1
|
Zhang X, Miao X, Jiang H, Ren Y, Huo L, Liu M, Chen H. Advanced Intervention Effects of Pulsed and Steady Transcranial Photobiomodulation on Sleep, Mood, and EEG Signal Regulation. JOURNAL OF BIOPHOTONICS 2025:e70004. [PMID: 40101768 DOI: 10.1002/jbio.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Transcranial photobiomodulation (tPBM) enhances cognitive and emotional states. We compared continuous-wave (CW) and pulsed-wave (PW) tPBM effects on 24 healthy males. METHOD Participants received 630 nm tPBM at 95 mW/cm2 for 10 min: Sham, CW, or PW (500 Hz). Outcomes were assessed using the Karolinska Sleepiness Scale (KSS) (for measuring sleepiness), State-Trait Anxiety Inventory (STAI) (for assessing anxiety), Visual Analog Scale (VAS) (for measuring stress), and Beck Depression Inventory-II (BDI-II) (for evaluating depressive symptoms), and 32-channel EEG at baseline, treatment, and rest phases. RESULTS Paired t-tests showed PW tPBM significantly improved sleepiness, anxiety, stress, and depression scores post-intervention (p < 0.05). ANOVA analyses indicated PW tPBM increased Alpha and Gamma band EEG power versus baseline (p < 0.05). CONCLUSION PW tPBM may improve cognitive and emotional outcomes and modulate brain activity, offering therapeutic insights.
Collapse
Affiliation(s)
- Xuran Zhang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Xiaojing Miao
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yi Ren
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Longfei Huo
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong, China
| | - Houbo Chen
- Aerospace Information Innovation Institute, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Li S, Wong TWL, Ng SSM. Potential and Challenges of Transcranial Photobiomodulation for the Treatment of Stroke. CNS Neurosci Ther 2024; 30:e70142. [PMID: 39692710 DOI: 10.1111/cns.70142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 12/19/2024] Open
Abstract
Photobiomodulation (PBM), also known as low-level laser therapy, employs red or near-infrared light emitted from a laser or light-emitting diode for the treatment of various conditions. Transcranial PBM (tPBM) is a form of PBM that is delivered to the head to improve brain health, as tPBM enhances mitochondrial function, improves antioxidant responses, reduces inflammation, offers protection from apoptosis, improves blood flow, increases cellular energy production, and promotes neurogenesis and neuroplasticity. As such, tPBM holds promise as a treatment for stroke. This review summarizes recent findings on tPBM as a treatment for stroke, presenting evidence from both animal studies and clinical trials that demonstrate its efficacy. Additionally, it discusses the potential and challenges encountered in the translation process. Furthermore, it proposes new technologies and directions for the development of light-delivery methods and emphasizes the need for extensive studies to validate and widen the application of tPBM in future treatments for stroke.
Collapse
Affiliation(s)
- Siyue Li
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Thomson W L Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Shamay S M Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| |
Collapse
|
3
|
Wider JM, Gruley E, Morse PT, Wan J, Lee I, Anzell AR, Fogo GM, Mathieu J, Hish G, O'Neil B, Neumar RW, Przyklenk K, Hüttemann M, Sanderson TH. Modulation of mitochondrial function with near-infrared light reduces brain injury in a translational model of cardiac arrest. Crit Care 2023; 27:491. [PMID: 38098060 PMCID: PMC10720207 DOI: 10.1186/s13054-023-04745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Brain injury is a leading cause of morbidity and mortality in patients resuscitated from cardiac arrest. Mitochondrial dysfunction contributes to brain injury following cardiac arrest; therefore, therapies that limit mitochondrial dysfunction have the potential to improve neurological outcomes. Generation of reactive oxygen species (ROS) during ischemia-reperfusion injury in the brain is a critical component of mitochondrial injury and is dependent on hyperactivation of mitochondria following resuscitation. Our previous studies have provided evidence that modulating mitochondrial function with specific near-infrared light (NIR) wavelengths can reduce post-ischemic mitochondrial hyperactivity, thereby reducing brain injury during reperfusion in multiple small animal models. METHODS Isolated porcine brain cytochrome c oxidase (COX) was used to investigate the mechanism of NIR-induced mitochondrial modulation. Cultured primary neurons from mice expressing mitoQC were utilized to explore the mitochondrial mechanisms related to protection with NIR following ischemia-reperfusion. Anesthetized pigs were used to optimize the delivery of NIR to the brain by measuring the penetration depth of NIR to deep brain structures and tissue heating. Finally, a model of out-of-hospital cardiac arrest with CPR in adult pigs was used to evaluate the translational potential of NIR as a noninvasive therapeutic approach to protect the brain after resuscitation. RESULTS Molecular evaluation of enzyme activity during NIR irradiation demonstrated COX function was reduced in an intensity-dependent manner with a threshold of enzyme inhibition leading to a moderate reduction in activity without complete inhibition. Mechanistic interrogation in neurons demonstrated that mitochondrial swelling and upregulation of mitophagy were reduced with NIR treatment. NIR therapy in large animals is feasible, as NIR penetrates deep into the brain without substantial tissue heating. In a translational porcine model of CA/CPR, transcranial NIR treatment for two hours at the onset of return of spontaneous circulation (ROSC) demonstrated significantly improved neurological deficit scores and reduced histologic evidence of brain injury after resuscitation from cardiac arrest. CONCLUSIONS NIR modulates mitochondrial function which improves mitochondrial dynamics and quality control following ischemia/reperfusion. Noninvasive modulation of mitochondria, achieved by transcranial treatment of the brain with NIR, mitigates post-cardiac arrest brain injury and improves neurologic functional outcomes.
Collapse
Affiliation(s)
- Joseph M Wider
- Department of Emergency Medicine, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109-5014, USA
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, B10-103A, NCRC 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, 7744 MS II, 1137 E. Catherine St., Ann Arbor, MI, 48109-5622, USA
| | - Erin Gruley
- Department of Emergency Medicine, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109-5014, USA
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, B10-103A, NCRC 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Paul T Morse
- Center for Molecular Medicine and Genetics, Wayne State University, 3214 Scott Hall, 540 E. Canfield Ave., Detroit, MI, 48201, USA
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, 3214 Scott Hall, 540 E. Canfield Ave., Detroit, MI, 48201, USA
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-Si, Chungcheongnam-Do, 31116, Republic of Korea
| | - Anthony R Anzell
- Department of Human Genetics, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA, 15261, USA
| | - Garrett M Fogo
- Department of Emergency Medicine, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109-5014, USA
- Neuroscience Graduate Program, University of Michigan, 204 Washtenaw Ave, Ann Arbor, MI, 48109, USA
| | - Jennifer Mathieu
- Department of Emergency Medicine, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109-5014, USA
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, B10-103A, NCRC 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, 7744 MS II, 1137 E. Catherine St., Ann Arbor, MI, 48109-5622, USA
| | - Gerald Hish
- Unit for Laboratory Animal Medicine, University of Michigan, North Campus Research Complex, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA
| | - Brian O'Neil
- Department of Emergency Medicine, Wayne State University, 4201 St. Antoine St., University Health Center - 6G, Detroit, MI, 48201, USA
| | - Robert W Neumar
- Department of Emergency Medicine, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109-5014, USA
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, B10-103A, NCRC 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Karin Przyklenk
- Clinical Research Institute, Children's Hospital of Michigan, 3901 Beaubien Blvd, Detroit, MI, USA
- Department of Pediatrics, Central Michigan University, 1280 S. East Campus Drive, Mount Pleasant, MI, 48859, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, 3214 Scott Hall, 540 E. Canfield Ave., Detroit, MI, 48201, USA
| | - Thomas H Sanderson
- Department of Emergency Medicine, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109-5014, USA.
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, B10-103A, NCRC 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Department of Molecular and Integrative Physiology, University of Michigan, 7744 MS II, 1137 E. Catherine St., Ann Arbor, MI, 48109-5622, USA.
- Neuroscience Graduate Program, University of Michigan, 204 Washtenaw Ave, Ann Arbor, MI, 48109, USA.
- Department of Emergency Medicine, Wayne State University, 4201 St. Antoine St., University Health Center - 6G, Detroit, MI, 48201, USA.
| |
Collapse
|
4
|
Tang L, Jiang H, Sun M, Liu M. Pulsed transcranial photobiomodulation generates distinct beneficial neurocognitive effects compared with continuous wave transcranial light. Lasers Med Sci 2023; 38:203. [PMID: 37668791 DOI: 10.1007/s10103-023-03865-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Previous research has demonstrated the beneficial effect brought by transcranial photobiomodulation (tPBM). The present study is a further investigation of pulsed transcranial light delivery, from the perspective of wavelength, operation mode, and pulse frequency. A total of 56 healthy young adults (28 males and 28 females) were included in this randomized, sham-controlled experimental study. The wavelength of tPBM was 660 nm and 850 nm, and under each wavelength, subjects were randomly assigned to one of the following four treatments: (1) sham control; (2) continuous-wave (CW) tPBM; (3) pulsed-wave (PW) tPBM (40 Hz); and (4) PW tPBM (100 Hz). The tPBM duration was 8 min and the mean power density was fixed at 250 mW/cm2. Karolinska Sleepiness Scale (KSS) questionnaire, psychomotor vigilance task (PVT), and delayed match-to-sample (DMS) task were completed by subjects before and after the intervention to test whether PW tPBM produced distinct beneficial effects with measures of sleepiness, attention, and memory. 32-channel electroencephalography (EEG) signals were obtained from subjects before, during and after receiving tPBM or sham intervention. Paired sample T test showed that the KSS score, the number of correct responses of PVT, and DMS rate correct score (RCS) of PW tPBM groups improved significantly after intervention (p < 0.05). With regard to EEG analysis, paired one-way repeated ANOVA test showed that during the intervention of PW tPBM, the average power within the Gamma band was higher than the baseline (p < 0.05). Our study presented that PW tPBM could generate better beneficial cognitive effects and change brain electrical activity under certain circumstances.
Collapse
Affiliation(s)
- Luyao Tang
- Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai, China
| | - Hui Jiang
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Miao Sun
- Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai, China
| | - Muqing Liu
- Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai, China.
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China.
| |
Collapse
|
5
|
Zhao H, Li Y, Luo T, Chou W, Sun T, Liu H, Qiu H, Zhu D, Chen D, Gu Y. Preventing Post-Traumatic Stress Disorder (PTSD) in rats with pulsed 810 nm laser transcranial phototherapy. Transl Psychiatry 2023; 13:281. [PMID: 37580354 PMCID: PMC10425462 DOI: 10.1038/s41398-023-02583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating condition that occurs following exposure to traumatic events. Current treatments, such as psychological debriefing and pharmacotherapy, often have limited efficacy and may result in unwanted side effects, making early intervention is a more desirable strategy. In this study, we investigated the efficacy of a single dose of pulsed (10 Hz) 810 nm laser-phototherapy (P-PT) as an early intervention for preventing PTSD-like comorbidities in rats induced by single inescapable electric foot shock following the single prolonged stress (SPS&S). As indicated by the results of the open filed test, elevated plus maze test, and contextual fear conditioning test, P-PT prevented the development of anxiety and freezing behaviors in rats exposed to the SPS&S. We also compared the effects of P-PT and continuous wave 810 nm laser-phototherapy (CW-PT) in preventing PTSD-like comorbidities in rats. The results revealed that P-PT was effective in preventing both freezing and anxiety behavior in stressed rats. In contrast, CW-PT only had a preventive effect on freezing behavior but not anxiety. Additionally, P-PT significantly reduced the c-fos expression in cingulate cortex area 1(Cg1) and infralimbic cortex (IL) of stressed rats, while CW-PT had no significant effects on c-fos expression. Taken together, our results demonstrate that P-PT is a highly effective strategy for preventing the occurrence of PTSD-like comorbidities in rats.
