1
|
Kawahara M, Tanaka KI, Kato-Negishi M. Zinc, Copper, and Calcium: A Triangle in the Synapse for the Pathogenesis of Vascular-Type Senile Dementia. Biomolecules 2024; 14:773. [PMID: 39062487 PMCID: PMC11274390 DOI: 10.3390/biom14070773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Zinc (Zn) and copper (Cu) are essential for normal brain functions. In particular, Zn and Cu are released to synaptic clefts during neuronal excitation. Synaptic Zn and Cu regulate neuronal excitability, maintain calcium (Ca) homeostasis, and play central roles in memory formation. However, in pathological conditions such as transient global ischemia, excess Zn is secreted to synaptic clefts, which causes neuronal death and can eventually trigger the pathogenesis of a vascular type of senile dementia. We have previously investigated the characteristics of Zn-induced neurotoxicity and have demonstrated that low concentrations of Cu can exacerbate Zn neurotoxicity. Furthermore, during our pharmacological approaches to clarify the molecular pathways of Cu-enhanced Zn-induced neurotoxicity, we have revealed the involvement of Ca homeostasis disruption. In the present review, we discuss the roles of Zn and Cu in the synapse, as well as the crosstalk between Zn, Cu, and Ca, which our study along with other recent studies suggest may underlie the pathogenesis of vascular-type senile dementia.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi 202-8585, Tokyo, Japan
| | | | | |
Collapse
|
2
|
Bennett MC, Reinhart KM, Weisend JE, Morton RA, Carlson AP, Shuttleworth CW. Synaptic Zn 2+ contributes to deleterious consequences of spreading depolarizations. Neurobiol Dis 2024; 191:106407. [PMID: 38199272 PMCID: PMC10869643 DOI: 10.1016/j.nbd.2024.106407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/23/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024] Open
Abstract
Spreading depolarizations (SDs) are profound waves of neuroglial depolarization that can propagate repetitively through injured brain. Recent clinical work has established SD as an important contributor to expansion of acute brain injuries and have begun to extend SD studies into other neurological disorders. A critical challenge is to determine how to selectively prevent deleterious consequences of SD. In the present study, we determined whether a wave of profound Zn2+ release is a key contributor to deleterious consequences of SD, and whether this can be targeted pharmacologically. Focal KCl microinjection was used to initiate SD in the CA1 region of the hippocampus in murine brain slices. An extracellular Zn2+ chelator with rapid kinetics (ZX1) increased SD propagation rates and improved recovery of extracellular DC potential shifts. Under conditions of metabolic compromise, tissues showed sustained impairment of functional and structural recovery following a single SD. ZX1 effectively improved recovery of synaptic potentials and intrinsic optical signals in these vulnerable conditions. Fluorescence imaging and genetic deletion of a presynaptic Zn2+ transporter confirmed synaptic release as the primary contributor to extracellular accumulation and deleterious consequences of Zn2+ during SD. These results demonstrate a role for synaptic Zn2+ release in deleterious consequences of SD and show that targeted extracellular chelation could be useful for disorders where repetitive SD enlarges infarcts in injured tissues.
Collapse
Affiliation(s)
- Michael C Bennett
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Katelyn M Reinhart
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Jordan E Weisend
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Russell A Morton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Andrew P Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| |
Collapse
|
3
|
Bennett MC, Morton RA, Carlson AP, Shuttleworth CW. Synaptic Zn 2+ contributes to deleterious consequences of spreading depolarizations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564408. [PMID: 37961648 PMCID: PMC10634912 DOI: 10.1101/2023.10.27.564408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Spreading depolarizations (SDs) are profound waves of neuroglial depolarization that can propagate repetitively through injured brain. Recent clinical work has established SD as an important contributor to expansion of acute brain injuries and have begun to extend SD studies into other neurological disorders. A critical challenge is to determine how to selectively prevent deleterious consequences of SD. In the present study, we determined whether a wave of profound Zn2+ release is a key contributor to deleterious consequences of SD, and whether this can be targeted pharmacologically. Focal KCl microinjection was used to initiate SD in the CA1 region of the hippocampus in murine brain slices. An extracellular Zn2+ chelator with rapid kinetics (ZX-1) increased SD propagation rates and improved recovery of extracellular DC potential shifts. Under conditions of metabolic compromise, tissues showed sustained impairment of functional and structural recovery following a single SD. ZX-1 effectively improved recovery of synaptic potentials and intrinsic optical signals in these vulnerable conditions. Fluorescence imaging and genetic deletion of a presynaptic Zn2+ transporter confirmed synaptic release as the primary contributor to extracellular accumulation and deleterious consequences of Zn2+ during SD. These results demonstrate a role for synaptic Zn2+ release in deleterious consequences of SD and show that targeted extracellular chelation could be useful for disorders where repetitive SD enlarges infarcts in injured tissues.
Collapse
Affiliation(s)
- Michael C Bennett
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Russell A Morton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Andrew P Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
4
|
ZnT1 is a neuronal Zn 2+/Ca 2+ exchanger. Cell Calcium 2021; 101:102505. [PMID: 34871934 DOI: 10.1016/j.ceca.2021.102505] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/31/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023]
Abstract
Zinc transporter 1 (ZnT1; SLC30A1) is present in the neuronal plasma membrane, critically modulating NMDA receptor function and Zn2+ neurotoxicity. The mechanism mediating Zn2+ transport by ZnT1, however, has remained elusive. Here, we investigated ZnT1-dependent Zn2+ transport by measuring intracellular changes of this ion using the fluorescent indicator FluoZin-3. In primary mouse cortical neurons, which express ZnT1, transient addition of extracellular Zn2+ triggered a rise in cytosolic Zn2+, followed by its removal. Knockdown of ZnT1 by adeno associated viral (AAV)-short hairpin RNA (shZnT1) markedly increased rates of Zn2+ rise, and decreased rates of its removal, suggesting that ZnT1 is a primary route for Zn2+ efflux in neurons. Although Zn2+ transport by other members of the SLC30A family is dependent on pH gradients across cellular membranes, altered H+ gradients were not coupled to ZnT1-dependent transport. Removal of cytoplasmic Zn2+, against a large inward gradient during the initial loading phase, suggests that Zn2+ efflux requires a large driving force. We therefore asked if Ca2+ gradients across the membrane can facilitate Zn2+ efflux. Elimination of extracellular Ca2+ abolished Zn2+ efflux, while increased extracellular Ca2+ levels enhanced Zn2+ efflux. Intracellular Ca2+ rises, measured in GCaMP6 expressing neurons, closely paralleled cytoplasmic Zn2+ removal. Taken together, these results strongly suggest that ZnT1 functions as a Zn2+/Ca2+ exchanger, thereby regulating the transport of two ions of fundamental importance in neuronal signaling.
