1
|
Huang Y, Chen SR, Pan HL. α2δ-1-Linked NMDA and AMPA Receptors in Neuropathic Pain and Gabapentinoid Action. J Neurochem 2025; 169:e70064. [PMID: 40191897 PMCID: PMC11995887 DOI: 10.1111/jnc.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025]
Abstract
Chronic neuropathic pain is a debilitating condition that presents a significant therapeutic challenge. Unlike nociceptive pain, neuropathic pain is predominantly driven by glutamate NMDA receptors (NMDARs) and/or Ca2+-permeable AMPA receptors (CP-AMPARs) at synapses between primary afferent nerves and excitatory neurons in the spinal dorsal horn. The α2δ-1 protein, encoded by Cacna2d1 and historically recognized as a subunit of voltage-activated Ca2+ channels, is the primary target of gabapentinoids, such as gabapentin and pregabalin, which are widely prescribed for neuropathic pain and epilepsy. However, gabapentinoids have minimal effects on Ca2+ channel activity. Recent studies reveal that α2δ-1 plays a pivotal role in amplifying nociceptive input to the spinal cord in neuropathic pain. This action is mediated through its dynamic physical interactions with phosphorylated NMDARs and GluA1/GluA2 subunits via its intrinsically disordered C-terminal region. α2δ-1 not only promotes synaptic trafficking of NMDARs but also disrupts heteromeric assembly of GluA1/GluA2 subunits in the spinal dorsal horn. The central function of α2δ-1 is to elevate intracellular Ca2+ concentrations at both presynaptic and postsynaptic sites, augmenting nociceptive transmission. Consequently, α2δ-1 serves as a dual regulator coordinating synaptic expression of NMDARs and GluA1 homomeric CP-AMPARs, a function that underlies the therapeutic actions of gabapentinoids. By inhibiting α2δ-1, gabapentinoids reduce the hyperactivity of synaptic α2δ-1-bound NMDARs and CP-AMPARs, thereby dampening the excessive excitatory synaptic transmission characteristic of neuropathic pain. These newly identified roles of α2δ-1 in orchestrating glutamatergic synaptic plasticity suggest that gabapentinoids could be repurposed for treating other neurological disorders involving dysregulated synaptic NMDARs and CP-AMPARs.
Collapse
Affiliation(s)
- Yuying Huang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
2
|
Pan L, Li T, Wang R, Deng W, Pu H, Deng M. Roles of Phosphorylation of N-Methyl-D-Aspartate Receptor in Chronic Pain. Cell Mol Neurobiol 2023; 43:155-175. [PMID: 35032275 PMCID: PMC11415214 DOI: 10.1007/s10571-022-01188-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/03/2022] [Indexed: 01/07/2023]
Abstract
Phosphorylation of N-methyl-D-aspartate receptor (NMDAR) is widely regarded as a vital modification of synaptic function. Various protein kinases are responsible for direct phosphorylation of NMDAR, such as cyclic adenosine monophosphate-dependent protein kinase A, protein kinase C, Ca2+/calmodulin-dependent protein kinase II, Src family protein tyrosine kinases, cyclin-dependent kinase 5, and casein kinase II. The detailed function of these kinases on distinct subunits of NMDAR has been reported previously and contributes to phosphorylation at sites predominately within the C-terminal of NMDAR. Phosphorylation underlies both structural and functional changes observed in chronic pain, and studies have demonstrated that inhibitors of kinases are significantly effective in alleviating pain behavior in different chronic pain models. In addition, the exploration of drugs that aim to disrupt the interaction between kinases and NMDAR is promising in clinical research. Based on research regarding the modulation of NMDAR in chronic pain models, this review provides an overview of the phosphorylation of NMDAR-related mechanisms underlying chronic pain to elucidate molecular and pharmacologic references for chronic pain management.
Collapse
Affiliation(s)
- Liangyu Pan
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Tiansheng Li
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Rui Wang
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Weiheng Deng
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, Hunan, China.
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
3
|
Wistrom E, Chase R, Smith PR, Campbell ZT. A compendium of validated pain genes. WIREs Mech Dis 2022; 14:e1570. [PMID: 35760453 PMCID: PMC9787016 DOI: 10.1002/wsbm.1570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022]
Abstract
The development of novel pain therapeutics hinges on the identification and rigorous validation of potential targets. Model organisms provide a means to test the involvement of specific genes and regulatory elements in pain. Here we provide a list of genes linked to pain-associated behaviors. We capitalize on results spanning over three decades to identify a set of 242 genes. They support a remarkable diversity of functions spanning action potential propagation, immune response, GPCR signaling, enzymatic catalysis, nucleic acid regulation, and intercellular signaling. Making use of existing tissue and single-cell high-throughput RNA sequencing datasets, we examine their patterns of expression. For each gene class, we discuss archetypal members, with an emphasis on opportunities for additional experimentation. Finally, we discuss how powerful and increasingly ubiquitous forward genetic screening approaches could be used to improve our ability to identify pain genes. This article is categorized under: Neurological Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Eric Wistrom
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Rebecca Chase
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Patrick R. Smith
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Zachary T. Campbell
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA,Center for Advanced Pain StudiesUniversity of Texas at DallasRichardsonTexasUSA
| |
Collapse
|
4
|
Zhang X, Liu P, He X, Jiang Z, Wang Q, Gu N, Lu Y. The PKCγ neurons in anterior cingulate cortex contribute to the development of neuropathic allodynia and pain-related emotion. Mol Pain 2021; 17:17448069211061973. [PMID: 34898326 PMCID: PMC8679404 DOI: 10.1177/17448069211061973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background While the PKCγ neurons in spinal dorsal horn play an indispensable part in neuropathic
allodynia, the exact effect of PKCγ neurons of brain regions in neuropathic pain remains
elusive. Mounting research studies have depicted that the anterior cingulate cortex
(ACC) is closely linked with pain perception and behavior, the present study was
designed to investigate the contribution of PKCγ neurons in ACC to neuropathic allodynia
and pain-related emotion in newly developed Prkcg-P2A-Tdtomato mice. Methods The c-fos expression in response to innocuous stimulation was used to monitor the
activity of PKCγ in CCI (chronic constriction injury of the sciatic nerve) induced
neuropathic pain condition. Activating or silencing ACC PKCγ neurons by chemogenetics
was applied to observe the changes of pain behavior. The excitability of ACC PKCγ
neurons in normal and CCI mice was compared by patch-clamp whole-cell recordings. Results The PKCγ-Tdtomato neurons were mainly distributed in layer III-Vof ACC. The Tdtomato
was mainly expressed in ACC pyramidal neurons demonstrated by intracellular staining.