Collapse
Affiliation(s)
- Hongyou Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Yi Li
- Department of Laser Medicine, the First Medical Center of the PLA General Hospital, Beijing, China
| | - Ting Luo
- Moores Cancer Center, University of California San Diego, San Diego, USA
| | - Wenxin Chou
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Tianzhen Sun
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Haolin Liu
- No.965 Hospital, Joint Logistics Support Force of Chinese PLA, Jilin, China
| | - Haixia Qiu
- Department of Laser Medicine, the First Medical Center of the PLA General Hospital, Beijing, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Defu Chen
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Ying Gu
- Department of Laser Medicine, the First Medical Center of the PLA General Hospital, Beijing, China.
| |
Collapse
|
6
|
Shalaby RA, Qureshi MM, Khan MA, Salam SMA, Kwon HS, Lee KH, Chung E, Kim YR. Photobiomodulation therapy restores olfactory function impaired by photothrombosis in mouse olfactory bulb. Exp Neurol 2023:114462. [PMID: 37295546 DOI: 10.1016/j.expneurol.2023.114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/17/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
An ischemic stroke typically accompanies numerous disorders ranging from somatosensory dysfunction to cognitive impairments, inflicting patients with various neurologic symptoms. Among pathologic outcomes, post-stroke olfactory dysfunctions are frequently observed. Despite the well-known prevalence, therapy options for such compromised olfaction are limited, likely due to the complexity of olfactory bulb architecture, which encompasses both the peripheral and central nervous systems. As photobiomodulation (PBM) emerged for treating ischemia-associated symptoms, the effectiveness of PBM on stroke-induced impairment of olfactory function was explored. Novel mouse models with olfactory dysfunctions were prepared using photothrombosis (PT) in the olfactory bulb on day 0. The post-PT PBM was performed daily from day 2 to day 7 by irradiating the olfactory bulb via an 808 nm laser with a fluence of 40 J/cm2 (325 mW/cm2 for 2 min per day). The buried food test (BFT) was used to score behavioral acuity in food-deprived mice to assess the olfactory function before PT, after PT, and after PBM. Histopathological examinations and cytokine assays were performed on the mouse brains harvested on day 8. The results from BFT were specific to an individual, with positive correlations between the baseline latency time measured before PT and its alteration at the ensuing stages for both the PT and PT + PBM groups. Also, the correlation analysis in both groups showed highly similar, significant positive relationships between the early and late latency time change independent of PBM, implicating a common recovery mechanism. Particularly, PBM treatment accelerated the recovery of impaired olfaction following PT by suppressing inflammatory cytokines and enhancing both glial and vascular factors (e.g., GFAP, IBA-1, and CD31). PBM therapy during the acute phase of ischemia improves the compromised olfactory function by modulating microenvironments and inflammation status of the affected tissue.
Collapse
Affiliation(s)
- Reham A Shalaby
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, South Korea
| | - Muhammad Mohsin Qureshi
- Division of Biophysics and Bioimaging, Princess Margret Cancer Center, Toronto, Ontario, Canada
| | - Mohd Afzal Khan
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, South Korea
| | - S M Abdus Salam
- Department of Pathology, Chonnam National University, Hwasun Hospital and Medical School, BioMedical Sciences Graduate Program (BMSGP), South Korea
| | - Hyuk Sang Kwon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, South Korea
| | - Kyung Hwa Lee
- Department of Pathology, Chonnam National University, Hwasun Hospital and Medical School, BioMedical Sciences Graduate Program (BMSGP), South Korea.
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, South Korea; AI Graduate School, Gwangju Institute of Science and Technology, South Korea.
| | - Young Ro Kim
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Paolillo FR, Luccas GAA, Parizotto NA, Paolillo AR, de Castro Neto JC, Bagnato VS. The effects of transcranial laser photobiomodulation and neuromuscular electrical stimulation in the treatment of post-stroke dysfunctions. JOURNAL OF BIOPHOTONICS 2023; 16:e202200260. [PMID: 36520347 DOI: 10.1002/jbio.202200260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Post-stroke sequelae includes loss functions, such as cognitive and sensory-motor which lead to emotional and social problems, reducing quality of life and well-being. The main aim of our study was to investigate the effects of transcranial laser photobiomodulation together with neuromuscular electrical stimulation (NMES) in post-stroke patients. We performed a clinical trial and an ex vivo study. For the clinical trial, hemiplegic patients were separated into two groups: Treated Group (TG): Hemiplegics treated with transcranial laser (on) associated with NMES (on) and; Placebo Group (PG): Hemiplegics treated with placebo transcranial laser (off) associated with NMES (on). The cluster prototype includes 12 diode laser beams (4 × 660 nm, 4 × 808 nm and 4 × 980 nm) with average power of 720 mW per cluster applied during one minute, leading to 43.2 J energy per cluster. Fifteen regions for all head were irradiated by cluster, leading to 648 J energy per session. The parameters of NMES of the paretic limbs to generate extension wrist and ankle dorsiflexion were symmetrical biphasic rectangular waveforms, 50 Hz frequency, 250 μs pulse duration, and adjustable intensity to maintain the maximum range of motion (amplitude between 0 and 150 mA). Our clinical trial showed improvement of cognitive function, pain relief, greater manual dexterity, enhancement of physical and social-emotional health which lead to better quality of life and well-being. There was also increased temperature in the treated regions with laser and NMES. For the ex vivo study, the distribution of infrared and red radiation after penetration through the cranium and hemihead of cadavers were showed. Therefore, transcranial laser photobiomodulation associated with NMES can be an important therapeutic resource for rehabilitation after stroke.
Collapse
Affiliation(s)
- Fernanda Rossi Paolillo
- Group of Technology Applied to Health and Motricity Sciences, State University of Minas Gerais (UEMG), Passos, Brazil
| | | | - Nivaldo Antonio Parizotto
- Biomedical Engineering Program, Research and Development Institute, University Brasil, São Paulo, Brazil
| | | | | | | |
Collapse
|
8
|
Gholami L, Afshar S, Arkian A, Saeidijam M, Hendi SS, Mahmoudi R, Khorsandi K, Hashemzehi H, Fekrazad R. NIR irradiation of human buccal fat pad adipose stem cells and its effect on TRP ion channels. Lasers Med Sci 2022; 37:3681-3692. [PMID: 36227520 DOI: 10.1007/s10103-022-03652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/02/2022] [Indexed: 11/28/2022]
Abstract
The effect of near infrared (NIR) laser irradiation on proliferation and osteogenic differentiation of buccal fat pad-derived stem cells and the role of transient receptor potential (TRP) channels was investigated in the current research. After stem cell isolation, a 940 nm laser with 0.1 W, 3 J/cm2 was used in pulsed and continuous mode for irradiation in 3 sessions once every 48 h. The cells were cultured in the following groups: non-osteogenic differentiation medium/primary medium (PM) and osteogenic medium (OM) groups with laser-irradiated (L +), without irradiation (L -), laser treated + Capsazepine inhibitor (L + Cap), and laser treated + Skf96365 inhibitor (L + Skf). Alizarin Red staining and RT-PCR were used to assess osteogenic differentiation and evaluate RUNX2, Osterix, and ALP gene expression levels. The pulsed setting showed the best viability results (P < 0.05) and was used for osteogenic differentiation evaluations. The results of Alizarin red staining were not statistically different between the four groups. Osterix and ALP expression increased in the (L +) group. This upregulation abrogated in the presence of Capsazepine, TRPV1 inhibitor (L + Cap); however, no significant effect was observed with Skf96365 (L + Skf).
Collapse
Affiliation(s)
- Leila Gholami
- Department of Periodontics, Dental Implants Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aliasghar Arkian
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masood Saeidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyedeh Sareh Hendi
- Department of Endodontics, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roghayeh Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.,Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Hadi Hashemzehi
- Department of Oral and Maxillofacial Surgery, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran. .,International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
9
|
Jazaeri M, Torkzaban P, Afshar S, Najafi-Vosough R, Arany P, Gholami L. Comparison of Pulsed and Continuous Wave Diode Laser at 940 nm on the Viability and Migration of Gingival Fibroblasts. Photochem Photobiol 2022; 99:1003-1009. [PMID: 36086909 DOI: 10.1111/php.13711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
Abstract
Gingival fibroblasts have critical roles in oral wound healing. Photobiomodulation (PBM) has been shown to promote mucosal healing and is now recommended for managing oncotherapy-associated oral mucositis. This study examined the effects of the emission mode of a 940 nm diode laser on the viability and migration of human gingival fibroblasts. Cells were cultured in a routine growth media and treated with PBM (average power 0.1 W/cm2 , average fluence 3 J/cm2 , every 12h for 6 sessions) in one continuous wave (CW) and two pulsing settings with 20 % and 50 % duty cycles. Cell viability was assessed using MTT, and digital imaging quantified cell migration. After 48 and 72 hours, all treatment groups had significantly higher viability (n = 6, p < 0.05) compared to the control. The highest viability was seen in the pulsed (20% duty cycle) group at the 72-hour time point. PBM improved fibroblast migration in all PBM-treated groups, but differences were not statistically significant (n = 2, p > 0.05). PBM treatments can promote cell viability in both continuous and pulsed modes. Further studies are needed to elucidate the optimal setting for PBM-evoked responses for its rationalized use in promoting specific phases of oral wound healing.
Collapse
Affiliation(s)
- Marzieh Jazaeri
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parviz Torkzaban
- Department of Periodontics, School of Dentistry, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roya Najafi-Vosough
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Praveen Arany
- Oral Biology, Surgery, Biomedical Engineering, University at Buffalo, NY, USA
| | - Leila Gholami
- Department of Periodontics, School of Dentistry, Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
10
|
Mosilhy EA, Alshial EE, Eltaras MM, Rahman MMA, Helmy HI, Elazoul AH, Hamdy O, Mohammed HS. Non-invasive transcranial brain modulation for neurological disorders treatment: A narrative review. Life Sci 2022; 307:120869. [DOI: 10.1016/j.lfs.2022.120869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
|
11
|
George S, Hamblin MR, Abrahamse H. Neuronal differentiation potential of primary and immortalized adipose stem cells by photobiomodulation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 230:112445. [PMID: 35453038 DOI: 10.1016/j.jphotobiol.2022.112445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 01/28/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022]
Abstract
Adipose Stem Cells (ASCs) are capable of neuronal differentiation, which makes them an ideal choice for therapies in nerve injuries. Principally, the differentiation of autologous ASCs to neurons offers solutions for the replacement therapies of nervous system with patient's own genetic background. On the contrary, the use of genetically modified (immortalized) ASCs has the benefit of accessibility by surpassing ethical concerns and ease for propagation as a continuous cell culture. Photobiomodulation (PBM) is a therapeutic modality with laser or light, which is widely been used for modulating stem cell bioprocesses viz. proliferation and differentiation. A comparative analysis was performed to evaluate the neuronal differentiation potential of primary ASCs isolated from a healthy human subject with commercially obtained immortalized ASCs with PBM. The outcome of this analysis will help us to know either primary or immortalized ASCs are most suitable for biomedical applications. Both primary and immortalized ASCs were characterized using their surface protein markers CD44/90/133/166 and induced to differentiate into neuronal cells using Fibroblast Growth Factor, basic (bFGF) and forskolin following PBM using Near Infra-Red (NIR) lasers. Based on the expression of nestin, an early neuronal marker an exposure to 5, 10 and 15 J/cm2 of NIR and growth inducers for 14 days the primary ASCs demonstrated a higher neuronal differentiation potential compared to the immortalized ASCs. However, newly differentiated cells from either of these ASCs did not reveal βIII-tubulin, an intermediate neuronal marker even by 21 days of differentiation. This study gives an indication that immortalized ASCs have a phenotype and differentiation potential slightly less but comparable to the freshly isolated ASCs. We suggest that PBM along with growth inducers offer a better solution of differentiating ASCs to neurons.
