH) neurones, nor whether these suppressive actions are responsible for alterations in PVN transcriptional processes and neurohormone secretion associated with stress. The extracellular-regulated kinase (ERK) is a stress activated intracellular signalling molecule that is potentially subject to glucocorticoid negative-feedback regulation. We tested the ability of CORT to modulate levels of the active (phosphorylated) form of ERK (pERK1/2) in the PVN of rats. Acute psychological stress (restraint) produced a rapid increase in the number of PVN pERK1/2 immunopositive cells within CRH neurones. Absence of tonic CORT via adrenalectomy (ADX) produced no change in basal pERK1/2 cell counts but augmented the increased pERK1/2 cell counts elicited by acute restraint. Treatment of ADX rats with CORT in the drinking water normalised this enhanced pERK1/2 response to stress. By contrast, treatment of ADX rats with a phasic increase in CORT 1 h before restraint had no effect on pERK1/2 cell counts, despite substantially suppressing stress-induced PVN crh gene expression and adrenonocorticotrophic hormone secretion. This tonic CORT inhibition of stress-induced activation of ERK1/2 may involve both alteration of the activity of stress-dependent neural inputs to PVN CRH neurones and alteration within those neurones of stress-dependent intracellular signalling mechanisms associated with ERK activation.
Collapse
Affiliation(s)
- C D Osterlund
- Department of Psychology and Neuroscience, University of Colorado, UCB 345, Boulder, CO 80309, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Baquedano E, García-Cáceres C, Diz-Chaves Y, Lagunas N, Calmarza-Font I, Azcoitia I, Garcia-Segura LM, Argente J, Chowen JA, Frago LM. Prenatal stress induces long-term effects in cell turnover in the hippocampus-hypothalamus-pituitary axis in adult male rats. PLoS One 2011; 6:e27549. [PMID: 22096592 PMCID: PMC3212572 DOI: 10.1371/journal.pone.0027549] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 10/19/2011] [Indexed: 11/24/2022] Open
Abstract
Subchronic gestational stress leads to permanent modifications in the hippocampus-hypothalamus-pituitary-adrenal axis of offspring probably due to the increase in circulating glucocorticoids known to affect prenatal programming. The aim of this study was to investigate whether cell turnover is affected in the hippocampus-hypothalamus-pituitary axis by subchronic prenatal stress and the intracellular mechanisms involved. Restraint stress was performed in pregnant rats during the last week of gestation (45 minutes; 3 times/day). Only male offspring were used for this study and were sacrificed at 6 months of age. In prenatally stressed adults a decrease in markers of cell death and proliferation was observed in the hippocampus, hypothalamus and pituitary. This was associated with an increase in insulin-like growth factor-I mRNA levels, phosphorylation of CREB and calpastatin levels and inhibition of calpain -2 and caspase -8 activation. Levels of the anti-apoptotic protein Bcl-2 were increased and levels of the pro-apoptotic factor p53 were reduced. In conclusion, prenatal restraint stress induces a long-term decrease in cell turnover in the hippocampus-hypothalamus-pituitary axis that might be at least partly mediated by an autocrine-paracrine IGF-I effect. These changes could condition the response of this axis to future physiological and pathophysiological situations.