The c-fos expression in ACC PKCγ neurons in response to innocuous stimulation was
obviously elevated in CCI mice. The patch clamp recordings showed that ACC PKCγ-Tdtomato
neurons were largely activated in CCI mice. Chemogenetic activation of ACC PKCγ neurons
in Prkcg-icre mice induced mechanical allodynia and pain-related aversive behavior,
conversely, silencing them in CCI condition significantly reversed the mechanical
allodynia and pain-related place aversive behavior. Conclusion We conclude that the PKCγ neurons in ACC are closely linked with neuropathic allodynia
and pain-related emotional behaviors.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, 12644Fourth Military Medical University, Xian, China
| | - Peng Liu
- Department of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, 12644Fourth Military Medical University, Xian, China
| | - Xiaolan He
- Department of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, 12644Fourth Military Medical University, Xian, China
| | - Zhenhua Jiang
- Department of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, 12644Fourth Military Medical University, Xian, China
| | - Qun Wang
- Department of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, 12644Fourth Military Medical University, Xian, China
| | - Nan Gu
- Department of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, 12644Fourth Military Medical University, Xian, China
| | - Yan Lu
- Department of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, 12644Fourth Military Medical University, Xian, China
| |
Collapse
|
5
|
Red Ginger Oil Affects COX-2 and NMDAR Expression During Inflammatory- or Neuropathy-Induced Chronic Pain in Mice. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.112353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Chronic pain treatment until now is still challenging because of its complex pathopgysiology. Previously, red ginger oil (RGO) reduced pain behavior in a mouse model of chronic pain, but the mechanisms were unclear. Objectives: This study examined the effect of RGO on cyclooxygenase (COX)-2 and the N-methyl-D-aspartate receptor (NMDAR) using inflammatory- or neuropathy-induced chronic pain in mice. Methods: Red ginger was distilled with composition 1:2 using water. The acute toxicity of RGO was evaluated using OECD guidelines 423. Chronic pain was induced in 48 mice by either (1) intraplantar injection of complete Freund’s adjuvant (CFA) (inflammatory group) or (2) partial sciatic nerve ligation (PSNL) (neuropathy group). After seven days, mice were randomly divided into sham, CFA/PSNL, or RGO (at doses of 100, 200, 400, or 600 mg/kg) treatment groups. Treatments were given orally once daily until day 14. On day 15, mice were euthanized, and the brains and spinal cords were removed and fixed in 10% formalin. Hyperalgesia behavior was evaluated using hot plate test. Spinal cord morphology was analyzed via hematoxylin and eosin staining. COX-2 and NMDAR expressions were evaluated by immunohistochemistry. Results: RGO treatment improved spinal cord morphology after the induction of chronic pain. RGO at 600 mg/kg also reduced COX-2 expression in the spinal cord and brain, and reduced NMDAR2B in the spinal cord. However, RGO at 600 mg/kg increased NMDAR2A expression in the spinal cord. Conclusions: RGO administration diminished hyperalgesia in chronic pain models through inhibition of COX-2 and NMDAR2B.
Collapse
|
6
|
Uddin MS, Mamun AA, Rahman MA, Kabir MT, Alkahtani S, Alanazi IS, Perveen A, Ashraf GM, Bin-Jumah MN, Abdel-Daim MM. Exploring the Promise of Flavonoids to Combat Neuropathic Pain: From Molecular Mechanisms to Therapeutic Implications. Front Neurosci 2020; 14:478. [PMID: 32587501 PMCID: PMC7299068 DOI: 10.3389/fnins.2020.00478] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/17/2020] [Indexed: 01/10/2023] Open
Abstract
Neuropathic pain (NP) is the result of irregular processing in the central or peripheral nervous system, which is generally caused by neuronal injury. The management of NP represents a great challenge owing to its heterogeneous profile and the significant undesirable side effects of the frequently prescribed psychoactive agents, including benzodiazepines (BDZ). Currently, several established drugs including antidepressants, anticonvulsants, topical lidocaine, and opioids are used to treat NP, but they exert a wide range of adverse effects. To reduce the burden of adverse effects, we need to investigate alternative therapeutics for the management of NP. Flavonoids are the most common secondary metabolites of plants used in folkloric medicine as tranquilizers, and have been claimed to have a selective affinity to the BDZ binding site. Several studies in animal models have reported that flavonoids can reduce NP. In this paper, we emphasize the potentiality of flavonoids for the management of NP.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md Ataur Rahman
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | | | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ibtesam S Alanazi
- Department of Biology, Faculty of Sciences, Univesity of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
7
|
Zhang X, Hartung JE, Bortsov AV, Kim S, O'Buckley SC, Kozlowski J, Nackley AG. Sustained stimulation of β 2- and β 3-adrenergic receptors leads to persistent functional pain and neuroinflammation. Brain Behav Immun 2018; 73:520-532. [PMID: 29935309 PMCID: PMC6129429 DOI: 10.1016/j.bbi.2018.06.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022] Open
Abstract
Functional pain syndromes, such as fibromyalgia and temporomandibular disorder, are associated with enhanced catecholamine tone and decreased levels of catechol-O-methyltransferase (COMT; an enzyme that metabolizes catecholamines). Consistent with clinical syndromes, our lab has shown that sustained 14-day delivery of the COMT inhibitor OR486 in rodents results in pain at multiple body sites and pain-related volitional behaviors. The onset of COMT-dependent functional pain is mediated by peripheral β2- and β3-adrenergic receptors (β2- and β3ARs) through the release of the pro-inflammatory cytokines tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Here, we first sought to investigate the role of β2- and β3ARs and downstream mediators in the maintenance of persistent functional pain. We then aimed to characterize the resulting persistent inflammation in neural tissues (neuroinflammation), characterized by activated glial cells and phosphorylation of the mitogen-activated protein kinases (MAPKs) p38 and extracellular signal-regulated kinase (ERK). Separate groups of rats were implanted with subcutaneous osmotic mini-pumps to deliver OR486 (15 mg/kg/day) or vehicle for 14 days. The β2AR antagonist ICI118551 and β3AR antagonist SR59230A were co-administrated subcutaneously with OR486 or vehicle either on day 0 or day 7. The TNFα inhibitor Etanercept, the p38 inhibitor SB203580, or the ERK inhibitor U0126 were delivered intrathecally following OR486 cessation on day 14. Behavioral responses, pro-inflammatory cytokine levels, glial cell activation, and MAPK phosphorylation were measured over the course of 35 days. Our results demonstrate that systemic delivery of OR486 leads to mechanical hypersensitivity that persists for at least 3 weeks after OR486 cessation. Corresponding increases in spinal TNFα, IL-1β, and IL-6 levels, microglia and astrocyte activation, and neuronal p38 and ERK phosphorylation were observed on days 14-35. Persistent functional pain was alleviated by systemic delivery of ICI118551 and SR59230A beginning on day 0, but not day 7, and by spinal delivery of Etanercept or SB203580 beginning on day 14. These results suggest that peripheral β2- and β3ARs drive persistent COMT-dependent functional pain via increased activation of immune cells and production of pro-inflammatory cytokines, which promote neuroinflammation and nociceptor activation. Thus, therapies that resolve neuroinflammation may prove useful in the management of functional pain syndromes.