Collapse
Affiliation(s)
- Sajan George
- Laser Research Centre, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Michael R Hamblin
- Laser Research Centre, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa; Wellman Centre for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
12
|
Optical Modalities for Research, Diagnosis, and Treatment of Stroke and the Consequent Brain Injuries. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Stroke is the second most common cause of death and third most common cause of disability worldwide. Therefore, it is an important disease from a medical standpoint. For this reason, various studies have developed diagnostic and therapeutic techniques for stroke. Among them, developments and applications of optical modalities are being extensively studied. In this article, we explored three important optical modalities for research, diagnostic, and therapeutics for stroke and the brain injuries related to it: (1) photochemical thrombosis to investigate stroke animal models; (2) optical imaging techniques for in vivo preclinical studies on stroke; and (3) optical neurostimulation based therapy for stroke. We believe that an exploration and an analysis of previous studies will help us proceed from research to clinical applications of optical modalities for research, diagnosis, and treatment of stroke.
Collapse
|
13
|
Spera V, Sitnikova T, Ward MJ, Farzam P, Hughes J, Gazecki S, Bui E, Maiello M, De Taboada L, Hamblin MR, Franceschini MA, Cassano P. Pilot Study on Dose-Dependent Effects of Transcranial Photobiomodulation on Brain Electrical Oscillations: A Potential Therapeutic Target in Alzheimer's Disease. J Alzheimers Dis 2021; 83:1481-1498. [PMID: 34092636 DOI: 10.3233/jad-210058] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Transcranial photobiomodulation (tPBM) has recently emerged as a potential cognitive enhancement technique and clinical treatment for various neuropsychiatric and neurodegenerative disorders by delivering invisible near-infrared light to the scalp and increasing energy metabolism in the brain. OBJECTIVE We assessed whether transcranial photobiomodulation with near-infrared light modulates cerebral electrical activity through electroencephalogram (EEG) and cerebral blood flow (CBF). METHODS We conducted a single-blind, sham-controlled pilot study to test the effect of continuous (c-tPBM), pulse (p-tPBM), and sham (s-tPBM) transcranial photobiomodulation on EEG oscillations and CBF using diffuse correlation spectroscopy (DCS) in a sample of ten healthy subjects [6F/4 M; mean age 28.6±12.9 years]. c-tPBM near-infrared radiation (NIR) (830 nm; 54.8 mW/cm2; 65.8 J/cm2; 2.3 kJ) and p-tPBM (830 nm; 10 Hz; 54.8 mW/cm2; 33%; 21.7 J/cm2; 0.8 kJ) were delivered concurrently to the frontal areas by four LED clusters. EEG and DCS recordings were performed weekly before, during, and after each tPBM session. RESULTS c-tPBM significantly boosted gamma (t = 3.02, df = 7, p < 0.02) and beta (t = 2.91, df = 7, p < 0.03) EEG spectral powers in eyes-open recordings and gamma power (t = 3.61, df = 6, p < 0.015) in eyes-closed recordings, with a widespread increase over frontal-central scalp regions. There was no significant effect of tPBM on CBF compared to sham. CONCLUSION Our data suggest a dose-dependent effect of tPBM with NIR on cerebral gamma and beta neuronal activity. Altogether, our findings support the neuromodulatory effect of transcranial NIR.
Collapse
Affiliation(s)
- Vincenza Spera
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Clinical Experimental Medicine, Psychiatric Unit, University of Pisa, Pisa, Italy
| | - Tatiana Sitnikova
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,HMS/MGH Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | | | - Parya Farzam
- HMS/MGH Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jeremy Hughes
- HMS/MGH Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Samuel Gazecki
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Eric Bui
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Marco Maiello
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Clinical Experimental Medicine, Psychiatric Unit, University of Pisa, Pisa, Italy
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa.,Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maria Angela Franceschini
- HMS/MGH Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Paolo Cassano
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Yang M, Yang Z, Wang P, Sun Z. Current application and future directions of photobiomodulation in central nervous diseases. Neural Regen Res 2021; 16:1177-1185. [PMID: 33269767 PMCID: PMC8224127 DOI: 10.4103/1673-5374.300486] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/20/2020] [Accepted: 05/25/2020] [Indexed: 02/05/2023] Open
Abstract
Photobiomodulation using light in the red or near-infrared region is an innovative treatment strategy for a wide range of neurological and psychological conditions. Photobiomodulation can promote neurogenesis and elicit anti-apoptotic, anti-inflammatory and antioxidative responses. Its therapeutic effects have been demonstrated in studies on neurological diseases, peripheral nerve injuries, pain relief and wound healing. We conducted a comprehensive literature review of the application of photobiomodulation in patients with central nervous system diseases in February 2019. The NCBI PubMed database, EMBASE database, Cochrane Library and ScienceDirect database were searched. We reviewed 95 papers and analyzed. Photobiomodulation has wide applicability in the treatment of stroke, traumatic brain injury, Parkinson's disease, Alzheimer's disease, major depressive disorder, and other diseases. Our analysis provides preliminary evidence that PBM is an effective therapeutic tool for the treatment of central nervous system diseases. However, additional studies with adequate sample size are needed to optimize treatment parameters.
Collapse
Affiliation(s)
- Muyue Yang
- Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Yang
- Core Facility of West China Hospital, Chengdu, Sichuan Province, China
| | - Pu Wang
- Department of Rehabilitation Medicine, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Zhihui Sun
- Department of Psychosomatic Medicine, The People’s Hospital of Suzhou New District, Suzhou, Jiangsu Province, China
| |
Collapse
|
15
|
You J, Bragin A, Liu H, Li L. Preclinical studies of transcranial photobiomodulation in the neurological diseases. TRANSLATIONAL BIOPHOTONICS 2021. [DOI: 10.1002/tbio.202000024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Jing You
- Department of Biomedical Engineering University of North Texas Denton Texas USA
| | - Anatol Bragin
- Department of Neurology University of California Los Angeles Los Angeles California USA
- Brain Research Institute University of California Los Angeles Los Angeles California USA
| | - Hanli Liu
- Department of Bioengineering University of Texas at Arlington Arlington Texas USA
| | - Lin Li
- Department of Biomedical Engineering University of North Texas Denton Texas USA
- Department of Neurology University of California Los Angeles Los Angeles California USA
| |
Collapse
|
16
|
Xu XY, Fang Q, Huang W, Li BC, Zhou XH, Zhou ZY, Li J. Effect of Electroacupuncture on Neurological Deficit and Activity of Clock and Bmal1 in Cerebral Ischemic Rats. Curr Med Sci 2021; 40:1128-1136. [PMID: 33428141 DOI: 10.1007/s11596-020-2295-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 08/11/2020] [Indexed: 12/21/2022]
Abstract
Acute focal cerebral ischemic stroke (IS) is a leading cause of morbidity and mortality worldwide. Acupuncture is an emerging alternative therapy that has been beneficial to acute brain ischemia. However, the underlying protective mechanism of its neuroprotective effect remains unclear. Human original circadian rhythm will be lost after IS, which seriously affects the quality of life and functional recovery of stroke patients. We hypothesize that acupuncture treats IS by regulating the balance of Clock and Bmal1. This study aims to explore the effect of acupuncture at acupoints GV20 and BL23 on neuroprotection and anti-apoptosis in middle cerebral artery occlusion (MCAO) rats and expression of apoptosis and circadian rhythm related proteins. Male Sprague-Dawley (SD) rats were randomly divided into five groups: normal group (Normal), sham model group (Sham MCAO), MCAO model group (MCAO), sham electroacupuncture group (Sham EA) and electroacupuncture group (EA). The MCAO model was prepared by electrocoagulation. The first acupuncture treatment was performed within 2 h after surgery, and then acupuncture therapy was performed on 1st day, 2nd day and 3rd day respectively. After their neurological examination at 72 h of ischemia, the rats from each group were sacrificed. Triphenyltetrazolium chloride (TTC) staining was used to evaluate the brain infarct size. Ultrastructural observation on cerebral ischemic cortex and serum inflammatory cytokines were evaluated. TUNEL staining was used to detect cell apoptosis of brain tissue. The expression levels of proteins Bax, bcl-2, caspase-3, Clock and Bmal1 in the cerebral ischemic region were detected by immunofluorescence staining. Here, we presented evidence that EA at GV20 and BL23 could significantly improve the neurological deficit score and infarct size, and alleviate the cell apoptosis of brain tissue. Moreover, acupuncture treatment upregulated the anti-apoptotic Bcl-2/Bax ratio and reversed the upregulation of caspase-3 following 72-h cerebral ischemia. In addition, the expression levels of circadian proteins Clock and Bmal1 were upregulated in EA group while compared with MCAO group. Our study demonstrated that acupuncture exerted neuroprotective effect against neuronal apoptosis after stroke and the mechanism might be related with regulation of circadian rhythm proteins Clock and Bmal1.
Collapse
Affiliation(s)
- Xin-Yin Xu
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Qi Fang
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Wei Huang
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Bo-Cun Li
- Department of Acupuncture, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Hong Zhou
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Zhong-Yu Zhou
- Department of Acupuncture & Moxibustion, Hubei Provincial Hospital of Traditional Chinese medicine, Wuhan, 430061, China
| | - Jia Li
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| |
Collapse
|
17
|
Yang L, Dong Y, Wu C, Youngblood H, Li Y, Zong X, Li L, Xu T, Zhang Q. Effects of prenatal photobiomodulation treatment on neonatal hypoxic ischemia in rat offspring. Theranostics 2021; 11:1269-1294. [PMID: 33391534 PMCID: PMC7738878 DOI: 10.7150/thno.49672] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Neonatal hypoxic-ischemic (HI) injury is a severe complication often leading to neonatal death and long-term neurobehavioral deficits in children. Currently, the only treatment option available for neonatal HI injury is therapeutic hypothermia. However, the necessary specialized equipment, possible adverse side effects, and limited effectiveness of this therapy creates an urgent need for the development of new HI treatment methods. Photobiomodulation (PBM) has been shown to be neuroprotective against multiple brain disorders in animal models, as well as limited human studies. However, the effects of PBM treatment on neonatal HI injury remain unclear. Methods: Two-minutes PBM (808 nm continuous wave laser, 8 mW/cm2 on neonatal brain) was applied three times weekly on the abdomen of pregnant rats from gestation day 1 (GD1) to GD21. After neonatal right common carotid artery ligation, cortex- and hippocampus-related behavioral deficits due to HI insult were measured using a battery of behavioral tests. The effects of HI insult and PBM pretreatment on infarct size; synaptic, dendritic, and white matter damage; neuronal degeneration; apoptosis; mitochondrial function; mitochondrial fragmentation; oxidative stress; and gliosis were then assessed. Results: Prenatal PBM treatment significantly improved the survival rate of neonatal rats and decreased infarct size after HI insult. Behavioral tests revealed that prenatal PBM treatment significantly alleviated cortex-related motor deficits and hippocampus-related memory and learning dysfunction. In addition, mitochondrial function and integrity were protected in HI animals treated with PBM. Additional studies revealed that prenatal PBM treatment significantly alleviated HI-induced neuroinflammation, oxidative stress, and myeloid cell/astrocyte activation. Conclusion: Prenatal PBM treatment exerts neuroprotective effects on neonatal HI rats. Underlying mechanisms for this neuroprotection may include preservation of mitochondrial function, reduction of inflammation, and decreased oxidative stress. Our findings support the possible use of PBM treatment in high-risk pregnancies to alleviate or prevent HI-induced brain injury in the perinatal period.