Collapse
Affiliation(s)
- Eva Baquedano
- Department of Pediatrics, Universidad Autónoma de Madrid-Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- CIBER Fisiopatología de Obesidad y Nutrición (CIBERobn), Instituto de Investigación Sanitaria Princesa, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina García-Cáceres
- Department of Pediatrics, Universidad Autónoma de Madrid-Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- CIBER Fisiopatología de Obesidad y Nutrición (CIBERobn), Instituto de Investigación Sanitaria Princesa, Instituto de Salud Carlos III, Madrid, Spain
| | - Yolanda Diz-Chaves
- Laboratory of Neuroactive Steroids, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Natalia Lagunas
- Laboratory of Neuroactive Steroids, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Isabel Calmarza-Font
- Laboratory of Neuroactive Steroids, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Iñigo Azcoitia
- Department of Cellular Biology, School of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis M. Garcia-Segura
- Laboratory of Neuroactive Steroids, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Jesús Argente
- Department of Pediatrics, Universidad Autónoma de Madrid-Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- CIBER Fisiopatología de Obesidad y Nutrición (CIBERobn), Instituto de Investigación Sanitaria Princesa, Instituto de Salud Carlos III, Madrid, Spain
| | - Julie A. Chowen
- Department of Pediatrics, Universidad Autónoma de Madrid-Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- CIBER Fisiopatología de Obesidad y Nutrición (CIBERobn), Instituto de Investigación Sanitaria Princesa, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura M. Frago
- Department of Pediatrics, Universidad Autónoma de Madrid-Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- CIBER Fisiopatología de Obesidad y Nutrición (CIBERobn), Instituto de Investigación Sanitaria Princesa, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
41
|
Ventral tegmental afferents in stress-induced reinstatement: the role of cAMP response element-binding protein. J Neurosci 2011; 30:16149-59. [PMID: 21123561 DOI: 10.1523/jneurosci.2827-10.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The transcription factor cAMP response element-binding protein (CREB) is required for stress- but not drug-induced reinstatement of cocaine conditioned place preference. To reveal the neural circuitry associated with this CREB dependence, we injected a retrograde tracer into the ventral tegmental area (VTA) and identified afferents that were activated after stress or cocaine exposure in both naive and cocaine-conditioned mice. Neuronal activation, as assessed by Fos expression, was greatly reduced in the dorsal and ventral bed nucleus of the stria terminalis (BNST), lateral septum, and nucleus accumbens shell in mice lacking CREB (CREBαΔ mice) after a 6 min swim stress but not after cocaine exposure (20 mg/kg). Additionally, activation of VTA afferent neurons in the ventral BNST and the infralimbic cortex in CREBαΔ mice was blunted in response to stress. This pattern of neuronal activation persisted in mice that were conditioned to a cocaine place preference procedure before stress exposure. Furthermore, lidocaine inactivation (0.4 μl, 4%) studies demonstrated the necessity of BNST activation for swim-stress-induced reinstatement of cocaine-conditioned reward. Together, the present studies demonstrate that CREB is required for the activation of a unique circuit that converges on the dopamine reward pathway to elicit reinstatement of drug reward and points to the BNST as a key intersection between stress and reward circuits.
Collapse
|
42
|
Activation of mitogen-activated protein kinase in descending pain modulatory system. JOURNAL OF SIGNAL TRANSDUCTION 2010; 2011:468061. [PMID: 21637376 PMCID: PMC3101953 DOI: 10.1155/2011/468061] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 10/14/2010] [Indexed: 01/10/2023]
Abstract
The descending pain modulatory system is thought to undergo plastic changes following peripheral tissue injury and exerts bidirectional (facilitatory and inhibitory) influence on spinal nociceptive transmission. The mitogen-activated protein kinases (MAPKs) superfamily consists of four main members: the extracellular signal-regulated protein kinase1/2 (ERK1/2), the c-Jun N-terminal kinases (JNKs), the p38 MAPKs, and the ERK5. MAPKs not only regulate cell proliferation and survival but also play important roles in synaptic plasticity and memory formation. Recently, many studies have demonstrated that noxious stimuli activate MAPKs in several brain regions that are components of descending pain modulatory system. They are involved in pain perception and pain-related emotional responses. In addition, psychophysical stress also activates MAPKs in these brain structures. Greater appreciation of the convergence of mechanisms between noxious stimuli- and psychological stress-induced neuroplasticity is likely to lead to the identification of novel targets for a variety of pain syndromes.
