1
|
Laha K, Zhu M, Gemperline E, Rau V, Li L, Fanselow MS, Lennertz R, Pearce RA. CPP impairs contextual learning at concentrations below those that block pyramidal neuron NMDARs and LTP in the CA1 region of the hippocampus. Neuropharmacology 2022; 202:108846. [PMID: 34687710 PMCID: PMC8627488 DOI: 10.1016/j.neuropharm.2021.108846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/29/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023]
Abstract
Drugs that block N-methyl-d-aspartate receptors (NMDARs) suppress hippocampus-dependent memory formation; they also block long-term potentiation (LTP), a cellular model of learning and memory. However, the fractional block that is required to achieve these effects is unknown. Here, we measured the dose-dependent suppression of contextual memory in vivo by systemic administration of the competitive antagonist (R,S)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP); in parallel, we measured the concentration-dependent block by CPP of NMDAR-mediated synapses and LTP of excitatory synapses in hippocampal brain slices in vitro. We found that the dose of CPP that suppresses contextual memory in vivo (EC50 = 2.3 mg/kg) corresponds to a free concentration of 53 nM. Surprisingly, applying this concentration of CPP to hippocampal brain slices had no effect on the NMDAR component of evoked field excitatory postsynaptic potentials (fEPSPNMDA), or on LTP. Rather, the IC50 for blocking the fEPSPNMDA was 434 nM, and for blocking LTP was 361 nM - both nearly an order of magnitude higher. We conclude that memory impairment produced by systemically administered CPP is not due primarily to its blockade of NMDARs on hippocampal pyramidal neurons. Rather, systemic CPP suppresses memory formation by actions elsewhere in the memory-encoding circuitry.
Collapse
Affiliation(s)
- Kurt Laha
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Mengwen Zhu
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Erin Gemperline
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Vinuta Rau
- Department of Anesthesiology, University of California-San Francisco, San Francisco, CA, USA.
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA; School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| | - Michael S Fanselow
- Departments of Psychology and Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Richard Lennertz
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Robert A Pearce
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Quach TT, Stratton HJ, Khanna R, Kolattukudy PE, Honnorat J, Meyer K, Duchemin AM. Intellectual disability: dendritic anomalies and emerging genetic perspectives. Acta Neuropathol 2021; 141:139-158. [PMID: 33226471 PMCID: PMC7855540 DOI: 10.1007/s00401-020-02244-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Intellectual disability (ID) corresponds to several neurodevelopmental disorders of heterogeneous origin in which cognitive deficits are commonly associated with abnormalities of dendrites and dendritic spines. These histological changes in the brain serve as a proxy for underlying deficits in neuronal network connectivity, mostly a result of genetic factors. Historically, chromosomal abnormalities have been reported by conventional karyotyping, targeted fluorescence in situ hybridization (FISH), and chromosomal microarray analysis. More recently, cytogenomic mapping, whole-exome sequencing, and bioinformatic mining have led to the identification of novel candidate genes, including genes involved in neuritogenesis, dendrite maintenance, and synaptic plasticity. Greater understanding of the roles of these putative ID genes and their functional interactions might boost investigations into determining the plausible link between cellular and behavioral alterations as well as the mechanisms contributing to the cognitive impairment observed in ID. Genetic data combined with histological abnormalities, clinical presentation, and transgenic animal models provide support for the primacy of dysregulation in dendrite structure and function as the basis for the cognitive deficits observed in ID. In this review, we highlight the importance of dendrite pathophysiology in the etiologies of four prototypical ID syndromes, namely Down Syndrome (DS), Rett Syndrome (RTT), Digeorge Syndrome (DGS) and Fragile X Syndrome (FXS). Clinical characteristics of ID have also been reported in individuals with deletions in the long arm of chromosome 10 (the q26.2/q26.3), a region containing the gene for the collapsin response mediator protein 3 (CRMP3), also known as dihydropyrimidinase-related protein-4 (DRP-4, DPYSL4), which is involved in dendritogenesis. Following a discussion of clinical and genetic findings in these syndromes and their preclinical animal models, we lionize CRMP3/DPYSL4 as a novel candidate gene for ID that may be ripe for therapeutic intervention.