Collapse
Affiliation(s)
- Luodan Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Chongyun Wu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Hannah Youngblood
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Yong Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Xuemei Zong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Lei Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Tongda Xu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| |
Collapse
|
18
|
Transcranial near-infrared stimulation may increase cortical excitability recorded in humans. Brain Res Bull 2020; 155:155-158. [DOI: 10.1016/j.brainresbull.2019.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/06/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022]
|
19
|
Askalsky P, Iosifescu DV. Transcranial Photobiomodulation For The Management Of Depression: Current Perspectives. Neuropsychiatr Dis Treat 2019; 15:3255-3272. [PMID: 31819453 PMCID: PMC6878920 DOI: 10.2147/ndt.s188906] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/26/2019] [Indexed: 12/16/2022] Open
Abstract
Major depressive disorder (MDD) is a prevalent condition associated with high rates of disability, as well as suicidal ideation and behavior. Current treatments for MDD have significant limitations in efficacy and side effect burden. FDA-approved devices for MDD are burdensome (due to repeated in-office procedures) and are most suitable for severely ill subjects. There is a critical need for device-based treatments in MDD that are efficacious, well-tolerated, and easy to use. In this paper, we review a novel neuromodulation strategy, transcranial photobiomodulation (t-PBM) with near-infrared light (NIR). The scope of our review includes the known biological mechanisms of t-PBM, as well as its efficacy in animal models of depression and in patients with MDD. Theoretically, t-PBM penetrates into the cerebral cortex, stimulating the mitochondrial respiratory chain, and also significantly increases cerebral blood flow. Animal and human studies, using a variety of t-PBM settings and experimental models, suggest that t-PBM may have significant efficacy and good tolerability in MDD. In aggregate, these data support the need for large confirmatory studies for t-PBM as a novel, likely safe, and easy-to-administer antidepressant treatment.
Collapse
Affiliation(s)
- Paula Askalsky
- Department of Psychiatry, NYU Langone School of Medicine, New York, NY, USA
| | - Dan V Iosifescu
- Department of Psychiatry, NYU Langone School of Medicine, New York, NY, USA
- Clinical Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
20
|
Fekri A, Jahan A, Moghadam Salimi M, Oskouei AE. Short-term Effects of Transcranial Near-Infrared Photobiomodulation on Motor Performance in Healthy Human Subjects: An Experimental SingleBlind Randomized Clinical Trial. J Lasers Med Sci 2019; 10:317-323. [PMID: 31875125 DOI: 10.15171/jlms.2019.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Transcranial near-infrared photobiomodulation (NIR-PBM) is a new noninvasive procedure which transcranially applies a near-infrared wavelength to the scalp with a laser or a light-emitting diode (LED) source. Improvement in the neurological or psychological symptoms has been reported following light irradiation. However, to our knowledge, there is no study to investigate the effects of transcranial NIR-PBM on motor performance directly. Therefore, the objective of this study was to investigate the short-term effects of transcranial NIR-PBM on motor performance in healthy human subjects. Methods: In this experimental single-blind randomized clinical trial study, 56 right-handed healthy participants, whose ages ranged from 18 to 30, were randomly assigned to (1) Real transcranial NIR-PBMC3 group (n=14), (2) Sham transcranial NIR-PBMC3 group (n=14), (3) Real transcranial NIR-PBMC4 group (n=14), and (4) Sham transcranial NIR-PBMC4 group (n=14). We applied the 808 nm laser with irradiation energy density of 60 J/cm2 and power density of 200 mw/cm2 to the C3 or C4 points of the scalp. The number of finger taps as an indicator of motor performance was assessed by the finger-tapping test (FTT) before and after irradiation of transcranial NIR-PBM on the corresponding points of the scalp for 5 minutes. Results: The results showed that the number of finger taps in both right and left hands following the use of transcranial NIR-PBM in the real transcranial NIR-PBMC3 group significantly increased (P<0.05). Conclusion: We concluded that using transcranial NIR-PBM with a laser source on C3 point of the motor cortex in right-handed healthy people can increase the number of finger taps in both hands as an indicator of motor performance improvement.
Collapse
Affiliation(s)
- Atefeh Fekri
- Department of Physiotherapy, Faculty of Rehabilitation, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Jahan
- Department of Speech Therapy, Faculty of Rehabilitation, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Moghadam Salimi
- Department of Physiotherapy, Faculty of Rehabilitation, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali E Oskouei
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Hamilton CL, El Khoury H, Hamilton D, Nicklason F, Mitrofanis J. "Buckets": Early Observations on the Use of Red and Infrared Light Helmets in Parkinson's Disease Patients. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:615-622. [PMID: 31536464 DOI: 10.1089/photob.2019.4663] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background: Parkinson's disease is a well-known neurological disorder with distinct motor signs and non-motor symptoms. Objective: We report on six patients with Parkinson's disease that used in-house built photobiomodulation (PBM) helmets. Methods: We used "buckets" lined with light-emitting diodes (LEDs) of wavelengths across the red to near-infrared range (i.e., 670, 810, and 850 nm; n = 5) or an homemade intranasal LED device (660 nm; n = 1). Progress was assessed by the patients themselves, their spouse, or their attending medical practitioners. Results: We found that 55% of the initial signs and symptoms of the six patients showed overall improvement, whereas 43% stayed the same and only 2% got worse. We also found that PBM did not target a specific sign or symptom, with both motor and nonmotor ones being affected, depending on the patient. Conclusions: In summary, our early observations are the first to note the impact of PBM on patients' signs and symptoms over an extended period, up to 24 months, and lays the groundwork for further development to clinical trial.
Collapse
Affiliation(s)
| | - Hala El Khoury
- Department of Anatomy F13, University of Sydney, 2006, Sydney, Australia
| | - David Hamilton
- Department of Anatomy F13, University of Sydney, 2006, Sydney, Australia
| | - Frank Nicklason
- Department of Anatomy F13, University of Sydney, 2006, Sydney, Australia.,Geriatric Medicine, Royal Hobart Hospital, Hobart, Australia
| | - John Mitrofanis
- Department of Anatomy F13, University of Sydney, 2006, Sydney, Australia
| |
Collapse
|
22
|
Facchin F, Canaider S, Tassinari R, Zannini C, Bianconi E, Taglioli V, Olivi E, Cavallini C, Tausel M, Ventura C. Physical energies to the rescue of damaged tissues. World J Stem Cells 2019; 11:297-321. [PMID: 31293714 PMCID: PMC6600852 DOI: 10.4252/wjsc.v11.i6.297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/24/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023] Open
Abstract
Rhythmic oscillatory patterns sustain cellular dynamics, driving the concerted action of regulatory molecules, microtubules, and molecular motors. We describe cellular microtubules as oscillators capable of synchronization and swarming, generating mechanical and electric patterns that impact biomolecular recognition. We consider the biological relevance of seeing the inside of cells populated by a network of molecules that behave as bioelectronic circuits and chromophores. We discuss the novel perspectives disclosed by mechanobiology, bioelectromagnetism, and photobiomodulation, both in term of fundamental basic science and in light of the biomedical implication of using physical energies to govern (stem) cell fate. We focus on the feasibility of exploiting atomic force microscopy and hyperspectral imaging to detect signatures of nanomotions and electromagnetic radiation (light), respectively, generated by the stem cells across the specification of their multilineage repertoire. The chance is reported of using these signatures and the diffusive features of physical waves to direct specifically the differentiation program of stem cells in situ, where they already are resident in all the tissues of the human body. We discuss how this strategy may pave the way to a regenerative and precision medicine without the needs for (stem) cell or tissue transplantation. We describe a novel paradigm based upon boosting our inherent ability for self-healing.
Collapse
Affiliation(s)
- Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna 40100, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna 40100, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Riccardo Tassinari
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Chiara Zannini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Eva Bianconi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Valentina Taglioli
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Elena Olivi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Claudia Cavallini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | | | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna 40100, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy.
| |
Collapse
|
23
|
Yang L, Dong Y, Wu C, Li Y, Guo Y, Yang B, Zong X, Hamblin MR, Cheng-Yi Liu T, Zhang Q. Photobiomodulation preconditioning prevents cognitive impairment in a neonatal rat model of hypoxia-ischemia. JOURNAL OF BIOPHOTONICS 2019; 12:e201800359. [PMID: 30652418 PMCID: PMC6546525 DOI: 10.1002/jbio.201800359] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/02/2018] [Accepted: 01/12/2019] [Indexed: 05/13/2023]
Abstract
Neonatal hypoxia-ischemia (HI) injury caused by oxygen deprivation is the most common cause of mortality and severe neurologic deficits in neonates. The present work evaluated the preventative effect of photobiomodulation (PBM) preconditioning, and its underlying mechanism of action on brain damage in an HI model in neonatal rats. According to the optimal time response of ATP levels in brain samples removed from normal rats, a PBM preconditioning (PBM-P) regimen (808 nm CW laser, 1 cm2 spot, 100 mW/cm2 , 12 J/cm2 ) was delivered to the scalp 6 hours before HI. PBM-P significantly attenuated cognitive impairment, volume shrinkage in the brain, neuron loss, dendritic and synaptic injury after HI. Further mechanistic investigation found that PBM-P could restore HI-induced mitochondrial dynamics and inhibit mitochondrial fragmentation, followed by a robust suppression of cytochrome c release, and prevention of neuronal apoptosis by inhibition of caspase activation. Our work suggests that PBM-P can attenuate HI-induced brain injury by maintaining mitochondrial dynamics and inhibiting the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Luodan Yang
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, GD 510006, China
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Yan Dong
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Chongyun Wu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, GD 510006, China
| | - Yong Li
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Yichen Guo
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Baocheng Yang
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Xuemei Zong
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, GD 510006, China
| | - Quanguang Zhang
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, GD 510006, China
| |
Collapse
|
24
|
Gottlieb E, Landau E, Baxter H, Werden E, Howard ME, Brodtmann A. The bidirectional impact of sleep and circadian rhythm dysfunction in human ischaemic stroke: A systematic review. Sleep Med Rev 2019; 45:54-69. [DOI: 10.1016/j.smrv.2019.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 01/11/2023]
|
25
|
Wang R, Dong Y, Lu Y, Zhang W, Brann DW, Zhang Q. Photobiomodulation for Global Cerebral Ischemia: Targeting Mitochondrial Dynamics and Functions. Mol Neurobiol 2019; 56:1852-1869. [PMID: 29951942 PMCID: PMC6310117 DOI: 10.1007/s12035-018-1191-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022]
Abstract
Hypothermia is currently the only approved therapy for global cerebral ischemia (GCI) after cardiac arrest; however, it unfortunately has multiple adverse effects. As a noninvasive procedure, photobiomodulation (PBM) therapy has emerged as a potential novel treatment for brain injury. PBM involves the use of low-level laser light therapy to influence cell behavior. In this study, we evaluated the therapeutic effects of PBM treatment with an 808-nm diode laser initiated 6 h after GCI. It was noted that PBM dose-dependently protected against GCI-induced neuronal death in the vulnerable hippocampal CA1 subregion. Functional assessments demonstrated that PBM markedly preserved both short-term (a week) and long-term (6 months) spatial learning and memory function following GCI. Further mechanistic studies revealed that PBM post-treatment (a) preserved healthy mitochondrial dynamics and suppressed substantial mitochondrial fragmentation of CA1 neurons, by reducing the detrimental Drp1 GTPase activity and its interactions with adaptor proteins Mff and Fis1 and by balancing mitochondrial targeting fission and fusion protein levels; (b) reduced mitochondrial oxidative damage and excessive mitophagy and restored mitochondrial overall health status and preserved mitochondrial function; and (c) suppressed mitochondria-dependent apoptosome formation/caspase-3/9 apoptosis-processing activities. Additionally, we validated, in an in vitro ischemia model, that cytochrome c oxidase served as a key PBM target for mitochondrial function preservation and neuroprotection. Our findings suggest that PBM serves as a promising therapeutic strategy for the functional recovery after GCI, with mechanisms involving PBM's preservation on mitochondrial dynamics and functions and the inhibition of delayed apoptotic neuronal death in GCI.