Collapse
|
43
|
Trainor BC, Takahashi EY, Silva AL, Crean KK, Hostetler C. Sex differences in hormonal responses to social conflict in the monogamous California mouse. Horm Behav 2010; 58:506-12. [PMID: 20430027 PMCID: PMC2917544 DOI: 10.1016/j.yhbeh.2010.04.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 04/15/2010] [Accepted: 04/15/2010] [Indexed: 11/16/2022]
Abstract
Monogamous species are usually considered to be less likely to exhibit sex differences in behavior or brain structure. Most previous studies examining sex differences in stress hormone responses have used relatively sexually dimorphic species such as rats. We examined the stress hormone responses of monogamous California mice (Peromyscus californicus) to resident-intruder tests. We also tested males and females under different photoperiods, because photoperiod has been shown to affect both aggression and stress hormone responses. Females, but not males showed a significant increase in corticosterone levels immediately following a resident-intruder test. Males but not females showed elevated corticosterone levels under short days. Females tested in aggression tests also showed a significant increase in plasma oxytocin levels, but only when housed in long days. This was consistent with our observation that females but not males had more oxytocin positive cells in the paraventricular nucleus (PVN) when housed under long days. Our data show that sex differences in glucocorticoid responses identified in other rodents are present in a monogamous species.
Collapse
Affiliation(s)
- Brian C Trainor
- Department of Psychology, University of California, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
44
|
O'Mahony CM, Sweeney FF, Daly E, Dinan TG, Cryan JF. Restraint stress-induced brain activation patterns in two strains of mice differing in their anxiety behaviour. Behav Brain Res 2010; 213:148-54. [PMID: 20435071 DOI: 10.1016/j.bbr.2010.04.038] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/20/2010] [Accepted: 04/23/2010] [Indexed: 02/05/2023]
Abstract
Genetically identical inbred mouse strains are one of the most useful tools in dissecting the genetic basis of complex disorders. C57BL/6 and BALB/c mice differ markedly in emotionality. In particular, BALB/c mice are more stress-sensitive and have been proposed to be a model of pathological anxiety. There is a paucity of studies investigating whether brain activation in response to a stressor is different in these two strains. To this end, having confirmed that the strains differ in anxiety responses in a light-dark box test, we then examined if restraint stress induced increases in c-Fos protein expression in selective regions of the mouse brain. The areas of interest analysed were the paraventricular nucleus (PVN) of the hypothalamus, prefrontal cortex (PFC), the paraventricular thalamic nucleus (PV) and the hippocampus. These areas were chosen due to their known involvement in stress response. Our data demonstrate that BALB/c showed a similar cellular activation pattern to stress, with respect to c-Fos expression, in the PVN, PV and in the hippocampus. On the other hand, BALB/c showed markedly blunted stress-induced brain activation compared with stressed C57BL/6 mice in both the CG1 and CG2 regions of the PFC. The lower levels of stress-induced activity in high anxiety BALB/c mice, possibly indicate a circuit dysregulation at the cortico-limbic level in response to stress.
Collapse
Affiliation(s)
- Cliona M O'Mahony
- Neuropharmacology Research Group, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
45
|
Lu J, Wu DM, Hu B, Zheng YL, Zhang ZF, Wang YJ. NGF-Dependent activation of TrkA pathway: A mechanism for the neuroprotective effect of troxerutin in D-galactose-treated mice. Brain Pathol 2010; 20:952-65. [PMID: 20456366 DOI: 10.1111/j.1750-3639.2010.00397.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
D-galactose-(D-gal)-treated mouse, with cognitive impairment, has been used for neurotoxicity investigation and anti-neurotoxicity pharmacology research. In this study, we investigated the mechanism underlying the neuroprotective effect of troxerutin. The results showed that troxerutin improved behavioral performance in D-gal-treated mice by elevating Cu, Zn-superoxide dismutases (Cu, Zn-SOD) activity and decreasing reactive oxygen species levels. Furthermore, our results showed that troxerutin significantly promoted nerve growth factor (NGF) mRNA expression which resulted in TrkA activation. On one hand, NGF/TrkA induced activation of Akt and ERK1/2, which led to neuronal survival; on the other hand, NGF/TrkA mediated CaMKII and CREB phosphorylation and increased PSD95 expression, which improved cognitive performance. However, the neuroprotective effect of troxerutin was blocked by treatment with K252a, an antagonist for TrkA. No neurotoxicity was observed in mice treated with K252a or troxerutin alone. In conclusion, administration of troxerutin to D-gal-injected mice attenuated cognitive impairment and brain oxidative stress through the activation of NGF/TrkA signaling pathway.