Collapse
|
5
|
Granzotto A, Canzoniero LMT, Sensi SL. A Neurotoxic Ménage-à-trois: Glutamate, Calcium, and Zinc in the Excitotoxic Cascade. Front Mol Neurosci 2020; 13:600089. [PMID: 33324162 PMCID: PMC7725690 DOI: 10.3389/fnmol.2020.600089] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Fifty years ago, the seminal work by John Olney provided the first evidence of the neurotoxic properties of the excitatory neurotransmitter glutamate. A process hereafter termed excitotoxicity. Since then, glutamate-driven neuronal death has been linked to several acute and chronic neurological conditions, like stroke, traumatic brain injury, Alzheimer’s, Parkinson’s, and Huntington’s diseases, and Amyotrophic Lateral Sclerosis. Mechanisms linked to the overactivation of glutamatergic receptors involve an aberrant cation influx, which produces the failure of the ionic neuronal milieu. In this context, zinc, the second most abundant metal ion in the brain, is a key but still somehow underappreciated player of the excitotoxic cascade. Zinc is an essential element for neuronal functioning, but when dysregulated acts as a potent neurotoxin. In this review, we discuss the ionic changes and downstream effects involved in the glutamate-driven neuronal loss, with a focus on the role exerted by zinc. Finally, we summarize our work on the fascinating distinct properties of NADPH-diaphorase neurons. This neuronal subpopulation is spared from excitotoxic insults and represents a powerful tool to understand mechanisms of resilience against excitotoxic processes.
Collapse
Affiliation(s)
- Alberto Granzotto
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States.,Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences (DNISC), Laboratory of Molecular Neurology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Stefano L Sensi
- Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences (DNISC), Laboratory of Molecular Neurology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
6
|
Effects of Transient Receptor Potential Cation 5 (TRPC5) Inhibitor, NU6027, on Hippocampal Neuronal Death after Traumatic Brain Injury. Int J Mol Sci 2020; 21:ijms21218256. [PMID: 33158109 PMCID: PMC7662546 DOI: 10.3390/ijms21218256] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury (TBI) can cause physical, cognitive, social, and behavioral changes that can lead to permanent disability or death. After primary brain injury, translocated free zinc can accumulate in neurons and lead to secondary events such as oxidative stress, inflammation, edema, swelling, and cognitive impairment. Under pathological conditions, such as ischemia and TBI, excessive zinc release, and accumulation occurs in neurons. Based on previous research, it hypothesized that calcium as well as zinc would be influx into the TRPC5 channel. Therefore, we hypothesized that the suppression of TRPC5 would prevent neuronal cell death by reducing the influx of zinc and calcium. To test our hypothesis, we used a TBI animal model. After the TBI, we immediately injected NU6027 (1 mg/kg, intraperitoneal), TRPC5 inhibitor, and then sacrificed animals 24 h later. We conducted Fluoro-Jade B (FJB) staining to confirm the presence of degenerating neurons in the hippocampal cornus ammonis 3 (CA3). After the TBI, the degenerating neuronal cell count was decreased in the NU6027-treated group compared with the vehicle-treated group. Our findings suggest that the suppression of TRPC5 can open a new therapeutic window for a reduction of the neuronal death that may occur after TBI.
Collapse
|
7
|
Aizenman E, Loring RH, Reynolds IJ, Rosenberg PA. The Redox Biology of Excitotoxic Processes: The NMDA Receptor, TOPA Quinone, and the Oxidative Liberation of Intracellular Zinc. Front Neurosci 2020; 14:778. [PMID: 32792905 PMCID: PMC7393236 DOI: 10.3389/fnins.2020.00778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
This special issue of Frontiers in Neuroscience-Neurodegeneration celebrates the 50th anniversary of John Olney's seminal work introducing the concept of excitotoxicity as a mechanism for neuronal cell death. Since that time, fundamental research on the pathophysiological activation of glutamate receptors has played a central role in our understanding of excitotoxic cellular signaling pathways, leading to the discovery of many potential therapeutic targets in the treatment of acute or chronic/progressive neurodegenerative disorders. Importantly, excitotoxic signaling processes have been found repeatedly to be closely intertwined with oxidative cellular cascades. With this in mind, this review looks back at long-standing collaborative efforts by the authors linking cellular redox status and glutamate neurotoxicity, focusing first on the discovery of the redox modulatory site of the N-methyl-D-aspartate (NMDA) receptor, followed by the study of the oxidative conversion of 3,4-dihydroxyphenylalanine (DOPA) to the non-NMDA receptor agonist and neurotoxin 2,4,5-trihydroxyphenylalanine (TOPA) quinone. Finally, we summarize our work linking oxidative injury to the liberation of zinc from intracellular metal binding proteins, leading to the uncovering of a signaling mechanism connecting excitotoxicity with zinc-activated cell death-signaling cascades.
Collapse
Affiliation(s)
- Elias Aizenman
- Department of Neurobiology, Pittsburgh Institute for Neurodegenerative Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ralph H. Loring
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, United States
| | | | - Paul A. Rosenberg
- Program in Neuroscience, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Krall RF, Moutal A, Phillips MB, Asraf H, Johnson JW, Khanna R, Hershfinkel M, Aizenman E, Tzounopoulos T. Synaptic zinc inhibition of NMDA receptors depends on the association of GluN2A with the zinc transporter ZnT1. SCIENCE ADVANCES 2020; 6:eabb1515. [PMID: 32937457 PMCID: PMC7458442 DOI: 10.1126/sciadv.abb1515] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/20/2020] [Indexed: 05/08/2023]
Abstract
The NMDA receptor (NMDAR) is inhibited by synaptically released zinc. This inhibition is thought to be the result of zinc diffusion across the synaptic cleft and subsequent binding to the extracellular domain of the NMDAR. However, this model fails to incorporate the observed association of the highly zinc-sensitive NMDAR subunit GluN2A with the postsynaptic zinc transporter ZnT1, which moves intracellular zinc to the extracellular space. Here, we report that disruption of ZnT1-GluN2A association by a cell-permeant peptide strongly reduced NMDAR inhibition by synaptic zinc in mouse dorsal cochlear nucleus synapses. Moreover, synaptic zinc inhibition of NMDARs required postsynaptic intracellular zinc, suggesting that cytoplasmic zinc is transported by ZnT1 to the extracellular space in close proximity to the NMDAR. These results challenge a decades-old dogma on how zinc inhibits synaptic NMDARs and demonstrate that presynaptic release and a postsynaptic transporter organize zinc into distinct microdomains to modulate NMDAR neurotransmission.