Collapse
Affiliation(s)
- Ruimin Wang
- Neurobiology Institute of Medical Research Center, North China University of Science and Technology, Tangshan, 063000, China.
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Wenli Zhang
- Neurobiology Institute of Medical Research Center, North China University of Science and Technology, Tangshan, 063000, China
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
26
|
Sanderson TH, Wider JM, Lee I, Reynolds CA, Liu J, Lepore B, Tousignant R, Bukowski MJ, Johnston H, Fite A, Raghunayakula S, Kamholz J, Grossman LI, Przyklenk K, Hüttemann M. Inhibitory modulation of cytochrome c oxidase activity with specific near-infrared light wavelengths attenuates brain ischemia/reperfusion injury. Sci Rep 2018; 8:3481. [PMID: 29472564 PMCID: PMC5823933 DOI: 10.1038/s41598-018-21869-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/13/2018] [Indexed: 12/17/2022] Open
Abstract
The interaction of light with biological tissue has been successfully utilized for multiple therapeutic purposes. Previous studies have suggested that near infrared light (NIR) enhances the activity of mitochondria by increasing cytochrome c oxidase (COX) activity, which we confirmed for 810 nm NIR. In contrast, scanning the NIR spectrum between 700 nm and 1000 nm revealed two NIR wavelengths (750 nm and 950 nm) that reduced the activity of isolated COX. COX-inhibitory wavelengths reduced mitochondrial respiration, reduced the mitochondrial membrane potential (ΔΨm), attenuated mitochondrial superoxide production, and attenuated neuronal death following oxygen glucose deprivation, whereas NIR that activates COX provided no benefit. We evaluated COX-inhibitory NIR as a potential therapy for cerebral reperfusion injury using a rat model of global brain ischemia. Untreated animals demonstrated an 86% loss of neurons in the CA1 hippocampus post-reperfusion whereas inhibitory NIR groups were robustly protected, with neuronal loss ranging from 11% to 35%. Moreover, neurologic function, assessed by radial arm maze performance, was preserved at control levels in rats treated with a combination of both COX-inhibitory NIR wavelengths. Taken together, our data suggest that COX-inhibitory NIR may be a viable non-pharmacologic and noninvasive therapy for the treatment of cerebral reperfusion injury.
Collapse
Affiliation(s)
- Thomas H Sanderson
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA. .,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA. .,Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Joseph M Wider
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Icksoo Lee
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,College of Medicine, Dankook University, Cheonan-si, Chungcheongnam-do, 31116, Republic of Korea
| | - Christian A Reynolds
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jenney Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Bradley Lepore
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Reneé Tousignant
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Melissa J Bukowski
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Hollie Johnston
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Alemu Fite
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Sarita Raghunayakula
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - John Kamholz
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Lawrence I Grossman
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Karin Przyklenk
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Maik Hüttemann
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
27
|
Effects of pulsing of light on the dentinogenesis of dental pulp stem cells in vitro. Sci Rep 2018; 8:2057. [PMID: 29391502 PMCID: PMC5795010 DOI: 10.1038/s41598-018-19395-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022] Open
Abstract
Low power light (LPL) treatment has been widely used in various clinical trials, which has been known to reduce pain and inflammation and to promote wound healing. LPL was also shown to enhance differentiation of stem cells into specific lineages. However, most studies have used high power light in mW order, and there was lack of studies about the effects of very low power light in μW. In this study, we applied 810 nm LPL of 128 μW/cm2 energy density in vitro. Upon this value, continuous wave (CW) irradiation did not induce any significant changes for differentiation of human dental pulp stem cells (hDPSCs). However, the membrane hyperpolarization, alkaline phosphatase activity, and intracellular oxidative stress were largely enhanced in the pulsed wave (PW) with 30% of duty cycle and 300–3000 Hz frequencies-LPL in which LED driver work in the form of square wave. After 21 days of daily LPL treatment, Western blot revealed the dentinogenesis in this condition in vitro. This study demonstrates that the very low power light at 810 nm enhanced significant differentiation of hDPSCs in the PW mode and there were duty cycle dependency as well as pulsing frequency dependency in the efficiency.
Collapse
|
28
|
Brain Photobiomodulation Therapy: a Narrative Review. Mol Neurobiol 2018; 55:6601-6636. [PMID: 29327206 DOI: 10.1007/s12035-017-0852-4] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022]
Abstract
Brain photobiomodulation (PBM) therapy using red to near-infrared (NIR) light is an innovative treatment for a wide range of neurological and psychological conditions. Red/NIR light is able to stimulate complex IV of the mitochondrial respiratory chain (cytochrome c oxidase) and increase ATP synthesis. Moreover, light absorption by ion channels results in release of Ca2+ and leads to activation of transcription factors and gene expression. Brain PBM therapy enhances the metabolic capacity of neurons and stimulates anti-inflammatory, anti-apoptotic, and antioxidant responses, as well as neurogenesis and synaptogenesis. Its therapeutic role in disorders such as dementia and Parkinson's disease, as well as to treat stroke, brain trauma, and depression has gained increasing interest. In the transcranial PBM approach, delivering a sufficient dose to achieve optimal stimulation is challenging due to exponential attenuation of light penetration in tissue. Alternative approaches such as intracranial and intranasal light delivery methods have been suggested to overcome this limitation. This article reviews the state-of-the-art preclinical and clinical evidence regarding the efficacy of brain PBM therapy.
Collapse
|
29
|
|
30
|
Kim HB, Baik KY, Choung PH, Chung JH. Pulse frequency dependency of photobiomodulation on the bioenergetic functions of human dental pulp stem cells. Sci Rep 2017; 7:15927. [PMID: 29162863 PMCID: PMC5698451 DOI: 10.1038/s41598-017-15754-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/01/2017] [Indexed: 11/09/2022] Open
Abstract
Photobiomodulation (PBM) therapy contributes to pain relief, wound healing, and tissue regeneration. The pulsed wave (PW) mode has been reported to be more effective than the continuous wave (CW) mode when applying PBM to many biological systems. However, the reason for the higher effectiveness of PW-PBM is poorly understood. Herein, we suggest using delayed luminescence (DL) as a reporter of mitochondrial activity after PBM treatment. DL originates mainly from mitochondrial electron transport chain systems, which produce reactive oxygen species (ROS) and adenosine triphosphate (ATP). The decay time of DL depends on the pulse frequencies of applied light, which correlate with the biological responses of human dental pulp stem cells (hDPSCs). Using a low-power light whose wavelength is 810 nm and energy density is 38 mJ/cm2, we find that a 300-Hz pulse frequency prolonged the DL pattern and enhanced alkaline phosphatase activity. In addition, we analyze mitochondrial morphological changes and their volume density and find evidence supporting mitochondrial physiological changes from PBM treatment. Our data suggest a new methodology for determining the effectiveness of PBM and the specific pulse frequency dependency of PBM in the differentiation of hDPSCs.
Collapse
Affiliation(s)
- Hong Bae Kim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ku Youn Baik
- Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Pill-Hoon Choung
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jong Hoon Chung
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea. .,Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
31
|
Hamblin MR. Photobiomodulation for traumatic brain injury and stroke. J Neurosci Res 2017; 96:731-743. [PMID: 29131369 DOI: 10.1002/jnr.24190] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
There is a notable lack of therapeutic alternatives for what is fast becoming a global epidemic of traumatic brain injury (TBI). Photobiomodulation (PBM) employs red or near-infrared (NIR) light (600-1100nm) to stimulate healing, protect tissue from dying, increase mitochondrial function, improve blood flow, and tissue oxygenation. PBM can also act to reduce swelling, increase antioxidants, decrease inflammation, protect against apoptosis, and modulate microglial activation state. All these mechanisms of action strongly suggest that PBM delivered to the head should be beneficial in cases of both acute and chronic TBI. Most reports have used NIR light either from lasers or from light-emitting diodes (LEDs). Many studies in small animal models of acute TBI have found positive effects on neurological function, learning and memory, and reduced inflammation and cell death in the brain. There is evidence that PBM can help the brain repair itself by stimulating neurogenesis, upregulating BDNF synthesis, and encouraging synaptogenesis. In healthy human volunteers (including students and healthy elderly women), PBM has been shown to increase regional cerebral blood flow, tissue oxygenation, and improve memory, mood, and cognitive function. Clinical studies have been conducted in patients suffering from the chronic effects of TBI. There have been reports showing improvement in executive function, working memory, and sleep. Functional magnetic resonance imaging has shown modulation of activation in intrinsic brain networks likely to be damaged in TBI (default mode network and salience network).