Collapse
Affiliation(s)
- Tam T Quach
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
- INSERM U1217/CNRS, UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
| | | | - Jérome Honnorat
- INSERM U1217/CNRS, UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- SynatAc Team, Institut NeuroMyoGène, Lyon, France
| | - Kathrin Meyer
- The Research Institute of Nationwide Children Hospital, Columbus, OH, 43205, USA
- Department of Pediatric, The Ohio State University, Columbus, OH, 43210, USA
| | - Anne-Marie Duchemin
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Vázquez-Hernández N, Martínez-Torres NI, González-Burgos I. Plastic changes to dendritic spines in the cerebellar and prefrontal cortices underlie the decline in motor coordination and working memory during successful aging. Behav Brain Res 2020; 400:113014. [PMID: 33309738 DOI: 10.1016/j.bbr.2020.113014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 10/22/2022]
Abstract
Old age is the last stage of life and by taking a multidimensional view of aging, Neuroscientists have been able to characterize pathological or successful aging. Psychomotor and cognitive performance are recognized as two major domains of successful aging, with a loss of motor coordination and working memory deficits two of the most characteristic features of elderly people. Dendritic spines in both the cerebellar and prefrontal cortices diminish in aging, yet the plastic changes in dendritic spines have not been related to behavioral performance neither the changes in the cerebellar or prefrontal cortices. As such, motor coordination and visuospatial working memory (vsWM) was evaluated here in aged, 22-month-old rats, calculating the density of spines and the proportion of the different types of spines. These animals performed erratically and slowly in a motor coordination-related paradigm, and the vsWM was resolved deficiently. Spine density was reduced in aged animals, and the proportional density of each of the spine types studied diminished in both the brain regions studied. The loss of dendritic spines and particularly, the changes in the proportional density of the different spine types could underlie, at least in part, the behavioral deficits observed during aging. To our knowledge, this is the first study of the plastic changes in different dendritic spine types that might underlie the behavioral alterations in motor and cognitive abilities associated with aging. Further neurochemical and molecular studies will help better understand the functional significance of the plastic changes to dendritic spines in both successful and pathological aging.
Collapse
Affiliation(s)
- N Vázquez-Hernández
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jal, Mexico
| | - N I Martínez-Torres
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jal, Mexico; Centro Universitario del Norte, Universidad de Guadalajara, Colotlán, Jal, Mexico
| | - I González-Burgos
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jal, Mexico.
| |
Collapse
|
4
|
Henneberger C, Bard L, Panatier A, Reynolds JP, Kopach O, Medvedev NI, Minge D, Herde MK, Anders S, Kraev I, Heller JP, Rama S, Zheng K, Jensen TP, Sanchez-Romero I, Jackson CJ, Janovjak H, Ottersen OP, Nagelhus EA, Oliet SHR, Stewart MG, Nägerl UV, Rusakov DA. LTP Induction Boosts Glutamate Spillover by Driving Withdrawal of Perisynaptic Astroglia. Neuron 2020; 108:919-936.e11. [PMID: 32976770 PMCID: PMC7736499 DOI: 10.1016/j.neuron.2020.08.030] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/14/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
Extrasynaptic actions of glutamate are limited by high-affinity transporters expressed by perisynaptic astroglial processes (PAPs): this helps maintain point-to-point transmission in excitatory circuits. Memory formation in the brain is associated with synaptic remodeling, but how this affects PAPs and therefore extrasynaptic glutamate actions is poorly understood. Here, we used advanced imaging methods, in situ and in vivo, to find that a classical synaptic memory mechanism, long-term potentiation (LTP), triggers withdrawal of PAPs from potentiated synapses. Optical glutamate sensors combined with patch-clamp and 3D molecular localization reveal that LTP induction thus prompts spatial retreat of astroglial glutamate transporters, boosting glutamate spillover and NMDA-receptor-mediated inter-synaptic cross-talk. The LTP-triggered PAP withdrawal involves NKCC1 transporters and the actin-controlling protein cofilin but does not depend on major Ca2+-dependent cascades in astrocytes. We have therefore uncovered a mechanism by which a memory trace at one synapse could alter signal handling by multiple neighboring connections.