Collapse
MESH Headings
- Animals
- Catechol O-Methyltransferase/metabolism
- Catechol O-Methyltransferase Inhibitors/metabolism
- Catechols/pharmacology
- Cytokines/metabolism
- Etanercept/pharmacology
- Female
- Fibromyalgia/metabolism
- Fibromyalgia/physiopathology
- Hyperalgesia/metabolism
- Imidazoles/pharmacology
- Interleukin-1beta/metabolism
- Interleukin-6/metabolism
- Male
- Microglia/metabolism
- Mitogen-Activated Protein Kinases
- Neuroglia/metabolism
- Pain/metabolism
- Pain/physiopathology
- Phosphorylation
- Propanolamines/pharmacology
- Pyridines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta/metabolism
- Receptors, Adrenergic, beta-2/drug effects
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/physiology
- Receptors, Adrenergic, beta-3/drug effects
- Receptors, Adrenergic, beta-3/metabolism
- Receptors, Adrenergic, beta-3/physiology
- Spinal Cord/metabolism
- Temporomandibular Joint Disorders/metabolism
- Temporomandibular Joint Disorders/physiopathology
- Tumor Necrosis Factor-alpha/metabolism
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Xin Zhang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA; Pain Management Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jane E Hartung
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrey V Bortsov
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Seungtae Kim
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA; Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Republic of Korea
| | - Sandra C O'Buckley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Julia Kozlowski
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Andrea G Nackley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
8
|
Involvement of glycine receptor α1 subunits in cannabinoid-induced analgesia. Neuropharmacology 2018; 133:224-232. [PMID: 29407767 DOI: 10.1016/j.neuropharm.2018.01.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
Abstract
Some cannabinoids have been shown to suppress chronic pain by targeting glycine receptors (GlyRs). Although cannabinoid potentiation of α3 GlyRs is thought to contribute to cannabinoid-induced analgesia, the role of cannabinoid potentiation of α1 GlyRs in cannabinoid suppression of chronic pain remains unclear. Here we report that dehydroxylcannabidiol (DH-CBD), a nonpsychoactive cannabinoid, significantly suppresses chronic inflammatory pain caused by noxious heat stimulation. This effect may involve spinal α1 GlyRs since the expression level of α1 subunits in the spinal cord is positively correlated with CFA-induced inflammatory pain and the GlyRs antagonist strychnine blocks the DH-CBD-induced analgesia. A point-mutation of S296A in TM3 of α1 GlyRs significantly inhibits DH-CBD potentiation of glycine currents (IGly) in HEK-293 cells and neurons in lamina I-II of spinal cord slices. To explore the in vivo consequence of DH-CBD potentiation of α1 GlyRs, we generated a GlyRα1S296A knock-in mouse line. We observed that DH-CBD-induced potentiation of IGly and analgesia for inflammatory pain was absent in GlyRα1S296A knock-in mice. These findings suggest that spinal α1 GlyR is a potential target for cannabinoid analgesia in chronic inflammatory pain.
Collapse
|
9
|
Redondo A, Chamorro PAF, Riego G, Leánez S, Pol O. Treatment with Sulforaphane Produces Antinociception and Improves Morphine Effects during Inflammatory Pain in Mice. J Pharmacol Exp Ther 2017; 363:293-302. [PMID: 28947488 DOI: 10.1124/jpet.117.244376] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/19/2017] [Indexed: 03/08/2025] Open
Abstract
The activation of nuclear factor erythroid 2-related factor 2 (Nrf2) exerts potent antioxidative and anti-inflammatory effects; however, its participation in the modulation of chronic inflammatory pain and on the antinociceptive effects of μ-opioid receptor (MOR) agonists has not been evaluated. We investigated whether the induction of Nrf2 could alleviate chronic inflammatory pain and augment the analgesic effects of morphine and mechanisms implicated. In male C57BL/6 mice with inflammatory pain induced by complete Freund's adjuvant (CFA) subplantarly administered, we assessed: 1) antinociceptive actions of the administration of 5 and 10 mg/kg of a Nrf2 activator, sulforaphane (SFN); and 2) effects of SFN on the antinociceptive actions of morphine and on protein levels of Nrf2, heme oxygenase 1 (HO-1), and NAD(P)H: quinone oxidoreductase 1 (NQO1) enzymes, microglial activation and inducible nitric oxide synthase (NOS2) overexpression, as well as on mitogen-activated protein kinase (MAPK) and MOR expression in the spinal cord and paw of animals with inflammatory pain. Results showed that treatment with SFN inhibited allodynia and hyperalgesia induced by CFA and increased the local antinociceptive actions of morphine. This treatment also augmented the expression of Nrf2, HO-1, NQO1, and MOR, and inhibited NOS2 and CD11b/c overexpression and MAPK phosphorylation induced by inflammation. Thus, this study shows that the induction of Nrf2 might inhibit inflammatory pain and enhance the analgesic effects of morphine by inhibiting oxidative stress and inflammatory responses induced by peripheral inflammation. This study suggests the administration of SFN alone and in combination with morphine are potential new ways of treating chronic inflammatory pain.
Collapse
Affiliation(s)
- Alejandro Redondo
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pablo Aníbal Ferreira Chamorro
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gabriela Riego
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Leánez
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Sung CS, Wen ZH, Feng CW, Chen CH, Huang SY, Chen NF, Chen WF, Wong CS. Potentiation of spinal glutamatergic response in the neuron-glia interactions underlies the intrathecal IL-1β-induced thermal hyperalgesia in rats. CNS Neurosci Ther 2017; 23:580-589. [PMID: 28544775 DOI: 10.1111/cns.12705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 01/09/2023] Open
Abstract
AIMS We previously demonstrated that intrathecal IL-1β upregulated phosphorylation of p38 mitogen-activated protein kinase (P-p38 MAPK) and inducible nitric oxide synthase (iNOS) in microglia and astrocytes in spinal cord, increased nitric oxide (NO) release into cerebrospinal fluid, and induced thermal hyperalgesia in rats. This study investigated the role of spinal glutamatergic response in intrathecal IL-1β-induced nociception in rats. METHODS The pretreatment effects of MK-801 (5 μg), minocycline (20 μg), and SB203580 (5 μg) on intrathecal IL-1β (100 ng) in rats were measured by behavior, Western blotting, CSF analysis, and immunofluorescence studies. RESULTS IL-1β increased phosphorylation of NR-1 (p-NR1) subunit of N-methyl-D-aspartate receptors in neurons and microglia, reduced glutamate transporters (GTs; glutamate/aspartate transporter by 60.9%, glutamate transporter-1 by 55.0%, excitatory amino acid carrier-1 by 39.8%; P<.05 for all), and increased glutamate (29%-133% increase from 1.5 to 12 hours; P<.05) and NO (44%-101% increase from 4 to 12 hours; P<.05) levels in cerebrospinal fluid. MK-801 significantly inhibited all the IL-1β-induced responses; however, minocycline and SB203580 blocked the IL-1β-downregulated GTs and elevated glutamate but not the upregulated p-NR1. CONCLUSION The enhanced glutamatergic response and neuron-glia interaction potentiate the intrathecal IL-1β-activated P-p38/iNOS/NO signaling and thermal hyperalgesia.
Collapse
Affiliation(s)
- Chun-Sung Sung
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chien-Wei Feng
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Chun-Hong Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Shi-Ying Huang
- Center for Neuroscience, National Sun Yat-Sen University, Kaohsiung, Taiwan.,College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Division of Neurosurgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| |
Collapse
|
11
|
In vivo activation of the SK channel in the spinal cord reduces the NMDA receptor antagonist dose needed to produce antinociception in an inflammatory pain model. Pain 2016; 156:849-858. [PMID: 25734988 DOI: 10.1097/j.pain.0000000000000124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
N-methyl-D-aspartate receptor (NMDAR) antagonists have been shown to reduce mechanical hypersensitivity in animal models of inflammatory pain. However, their clinical use is associated with significant dose-limiting side effects. Small-conductance Ca-activated K channels (SK) have been shown to modulate NMDAR activity in the brain. We demonstrate that in vivo activation of SK channels in the spinal cord can alleviate mechanical hypersensitivity in a rat model of inflammatory pain. Intrathecal (i.t.) administration of the SK channel activator, 6,7-dichloro-1H-indole-2,3-dione 3-oxime (NS309), attenuates complete Freund adjuvant (CFA)-induced mechanical hypersensitivity in a dose-dependent manner. Postsynaptic expression of the SK channel subunit, SK3, and apamin-sensitive SK channel-mediated currents recorded from superficial laminae are significantly reduced in the dorsal horn (DH) after CFA. Complete Freund adjuvant-induced decrease in SK-mediated currents can be reversed in vitro by bath application of NS309. In addition, immunostaining for the SK3 subunit indicates that SK3-containing channels within DH neurons can have both somatic and dendritic localization. Double immunostaining shows coexpression of SK3 and NMDAR subunit, NR1, compatible with functional interaction. Moreover, we demonstrate that i.t. coadministration of NS309 with an NMDAR antagonist reduces the dose of NMDAR antagonist, DL-2-amino-5-phosphonopentanoic acid (DL-AP5), required to produce antinociceptive effects in the CFA model. This reduction could attenuate the unwanted side effects associated with NMDAR antagonists, giving this combination potential clinical implications.