Collapse
Affiliation(s)
- Jun Lu
- Xuzhou Normal University, Jiangsu Province, China
| | | | | | | | | | | |
Collapse
|
46
|
Wang K, Xiang XH, He F, Lin LB, Zhang R, Ping XJ, Han JS, Guo N, Zhang QH, Cui CL, Zhao GP. Transcriptome profiling analysis reveals region-distinctive changes of gene expression in the CNS in response to different moderate restraint stress. J Neurochem 2010; 113:1436-46. [PMID: 20218974 DOI: 10.1111/j.1471-4159.2010.06679.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
It is generally believed that temporary moderate stress to a living organism has protective and adaptive effects, but little is known about the responses of CNS to the moderate stresses at molecular level. This study aims to investigate the gene expression changes induced by moderate stress in CNS stress- and nociception-related regions of rats. Moderate restraint was applied to rats for 50 min and cDNA microarrays were used to detect the differential gene expression in different CNS regions. Transcriptome profiling analysis showed that at acute stage stress-related genes were up-regulated in arcuate nucleus; fight-or-flight behavior-related genes were up-regulated in periaqueductal gray, while nitric oxide and GABA signal transmission-related genes were up-regulated in spinal dorsal horn. In addition, immune-related genes were broadly regulated, especially at the late stage. These results suggested that specific genes of certain gene ontology categories were spatiotemporally regulated in specific CNS regions related to relevant functions under moderate external stimuli at acute stage, while immune response was broadly regulated at the late stage. The co-regulated genes among the three different CNS regions may play general roles in CNS when exposed to moderate stress. Furthermore, these results will help to elucidate the physiological processes involved in moderate stress in CNS.
Collapse
Affiliation(s)
- Ke Wang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Trainor BC, Crean KK, Fry WHD, Sweeney C. Activation of extracellular signal-regulated kinases in social behavior circuits during resident-intruder aggression tests. Neuroscience 2010; 165:325-36. [PMID: 19874872 DOI: 10.1016/j.neuroscience.2009.10.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/22/2009] [Accepted: 10/23/2009] [Indexed: 02/06/2023]
Abstract
Using a variety of experimental methods, a network of brain areas regulating aggressive behaviors has been identified in several groups of vertebrates. However, aggressive behavior expressed in different contexts is associated with different patterns of activity across hypothalamic and limbic brain regions. Previous studies in rodents demonstrated that short day photoperiods reliably increase both male and female aggression versus long day photoperiods. Here we used immunohistochemistry and western blots to examine the effect of photoperiod on phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK) in male California mice (Peromyscus californicus) during resident-intruder tests. Phosphorylated ERK (pERK) can alter neuronal activity in the short term and in the long term acts as a transcription factor. In the posterior bed nucleus of the stria terminalis (BNST) males tested in aggression tests had more pERK positive cells when housed in short days but not long days. This result was replicated in western blot analyses from microdissected BNST samples. In the medial amygdala (MEA), immunostaining and western analyses showed that pERK expression also was generally increased in short days. Immunostaining was also used to examine phosphorylation of cyclic AMP response element binding protein (CREB). CREB can be phosphorylated by pERK as well as other kinases and functions primarily as a transcription factor. Intriguingly, aggressive interactions reduced the number of cells stained positive for phosphorylated CREB in the infralimbic cortex, ventral lateral septum and MEA. This effect was observed in mice housed in long days but not short days. Overall, these data suggest that different (but overlapping) networks of aggressive behavior operate under different environmental conditions.