Collapse
Affiliation(s)
- Rebecca F Krall
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Matthew B Phillips
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hila Asraf
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Faculty of Health Sciences, Beer-Sheva, Israel
| | - Jon W Johnson
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Michal Hershfinkel
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Faculty of Health Sciences, Beer-Sheva, Israel
| | - Elias Aizenman
- Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Faculty of Health Sciences, Beer-Sheva, Israel
| | - Thanos Tzounopoulos
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
- Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
9
|
"Iron free" zinc oxide nanoparticles with ion-leaking properties disrupt intracellular ROS and iron homeostasis to induce ferroptosis. Cell Death Dis 2020; 11:183. [PMID: 32170066 PMCID: PMC7070056 DOI: 10.1038/s41419-020-2384-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022]
Abstract
Exposure to nanomaterials (NMs) is an emerging threat to human health, and the understanding of their intracellular behavior and related toxic effects is urgently needed. Ferroptosis is a newly discovered, iron-mediated cell death that is distinctive from apoptosis or other cell-death pathways. No evidence currently exists for the effect of “iron free” engineered NMs on ferroptosis. We showed by several approaches that (1) zinc oxide nanoparticles (ZnO NPs)-induced cell death involves ferroptosis; (2) ZnO NPs-triggered ferroptosis is associated with elevation of reactive oxygen species (ROS) and lipid peroxidation, along with depletion of glutathione (GSH) and downregulation of glutathione peroxidase 4 (GPx4); (3) ZnO NPs disrupt intracellular iron homeostasis by orchestrating iron uptake, storage and export; (4) p53 largely participates in ZnO NPs-induced ferroptosis; and (5) ZnO particle remnants and dissolved zinc ion both contribute to ferroptosis. In conclusion, our data provide a new mechanistic rationale for ferroptosis as a novel cell-death phenotype induced by engineered NMs.
Collapse
|
10
|
Park SE, Song JH, Hong C, Kim DE, Sul JW, Kim TY, Seo BR, So I, Kim SY, Bae DJ, Park MH, Lim HM, Baek IJ, Riccio A, Lee JY, Shim WH, Park B, Koh JY, Hwang JJ. Contribution of Zinc-Dependent Delayed Calcium Influx via TRPC5 in Oxidative Neuronal Death and its Prevention by Novel TRPC Antagonist. Mol Neurobiol 2018; 56:2822-2835. [PMID: 30062674 PMCID: PMC6459797 DOI: 10.1007/s12035-018-1258-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/17/2018] [Indexed: 11/29/2022]
Abstract
Oxidative stress is a key mediator of neuronal death in acute brain injuries, such as epilepsy, trauma, and stroke. Although it is accompanied by diverse cellular changes, increases in levels of intracellular zinc ion (Zn2+) and calcium ion (Ca2+) may play a critical causative role in oxidative neuronal death. However, the mechanistic link between Zn2+ and Ca2+ dyshomeostasis in neurons during oxidative stress is not well-understood. Here, we show that the exposure of cortical neurons to H2O2 led to a zinc-triggered calcium influx, which resulted in neuronal death. The cyclin-dependent kinase inhibitor, NU6027, inhibited H2O2-induced Ca2+ increases and subsequent cell death in cortical neurons, without affecting the early increase in Zn2+. Therefore, we attempted to identify the zinc-regulated Ca2+ pathway that was inhibited by NU6027. The expression profile in cortical neurons identified transient receptor potential cation channel 5 (TRPC5) as a candidate that is known to involve in the generation of epileptiform burst firing and epileptic neuronal death (Phelan KD et al. 2012a; Phelan KD et al. 2013b). NU6027 inhibited basal and zinc-augmented TRPC5 currents in TRPC5-overexpressing HEK293 cells. Consistently, cortical neurons from TRPC5 knockout mice were highly resistant to H2O2-induced death. Moreover, NU6027 is neuroprotective in kainate-treated epileptic rats. Our results demonstrate that TRPC5 is a novel therapeutic target against oxidative neuronal injury in prolonged seizures and that NU6027 is a potent inhibitor of TRPC5.
Collapse
Affiliation(s)
- Sang Eun Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Ji Hoon Song
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Chansik Hong
- Department of Physiology, Chosun University School of Medicine, Kwangju, 61452, South Korea
| | - Dong Eun Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Jee-Won Sul
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Tae-Youn Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea.,Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Bo-Ra Seo
- Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Insuk So
- Department of Physiology and Institute of Dermatological Science, Seoul National University College of Medicine, Seoul, 110-799, South Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, South Korea
| | - Dong-Jun Bae
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Mi-Ha Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Hye Min Lim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - In-Jeoung Baek
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, South Korea
| | - Antonio Riccio
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.,Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Joo-Yong Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, South Korea
| | - Woo Hyun Shim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, South Korea
| | - Bumwoo Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea.,Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Jae-Young Koh
- Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul, 05505, South Korea. .,Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, South Korea.
| | - Jung Jin Hwang
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea. .,Department of Convergence Medicine, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, South Korea.
| |
Collapse
|
11
|
Shetty MS, Sharma M, Sajikumar S. Chelation of hippocampal zinc enhances long-term potentiation and synaptic tagging/capture in CA1 pyramidal neurons of aged rats: implications to aging and memory. Aging Cell 2017; 16:136-148. [PMID: 27633878 PMCID: PMC5242293 DOI: 10.1111/acel.12537] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2016] [Indexed: 01/08/2023] Open
Abstract
Aging is associated with decline in cognitive functions, prominently in the memory consolidation and association capabilities. Hippocampus plays a crucial role in the formation and maintenance of long‐term associative memories, and a significant body of evidence shows that impairments in hippocampal function correlate with aging‐related memory loss. A number of studies have implicated alterations in hippocampal synaptic plasticity, such as long‐term potentiation (LTP), in age‐related cognitive decline although exact mechanisms underlying are not completely clear. Zinc deficiency and the resultant adverse effects on cognition have been well studied. However, the role of excess of zinc in synaptic plasticity, especially in aging, is not addressed well. Here, we have investigated the hippocampal zinc levels and the impairments in synaptic plasticity, such as LTP and synaptic tagging and capture (STC), in the CA1 region of acute hippocampal slices from 82‐ to 84‐week‐old male Wistar rats. We report increased zinc levels in the hippocampus of aged rats and also deficits in the tetani‐induced and dopaminergic agonist‐induced late‐LTP and STC. The observed deficits in synaptic plasticity were restored upon chelation of zinc using a cell‐permeable chelator. These data suggest that functional plasticity and associativity can be successfully established in aged neural networks by chelating zinc with cell‐permeable chelating agents.