Collapse
|
12
|
Zhou XL, Zhang CJ, Wang Y, Wang M, Sun LH, Yu LN, Cao JL, Yan M. EphrinB–EphB signaling regulates spinal pain processing via PKCγ. Neuroscience 2015; 307:64-72. [DOI: 10.1016/j.neuroscience.2015.08.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/02/2015] [Accepted: 08/20/2015] [Indexed: 01/30/2023]
|
13
|
Borges G, Berrocoso E, Mico JA, Neto F. ERK1/2: Function, signaling and implication in pain and pain-related anxio-depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2015; 60:77-92. [PMID: 25708652 DOI: 10.1016/j.pnpbp.2015.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/31/2015] [Accepted: 02/15/2015] [Indexed: 12/15/2022]
Abstract
Despite the increasing knowledge regarding pain modulation, the understanding of the mechanisms behind a complex and pathologic chronic pain condition is still insufficient. These knowledge gaps might result in ineffective therapeutic approaches to relieve painful sensations. As a result, severe untreated chronic pain frequently triggers the onset of new disorders such as depression and/or anxiety, and therefore, both the diagnosis and treatment of patients suffering from chronic pain become seriously compromised, prompting a self-perpetuating cycle of symptomatology. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) are molecules strongly implicated in the somatic component of pain at the spinal cord level and have been emerging as mediators of the emotional-affective component as well. Although these molecules might represent good biomarkers, their use as pharmacological targets is still open to discussion as paradoxical information has been obtained. Here we review the current scientific literature regarding ERK1/2 signaling in the modulation of pain, depression and anxiety, including the emotional-affective spheres of the pain experience.
Collapse
Affiliation(s)
- Gisela Borges
- Neuropsycopharmacology and Psychobiology Research Group, Department of Neuroscience (Pharmacology and Psychiatry), University of Cádiz, 11003 Cádiz, Spain; Departamento de Biologia Experimental, Centro de Investigação Médica da Faculdade de Medicina da Universidade do Porto (CIM-FMUP), 4200-319 Porto, Portugal; Grupo de Morfofisiologia do Sistema Nervoso, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
| | - Esther Berrocoso
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, University of Cádiz, 11510 Cádiz, Spain
| | - Juan Antonio Mico
- Neuropsycopharmacology and Psychobiology Research Group, Department of Neuroscience (Pharmacology and Psychiatry), University of Cádiz, 11003 Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Fani Neto
- Departamento de Biologia Experimental, Centro de Investigação Médica da Faculdade de Medicina da Universidade do Porto (CIM-FMUP), 4200-319 Porto, Portugal; Grupo de Morfofisiologia do Sistema Nervoso, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.
| |
Collapse
|
14
|
Peirs C, Patil S, Bouali-Benazzouz R, Artola A, Landry M, Dallel R. Protein kinase C gamma interneurons in the rat medullary dorsal horn: distribution and synaptic inputs to these neurons, and subcellular localization of the enzyme. J Comp Neurol 2014; 522:393-413. [PMID: 23818225 DOI: 10.1002/cne.23407] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 06/21/2013] [Accepted: 06/21/2013] [Indexed: 12/18/2022]
Abstract
The γ isoform of protein kinase C (PKCγ), which is concentrated in interneurons in the inner part of lamina II (IIi ) of the dorsal horn, has been implicated in the expression of tactile allodynia. Lamina IIi PKCγ interneurons were shown to be activated by tactile inputs and to participate in local circuits through which these inputs can reach lamina I, nociceptive output neurons. That such local circuits are gated by glycinergic inhibition and that A- and C-fibers low threshold mechanoreceptors (LTMRs) terminate in lamina IIi raise the general issue of synaptic inputs to lamina IIi PKCγ interneurons. Combining light and electron microscopic immunochemistry in the rat spinal trigeminal nucleus, we show that PKCγ-immunoreactivity is mostly restricted to interneurons in lamina IIi of the medullary dorsal horn, where they constitute 1/3 of total neurons. The majority of synapses on PKCγ-immunoreactive interneurons are asymmetric (likely excitatory). PKCγ-immunoreactive interneurons appear to receive exclusively myelinated primary afferents in type II synaptic glomeruli. Neither large dense core vesicle terminals nor type I synaptic glomeruli, assumed to be the endings of unmyelinated nociceptive terminals, were found on these interneurons. Moreover, there is no vesicular glutamate transporter 3-immunoreactive bouton, specific to C-LTMRs, on PKCγ-immunoreactive interneurons. PKCγ-immunoreactive interneurons contain GABAA ergic and glycinergic receptors. At the subcellular level, PKCγ-immunoreactivity is mostly concentrated on plasma membranes, close to, but not within, postsynaptic densities. That only myelinated primary afferents were found to contact PKCγ-immunoreactive interneurons suggests that myelinated, but not unmyelinated, LTMRs play a critical role in the expression of mechanical allodynia.
Collapse
Affiliation(s)
- Cédric Peirs
- Inserm/UdA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Université d'Auvergne, Faculté de Chirurgie Dentaire, Clermont-Ferrand, 63000, France
| | | | | | | | | | | |
Collapse
|
15
|
Long-term application of glycine transporter inhibitors acts antineuropathic and modulates spinal N-methyl-D-aspartate receptor subunit NR-1 expression in rats. Anesthesiology 2014; 121:160-9. [PMID: 24598217 DOI: 10.1097/aln.0000000000000203] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Dysfunction of spinal glycinergic neurotransmission is a major pathogenetic factor in neuropathic pain. The synaptic glycine concentration is controlled by the two glycine transporters (GlyT) 1 and 2. GlyT inhibitors act antinociceptive in various animal pain models when applied as bolus. Yet, in some studies, severe neuromotor side effects were reported. The aim of the current study was to elucidate whether continuous inhibition of GlyT ameliorates neuropathic pain without side effects and whether protein expression of GlyT1, GlyT2, or N-methyl-D-aspartate receptor subunit NR-1 in the spinal cord is affected. METHODS In the chronic constriction injury model of neuropathic pain, male Wistar rats received specific GlyT1 and GlyT2 inhibitors (ALX5407 and ALX1393; Sigma-Aldrich, St. Louis, MO) or vehicle for 14 days via subcutaneous osmotic infusion pumps (n = 6). Mechanical allodynia and thermal hyperalgesia were assessed before, after chronic constriction injury, and every 2 days during substance application. At the end of behavioral assessment, the expression of GlyT1, GlyT2, and NR-1 in the spinal cord was determined by Western blot analysis. RESULTS Both ALX5407 and ALX1393 ameliorated thermal hyperalgesia and mechanical allodynia in a time- and dose-dependent manner. Respiratory or neuromotor side effects were not observed. NR-1 expression in the ipsilateral spinal cord was significantly reduced by ALX5407, but not by ALX1393. The expression of GlyT1 and GlyT2 remained unchanged. CONCLUSIONS Continuous systemic inhibition of GlyT significantly ameliorates neuropathic pain in rats. Thus, GlyT represent promising targets in pain research. Modulation of N-methyl-D-aspartate receptor expression might represent a novel mechanism for the antinociceptive action of GyT1 inhibitors.