Collapse
Affiliation(s)
- Christian Henneberger
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany.
| | - Lucie Bard
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Aude Panatier
- INSERM U1215, Neurocentre Magendie, 33000 Bordeaux, France; Université de Bordeaux, 33000 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France
| | - James P Reynolds
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Olga Kopach
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | | | - Daniel Minge
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Michel K Herde
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Stefanie Anders
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Igor Kraev
- Life Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Janosch P Heller
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Sylvain Rama
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Kaiyu Zheng
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Thomas P Jensen
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | | | - Colin J Jackson
- Research School of Chemistry, Australian National University, Acton, ACT 2601, Australia
| | - Harald Janovjak
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria; EMBL Australia, Australian Regenerative Medicine Institute, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, VIC 3800, Australia
| | - Ole Petter Ottersen
- Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Stephane H R Oliet
- INSERM U1215, Neurocentre Magendie, 33000 Bordeaux, France; Université de Bordeaux, 33000 Bordeaux, France
| | | | - U Valentin Nägerl
- Université de Bordeaux, 33000 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France.
| | - Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.
| |
Collapse
|
5
|
Aging Alters Olfactory Bulb Network Oscillations and Connectivity: Relevance for Aging-Related Neurodegeneration Studies. Neural Plast 2020; 2020:1703969. [PMID: 32774353 PMCID: PMC7396091 DOI: 10.1155/2020/1703969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/27/2020] [Accepted: 02/12/2020] [Indexed: 11/18/2022] Open
Abstract
The aging process eventually cause a breakdown in critical synaptic plasticity and connectivity leading to deficits in memory function. The olfactory bulb (OB) and the hippocampus, both regions of the brain considered critical for the processing of odors and spatial memory, are commonly affected by aging. Using an aged wild-type C57B/6 mouse model, we sought to define the effects of aging on hippocampal plasticity and the integrity of cortical circuits. Specifically, we measured the long-term potentiation of high-frequency stimulation (HFS-LTP) at the Shaffer-Collateral CA1 pyramidal synapses. Next, local field potential (LFP) spectra, phase-amplitude theta-gamma coupling (PAC), and connectivity through coherence were assessed in the olfactory bulb, frontal and entorhinal cortices, CA1, and amygdala circuits. The OB of aged mice showed a significant increase in the number of histone H2AX-positive neurons, a marker of DNA damage. While the input-output relationship measure of basal synaptic activity was found not to differ between young and aged mice, a pronounced decline in the slope of field excitatory postsynaptic potential (fEPSP) and the population spike amplitude (PSA) were found in aged mice. Furthermore, aging was accompanied by deficits in gamma network oscillations, a shift to slow oscillations, reduced coherence and theta-gamma PAC in the OB circuit. Thus, while the basal synaptic activity was unaltered in older mice, impairment in hippocampal synaptic transmission was observed only in response to HFS. However, age-dependent alterations in neural network appeared spontaneously in the OB circuit, suggesting the neurophysiological basis of synaptic deficits underlying olfactory processing. Taken together, the results highlight the sensitivity and therefore potential use of LFP quantitative network oscillations and connectivity at the OB level as objective electrophysiological markers that will help reveal specific dysfunctional circuits in aging-related neurodegeneration studies.
Collapse
|
6
|
Zaccard CR, Shapiro L, Martin-de-Saavedra MD, Pratt C, Myczek K, Song A, Forrest MP, Penzes P. Rapid 3D Enhanced Resolution Microscopy Reveals Diversity in Dendritic Spinule Dynamics, Regulation, and Function. Neuron 2020; 107:522-537.e6. [PMID: 32464088 DOI: 10.1016/j.neuron.2020.04.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/19/2019] [Accepted: 04/27/2020] [Indexed: 12/31/2022]
Abstract
Dendritic spinules are thin protrusions, formed by neuronal spines, not adequately resolved by diffraction-limited light microscopy, which has limited our understanding of their behavior. Here we performed rapid structured illumination microscopy and enhanced resolution confocal microscopy to study spatiotemporal spinule dynamics in cortical pyramidal neurons. Spinules recurred at the same locations on mushroom spine heads. Most were short-lived, dynamic, exploratory, and originated near simple PSDs, whereas a subset was long-lived, elongated, and associated with complex PSDs. These subtypes were differentially regulated by Ca2+ transients. Furthermore, the postsynaptic Rac1-GEF kalirin-7 regulated spinule formation, elongation, and recurrence. Long-lived spinules often contained PSD fragments, contacted distal presynaptic terminals, and formed secondary synapses. NMDAR activation increased spinule number, length, and contact with distal presynaptic elements. Spinule subsets, dynamics, and recurrence were validated in cortical neurons of acute brain slices. Thus, we identified unique properties, regulatory mechanisms, and functions of spinule subtypes, supporting roles in neuronal connectivity.