Collapse
Affiliation(s)
- Mahesh Shivarama Shetty
- Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore; Block MD9, 2 Medical Drive Singapore 117 597 Singapore
- Neurobiology/Aging Program; Life Sciences Institute (LSI); National University of Singapore; #04-44, 28 Medical Drive Singapore 117 456 Singapore
| | - Mahima Sharma
- Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore; Block MD9, 2 Medical Drive Singapore 117 597 Singapore
- Neurobiology/Aging Program; Life Sciences Institute (LSI); National University of Singapore; #04-44, 28 Medical Drive Singapore 117 456 Singapore
| | - Sreedharan Sajikumar
- Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore; Block MD9, 2 Medical Drive Singapore 117 597 Singapore
- Neurobiology/Aging Program; Life Sciences Institute (LSI); National University of Singapore; #04-44, 28 Medical Drive Singapore 117 456 Singapore
| |
Collapse
|
12
|
Granzotto A, Sensi SL. Intracellular zinc is a critical intermediate in the excitotoxic cascade. Neurobiol Dis 2015; 81:25-37. [DOI: 10.1016/j.nbd.2015.04.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 11/25/2022] Open
|
13
|
Mitochondrial ATP-Mg/Pi carrier SCaMC-3/Slc25a23 counteracts PARP-1-dependent fall in mitochondrial ATP caused by excitotoxic insults in neurons. J Neurosci 2015; 35:3566-81. [PMID: 25716855 DOI: 10.1523/jneurosci.2702-14.2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Glutamate excitotoxicity is caused by sustained activation of neuronal NMDA receptors causing a large Ca(2+) and Na(+) influx, activation of poly(ADP ribose) polymerase-1 (PARP-1), and delayed Ca(2+) deregulation. Mitochondria undergo early changes in membrane potential during excitotoxicity, but their precise role in these events is still controversial. Using primary cortical neurons derived from mice, we show that NMDA exposure results in a rapid fall in mitochondrial ATP in neurons deficient in SCaMC-3/Slc25a23, a Ca(2+)-regulated mitochondrial ATP-Mg/Pi carrier. This fall is associated with blunted increases in respiration and a delayed decrease in cytosolic ATP levels, which are prevented by PARP-1 inhibitors or by SCaMC-3 activity promoting adenine nucleotide uptake into mitochondria. SCaMC-3 KO neurons show an earlier delayed Ca(2+) deregulation, and SCaMC-3-deficient mitochondria incubated with ADP or ATP-Mg had reduced Ca(2+) retention capacity, suggesting a failure to maintain matrix adenine nucleotides as a cause for premature delayed Ca(2+) deregulation. SCaMC-3 KO neurons have higher vulnerability to in vitro excitotoxicity, and SCaMC-3 KO mice are more susceptible to kainate-induced seizures, showing that early PARP-1-dependent fall in mitochondrial ATP levels, counteracted by SCaMC-3, is an early step in the excitotoxic cascade.
Collapse
|
14
|
Fujikawa K, Fukumori R, Nakamura S, Kutsukake T, Takarada T, Yoneda Y. Potential interactions of calcium-sensitive reagents with zinc ion in different cultured cells. PLoS One 2015; 10:e0127421. [PMID: 26010609 PMCID: PMC4444355 DOI: 10.1371/journal.pone.0127421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 04/15/2015] [Indexed: 12/30/2022] Open
Abstract
Background Several chemicals have been widely used to evaluate the involvement of free Ca2+ in mechanisms underlying a variety of biological responses for decades. Here, we report high reactivity to zinc of well-known Ca2+-sensitive reagents in diverse cultured cells. Methodology/Principal Findings In rat astrocytic C6 glioma cells loaded with the fluorescent Ca2+ dye Fluo-3, the addition of ZnCl2 gradually increased the fluorescence intensity in a manner sensitive to the Ca2+ chelator EGTA irrespective of added CaCl2. The addition of the Ca2+ ionophore A23187 drastically increased Fluo-3 fluorescence in the absence of ZnCl2, while the addition of the Zn2+ ionophore pyrithione rapidly and additionally increased the fluorescence in the presence of ZnCl2, but not in its absence. In cells loaded with the zinc dye FluoZin-3 along with Fluo-3, a similarly gradual increase was seen in the fluorescence of Fluo-3, but not of FluoZin-3, in the presence of both CaCl2 and ZnCl2. Further addition of pyrithione drastically increased the fluorescence intensity of both dyes, while the addition of the Zn2+ chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethane-1,2-diamine (TPEN) rapidly and drastically decreased FluoZin-3 fluorescence. In cells loaded with FluoZin-3 alone, the addition of ZnCl2 induced a gradual increase in the fluorescence in a fashion independent of added CaCl2 but sensitive to EGTA. Significant inhibition was found in the vitality to reduce 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide in a manner sensitive to TPEN, EDTA and BAPTA in C6 glioma cells exposed to ZnCl2, with pyrithione accelerating the inhibition. Similar inhibition occurred in an EGTA-sensitive fashion after brief exposure to ZnCl2 in pluripotent P19 cells, neuronal Neuro2A cells and microglial BV2 cells, which all expressed mRNA for particular zinc transporters. Conclusions/Significance Taken together, comprehensive analysis is absolutely required for the demonstration of a variety of physiological and pathological responses mediated by Ca2+ in diverse cells enriched of Zn2+.
Collapse
Affiliation(s)
- Koichi Fujikawa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical and Health Sciences, Kanazawa, Ishikawa 920–1192, Japan
| | - Ryo Fukumori
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical and Health Sciences, Kanazawa, Ishikawa 920–1192, Japan
| | - Saki Nakamura
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical and Health Sciences, Kanazawa, Ishikawa 920–1192, Japan
| | - Takaya Kutsukake
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical and Health Sciences, Kanazawa, Ishikawa 920–1192, Japan
| | - Takeshi Takarada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical and Health Sciences, Kanazawa, Ishikawa 920–1192, Japan
| | - Yukio Yoneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical and Health Sciences, Kanazawa, Ishikawa 920–1192, Japan
- * E-mail:
| |
Collapse
|
15
|
Yang L, Yang Q, Zhang K, Li YJ, Wu YM, Liu SB, Zheng LH, Zhao MG. Neuroprotective effects of daphnetin against NMDA receptor-mediated excitotoxicity. Molecules 2014; 19:14542-55. [PMID: 25225718 PMCID: PMC6271359 DOI: 10.3390/molecules190914542] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/04/2014] [Accepted: 08/06/2014] [Indexed: 01/27/2023] Open
Abstract
The accumulation of glutamate can excessively activate the N-methyl-d-aspartate (NMDA) receptors and cause excitotoxicity. Daphnetin (Dap), a coumarin derivative, is a protein kinase inhibitor that exhibits antioxidant and neuroprotective properties. However, little is known about the neuroprotective effects of Dap on glutamate-induced excitotoxicity. We evaluated the neuroprotective activities in the primary cultured cortical neurons against NMDA-induced excitotoxicity. Pretreatment with Dap significantly prevented NMDA-induced neuronal cell loss. Dap significantly inhibited the neuronal apoptosis by regulating balance of Bcl-2 and Bax expression. Furthermore, pretreatment of Dap reversed the up-regulation of NR2B-containing NMDA receptors and inhibited the intracellular Ca2+ overload induced by NMDA exposure. In addition, Dap prevented cerebral ischemic injury in mice induced via a 2 h middle cerebral artery occlusion and a 24 h reperfusion in vivo. The findings suggest that Dap prevents the excitotoxicity through inhibiting the NR2B-containing NMDA receptors and the subsequent calcium overload in cultured cortical neurons.