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA.,Department of Dermatology, Harvard Medical School, Boston, MA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| |
Collapse
|
32
|
Lee HI, Lee SW, Kim NG, Park KJ, Choi BT, Shin YI, Shin HK. Low-level light emitting diode (LED) therapy suppresses inflammasome-mediated brain damage in experimental ischemic stroke. JOURNAL OF BIOPHOTONICS 2017; 10:1502-1513. [PMID: 28164443 DOI: 10.1002/jbio.201600244] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/12/2016] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
Use of photostimulation including low-level light emitting diode (LED) therapy has broadened greatly in recent years because it is compact, portable, and easy to use. Here, the effects of photostimulation by LED (610 nm) therapy on ischemic brain damage was investigated in mice in which treatment started after a stroke in a clinically relevant setting. The mice underwent LED therapy (20 min) twice a day for 3 days, commencing at 4 hours post-ischemia. LED therapy group generated a significantly smaller infarct size and improvements in neurological function based on neurologic test score. LED therapy profoundly reduced neuroinflammatory responses including neutrophil infiltration and microglia activation in the ischemic cortex. LED therapy also decreased cell death and attenuated the NLRP3 inflammasome, in accordance with down-regulation of pro-inflammatory cytokines IL-1β and IL-18 in the ischemic brain. Moreover, the mice with post-ischemic LED therapy showed suppressed TLR-2 levels, MAPK signaling and NF-kB activation. These findings suggest that by suppressing the inflammasome, LED therapy can attenuate neuroinflammatory responses and tissue damage following ischemic stroke. Therapeutic interventions targeting the inflammasome via photostimulation with LED may be a novel approach to ameliorate brain injury following ischemic stroke. Effect of post-ischemic low-level light emitting diode therapy (LED-T) on infarct reduction was mediated by inflammasome suppression.
Collapse
Affiliation(s)
- Hae In Lee
- Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| | - Sae-Won Lee
- Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| | - Nam Gyun Kim
- Medical Research Center of Color Seven, Seoul 137-867, Republic of Korea
| | - Kyoung-Jun Park
- Medical Research Center of Color Seven, Seoul 137-867, Republic of Korea
| | - Byung Tae Choi
- Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 626-770, Republic of Korea
| | - Hwa Kyoung Shin
- Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| |
Collapse
|
33
|
Thunshelle C, Hamblin MR. Transcranial Low-Level Laser (Light) Therapy for Brain Injury. Photomed Laser Surg 2017; 34:587-598. [PMID: 28001759 DOI: 10.1089/pho.2015.4051] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Low-level laser therapy (LLLT) or photobiomodulation (PBM) is a possible treatment for brain injury, including traumatic brain injury (TBI). METHODS We review the fundamental mechanisms at the cellular and molecular level and the effects on the brain are discussed. There are several contributing processes that have been proposed to lead to the beneficial effects of PBM in treating TBI such as stimulation of neurogenesis, a decrease in inflammation, and neuroprotection. Both animal and clinical trials for ischemic stroke are outlined. A number of articles have shown how transcranial LLLT (tLLLT) is effective at increasing memory, learning, and the overall neurological performance in rodent models with TBI. RESULTS Our laboratory has conducted three different studies on the effects of tLLLT on mice with TBI. The first studied pulsed against continuous laser irradiation, finding that 10 Hz pulsed was the best. The second compared four different wavelengths, discovering only 660 and 810 nm to have any effectiveness, whereas 732 and 980 nm did not. The third looked at varying regimens of daily laser treatments (1, 3, and 14 days) and found that 14 laser applications was excessive. We also review several studies of the effects of tLLLT on neuroprogenitor cells, brain-derived neurotrophic factor and synaptogenesis, immediate early response knockout mice, and tLLLT in combination therapy with metabolic inhibitors. CONCLUSIONS Finally, some clinical studies in TBI patients are covered.
Collapse
Affiliation(s)
- Connor Thunshelle
- 1 Harvard College , Cambridge, Massachusetts.,2 Wellman Center for Photomedicine , Massachusetts General Hospital, Boston, Massachusetts
| | - Michael R Hamblin
- 2 Wellman Center for Photomedicine , Massachusetts General Hospital, Boston, Massachusetts.,3 Department of Dermatology, Harvard Medical School , Boston, Massachusetts.,4 Harvard-MIT Division of Health Sciences and Technology , Cambridge, Massachusetts
| |
Collapse
|
34
|
Beirne K, Rozanowska M, Votruba M. Photostimulation of mitochondria as a treatment for retinal neurodegeneration. Mitochondrion 2017; 36:85-95. [PMID: 28499983 DOI: 10.1016/j.mito.2017.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 02/15/2017] [Accepted: 05/08/2017] [Indexed: 01/01/2023]
Abstract
Absorption of photon energy by neuronal mitochondria leads to numerous downstream neuroprotective effects. Red and near infrared (NIR) light are associated with significantly less safety concerns than light of shorter wavelengths and they are therefore, the optimal choice for irradiating the retina. Potent neuroprotective effects have been demonstrated in various models of retinal damage, by red/NIR light, with limited data from human studies showing its ability to improve visual function. Improved neuronal mitochondrial function, increased blood flow to neural tissue, upregulation of cell survival mediators and restoration of normal microglial function have all been proposed as potential underlying mechanisms of red/NIR light.
Collapse
Affiliation(s)
- Kathy Beirne
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Cardiff Institute for Tissue Engineering and Repair, Cardiff University, Cardiff, UK.
| | - Malgorzata Rozanowska
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Cardiff Institute for Tissue Engineering and Repair, Cardiff University, Cardiff, UK.
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Cardiff Institute for Tissue Engineering and Repair, Cardiff University, Cardiff, UK; Cardiff Eye Unit, University Hospital of Wales, Cardiff, UK.
| |
Collapse
|
35
|
Félix Garza ZC, Liebmann J, Born M, Hilbers PAJ, van Riel NAW. A Dynamic Model for Prediction of Psoriasis Management by Blue Light Irradiation. Front Physiol 2017; 8:28. [PMID: 28184200 PMCID: PMC5266737 DOI: 10.3389/fphys.2017.00028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/11/2017] [Indexed: 11/13/2022] Open
Abstract
Clinical investigations prove that blue light irradiation reduces the severity of psoriasis vulgaris. Nevertheless, the mechanisms involved in the management of this condition remain poorly defined. Despite the encouraging results of the clinical studies, no clear guidelines are specified in the literature for the irradiation scheme regime of blue light-based therapy for psoriasis. We investigated the underlying mechanism of blue light irradiation of psoriatic skin, and tested the hypothesis that regulation of proliferation is a key process. We implemented a mechanistic model of cellular epidermal dynamics to analyze whether a temporary decrease of keratinocytes hyper-proliferation can explain the outcome of phototherapy with blue light. Our results suggest that the main effect of blue light on keratinocytes impacts the proliferative cells. They show that the decrease in the keratinocytes proliferative capacity is sufficient to induce a transient decrease in the severity of psoriasis. To study the impact of the therapeutic regime on the efficacy of psoriasis treatment, we performed simulations for different combinations of the treatment parameters, i.e., length of treatment, fluence (also referred to as dose), and intensity. These simulations indicate that high efficacy is achieved by regimes with long duration and high fluence levels, regardless of the chosen intensity. Our modeling approach constitutes a framework for testing diverse hypotheses on the underlying mechanism of blue light-based phototherapy, and for designing effective strategies for the treatment of psoriasis.
Collapse
Affiliation(s)
- Zandra C Félix Garza
- Department of Biomedical Engineering, Eindhoven University of Technology Eindhoven, Netherlands
| | - Joerg Liebmann
- Philips Technologie GmbH, Innovative Technologies Aachen, Germany
| | - Matthias Born
- Philips Technologie GmbH, Innovative Technologies Aachen, Germany
| | - Peter A J Hilbers
- Department of Biomedical Engineering, Eindhoven University of Technology Eindhoven, Netherlands
| | - Natal A W van Riel
- Department of Biomedical Engineering, Eindhoven University of Technology Eindhoven, Netherlands
| |
Collapse
|
36
|
Abstract
Transcranial photobiomodulation (PBM) also known as low level laser therapy (tLLLT) relies on the use of red/NIR light to stimulate, preserve and regenerate cells and tissues. The mechanism of action involves photon absorption in the mitochondria (cytochrome c oxidase), and ion channels in cells leading to activation of signaling pathways, up-regulation of transcription factors, and increased expression of protective genes. We have studied PBM for treating traumatic brain injury (TBI) in mice using a NIR laser spot delivered to the head. Mice had improved memory and learning, increased neuroprogenitor cells in the dentate gyrus and subventricular zone, increased BDNF and more synaptogenesis in the cortex. These highly beneficial effects on the brain suggest that the applications of tLLLT are much broader than at first conceived. Other groups have studied stroke (animal models and clinical trials), Alzheimer's disease, Parkinson's disease, depression, and cognitive enhancement in healthy subjects.
Collapse
Affiliation(s)
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
37
|
Lee HI, Park JH, Park MY, Kim NG, Park KJ, Choi BT, Shin YI, Shin HK. Pre-conditioning with transcranial low-level light therapy reduces neuroinflammation and protects blood-brain barrier after focal cerebral ischemia in mice. Restor Neurol Neurosci 2016; 34:201-14. [PMID: 26889965 DOI: 10.3233/rnn-150559] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Transcranial low-level light therapy (LLLT) has gained interest as a non-invasive, inexpensive and safe method of modulating neurological and psychological functions in recent years. This study was designed to examine the preventive effects of LLLT via visible light source against cerebral ischemia at the behavioral, structural and neurochemical levels. METHODS The mice received LLLT twice a day for 2 days prior to photothrombotic cortical ischemia. RESULTS LLLT significantly reduced infarct size and edema and improved neurological and motor function 24 h after ischemic injury. In addition, LLLT markedly inhibited Iba-1- and GFAP-positive cells, which was accompanied by a reduction in the expression of inflammatory mediators and inhibition of MAPK activation and NF-κB translocation in the ischemic cortex. Concomitantly, LLLT significantly attenuated leukocyte accumulation and infiltration into the infarct perifocal region. LLLT also prevented BBB disruption after ischemic events, as indicated by a reduction of Evans blue leakage and water content. These findings were corroborated by immunofluorescence staining of the tight junction-related proteins in the ischemic cortex in response to LLLT. CONCLUSIONS Non-invasive intervention of LLLT in ischemic brain injury may provide a significant functional benefit with an underlying mechanism possibly being suppression of neuroinflammation and reduction of BBB disruption.
Collapse
Affiliation(s)
- Hae In Lee
- Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Jung Hwa Park
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Min Young Park
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Nam Gyun Kim
- Medical Research Center of Color Seven, Seoul, Republic of Korea
| | - Kyoung-Jun Park
- Medical Research Center of Color Seven, Seoul, Republic of Korea
| | - Byung Tae Choi
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea.,Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea.,Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Yong-Ii Shin
- Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National UniversityYangsan Hospital, Yangsan, Gyeongnam, Republic of Korea.,Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea.,Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea.,Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam, Republic of Korea.,Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| |
Collapse
|
38
|
Shining light on the head: Photobiomodulation for brain disorders. BBA CLINICAL 2016; 6:113-124. [PMID: 27752476 PMCID: PMC5066074 DOI: 10.1016/j.bbacli.2016.09.002] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/21/2022]
Abstract
Photobiomodulation (PBM) describes the use of red or near-infrared light to stimulate, heal, regenerate, and protect tissue that has either been injured, is degenerating, or else is at risk of dying. One of the organ systems of the human body that is most necessary to life, and whose optimum functioning is most worried about by humankind in general, is the brain. The brain suffers from many different disorders that can be classified into three broad groupings: traumatic events (stroke, traumatic brain injury, and global ischemia), degenerative diseases (dementia, Alzheimer's and Parkinson's), and psychiatric disorders (depression, anxiety, post traumatic stress disorder). There is some evidence that all these seemingly diverse conditions can be beneficially affected by applying light to the head. There is even the possibility that PBM could be used for cognitive enhancement in normal healthy people. In this transcranial PBM (tPBM) application, near-infrared (NIR) light is often applied to the forehead because of the better penetration (no hair, longer wavelength). Some workers have used lasers, but recently the introduction of inexpensive light emitting diode (LED) arrays has allowed the development of light emitting helmets or "brain caps". This review will cover the mechanisms of action of photobiomodulation to the brain, and summarize some of the key pre-clinical studies and clinical trials that have been undertaken for diverse brain disorders.