Collapse
Affiliation(s)
- Colleen R Zaccard
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | - Lauren Shapiro
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | | | - Christopher Pratt
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | - Kristoffer Myczek
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | - Amy Song
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | - Marc P Forrest
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | - Peter Penzes
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
7
|
Multi-input Synapses, but Not LTP-Strengthened Synapses, Correlate with Hippocampal Memory Storage in Aged Mice. Curr Biol 2019; 29:3600-3610.e4. [PMID: 31630953 PMCID: PMC6839404 DOI: 10.1016/j.cub.2019.08.064] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/05/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022]
Abstract
Long-lasting changes at synapses enable memory storage in the brain. Although aging is associated with impaired memory formation, it is not known whether the synaptic underpinnings of memory storage differ with age. Using a training schedule that results in the same behavioral memory formation in young and aged mice, we examined synapse ultrastructure and molecular signaling in the hippocampus after contextual fear conditioning. Only in young, but not old mice, contextual fear memory formation was associated with synaptic changes that characterize well-known, long-term potentiation, a strengthening of existing synapses with one input. Instead, old-age memory was correlated with generation of multi-innervated dendritic spines (MISs), which are predominantly two-input synapses formed by the attraction of an additional excitatory, presynaptic terminal onto an existing synapse. Accordingly, a blocker used to inhibit MIS generation impaired contextual fear memory only in old mice. Our results reveal how the synaptic basis of hippocampal memory storage changes with age and suggest that these distinct memory-storing mechanisms may explain impaired updating in old age. Aged mice form contextual memory like young mice, but reconsolidation is impaired Only in young mice is contextual memory formation associated with structural LTP In aged mice, contextual memory formation correlates with multi-innervated spines Inhibition of multi-innervated spines impairs memory in aged but not young mice
Collapse
|
8
|
Heller JP, Michaluk P, Sugao K, Rusakov DA. Probing nano-organization of astroglia with multi-color super-resolution microscopy. J Neurosci Res 2017; 95:2159-2171. [PMID: 28151556 DOI: 10.1002/jnr.24026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/12/2016] [Accepted: 12/28/2016] [Indexed: 01/04/2023]
Abstract
Astroglia are essential for brain development, homeostasis, and metabolic support. They also contribute actively to the formation and regulation of synaptic circuits, by successfully handling, integrating, and propagating physiological signals of neural networks. The latter occurs mainly by engaging a versatile mechanism of internal Ca2+ fluctuations and regenerative waves prompting targeted release of signaling molecules into the extracellular space. Astroglia also show substantial structural plasticity associated with age- and use-dependent changes in neural circuitry. However, the underlying cellular mechanisms are poorly understood, mainly because of the extraordinary complex morphology of astroglial compartments on the nanoscopic scale. This complexity largely prevents direct experimental access to astroglial processes, most of which are beyond the diffraction limit of optical microscopy. Here we employed super-resolution microscopy (direct stochastic optical reconstruction microscopy; dSTORM), to visualize astroglial organization on the nanoscale, in culture and in thin brain slices, as an initial step to understand the structural basis of astrocytic nano-physiology. We were able to follow nanoscopic morphology of GFAP-enriched astrocytes, which adapt a flattened shape in culture and a sponge-like structure in situ, with GFAP fibers of varied diameters. We also visualized nanoscopic astrocytic processes using the ubiquitous cytosolic astrocyte marker proteins S100β and glutamine synthetase. Finally, we overexpressed and imaged membrane-targeted pHluorin and lymphocyte-specific protein tyrosine kinase (N-terminal domain) -green fluorescent protein (lck-GFP), to better understand the molecular cascades underlying some common astroglia-targeted fluorescence imaging techniques. The results provide novel, albeit initial, insights into the cellular organization of astroglia on the nanoscale, paving the way for function-specific studies. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Janosch P Heller