Collapse
Affiliation(s)
- Le Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China; E-Mails: (L.Y.); (Q.Y.); (K.Z.); (Y.-J.L.); (Y.-M.W.); (S.-B.L.)
| | - Qi Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China; E-Mails: (L.Y.); (Q.Y.); (K.Z.); (Y.-J.L.); (Y.-M.W.); (S.-B.L.)
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China; E-Mails: (L.Y.); (Q.Y.); (K.Z.); (Y.-J.L.); (Y.-M.W.); (S.-B.L.)
| | - Yu-Jiao Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China; E-Mails: (L.Y.); (Q.Y.); (K.Z.); (Y.-J.L.); (Y.-M.W.); (S.-B.L.)
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China; E-Mails: (L.Y.); (Q.Y.); (K.Z.); (Y.-J.L.); (Y.-M.W.); (S.-B.L.)
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China; E-Mails: (L.Y.); (Q.Y.); (K.Z.); (Y.-J.L.); (Y.-M.W.); (S.-B.L.)
| | - Lian-He Zheng
- Department Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi’an 710032, China
- Authors to whom correspondence should be addressed; E-Mails: (L.-H.Z.); (M.-G.Z.); Tel.: +86-29-84774553 (M.-G.Z.); Fax: +86-29-84774552 (M.-G.Z.)
| | - Ming-Gao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China; E-Mails: (L.Y.); (Q.Y.); (K.Z.); (Y.-J.L.); (Y.-M.W.); (S.-B.L.)
- Authors to whom correspondence should be addressed; E-Mails: (L.-H.Z.); (M.-G.Z.); Tel.: +86-29-84774553 (M.-G.Z.); Fax: +86-29-84774552 (M.-G.Z.)
| |
Collapse
|
16
|
Qi FY, Yang L, Tian Z, Zhao MG, Liu SB, An JZ. Neuroprotective effects of Asiaticoside. Neural Regen Res 2014; 9:1275-82. [PMID: 25221579 PMCID: PMC4160853 DOI: 10.4103/1673-5374.137574] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2014] [Indexed: 11/29/2022] Open
Abstract
In the central nervous system, Asiaticoside has been shown to attenuate in vitro neuronal damage caused by exposure to β-amyloid. In vivo studies demonstrated that Asiaticoside could attenuate neurobehavioral, neurochemical and histological changes in transient focal middle cerebral artery occlusion animals. In addition, Asiaticoside showed anxiolytic effects in acute and chronic stress animals. However, its potential neuroprotective properties in glutamate-induced excitotoxicity have not been fully studied. We investigated the neuroprotective effects of Asiaticoside in primary cultured mouse cortical neurons exposed to glutamate-induced excitotoxicity invoked by N-methyl-D-aspartate. Pretreatment with Asiaticoside decreased neuronal cell loss in a concentration-dependent manner and restored changes in expression of apoptotic-related proteins Bcl-2 and Bax. Asiaticoside pretreatment also attenuated the upregulation of NR2B expression, a subunit of N-methyl-D-aspartate receptors, but did not affect expression of NR2A subunits. Additionally, in cultured neurons, Asiaticoside significantly inhibited Ca2+ influx induced by N-methyl-D-aspartate. These experimental findings provide preliminary evidence that during excitotoxicity induced by N-methyl-D-aspartate exposure in cultured cortical neurons, the neuroprotective effects of Asiaticoside are mediated through inhibition of calcium influx. Aside from its anti-oxidant activity, down-regulation of NR2B-containing N-methyl-D-aspartate receptors may be one of the underlying mechanisms in Asiaticoside neuroprotection.
Collapse
Affiliation(s)
- Feng-Yan Qi
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University of Chinese PLA, Xi'an, Shaanxi Province, China
| | - Le Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University of Chinese PLA, Xi'an, Shaanxi Province, China
| | - Zhen Tian
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University of Chinese PLA, Xi'an, Shaanxi Province, China
| | - Ming-Gao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University of Chinese PLA, Xi'an, Shaanxi Province, China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University of Chinese PLA, Xi'an, Shaanxi Province, China
| | - Jia-Ze An
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University of Chinese PLA, Xi'an, Shaanxi Province, China
| |
Collapse
|
17
|
McCord MC, Aizenman E. The role of intracellular zinc release in aging, oxidative stress, and Alzheimer's disease. Front Aging Neurosci 2014; 6:77. [PMID: 24860495 PMCID: PMC4028997 DOI: 10.3389/fnagi.2014.00077] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/02/2014] [Indexed: 01/26/2023] Open
Abstract
Brain aging is marked by structural, chemical, and genetic changes leading to cognitive decline and impaired neural functioning. Further, aging itself is also a risk factor for a number of neurodegenerative disorders, most notably Alzheimer’s disease (AD). Many of the pathological changes associated with aging and aging-related disorders have been attributed in part to increased and unregulated production of reactive oxygen species (ROS) in the brain. ROS are produced as a physiological byproduct of various cellular processes, and are normally detoxified by enzymes and antioxidants to help maintain neuronal homeostasis. However, cellular injury can cause excessive ROS production, triggering a state of oxidative stress that can lead to neuronal cell death. ROS and intracellular zinc are intimately related, as ROS production can lead to oxidation of proteins that normally bind the metal, thereby causing the liberation of zinc in cytoplasmic compartments. Similarly, not only can zinc impair mitochondrial function, leading to excess ROS production, but it can also activate a variety of extra-mitochondrial ROS-generating signaling cascades. As such, numerous accounts of oxidative neuronal injury by ROS-producing sources appear to also require zinc. We suggest that zinc deregulation is a common, perhaps ubiquitous component of injurious oxidative processes in neurons. This review summarizes current findings on zinc dyshomeostasis-driven signaling cascades in oxidative stress and age-related neurodegeneration, with a focus on AD, in order to highlight the critical role of the intracellular liberation of the metal during oxidative neuronal injury.