Collapse
|
16
|
Coupling of serotonergic input to NMDA receptor-phosphorylation following peripheral nerve injury via rapid, synaptic up-regulation of ND2. Exp Neurol 2014; 255:86-95. [DOI: 10.1016/j.expneurol.2014.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/31/2014] [Accepted: 02/14/2014] [Indexed: 11/15/2022]
|
17
|
Fairbanks CA, Peterson CD, Speltz RH, Riedl MS, Kitto KF, Dykstra JA, Braun PD, Sadahiro M, Salton SR, Vulchanova L. The VGF-derived peptide TLQP-21 contributes to inflammatory and nerve injury-induced hypersensitivity. Pain 2014; 155:1229-1237. [PMID: 24657450 DOI: 10.1016/j.pain.2014.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 03/03/2014] [Accepted: 03/14/2014] [Indexed: 12/30/2022]
Abstract
VGF (nonacronymic) is a granin-like protein that is packaged and proteolytically processed within the regulated secretory pathway. VGF and peptides derived from its processing have been implicated in neuroplasticity associated with learning, memory, depression, and chronic pain. In sensory neurons, VGF is rapidly increased following peripheral nerve injury and inflammation. Several bioactive peptides generated from the C-terminus of VGF have pronociceptive spinal effects. The goal of the present study was to examine the spinal effects of the peptide TLQP-21 and determine whether it participates in spinal mechanisms of persistent pain. Application of exogenous TLQP-21 induced dose-dependent thermal hyperalgesia in the warm-water immersion tail-withdrawal test. This hyperalgesia was inhibited by a p38 mitogen-activated protein kinase inhibitor, as well as inhibitors of cyclooxygenase and lipoxygenase. We used immunoneutralization of TLQP-21 to determine the function of the endogenous peptide in mechanisms underlying persistent pain. In mice injected intradermally with complete Freund adjuvant, intrathecal treatment with anti-TLQP-21 immediately prior to or 5hours after induction of inflammation dose-dependently inhibited tactile hypersensitivity and thermal hyperalgesia. Intrathecal anti-TL21 administration also attenuated the development and maintenance of tactile hypersensitivity in the spared nerve injury model of neuropathic pain. These results provide evidence that endogenous TLQP-21 peptide contributes to the mechanisms of spinal neuroplasticity after inflammation and nerve injury.
Collapse
Affiliation(s)
- Carolyn A Fairbanks
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA Experimental and Clinical Pharmacology Graduate Program, University of Minnesota, Minneapolis, MN, USA Comparative and Molecular Biosciences Graduate Program, University of Minnesota, St. Paul, MN, USA Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW. Calcium-permeable ion channels in pain signaling. Physiol Rev 2014; 94:81-140. [PMID: 24382884 DOI: 10.1152/physrev.00023.2013] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The detection and processing of painful stimuli in afferent sensory neurons is critically dependent on a wide range of different types of voltage- and ligand-gated ion channels, including sodium, calcium, and TRP channels, to name a few. The functions of these channels include the detection of mechanical and chemical insults, the generation of action potentials and regulation of neuronal firing patterns, the initiation of neurotransmitter release at dorsal horn synapses, and the ensuing activation of spinal cord neurons that project to pain centers in the brain. Long-term changes in ion channel expression and function are thought to contribute to chronic pain states. Many of the channels involved in the afferent pain pathway are permeable to calcium ions, suggesting a role in cell signaling beyond the mere generation of electrical activity. In this article, we provide a broad overview of different calcium-permeable ion channels in the afferent pain pathway and their role in pain pathophysiology.
Collapse
|
19
|
Molet J, Pohl M. Gene-based approaches in pain research and exploration of new therapeutic targets and strategies. Eur J Pharmacol 2013; 716:129-41. [PMID: 23500201 DOI: 10.1016/j.ejphar.2013.01.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 01/17/2013] [Accepted: 01/29/2013] [Indexed: 12/18/2022]
Abstract
Large panel of gene-based techniques is used for many years specifically in the pain research field. From the first identification (cloning) of some "mythic" genes, such as those encoding opioid or capsaicin receptors allowing then the creation of first-generation knockout mice, to the today conditional (time, tissue, cell-type and even pathology-dependent) and regulatable modulation of a gene function, these approaches largely contributed to fundamental leaps forward in our understanding of the function of some proteins and of their interest as possible druggable targets. Perhaps one of the most remarkable evolution in the last years is the passage of these approaches from the bench to the patient; whether it concerns the identification of genes involved in inherited pain insensibility/susceptibility, the search for genetic markers of pain types, the individual pharmacogenomics or even the first gene therapy trials. From many possible variants of gene-grounded techniques used in pain research we focus here on gene knockouts and some recent developments, on viral vectors-based gene transfer and on transgenic models for the tracing of pain pathways. Through these selected examples we attempted to emphasize the immense potential of these approaches and their already well-recognized contribution in both the basic and clinical pain research.
Collapse
Affiliation(s)
- Jenny Molet
- INSERM UMRS 975, CNRS UMR 7225, UPMC, Equipe Douleurs , Faculté de Médecine Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013 Paris, France.
| | | |
Collapse
|
20
|
Involvement of EphB1 receptors signalling in models of inflammatory and neuropathic pain. PLoS One 2013; 8:e53673. [PMID: 23341972 PMCID: PMC3547059 DOI: 10.1371/journal.pone.0053673] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 12/03/2012] [Indexed: 12/12/2022] Open
Abstract
EphB receptors tyrosine kinases and ephrinB ligands were first identified as guidance molecules involved in the establishment of topographical mapping and connectivity in the nervous system during development. Later in development and into adulthood their primary role would switch from guidance to activity-dependent modulation of synaptic efficacy. In sensory systems, they play a role in both the onset of inflammatory and neuropathic pain, and in the establishment of central sensitisation, an NMDA-mediated form of synaptic plasticity thought to underlie most forms of chronic pain. We studied wild type and EphB1 knockout mice in a range of inflammatory and neuropathic pain models to determine 1), whether EphB1 expression is necessary for the onset and/or maintenance of persistent pain, regardless of origin; 2), whether in these models cellular and molecular changes, e.g. phosphorylation of the NR2B subunit of the NMDA receptor, increased c-fos expression or microglial activation, associated with the onset of pain, are affected by the lack of functional EphB1 receptors. Differences in phenotype were examined behaviourally, anatomically, biochemically and electrophysiologically. Our results establish firstly, that functional EphB1 receptors are not essential for the development of normal nociception, thermal or mechanical sensitivity. Secondly, they demonstrate a widespread involvement of EphB1 receptors in chronic pain. NR2B phosphorylation, c-fos expression and microglial activation are all reduced in EphB1 knockout mice. This last finding is intriguing, since microglial activation is supposedly triggered directly by primary afferents, therefore it was not expected to be affected. Interestingly, in some models of long-term pain (days), mechanical and thermal hyperalgesia develop both in wild type and EphB1 knockout mice, but recovery is faster in the latter, indicating that in particular models these receptors are required for the maintenance, rather than the onset of, thermal and mechanical hypersensitivity. This potentially makes them an attractive target for analgesic strategies.