Collapse
|
39
|
Cassano P, Petrie SR, Hamblin MR, Henderson TA, Iosifescu DV. Review of transcranial photobiomodulation for major depressive disorder: targeting brain metabolism, inflammation, oxidative stress, and neurogenesis. NEUROPHOTONICS 2016; 3:031404. [PMID: 26989758 PMCID: PMC4777909 DOI: 10.1117/1.nph.3.3.031404] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/02/2016] [Indexed: 05/02/2023]
Abstract
We examined the use of near-infrared and red radiation (photobiomodulation, PBM) for treating major depressive disorder (MDD). While still experimental, preliminary data on the use of PBM for brain disorders are promising. PBM is low-cost with potential for wide dissemination; further research on PBM is sorely needed. We found clinical and preclinical studies via PubMed search (2015), using the following keywords: "near-infrared radiation," "NIR," "low-level light therapy," "low-level laser therapy," or "LLLT" plus "depression." We chose clinically focused studies and excluded studies involving near-infrared spectroscopy. In addition, we used PubMed to find articles that examine the link between PBM and relevant biological processes including metabolism, inflammation, oxidative stress, and neurogenesis. Studies suggest the processes aforementioned are potentially effective targets for PBM to treat depression. There is also clinical preliminary evidence suggesting the efficacy of PBM in treating MDD, and comorbid anxiety disorders, suicidal ideation, and traumatic brain injury. Based on the data collected to date, PBM appears to be a promising treatment for depression that is safe and well-tolerated. However, large randomized controlled trials are still needed to establish the safety and effectiveness of this new treatment for MDD.
Collapse
Affiliation(s)
- Paolo Cassano
- Massachusetts General Hospital, Depression Clinical and Research Program, One Bowdoin Square, 6th Floor, Boston, Massachusetts 02114, United States
- Harvard Medical School, Department of Psychiatry, 401 Park Drive, Boston, Massachusetts 02215, United States
- Address all correspondence to: Paolo Cassano, E-mail:
| | - Samuel R. Petrie
- Massachusetts General Hospital, Depression Clinical and Research Program, One Bowdoin Square, 6th Floor, Boston, Massachusetts 02114, United States
| | - Michael R. Hamblin
- Massachusetts General Hospital, Wellman Center for Photomedicine, 50 Blossom Street, Boston, Massachusetts 02114, United States
- Harvard Medical School, Department of Dermatology, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Theodore A. Henderson
- Synaptic Space, 3979 East Arapahoe Road, Littleton, Colorado 80122, United States
- Neuro-Laser Foundation, Suite 420, 215 South Wadsworth, Lakewood, Colorado 80226, United States
| | - Dan V. Iosifescu
- Mount Sinai Medical School, Mood and Anxiety Disorders Program, 1428 Madison Avenue, New York, New York 10029, United States
- Mount Sinai Medical School, Department of Psychiatry and Neuroscience, 1 Gustave L. Levy Place, New York, New York 10029, United States
| |
Collapse
|
40
|
Meyer DM, Chen Y, Zivin JA. Dose-finding study of phototherapy on stroke outcome in a rabbit model of ischemic stroke. Neurosci Lett 2016; 630:254-258. [PMID: 27345389 DOI: 10.1016/j.neulet.2016.06.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/20/2016] [Indexed: 12/28/2022]
Abstract
GOAL While transcranial laser therapy (TLT) has been shown to improve clinical outcome in a preclinical model of ischemic stroke, optimal timing and dosing has yet to be tested adequately. The purpose of this study was to assess clinical stroke outcome in the Rabbit Small Clot Embolic Model (RSCEM) with dose escalating TLT. METHODS We utilized the rabbit small clot embolic stroke model (RSCEM) using dose-escalating regimens. Behavioral analysis was conducted at 24h post-embolization, allowing for the determination of the effective stroke dose (ES50) or clot amount (mg) that produces neurological deficits in 50% of a group of rabbits. Using the RSCEM, a treatment is considered beneficial if it significantly increases the ES50 compared with the control group. FINDINGS A significant behavioral benefit was seen at triple TLT of 111mW treatment of 2min at 2h post-embolization (6.47±1.06, n=17; p=0.03), compared with the previously used regimen (3.09±0.51, n=15). CONCLUSION TLT results in significant behavioral improvement when administered 2h post-embolization. Studies are warranted to evaluate this therapy in combination with thrombolysis.
Collapse
Affiliation(s)
- Dawn M Meyer
- Department of Neurosciences, UCSD School of Medicine, San Diego, CA, United States.
| | - YongMei Chen
- Department of Neurosciences, UCSD School of Medicine, San Diego, CA, United States
| | - Justin A Zivin
- Department of Neurosciences, UCSD School of Medicine, San Diego, CA, United States
| |
Collapse
|
41
|
Lapchak PA, Boitano PD. A novel method to promote behavioral improvement and enhance mitochondrial function following an embolic stroke. Brain Res 2016; 1646:125-131. [PMID: 27180104 DOI: 10.1016/j.brainres.2016.04.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/05/2016] [Accepted: 04/16/2016] [Indexed: 10/21/2022]
Abstract
Tissue plasminogen activator (tPA) is the only FDA-approved treatment for stroke; tPA increases cerebral reperfusion, blood flow and improved behavior. Novel transcranial laser therapy (TLT) also enhances cerebral blood flow and activates mitochondrial function. Using the rabbit small clot embolic stroke model (RSCEM), we studied the effects of continuous wave TLT (7.5mW/cm(2)) alone or in combination with standardized intravenous (IV) tPA (3.3mg/kg) applied 1h post-embolization on 3 endpoints: 1) behavioral function measured 2 days [effective stroke dose (P50 in mg) producing neurological deficits in 50% of embolized rabbits], 2) intracerebral hemorrhage (ICH) rate, and 3) cortical adenosine-5'-triphosphate (ATP) content was measured 6h following embolization. TLT and tPA significantly (p<0.05) increased P50 values by 95% and 56% (p<0.05), respectively over control. TLT-tPA increased P50 by 136% over control (p<0.05). Embolization reduced cortical ATP content by 39%; decreases that were attenuated by either TLT or tPA treatment (p<0.05). TLT-tPA further enhanced cortical ATP levels 22% above that measured in naïve control. TLT and tPA both effectively and safely, without affecting ICH rate, improved behavioral outcome in embolized rabbits; and there was a trend (p>0.05) for the TLT-tPA combination to further increase P50. TLT and tPA both attenuated stroke-induced ATP deficits, and the combination of tPA and TLT produced an additive effect on ATP levels. This study demonstrates that the combination of TLT-tPA enhances ATP production, and suggests that tPA-induced reperfusion in combination with TLT neuroprotection therapy may optimally protect viable cells in the cortex measured using ATP levels as a marker.
Collapse
Affiliation(s)
- Paul A Lapchak
- Cedars-Sinai Medical Center Department of Neurology & Neurosurgery, Advanced Health Sciences Pavilion Suite 8305, 127 South San Vicente Blvd, Los Angeles 90048, United States.
| | - Paul D Boitano
- Cedars-Sinai Medical Center Department of Neurology & Neurosurgery, Advanced Health Sciences Pavilion Suite 8305, 127 South San Vicente Blvd, Los Angeles 90048, United States.
| |
Collapse
|
42
|
Safety assessment of trans-tympanic photobiomodulation. Lasers Med Sci 2016; 31:323-33. [PMID: 26738500 DOI: 10.1007/s10103-015-1851-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/08/2015] [Indexed: 12/16/2022]
Abstract
We evaluated functional and morphological changes after trans-tympanic laser application using several different powers of photobiomodulation (PBM). The left (L) ears of 17 rats were irradiated for 30 min daily over 14 days using a power density of 909.1 (group A, 5040 J), 1136.4 (group B, 6300 J), and 1363.6 (group C, 7560 J) mW/cm(2). The right (N) ears served as controls. The safety of PBM was determined by endoscopic findings, auditory brainstem response (ABR) thresholds, and histological images of hair cells using confocal microscopy, and light microscopic images of the external auditory canal (EAC) and tympanic membrane (TM). Endoscopic findings revealed severe inflammation in the TM of C group; no other group showed damage in the TM. No significant difference in ABR threshold was found in the PBM-treated groups (excluding the group with TM damage). Confocal microscopy showed no histological difference between the AL and AN, or BL and BN groups. However, light microscopy showed more prominent edema, inflammation, and vascular congestion in the TM of BL ears. This study found a dose-response relationship between laser power parameters and TM changes. These results will be useful for defining future allowance criteria for trans-tympanic laser therapies.
Collapse
|
43
|
Peplow PV. Neuroimmunomodulatory effects of transcranial laser therapy combined with intravenous tPA administration for acute cerebral ischemic injury. Neural Regen Res 2015; 10:1186-90. [PMID: 26487831 PMCID: PMC4590216 DOI: 10.4103/1673-5374.162687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
At present, the only FDA approved treatment for ischemic strokes is intravenous administration of tissue plasminogen activator within 4.5 hours of stroke onset. Owing to this brief window only a small percentage of patients receive tissue plasminogen activator. Transcranial laser therapy has been shown to be effective in animal models of acute ischemic stroke, resulting in significant improvement in neurological score and function. NEST-1 and NEST-2 clinical trials in human patients have demonstrated the safety and positive trends in efficacy of transcranial laser therapy for the treatment of ischemic stroke when initiated close to the time of stroke onset. Combining intravenous tissue plasminogen activator treatment with transcranial laser therapy may provide better functional outcomes. Statins given within 4 weeks of stroke onset improve stroke outcomes at 90 days compared to patients not given statins, and giving statins following transcranial laser therapy may provide an effective treatment for patients not able to be given tissue plasminogen activator due to time constraints.