Collapse
Affiliation(s)
- Meghan C McCord
- Department of Neurobiology, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| |
Collapse
|
18
|
Zhao Y, Pan R, Li S, Luo Y, Yan F, Yin J, Qi Z, Yan Y, Ji X, Liu KJ. Chelating intracellularly accumulated zinc decreased ischemic brain injury through reducing neuronal apoptotic death. Stroke 2014; 45:1139-47. [PMID: 24643405 DOI: 10.1161/strokeaha.113.004296] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND PURPOSE Zinc has been reported to possess both neurotoxic and neuroprotective capabilities. The effects of elevated intracellular zinc accumulation following transient focal cerebral ischemia remain to be fully elucidated. Here, we investigated whether removing zinc with the membrane-permeable zinc chelator, N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), would decrease the intracellular levels of zinc in the ischemic tissue, leading to reduced brain damage and improved neurological outcomes. METHODS Rats were pretreated with TPEN or vehicle before or after a 90-minute middle cerebral artery occlusion. Cerebral infarct volume, neurological functions, neuronal apoptosis, poly(ADP-ribose) polymerase activity, and cytosolic labile zinc were assessed after ischemia and reperfusion. RESULTS Cerebral ischemia caused a dramatic cytosolic labile zinc accumulation in the ischemic tissue, which was decreased markedly by TPEN (15 mg/kg) pretreatment. Chelating zinc lead to reduced infarct volume compared with vehicle-treated middle cerebral artery occlusion rats, accompanied by much improved neurological assessment and motor function, which were sustained for 14 days after reperfusion. We also determined that reducing zinc accumulation rescued neurons from ischemia-induced apoptotic death by reducing poly(ADP-ribose) polymerase-1 activation. CONCLUSIONS Ischemia-induced high accumulation of intracellular zinc significantly contributed to ischemic brain damage through promotion of neuronal apoptotic death. Removing zinc may be an effective and novel approach to reduce ischemic brain injury.
Collapse
Affiliation(s)
- Yongmei Zhao
- From the Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China (Y.Z., S.L., Y.L., F.Y., J.Y., Z.Q., Y.Y., X.J.); Beijing Geriatric Medical Research Center, Beijing, China (Y.Z., S.L., Y.L., F.Y., Z.Q., Y.Y., X.J.); Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China (Y.Z., Y.L., F.Y., J.Y., Z.Q., X.J.); Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China (Y.Z., Y.L., F.Y., J.Y., Z.Q., X.J.); and Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque (R.P., K.J.L.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yang L, Yang ZM, Zhang N, Tian Z, Liu SB, Zhao MG. Neuroprotective effects of vitexin by inhibition of NMDA receptors in primary cultures of mouse cerebral cortical neurons. Mol Cell Biochem 2013; 386:251-8. [PMID: 24141792 DOI: 10.1007/s11010-013-1862-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/09/2013] [Indexed: 11/27/2022]
Abstract
The accumulation of glutamate can excessively activate the N-methyl-D-aspartate (NMDA) receptors and cause excitotoxicity. Vitexin (5, 7, 4-trihydroxyflavone-8-glucoside, Vit) is a c-glycosylated flavone which was found in the several herbs, exhibiting potent hypotensive, anti-inflammatory, and neuroprotective properties. However, little is known about the neuroprotective effects of Vit on glutamate-induced excitotoxicity. In present study, primary cultured cortical neurons were treated with NMDA to induce the excitotoxicity. Pretreatment with Vit significantly prevented NMDA-induced neuronal cell loss and reduced the number of apoptotic neurons. Vit significantly inhibited the neuronal apoptosis induced by NMDA exposure by regulating balance of Bcl-2 and Bax expression and the cleavages of poly (ADP-ribose) polymerase and pro-caspase 3. Furthermore, pretreatment of Vit reversed the up-regulation of NR2B-containing NMDA receptors and the intracellular Ca(2+) overload induced by NMDA exposure. The neuroprotective effects of Vit are related to inhibiting the activities of NR2B-containing NMDA receptors and reducing the calcium influx in cultured cortical neurons.
Collapse
Affiliation(s)
- Le Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | | | |
Collapse
|
20
|
Convergent Ca2+ and Zn2+ signaling regulates apoptotic Kv2.1 K+ currents. Proc Natl Acad Sci U S A 2013; 110:13988-93. [PMID: 23918396 DOI: 10.1073/pnas.1306238110] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A simultaneous increase in cytosolic Zn(2+) and Ca(2+) accompanies the initiation of neuronal cell death signaling cascades. However, the molecular convergence points of cellular processes activated by these cations are poorly understood. Here, we show that Ca(2+)-dependent activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is required for a cell death-enabling process previously shown to also depend on Zn(2+). We have reported that oxidant-induced intraneuronal Zn(2+) liberation triggers a syntaxin-dependent incorporation of Kv2.1 voltage-gated potassium channels into the plasma membrane. This channel insertion can be detected as a marked enhancement of delayed rectifier K(+) currents in voltage clamp measurements observed at least 3 h following a short exposure to an apoptogenic stimulus. This current increase is the process responsible for the cytoplasmic loss of K(+) that enables protease and nuclease activation during apoptosis. In the present study, we demonstrate that an oxidative stimulus also promotes intracellular Ca(2+) release and activation of CaMKII, which, in turn, modulates the ability of syntaxin to interact with Kv2.1. Pharmacological or molecular inhibition of CaMKII prevents the K(+) current enhancement observed following oxidative injury and, importantly, significantly increases neuronal viability. These findings reveal a previously unrecognized cooperative convergence of Ca(2+)- and Zn(2+)-mediated injurious signaling pathways, providing a potentially unique target for therapeutic intervention in neurodegenerative conditions associated with oxidative stress.
Collapse
|
21
|
Aiba I, West AK, Sheline CT, Shuttleworth CW. Intracellular dialysis disrupts Zn2+ dynamics and enables selective detection of Zn2+ influx in brain slice preparations. J Neurochem 2013; 125:822-31. [PMID: 23517525 DOI: 10.1111/jnc.12246] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/06/2013] [Accepted: 03/12/2013] [Indexed: 01/06/2023]
Abstract
We examined the impact of intracellular dialysis on fluorescence detection of neuronal intracellular Zn(2+) accumulation. Comparison between two dialysis conditions (standard; 20 min, brief; 2 min) by standard whole-cell clamp revealed a high vulnerability of intracellular Zn(2+) buffers to intracellular dialysis. Thus, low concentrations of zinc-pyrithione generated robust responses in neurons with standard dialysis, but signals were smaller in neurons with short dialysis. Release from oxidation-sensitive Zn(2+) pools was reduced by standard dialysis, when compared with responses in neurons with brief dialysis. The dialysis effects were partly reversed by inclusion of recombinant metallothionein-3 in the dialysis solution. These findings suggested that extensive dialysis could be exploited for selective detection of transmembrane Zn(2+) influx. Different dialysis conditions were then used to probe responses to synaptic stimulation. Under standard dialysis conditions, synaptic stimuli generated significant FluoZin-3 signals in wild-type (WT) preparations, but responses were almost absent in preparations lacking vesicular Zn(2+) (ZnT3-KO). In contrast, under brief dialysis conditions, intracellular Zn(2+) transients were very similar in WT and ZnT3-KO preparations. This suggests that both intracellular release and transmembrane flux can contribute to intracellular Zn(2+) accumulation after synaptic stimulation. These results demonstrate significant confounds and potential use of intracellular dialysis to investigate intracellular Zn(2+) accumulation mechanisms.