Collapse
|
21
|
Dauch JR, Yanik BM, Hsieh W, Oh SS, Cheng HT. Neuron-astrocyte signaling network in spinal cord dorsal horn mediates painful neuropathy of type 2 diabetes. Glia 2012; 60:1301-15. [PMID: 22573263 DOI: 10.1002/glia.22349] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/13/2012] [Accepted: 04/17/2012] [Indexed: 12/13/2022]
Abstract
Activation of the neuronal-glial network in the spinal cord dorsal horn (SCDH) mediates various chronic painful conditions. We studied spinal neuronal-astrocyte signaling interactions involved in the maintenance of painful diabetic neuropathy (PDN) in type 2 diabetes. We used the db/db mouse, an animal model for PDN of type 2 diabetes, which develops mechanical allodynia from 6 to 12 wk of age. In this study, enhanced substance P expression was detected in the presynaptic sensory fibers innervating lamina I-III in the lumbar SCDH (LSCDH) of the db/db mouse at 10 wk of age. This phenomenon is associated with enhanced spinal ERK1/2 phosphorylation in projection sensory neurons and regional astrocyte activation. In addition, peak phosphorylation of the NR1 subunit of N-methyl-D-aspartate receptor (NMDAR), along with upregulation of neuronal and inducible nitric oxide synthase (nNOS and iNOS) expression were detected in diabetic mice. Expression of nNOS and iNOS was detected in both interneurons and astrocytes in lamina I-III of the LSCDH. Treatment with MK801, an NMDAR inhibitor, inhibited mechanical allodynia, ERK1/2 phosphorylation, and nNOS and iNOS upregulation in diabetic mice. MK801 also reduced astrocytosis and glial acidic fibrillary protein upregulation in db/db mice. In addition, N(G)-nitro-L-arginine methyl ester (L-NAME), a nonspecific NOS inhibitor, had similar effects on NMDAR signaling and NOS expression. These results suggest that nitric oxide from surrounding interneurons and astrocytes interacts with NMDAR-dependent signaling in the projection neurons of the SCDH during the maintenance of PDN.
Collapse
Affiliation(s)
- Jacqueline R Dauch
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | |
Collapse
|
22
|
Huang YN, Tsai RY, Lin SL, Chien CC, Cherng CH, Wu CT, Yeh CC, Wong CS. Amitriptyline attenuates astrocyte activation and morphine tolerance in rats: Role of the PSD-95/NR1/nNOS/PKCγ signaling pathway. Behav Brain Res 2012; 229:401-11. [DOI: 10.1016/j.bbr.2012.01.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 01/19/2012] [Accepted: 01/23/2012] [Indexed: 12/13/2022]
|
23
|
Central effects of a local inflammation in three commonly used mouse strains with a different anxious phenotype. Behav Brain Res 2011; 224:23-34. [PMID: 21624397 DOI: 10.1016/j.bbr.2011.05.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/13/2011] [Indexed: 11/24/2022]
Abstract
As in humans, genetic background in rodents may influence a peculiar set of behavioural traits such as sensitivity to pain and stressors or anxiety-related behaviours. Therefore, we tested the hypothesis that mice with different genetic backgrounds [outbred (CD1), inbred (C57BL/6J) and hybrid (B6C3F1) adult male mice] display altered reactivity to pain, stress and anxiety related behaviours. We demonstrated that B6C3F1 mice displayed the more anxious phenotype with respect to C57BL/6J or CD1 animals, with the latter being the less anxious strain when tested in an open field and on an elevated plus maze. No difference was observed across strains in thermal sensitivity to a radiant heat source. Mice were then treated with a sub-plantar injection of the inflammatory agent Complete Freund's Adjuvant (CFA), 24h later they were hyperalgesic with respect to saline exposed animals, irrespective of strain. We then measured intra-strain differences and CFA-induced inter-strain effects on the expression of various genes with a recognized role in pain and anxiety: BDNF, IL-6, IL-1β, IL-18 and NMDA receptor subunits in the mouse thalamus, hippocampus and hypothalamus. The more anxious phenotype observed in B6C3F1 hybrid mice displayed lower levels of BDNF mRNA in the hippocampus and hypothalamus when compared to outbred CD1 and C57BL/6J inbred mice. CFA led to a general decrease in central gene expression of the evaluated targets especially in CD1 mice, while BDNF hypothalamic downregulation stands out as a common effect of CFA in all three strains evaluated.
Collapse
|
24
|
Silva MA, Klafke JZ, Rossato MF, Gewehr C, Guerra GP, Rubin MA, Ferreira J. Role of peripheral polyamines in the development of inflammatory pain. Biochem Pharmacol 2011; 82:269-77. [PMID: 21570380 DOI: 10.1016/j.bcp.2011.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 11/28/2022]
Abstract
Polyamines (putrescine, spermidine and spermine) are aliphatic amines that are produced by the action of ornithine decarboxylase (ODC) in a rate-limiting and protein kinase C (PKC)-regulated step. Because high levels of polyamines are found in the synovial fluid of arthritic patients, the aim of the present study was to identify the role of peripherally produced polyamines in a model of inflammatory pain induced by adjuvant. The subcutaneous injection of Complete Freund's adjuvant (CFA, 50 μL/paw) caused the development of mechanical allodynia and edema. Moreover, it increased ODC expression and activity and PKC activation. Administration of the selective ODC inhibitor DFMO (10 μmol/paw) attenuated the development of allodynia and edema and decreased ODC activity in both control and CFA-treated animals. Furthermore, administration of the PKC inhibitor GF109203X (1 nmol/paw) reduced allodynia and ODC activity in animals injected with CFA. A subcutaneous injection of putrescine (10 μmol/paw), spermidine (3-10 μmol/paw) or spermine (0.3-3 μmol/paw) into the rat paw also caused mechanical allodynia and edema. The present results suggest that endogenously synthesized polyamines are involved in the development of nociception and edema caused by an adjuvant. Moreover, polyamine production in inflammatory sites seems to be related to an increase in ODC activity stimulated by PKC activation. Thus, controlling polyamine synthesis and action could be a method of controlling inflammatory pain.
Collapse
Affiliation(s)
- Mariane A Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Brazil
| | | | | | | | | | | | | |
Collapse
|
25
|
Schwartzman RJ, Alexander GM, Grothusen JR. The use of ketamine in complex regional pain syndrome: possible mechanisms. Expert Rev Neurother 2011; 11:719-734. [DOI: 10.1586/ern.11.31] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
26
|
Seo HS, Roh DH, Kwon SG, Yoon SY, Kang SY, Moon JY, Choi SR, Beitz AJ, Lee JH. Acidic pH facilitates peripheral αβmeATP-mediated nociception in rats: differential roles of P2X, P2Y, ASIC and TRPV1 receptors in ATP-induced mechanical allodynia and thermal hyperalgesia. Neuropharmacology 2010; 60:580-6. [PMID: 21172361 DOI: 10.1016/j.neuropharm.2010.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/08/2010] [Accepted: 12/13/2010] [Indexed: 12/29/2022]
Abstract
Peripheral ischemia is commonly associated with an increase in tissue ATP concentration and a decrease in tissue pH. Although in vitro data suggest that low tissue pH can affect ATP-binding affinities to P2 receptors, the mechanistic relationship between ATP and low pH on peripheral nociception has not been fully examined. This study was designed to investigate the potential role of an acidified environment on intraplantar αβmeATP-induced peripheral pain responses in rats. The mechanical allodynia (MA) produced by injection of αβmeATP was significantly increased in animals that received the drug diluted in pH 4.0 saline compared to those that received the drug diluted in pH 7.0 saline. Moreover, animals injected with αβmeATP (100 nmol) in pH 4.0 saline developed thermal hyperalgesia (TH), which did not occur in animals treated with αβmeATP diluted in pH 7.0 saline. To elucidate which receptors were involved in this pH-related facilitation of αβmeATP-induced MA and TH, rats were pretreated with PPADS (P2 antagonist), TNP-ATP (P2X antagonist), MRS2179 (P2Y1 antagonist), AMG9810 (TRPV1 antagonist) or amiloride (ASIC blocker). Both PPADS and TNP-ATP dose-dependently blocked pH-facilitated MA, while TH was significantly reduced by pre-treatment with MRS2179 or AMG9810. Moreover, amiloride injection significantly reduced low pH-induced facilitation of αβmeATP-mediated MA, but not TH. These results demonstrate that low tissue pH facilitates ATP-mediated MA via the activation of P2X receptors and ASICs, whereas TH induced by ATP under low pH conditions is mediated by the P2Y1 receptor and TRPV1, but not ASIC. Thus distinct mechanisms are responsible for the development of MA and TH under conditions of tissue acidosis and increased ATP.