Collapse
Affiliation(s)
- Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
44
|
Lapchak PA, Boitano PD, Butte PV, Fisher DJ, Hölscher T, Ley EJ, Nuño M, Voie AH, Rajput PS. Transcranial Near-Infrared Laser Transmission (NILT) Profiles (800 nm): Systematic Comparison in Four Common Research Species. PLoS One 2015; 10:e0127580. [PMID: 26039354 PMCID: PMC4454538 DOI: 10.1371/journal.pone.0127580] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 04/16/2015] [Indexed: 12/14/2022] Open
Abstract
Background and Purpose Transcranial near-infrared laser therapy (TLT) is a promising and novel method to promote neuroprotection and clinical improvement in both acute and chronic neurodegenerative diseases such as acute ischemic stroke (AIS), traumatic brain injury (TBI), and Alzheimer’s disease (AD) patients based upon efficacy in translational animal models. However, there is limited information in the peer-reviewed literature pertaining to transcranial near-infrared laser transmission (NILT) profiles in various species. Thus, in the present study we systematically evaluated NILT characteristics through the skull of 4 different species: mouse, rat, rabbit and human. Results Using dehydrated skulls from 3 animal species, using a wavelength of 800nm and a surface power density of 700 mW/cm2, NILT decreased from 40.10% (mouse) to 21.24% (rat) to 11.36% (rabbit) as skull thickness measured at bregma increased from 0.44 mm in mouse to 0.83 mm in rat and then 2.11 mm in rabbit. NILT also significantly increased (p<0.05) when animal skulls were hydrated (i.e. compared to dehydrated); but there was no measurable change in thickness due to hydration. In human calvaria, where mean thickness ranged from 7.19 mm at bregma to 5.91 mm in the parietal skull, only 4.18% and 4.24% of applied near-infrared light was transmitted through the skull. There was a slight (9.2-13.4%), but insignificant effect of hydration state on NILT transmission of human skulls, but there was a significant positive correlation between NILT and thickness at bregma and parietal skull, in both hydrated and dehydrated states. Conclusion This is the first systematic study to demonstrate differential NILT through the skulls of 4 different species; with an inverse relationship between NILT and skull thickness. With animal skulls, transmission profiles are dependent upon the hydration state of the skull, with significantly greater penetration through hydrated skulls compared to dehydrated skulls. Using human skulls, we demonstrate a significant correlation between thickness and penetration, but there was no correlation with skull density. The results suggest that TLT should be optimized in animals using novel approaches incorporating human skull characteristics, because of significant variance of NILT profiles directly related to skull thickness.
Collapse
Affiliation(s)
- Paul A. Lapchak
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Neurosurgery, Cedars-Sinai Medical center, Los Angeles, California, United States of America
- * E-mail:
| | - Paul D. Boitano
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Pramod V. Butte
- Department of Neurosurgery, Cedars-Sinai Medical center, Los Angeles, California, United States of America
| | - David J. Fisher
- BURL Concepts Inc., San Diego, California, United States of America
| | - Thilo Hölscher
- BURL Concepts Inc., San Diego, California, United States of America
| | - Eric J. Ley
- Department of Surgery, Cedars-Sinai Medical center, Los Angeles, California, United States of America
| | - Miriam Nuño
- Department of Neurosurgery, Cedars-Sinai Medical center, Los Angeles, California, United States of America
| | - Arne H. Voie
- BURL Concepts Inc., San Diego, California, United States of America
| | - Padmesh S. Rajput
- Department of Neurosurgery, Cedars-Sinai Medical center, Los Angeles, California, United States of America
| |
Collapse
|
45
|
Hearst SM, Shao Q, Lopez M, Raucher D, Vig PJS. Focused cerebellar laser light induced hyperthermia improves symptoms and pathology of polyglutamine disease SCA1 in a mouse model. THE CEREBELLUM 2015; 13:596-606. [PMID: 24930030 DOI: 10.1007/s12311-014-0576-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Spinocerebellar ataxia 1 (SCA1) results from pathologic glutamine expansion in the ataxin-1 protein (ATXN1). This misfolded ATXN1 causes severe Purkinje cell (PC) loss and cerebellar ataxia in both humans and mice with the SCA1 disease. The molecular chaperone heat-shock proteins (HSPs) are known to modulate polyglutamine protein aggregation and are neuroprotective. Since HSPs are induced under stress, we explored the effects of focused laser light induced hyperthermia (HT) on HSP-mediated protection against ATXN1 toxicity. We first tested the effects of HT in a cell culture model and found that HT induced Hsp70 and increased its localization to nuclear inclusions in HeLa cells expressing GFP-ATXN1[82Q]. HT treatment decreased ATXN1 aggregation by making GFP-ATXN1[82Q] inclusions smaller and more numerous compared to non-treated cells. Further, we tested our HT approach in vivo using a transgenic (Tg) mouse model of SCA1. We found that our laser method increased cerebellar temperature from 38 to 40 °C without causing any neuronal damage or inflammatory response. Interestingly, mild cerebellar HT stimulated the production of Hsp70 to a significant level. Furthermore, multiple exposure of focused cerebellar laser light induced HT to heterozygous SCA1 transgenic (Tg) mice significantly suppressed the SCA1 phenotype as compared to sham-treated control animals. Moreover, in treated SCA1 Tg mice, the levels of PC calcium signaling/buffering protein calbindin-D28k markedly increased followed by a reduction in PC neurodegenerative morphology. Taken together, our data suggest that laser light induced HT is a novel non-invasive approach to treat SCA1 and maybe other polyglutamine disorders.
Collapse
Affiliation(s)
- Scoty M Hearst
- Department of Neurology, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | | | | | | | | |
Collapse
|
46
|
Tedford CE, DeLapp S, Jacques S, Anders J. Quantitative analysis of transcranial and intraparenchymal light penetration in human cadaver brain tissue. Lasers Surg Med 2015; 47:312-22. [PMID: 25772014 DOI: 10.1002/lsm.22343] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND OBJECTIVE Photobiomodulation (PBM) also known as low-level light therapy has been used successfully for the treatment of injury and disease of the nervous system. The use of PBM to treat injury and diseases of the brain requires an in-depth understanding of light propagation through tissues including scalp, skull, meninges, and brain. This study investigated the light penetration gradients in the human cadaver brain using a Transcranial Laser System with a 30 mm diameter beam of 808 nm wavelength light. In addition, the wavelength-dependence of light scatter and absorbance in intraparenchymal brain tissue using 660, 808, and 940 nm wavelengths was investigated. STUDY DESIGN/MATERIAL AND METHODS Intact human cadaver heads (n = 8) were obtained for measurement of light propagation through the scalp/skull/meninges and into brain tissue. The cadaver heads were sectioned in either the transverse or mid-sagittal. The sectioned head was mounted into a cranial fixture with an 808 nm wavelength laser system illuminating the head from beneath with either pulsed-wave (PW) or continuous-wave (CW) laser light. A linear array of nine isotropic optical fibers on a 5 mm pitch was inserted into the brain tissue along the optical axis of the beam. Light collected from each fiber was delivered to a multichannel power meter. As the array was lowered into the tissue, the power from each probe was recorded at 5 mm increments until the inner aspect of the dura mater was reached. Intraparenchymal light penetration measurements were made by delivering a series of wavelengths (660, 808, and 940 nm) through a separate optical fiber within the array, which was offset from the array line by 5 mm. Local light penetration was determined and compared across the selected wavelengths. RESULTS Unfixed cadaver brains provide good anatomical localization and reliable measurements of light scatter and penetration in the CNS tissues. Transcranial application of 808 nm wavelength light penetrated the scalp, skull, meninges, and brain to a depth of approximately 40 mm with an effective attenuation coefficient for the system of 2.22 cm(-1) . No differences were observed in the results between the PW and CW laser light. The intraparenchymal studies demonstrated less absorption and scattering for the 808 nm wavelength light compared to the 660 or 940 nm wavelengths. CONCLUSIONS Transcranial light measurements of unfixed human cadaver brains allowed for determinations of light penetration variables. While unfixed human cadaver studies do not reflect all the conditions seen in the living condition, comparisons of light scatter and penetration and estimates of fluence levels can be used to establish further clinical dosing. The 808 nm wavelength light demonstrated superior CNS tissue penetration.
Collapse
|
47
|
The effects of transcranial LED therapy (TCLT) on cerebral blood flow in the elderly women. Lasers Med Sci 2014; 30:339-46. [DOI: 10.1007/s10103-014-1669-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 09/24/2014] [Indexed: 12/11/2022]
|
48
|
Fitzgerald M. Strategies to limit dysmyelination during secondary degeneration following neurotrauma. Neural Regen Res 2014; 9:1096-9. [PMID: 25206765 PMCID: PMC4146096 DOI: 10.4103/1673-5374.135307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2014] [Indexed: 11/04/2022] Open
Affiliation(s)
- Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Hackett Drive, Crawley, WA 6009, Australia
| |
Collapse
|
49
|
Zhang Q, Zhou C, Hamblin MR, Wu MX. Low-level laser therapy effectively prevents secondary brain injury induced by immediate early responsive gene X-1 deficiency. J Cereb Blood Flow Metab 2014; 34:1391-401. [PMID: 24849666 PMCID: PMC4126101 DOI: 10.1038/jcbfm.2014.95] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 04/10/2014] [Accepted: 05/06/2014] [Indexed: 01/14/2023]
Abstract
A mild insult to the brain can sometimes trigger secondary brain injury, causing severe postconcussion syndrome, but the underlying mechanism is ill understood. We show here that secondary brain injury occurs consistently in mice lacking immediate early responsive gene X-1 (IEX-1), after a gentle impact to the head, which closely simulates mild traumatic brain injury in humans. The pathologic lesion was characterized by extensive cell death, widespread leukocyte infiltrates, and severe tissue loss. On the contrary, a similar insult did not induce any secondary injury in wild-type mice. Strikingly, noninvasive exposure of the injured head to a low-level laser at 4 hours after injury almost completely prevented the secondary brain injury in IEX-1 knockout mice. The low-level laser therapy (LLLT) suppressed proinflammatory cytokine expression like interleukin (IL)-1β and IL-6 but upregulated TNF-α. Moreover, although lack of IEX-1 compromised ATP synthesis, LLLT elevated its production in injured brain. The protective effect of LLLT may be ascribed to enhanced ATP production and selective modulation of proinflammatory mediators. This new closed head injury model provides an excellent tool to investigate the pathogenesis of secondary brain injury as well as the mechanism underlying the beneficial effect of LLLT.
Collapse
Affiliation(s)
- Qi Zhang
- 1] Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA [2] Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Chang Zhou
- 1] Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA [2] Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael R Hamblin
- 1] Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA [2] Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA [3] Affiliated faculty member of the Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| | - Mei X Wu
- 1] Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA [2] Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA [3] Affiliated faculty member of the Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
50
|
Konstantinović LM, Jelić MB, Jeremić A, Stevanović VB, Milanović SD, Filipović SR. Transcranial application of near-infrared low-level laser can modulate cortical excitability. Lasers Surg Med 2013; 45:648-53. [PMID: 24136303 DOI: 10.1002/lsm.22190] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2013] [Indexed: 11/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Near-infrared low-level laser (NIR-LLL) irradiation penetrates scalp and skull and can reach superficial layers of the cerebral cortex. It was shown to improve the outcome of acute stroke in both animal and human studies. In this study we evaluated whether transcranial laser stimulation (TLS) with NIR-LLL can modulate the excitability of the motor cortex (M1) as measured by transcranial magnetic stimulation (TMS). METHODS TLS was applied for 5 minutes over the representation of the right first dorsal interosseal muscle (FDI) in left primary motor cortex (M1), in 14 healthy subjects. Motor evoked potentials (MEPs) from the FDI, elicited by single-pulse TMS, were measured at baseline and up to 30 minutes after the TLS. RESULTS The average MEP size was significantly reduced during the first 20 minutes following the TLS. The pattern was present in 10 (71.5%) of the participants. The MEP size reduction correlated negatively with the motor threshold at rest. CONCLUSIONS TLS with NIR-LLL induced transitory reduction of the excitability of the stimulated cortex. These findings give further insights into the mechanisms of TLS effects in the human cerebral cortex, paving the way for potential applications of TLS in treatment of stroke and in other clinical settings.
Collapse
Affiliation(s)
- Ljubica M Konstantinović
- Department of Rehabilitation, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia; Klinika za Rehabilitaciju "Dr Miroslav Zotović", 11000, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|