Collapse
Affiliation(s)
- Isamu Aiba
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA
| | | | | | | |
Collapse
|
22
|
Aiba I, Carlson AP, Sheline CT, Shuttleworth CW. Synaptic release and extracellular actions of Zn2+ limit propagation of spreading depression and related events in vitro and in vivo. J Neurophysiol 2012; 107:1032-41. [PMID: 22131381 PMCID: PMC3289481 DOI: 10.1152/jn.00453.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 11/29/2011] [Indexed: 11/22/2022] Open
Abstract
Cortical spreading depression (CSD) is a consequence of a slowly propagating wave of neuronal and glial depolarization (spreading depolarization; SD). Massive release of glutamate contributes to SD propagation, and it was recently shown that Zn(2+) is also released from synaptic vesicles during SD. The present study examined consequences of extracellular Zn(2+) accumulation on the propagation of SD. SD mechanisms were studied first in murine brain slices, using focal KCl applications as stimuli and making electrical and optical recordings in hippocampal area CA1. Elevating extracellular Zn(2+) concentrations with exogenous ZnCl(2) reduced SD propagation rates. Selective chelation of endogenous Zn(2+) (using TPEN or CaEDTA) increased SD propagation rates, and these effects appeared due to chelation of Zn(2+) derived from synaptic vesicles. Thus, in tissues where synaptic Zn(2+) release was absent [knockout (KO) of vesicular Zn(2+) transporter ZnT-3], SD propagation rates were increased, and no additional increase was observed following chelation of endogenous Zn(2+) in these tissues. The role of synaptic Zn(2+) was then examined on CSD in vivo. ZnT-3 KO animals had higher susceptibility to CSD than wild-type controls as evidenced by significantly higher propagation rates and frequencies. Studies of candidate mechanisms excluded changes in neuronal excitability, presynaptic release, and GABA receptors but left open a possible contribution of N-methyl-d-aspartate (NMDA) receptor inhibition. These results suggest the extracellular accumulation of synaptically released Zn(2+) can serve as an intrinsic inhibitor to limit SD events. The inhibitory action of extracellular Zn(2+) on SD may counteract to some extent the neurotoxic effects of intracellular Zn(2+) accumulation in acute brain injury models.
Collapse
Affiliation(s)
- Isamu Aiba
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA
| | | | | | | |
Collapse
|
23
|
Hawkins BE, Frederickson CJ, Dewitt DS, Prough DS. Fluorophilia: fluorophore-containing compounds adhere non-specifically to injured neurons. Brain Res 2011; 1432:28-35. [PMID: 22137653 DOI: 10.1016/j.brainres.2011.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/02/2011] [Accepted: 11/03/2011] [Indexed: 11/18/2022]
Abstract
Ionic (free) zinc (Zn(2+)) is implicated in apoptotic neuronal degeneration and death. In our attempt to examine the effects of Zn(2+) in neurodegeneration following brain injury, we serendipitously discovered that injured neurons bind fluorescein moieties, either alone or as part of an indicator dye, in histologic sections. This phenomenon, that we have termed "fluorophilia", is analogous to the ability of degenerating neuronal somata and axons to bind silver ions (argyrophilia - the basis of silver degeneration stains). To provide evidence that fluorophilia occurs in sections of brain tissue, we used a wide variety of indicators such as Fluoro-Jade (FJ), a slightly modified fluorescein sold as a marker for degenerating neurons; Newport Green, a fluorescein-containing Zn(2+) probe; Rhod-5N, a rhodamine-containing Ca(2+) probe; and plain fluorescein. All yielded remarkably similar staining of degenerating neurons in the traumatic brain-injured tissue with the absence of staining in our sham-injured brains. Staining of presumptive injured neurons by these agents was not modified when Zn(2+) in the brain section was removed by prior chelation with EDTA or TPEN, whereas staining by a non-fluorescein containing Zn(2+) probe, N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide (TSQ), was suppressed by prior chelation. Thus, certain fluorophore-containing compounds nonspecifically stain degenerating neuronal tissue in histologic sections and may not reflect the presence of Zn(2+). This may be of concern to researchers using indicator dyes to detect metals in brain tissue sections. Further experiments may be advised to clarify whether Zn(2+)-binding dyes bind more specifically in intact neurons in culture or organotypic slices.
Collapse
Affiliation(s)
- Bridget E Hawkins
- Charles R. Allen Research Laboratories, Department of Anesthesiology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1102, USA.
| | | | | | | |
Collapse
|
24
|
Shuttleworth CW, Weiss JH. Zinc: new clues to diverse roles in brain ischemia. Trends Pharmacol Sci 2011; 32:480-6. [PMID: 21621864 DOI: 10.1016/j.tips.2011.04.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/19/2011] [Accepted: 04/21/2011] [Indexed: 12/22/2022]
Abstract
Cerebral ischemia is a leading cause of morbidity and mortality, reflecting the extraordinary sensitivity of the brain to a brief loss of blood flow. A significant goal has been to identify pathways of neuronal injury that are selectively activated after stroke and may be amenable to drug therapy. An important advance was made nearly 25 years ago when Ca(2+) overload was implicated as a critical link between glutamate excitotoxicity and ischemic neurodegeneration. However, early hope for effective therapies faded as glutamate-targeted trials repeatedly failed to demonstrate efficacy in humans. In a review in 2000 in this journal, we described new evidence linking a related cation, zinc (Zn(2+)), to neuronal injury, emphasizing sources and mechanisms of Zn(2+) toxicity. The current review highlights progress over the last decade, emphasizing mechanisms through which Zn(2+) ions (from multiple sources) participate together with Ca(2+) in different stages of cascades of ischemic injury.
Collapse
Affiliation(s)
- C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque NM 87131, USA
| | | |
Collapse
|
25
|
Szewczyk B, Kubera M, Nowak G. The role of zinc in neurodegenerative inflammatory pathways in depression. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:693-701. [PMID: 20156515 DOI: 10.1016/j.pnpbp.2010.02.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/23/2010] [Accepted: 02/09/2010] [Indexed: 11/28/2022]
Abstract
According to new hypothesis, depression is characterized by decreased neurogenesis and enhanced neurodegeneration which, in part, may be caused by inflammatory processes. There is much evidence indicating that depression, age-related changes often associated with impaired brain function and cognitive performances or neurodegenerative processes could be related to dysfunctions affecting the zinc ion availability. Clinical studies revealed that depression is accompanied by serum hypozincemia, which can be normalized by successful antidepressant treatment. In patients with major depression, a low zinc serum level was correlated with an increase in the activation of markers of the immune system, suggesting that this effect may result in part from a depression-related alteration in the immune-inflammatory system. Moreover, a preliminary clinical study demonstrated the benefit of zinc supplementation in antidepressant therapy in both treatment non-resistant and resistant patients. In the preclinical study, the antidepressant activity of zinc was observed in the majority of rodent tests and models of depression and revealed a causative role for zinc deficiency in the induction of depressive-like symptoms, the reduction of neurogenesis and neuronal survival or impaired learning and memory ability. This paper provides an overview of the clinical and experimental evidence that implicates the role of zinc in the pathophysiology and therapy of depression within the context of the inflammatory and neurodegenerative hypothesis of this disease.