Collapse
Affiliation(s)
- Hyoung-Sig Seo
- Yuhan Research Institute, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Da Silva LFS, Walder RY, Davidson BL, Wilson SP, Sluka KA. Changes in expression of NMDA-NR1 receptor subunits in the rostral ventromedial medulla modulate pain behaviors. Pain 2010; 151:155-161. [PMID: 20688433 PMCID: PMC2943935 DOI: 10.1016/j.pain.2010.06.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 06/29/2010] [Accepted: 06/30/2010] [Indexed: 01/11/2023]
Abstract
NMDA receptors have an important role in pain facilitation in rostral ventromedial medulla (RVM) and the NR1 subunit is essential for its function. Studies suggest that the NMDA receptors in RVM are critical to modulate both cutaneous and muscle hypersensitivity induced by repeated intramuscular acid injections. We propose that increased expression of the NR1 subunit in the RVM is critical for the full development of hypersensitivity. To test this we used recombinant lentiviruses to over-express the NR1 subunit in the RVM and measured nociceptive sensitivity to cutaneous and muscle stimuli. We also downregulated the expression of NR1 in the RVM and measured the hyperalgesia produced by repeated-acid injections. Increasing the expression of NR1 in the RVM reduces cutaneous and muscle withdrawal threshold, and decreasing the expression of NR1 in the RVM increases the muscle withdrawal threshold and prevents the development of hyperalgesia in an animal model of muscle pain. These results suggest that the NR1 subunits in the RVM are critical for modulating NMDA receptor function, which in turn sets the 'tone' of the nervous system's response to noxious stimuli and tissue injury.
Collapse
Affiliation(s)
- Luis Felipe S. Da Silva
- Veterinary Science Department, Center for Agrarian Sciences, University of Paraiba, Areia, PB 58397-000, Brazil
| | - Roxanne Y. Walder
- Graduate Program in Physical Therapy and Rehabilitation Sciences, Neuroscience Graduate Program, Pain Research Program, The University of Iowa, Iowa City, IA 52242, USA
| | | | - Steven P. Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Kathleen A. Sluka
- Graduate Program in Physical Therapy and Rehabilitation Sciences, Neuroscience Graduate Program, Pain Research Program, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
29
|
Abstract
Chronic pain is a prevalent and challenging problem for most medical practitioners. Because of the complex pathologic mechanisms involved in chronic pain, optimal treatment is still under development. The spinal cord is an important gateway for peripheral pain signals transmitted to the brain. In chronic pain states, painful stimuli trigger afferent fibers in the dorsal horn to release neuropeptides and neurotransmitters. These events induce multiple inflammatory and neuropathic processes in the spinal cord dorsal horn, and trigger modification and plasticity of local neural circuits. As a result, ongoing noxious signals to the brain are amplified and prolonged, a phenomenon known as central sensitization. In this review, the molecular events associated with central sensitization, as well as their clinical implications, are discussed.
Collapse
Affiliation(s)
- Hsinlin Thomas Cheng
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, 5015 BSRB, Ann Arbor, MI 48109, USA.
| |
Collapse
|
30
|
Cheng HT, Dauch JR, Oh SS, Hayes JM, Hong Y, Feldman EL. p38 mediates mechanical allodynia in a mouse model of type 2 diabetes. Mol Pain 2010; 6:28. [PMID: 20482876 PMCID: PMC2881061 DOI: 10.1186/1744-8069-6-28] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 05/19/2010] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Painful Diabetic Neuropathy (PDN) affects more than 25% of patients with type 2 diabetes; however, the pathogenesis remains unclear due to lack of knowledge of the molecular mechanisms leading to PDN. In our current study, we use an animal model of type 2 diabetes in order to understand the roles of p38 in PDN. Previously, we have demonstrated that the C57BLK db/db (db/db) mouse, a model of type 2 diabetes that carries the loss-of-function leptin receptor mutant, develops mechanical allodynia in the hind paws during the early stage (6-12 wk of age) of diabetes. Using this timeline of PDN, we can investigate the signaling mechanisms underlying mechanical allodynia in the db/db mouse. RESULTS We studied the role of p38 in lumbar dorsal root ganglia (LDRG) during the development of mechanical allodynia in db/db mice. p38 phosphorylation was detected by immunoblots at the early stage of mechanical allodynia in LDRG of diabetic mice. Phosphorylated p38 (pp38) immunoreactivity was detected mostly in the small- to medium-sized LDRG neurons during the time period of mechanical allodynia. Treatment with an antibody against nerve growth factor (NGF) significantly inhibited p38 phosphorylation in LDRG of diabetic mice. In addition, we detected higher levels of inflammatory mediators, including cyclooxygenase (COX) 2, inducible nitric oxide synthases (iNOS), and tumor necrosis factor (TNF)-alpha in LDRG neurons of db/db mice compared to non-diabetic db+ mice. Intrathecal delivery of SB203580, a p38 inhibitor, significantly inhibited the development of mechanical allodynia and the upregulation of COX2, iNOS and TNF-alpha. CONCLUSIONS Our findings suggest that NGF activated-p38 phosphorylation mediates mechanical allodynia in the db/db mouse by upregulation of multiple inflammatory mediators in LDRG.
Collapse
Affiliation(s)
- Hsinlin T Cheng
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, Michigan, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Involvement of the spinal NMDA receptor/PKCγ signaling pathway in the development of bone cancer pain. Brain Res 2010; 1335:83-90. [PMID: 20362561 DOI: 10.1016/j.brainres.2010.03.083] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 03/24/2010] [Accepted: 03/26/2010] [Indexed: 11/23/2022]
Abstract
N-methyl-d-aspartate (NMDA) receptor and protein kinase C (PKC) play important roles in the induction and maintenance of central sensitization during pain states. It has been shown that spinal NMDA receptor-dependent activation of PKCgamma facilitates nociception during neuropathic and inflammatory pain, but its involvement in bone cancer pain has not previously been established. The aim of this study was to examine the potential role of the spinal NMDA receptor/PKCgamma signaling pathway in the development of bone cancer pain. Osteosarcoma NCTC 2472 cells were implanted into the intramedullary space of the right femurs of C3H/HeJ mice to induce ongoing bone cancer-related pain behaviors. At day 7, 10 and 14 after operation, the expression of PKCgamma mRNA in the spinal cord was higher in tumor-bearing mice compared to the sham mice. At day 14, intrathecal administration of 5 microg of NR2B subunit-specific NMDA receptor antagonist ifenprodil attenuated the up-regulation of PKCgamma mRNA in the spinal cord as well as bone cancer-evoked thermal hyperalgesia and mechanical allodynia. Furthermore, intrathecal injection of 10 microg of PKC inhibitor H-7 attenuated cancer-evoked thermal hyperalgesia and mechanical allodynia at day 14. These results suggest that the NMDA receptor/PKCgamma signaling pathway may participate in the development of bone cancer pain, and ifenprodil may be a useful alternative or adjunct therapy for bone cancer pain.