Collapse
Affiliation(s)
- B C Trainor
- Department of Psychology, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
48
|
Briand LA, Blendy JA. Molecular and genetic substrates linking stress and addiction. Brain Res 2009; 1314:219-34. [PMID: 19900417 DOI: 10.1016/j.brainres.2009.11.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 12/19/2022]
Abstract
Drug addiction is one of the top three health concerns in the United States in terms of economic and health care costs. Despite this, there are very few effective treatment options available. Therefore, understanding the causes and molecular mechanisms underlying the transition from casual drug use to compulsive drug addiction could aid in the development of treatment options. Studies in humans and animal models indicate that stress can lead to both vulnerability to develop addiction, and increased drug taking and relapse in addicted individuals. Exposure to stress or drugs of abuse results in long-term adaptations in the brain that are likely to involve persistent alterations in gene expression or activation of transcription factors, such as the cAMP Response Element Binding (CREB) protein. The signaling pathways controlled by CREB have been strongly implicated in drug addiction and stress. Many potential CREB target genes have been identified based on the presence of a CRE element in promoter DNA sequences. These include, but are not limited to CRF, BDNF, and dynorphin. These genes have been associated with initiation or reinstatement of drug reward and are altered in one direction or the other following stress. While many reviews have examined the interactions between stress and addiction, the goal of this review was to focus on specific molecules that play key roles in both stress and addiction and are therefore posed to mediate the interaction between the two. Focus on these molecules could provide us with new targets for pharmacological treatments for addiction.
Collapse
Affiliation(s)
- Lisa A Briand
- Department of Pharmacology, The University of Pennsylvania School of Medicine, TRL, 125 South 31(st) Street, USA
| | | |
Collapse
|
49
|
Kreibich AS, Briand L, Cleck JN, Ecke L, Rice KC, Blendy JA. Stress-induced potentiation of cocaine reward: a role for CRF R1 and CREB. Neuropsychopharmacology 2009; 34:2609-17. [PMID: 19675537 PMCID: PMC4034179 DOI: 10.1038/npp.2009.91] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Both clinical and preclinical research have shown that stress can potentiate drug use; however, the underlying mechanisms of this interaction are unknown. Previously, we have shown that a single exposure to forced swim (FS) reinstates extinguished conditioned place preference (CPP) to cocaine and that cAMP response element binding protein (CREB) is necessary for this response. CREB can be activated by corticotropin releasing factor (CRF) receptor type 1 (CRF(R1)) binding, which mediates neuroendocrine and behavioral responses to stress as well as to drugs of abuse. The present experiments investigate whether changes in cocaine reward elicited by previous exposure to stress are mediated by CREB and/or CRF(R1). Chronic exposure to FS in advance of conditioning enhances cocaine CPP in wild-type mice, but this is blocked in CREB-deficient mice. In addition, pretreatment with the CRF(R1) antagonist, antalarmin, before FS exposure blocks this stress-induced enhancement of cocaine CPP. Furthermore, FS-induced increase in phosphorylated CREB (pCREB), specifically in the lateral septum (LS) and nucleus accumbens (NAc) is also blocked by antalarmin. Taken together, these studies suggest that both CREB and CRF(R1) activation are necessary for stress-induced potentiation of drug reward.
Collapse
Affiliation(s)
| | - Lisa Briand
- Department of Pharmacology, University of Pennsylvania
| | | | - Laurel Ecke
- Department of Pharmacology, University of Pennsylvania
| | | | - Julie A. Blendy
- Department of Pharmacology, University of Pennsylvania,Corresponding Author: Julie A. Blendy, Ph.D., Associate Professor, Department of Pharmacology, Translational Research Laboratory, 125 South 31st Street, Philadelphia, PA 19104-3403, (215) 898-0730 FAX: (215) 573-2236,
| |
Collapse
|
50
|
Fukuda T, Hisano S, Tanaka M. Licking Decreases Phosphorylation of Extracellular Signal-Regulated Kinase in the Dorsal Horn of the Spinal Cord After a Formalin Test. Anesth Analg 2009; 109:1318-22. [DOI: 10.1213/ane.0b013e3181b0fe05] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|