Collapse
Affiliation(s)
- Bernadeta Szewczyk
- Laboratory of Trace Elements Neurobiology, Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
| | | | | |
Collapse
|
26
|
Carter RE, Aiba I, Dietz RM, Sheline CT, Shuttleworth CW. Spreading depression and related events are significant sources of neuronal Zn2+ release and accumulation. J Cereb Blood Flow Metab 2011; 31:1073-84. [PMID: 20978516 PMCID: PMC3070966 DOI: 10.1038/jcbfm.2010.183] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 08/27/2010] [Accepted: 09/11/2010] [Indexed: 11/09/2022]
Abstract
Spreading depression (SD) involves coordinated depolarizations of neurons and glia that propagate through the brain tissue. Repetitive SD-like events are common following human ischemic strokes, and are believed to contribute to the enlargement of infarct volume. Accumulation of Zn(2+) is also implicated in ischemic neuronal injury. Synaptic glutamate release contributes to SD propagation, and because Zn(2+) is costored with glutamate in some synaptic vesicles, we examined whether Zn(2+) is released by SD and may therefore provide a significant source of Zn(2+) in the postischemic period. Spreading depression-like events were generated in acutely prepared murine hippocampal slices by deprivation of oxygen and glucose (OGD), and Zn(2+) release was detected extracellularly by a Zn(2+)-selective indicator FluoZin-3. Deprivation of oxygen and glucose-SD produced large FluoZin-3 increases that propagated with the event, and signals were abolished in tissues from ZnT3 knockout animals lacking synaptic Zn(2+). Synaptic Zn(2+) release was also maintained with repetitive SDs generated by microinjections of KCl under normoxic conditions. Intracellular Zn(2+) accumulation in CA1 neurons, assessed using microinjection of FluoZin-3, showed significant increases following SD that was attributed to synaptic Zn(2+) release. These results suggest that Zn(2+) is released during SDs and could provide a significant source of Zn(2+) that contributes to neurodegeneration in the postischemic period.
Collapse
Affiliation(s)
- Russell E Carter
- Department of Neurosciences University of New Mexico, Albuquerque, New Mexico, USA
| | - Isamu Aiba
- Department of Neurosciences University of New Mexico, Albuquerque, New Mexico, USA
| | - Robert M Dietz
- Department of Neurosciences University of New Mexico, Albuquerque, New Mexico, USA
| | - Christian T Sheline
- LSU Health Sciences Center, Department of Ophthalmology and the Neuroscience Center of Excellence, New Orleans, Louisiana, USA
| | | |
Collapse
|
27
|
Rising zinc: a significant cause of ischemic neuronal death in the CA1 region of rat hippocampus. J Cereb Blood Flow Metab 2009; 29:1399-408. [PMID: 19491923 DOI: 10.1038/jcbfm.2009.64] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is a rising intracellular Zn2+ transient during neuronal ischemic hypoxia (oxygen-glucose deprivation and reoxygenation, OGD/R). The results of our recent works suggest that the OGD/R-induced Zn2+ transient can readily be mistaken for a Ca2+ transient. The aim of this study was to examine the respective functions of Zn2+ and Ca2+ in OGD/R-induced neuronal injury. We showed that [Zn2+]i accumulation was consistently met with the induction of OGD/R-induced cell injury. Ca2+ accumulation induced with high [K+] (to open voltage-gated calcium channels) or ionomycin (a Ca2+ ionophore) caused a moderate neuronal injury that was reduced significantly by the application of the Zn2+ chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). In comparison, Zn2+ accumulation, induced with the Zn2+ ionophore pyrithione, resulted in significantly greater injury. The application of nimodipine and MK801 was shown to attenuate neuronal injury only from a mild (10 mins) OGD insult. Neuronal injury from more severe (30 mins) OGD was not mitigated by the ion channel antagonists, whereas treatment with the Zn2+ chelator TPEN did afford significant protection from cell injury. These results indicate Zn2+-mediated damage to be of greater consequence than Ca2+-mediated damage, and collectively support the suggestion that Zn2+ accumulation may be a more significant causal factor of OGD/R-induced neuronal injury.
Collapse
|
28
|
Intracellular Zn2+ accumulation contributes to synaptic failure, mitochondrial depolarization, and cell death in an acute slice oxygen-glucose deprivation model of ischemia. J Neurosci 2009; 29:1105-14. [PMID: 19176819 DOI: 10.1523/jneurosci.4604-08.2009] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Despite considerable evidence for contributions of both Zn(2+) and Ca(2+) in ischemic brain damage, the relative importance of each cation to very early events in injury cascades is not well known. We examined Ca(2+) and Zn(2+) dynamics in hippocampal slices subjected to oxygen-glucose deprivation (OGD). When single CA1 pyramidal neurons were loaded via a patch pipette with a Ca(2+)-sensitive indicator (fura-6F) and an ion-insensitive indicator (AlexaFluor-488), small dendritic fura-6F signals were noted after several (approximately 6-8) minutes of OGD, followed shortly by sharp somatic signals, which were attributed to Ca(2+) ("Ca(2+) deregulation"). At close to the time of Ca(2+) deregulation, neurons underwent a terminal increase in plasma membrane permeability, indicated by loss of AlexaFluor-488 fluorescence. In neurons coloaded with fura-6F and a Zn(2+)-selective indicator (FluoZin-3), progressive rises in cytosolic Zn(2+) levels were detected before Ca(2+) deregulation. Addition of the Zn(2+) chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) significantly delayed both Ca(2+) deregulation and the plasma membrane permeability increases, indicating that Zn(2+) contributes to the degenerative signaling. Present observations further indicate that Zn(2+) is rapidly taken up into mitochondria, contributing to their early depolarization. Also, TPEN facilitated recovery of the mitochondrial membrane potential and of field EPSPs after transient OGD, and combined removal of Ca(2+) and Zn(2+) markedly extended the duration of OGD tolerated. These data provide new clues that Zn(2+) accumulates rapidly in neurons during slice OGD, is taken up by mitochondria, and contributes to consequent mitochondrial dysfunction, cessation of synaptic transmission, Ca(2+) deregulation, and cell death.
Collapse
|