Collapse
|
32
|
Weyerbacher AR, Xu Q, Tamasdan C, Shin SJ, Inturrisi CE. N-Methyl-D-aspartate receptor (NMDAR) independent maintenance of inflammatory pain. Pain 2009; 148:237-246. [PMID: 20005044 DOI: 10.1016/j.pain.2009.11.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/24/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
Following peripheral inflammation, NMDA receptor (NMDAR) activation in spinal cord dorsal horn neurons facilitates the generation of pain in response to low threshold inputs (allodynia) and signals the phosphorylation of protein kinase C (pPKC) and extracellular signal-regulated kinase 2 (pERK2). Intraplantar complete Freund's adjuvant (CFA) induces inflammatory nociception (allodynic pain) at 24 hours (h) with a concurrent increase in neuronal pPKCgamma and pERK2 but not glial pERK2. These effects are attenuated in a spatial knockout of the NMDAR (NR1 KO) confined to SCDH neurons. Although glia and proinflammatory cytokines are implicated in the maintenance of inflammatory pain and neuronal activation, the role of NMDARs and neuronal-glial-cytokine interactions that initiate and maintain inflammatory pain are not well defined. In the maintenance phase of inflammatory pain at 96h after CFA the NR1 KO mice are no longer protected from allodynia and the SCDH expression of pPKCgamma and pERK2 are increased. At 96h the expression of the proinflammatory cytokine, IL-1beta, and pERK2 are increased in astrocytes. Intrathecal IL-1 receptor antagonist (IL-1ra), acting on neuronal IL-1 receptors, completely reverses the allodynia at 96h after CFA. Deletion of NMDAR-dependent signaling in neurons protects against early CFA-induced allodynia. Subsequent NMDAR-independent signaling that involves neuronal expression of pPKCgamma and the induction of pERK2 and IL-1beta in activated astrocytes contributes to the emergence of NMDAR-independent inflammatory pain behavior at 96h after CFA. Effective reduction of the initiation and maintenance of inflammatory pain requires targeting the neuron-astrocyte-cytokine interactions revealed in these studies.
Collapse
Affiliation(s)
- Amanda R Weyerbacher
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA Department of Neurology and the Pain and Palliative Care Service, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
33
|
Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. THE JOURNAL OF PAIN 2009; 10:895-926. [PMID: 19712899 PMCID: PMC2750819 DOI: 10.1016/j.jpain.2009.06.012] [Citation(s) in RCA: 2430] [Impact Index Per Article: 151.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 02/08/2023]
Abstract
UNLABELLED Central sensitization represents an enhancement in the function of neurons and circuits in nociceptive pathways caused by increases in membrane excitability and synaptic efficacy as well as to reduced inhibition and is a manifestation of the remarkable plasticity of the somatosensory nervous system in response to activity, inflammation, and neural injury. The net effect of central sensitization is to recruit previously subthreshold synaptic inputs to nociceptive neurons, generating an increased or augmented action potential output: a state of facilitation, potentiation, augmentation, or amplification. Central sensitization is responsible for many of the temporal, spatial, and threshold changes in pain sensibility in acute and chronic clinical pain settings and exemplifies the fundamental contribution of the central nervous system to the generation of pain hypersensitivity. Because central sensitization results from changes in the properties of neurons in the central nervous system, the pain is no longer coupled, as acute nociceptive pain is, to the presence, intensity, or duration of noxious peripheral stimuli. Instead, central sensitization produces pain hypersensitivity by changing the sensory response elicited by normal inputs, including those that usually evoke innocuous sensations. PERSPECTIVE In this article, we review the major triggers that initiate and maintain central sensitization in healthy individuals in response to nociceptor input and in patients with inflammatory and neuropathic pain, emphasizing the fundamental contribution and multiple mechanisms of synaptic plasticity caused by changes in the density, nature, and properties of ionotropic and metabotropic glutamate receptors.
Collapse
Affiliation(s)
- Alban Latremoliere
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | | |
Collapse
|
34
|
Abstract
Neuropathic pain is triggered by lesions to the somatosensory nervous system that alter its structure and function so that pain occurs spontaneously and responses to noxious and innocuous stimuli are pathologically amplified. The pain is an expression of maladaptive plasticity within the nociceptive system, a series of changes that constitute a neural disease state. Multiple alterations distributed widely across the nervous system contribute to complex pain phenotypes. These alterations include ectopic generation of action potentials, facilitation and disinhibition of synaptic transmission, loss of synaptic connectivity and formation of new synaptic circuits, and neuroimmune interactions. Although neural lesions are necessary, they are not sufficient to generate neuropathic pain; genetic polymorphisms, gender, and age all influence the risk of developing persistent pain. Treatment needs to move from merely suppressing symptoms to a disease-modifying strategy aimed at both preventing maladaptive plasticity and reducing intrinsic risk.
Collapse
Affiliation(s)
- Michael Costigan
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129, USA.
| | | | | |
Collapse
|
35
|
Xu Q, Garraway SM, Weyerbacher AR, Shin SJ, Inturrisi CE. Activation of the neuronal extracellular signal-regulated kinase 2 in the spinal cord dorsal horn is required for complete Freund's adjuvant-induced pain hypersensitivity. J Neurosci 2008; 28:14087-96. [PMID: 19109491 PMCID: PMC2649741 DOI: 10.1523/jneurosci.2406-08.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 09/09/2008] [Accepted: 10/20/2008] [Indexed: 12/20/2022] Open
Abstract
Extracellular signal-regulated kinase 1 (ERK1) and ERK2 signaling in the spinal cord dorsal horn (SCDH) has been implicated in injury-induced pain hypersensitivity. Available ERK pathway inhibitors cannot distinguish between ERK1 and ERK2, nor can they differentially target the expression of neuronal or glial ERK1/2. We selectively inhibited the expression of ERK2 in neurons of the adult mouse SCDH by use of an ERK2 small interfering RNA (siRNA) delivered by a neurotropic adenoassociated viral vector. In situ hybridization revealed a siRNA vector-induced decrease in ERK2 mRNA in the ipsilateral SCDH. Immunohistochemistry showed a decreased neuronal phospho-ERK1/2 (pERK1/2), and Western blot analysis revealed that both ERK2 expression and phosphorylation were reduced by the siRNA vector. In contrast, basal ERK1 expression was not affected, although pERK1 was slightly increased. The siRNA vector-induced knockdown of ERK2 expression in the SCDH did not alter the baseline mechanical or thermal paw withdrawal thresholds. Hindpaw intraplantar injection of complete Freund's adjuvant (CFA) produced peripheral inflammation, mechanical allodynia, and thermal hyperalgesia in vector control animals that persisted for at least 96 h. It also caused an increase in SCDH ERK1 and ERK2 levels at 96 h and pERK1 and pERK2 levels at 1 and 96 h. The ERK2 siRNA vector prevented changes in ERK1, ERK2, and pERK2. In addition, the siRNA vector protected the animals from developing mechanical allodynia and thermal hyperalgesia throughout the 96 h after CFA. These findings indicate that ERK2 in the SCDH neurons is critical for the development of inflammatory pain hypersensitivity.
Collapse
Affiliation(s)
- Qinghao Xu
- Departments of Pharmacology and Neuroscience, Weill Cornell Medical College, New York, New York 10065
| | - Sandra M. Garraway
- Departments of Pharmacology and Neuroscience, Weill Cornell Medical College, New York, New York 10065
| | - Amanda R. Weyerbacher
- Departments of Pharmacology and Neuroscience, Weill Cornell Medical College, New York, New York 10065
| | - Sarah J. Shin
- Departments of Pharmacology and Neuroscience, Weill Cornell Medical College, New York, New York 10065
| | - Charles E. Inturrisi
- Departments of Pharmacology and Neuroscience, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|