- UCL Institute of Neurology, Department of Clinical and Experimental Epilepsy, Queen Square House, London WC1N 3BG, United Kingdom
| | - Piotr Michaluk
- UCL Institute of Neurology, Department of Clinical and Experimental Epilepsy, Queen Square House, London WC1N 3BG, United Kingdom
| | - Kohtaroh Sugao
- UCL Institute of Neurology, Department of Clinical and Experimental Epilepsy, Queen Square House, London WC1N 3BG, United Kingdom.,Molecular Pathophysiology Research, Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Tokyo, 104-8356, Japan
| | - Dmitri A Rusakov
- UCL Institute of Neurology, Department of Clinical and Experimental Epilepsy, Queen Square House, London WC1N 3BG, United Kingdom
| |
Collapse
|
9
|
Segal M. Dendritic spines: Morphological building blocks of memory. Neurobiol Learn Mem 2016; 138:3-9. [PMID: 27311757 DOI: 10.1016/j.nlm.2016.06.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/22/2016] [Accepted: 06/12/2016] [Indexed: 12/22/2022]
Abstract
The introduction of novel technologies, including high resolution time lapse imaging in behaving animals, molecular modification of the genome and optogenetic control of neuronal excitability have revolutionized the ability to detect subcellular changes in the brain, associated with learning and memory. The sequence of molecular cascades leading to formation, longevity and erasure of memories are being addressed in growing number of studies. Still, major issues concerning the relationship between the morphology and physiology of dendritic spines and memory mechanisms and the functional, neuronal network relevance of such parameters remain unsettled. The present review will summarize recent studies related to the immediate and long lasting changes in density, morphology and function of dendritic spines and their parent neurons following exposure to plasticity-producing stimulation in vivo and in vitro. Standing issues such as the relations between volume/shape and longevity, with respect to different classes of memories in different brain regions will be addressed. These studies indicate that the rules governing the structure/function relations of dendritic spines and memory in the brain are still not conclusive.
Collapse
Affiliation(s)
- Menahem Segal
- Department of Neurobiology, The Weizmann Institute, Rehovot 76100, Israel.
| |
Collapse
|
10
|
Bosch C, Muhaisen A, Pujadas L, Soriano E, Martínez A. Reelin Exerts Structural, Biochemical and Transcriptional Regulation Over Presynaptic and Postsynaptic Elements in the Adult Hippocampus. Front Cell Neurosci 2016; 10:138. [PMID: 27303269 PMCID: PMC4884741 DOI: 10.3389/fncel.2016.00138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/10/2016] [Indexed: 11/13/2022] Open
Abstract
Reelin regulates neuronal positioning and synaptogenesis in the developing brain, and adult brain plasticity. Here we used transgenic mice overexpressing Reelin (Reelin-OE mice) to perform a comprehensive dissection of the effects of this protein on the structural and biochemical features of dendritic spines and axon terminals in the adult hippocampus. Electron microscopy (EM) revealed both higher density of synapses and structural complexity of both pre- and postsynaptic elements in transgenic mice than in WT mice. Dendritic spines had larger spine apparatuses, which correlated with a redistribution of Synaptopodin. Most of the changes observed in Reelin-OE mice were reversible after blockade of transgene expression, thus supporting the specificity of the observed phenotypes. Western blot and transcriptional analyses did not show major changes in the expression of pre- or postsynaptic proteins, including SNARE proteins, glutamate receptors, and scaffolding and signaling proteins. However, EM immunogold assays revealed that the NMDA receptor subunits NR2a and NR2b, and p-Cofilin showed a redistribution from synaptic to extrasynaptic pools. Taken together with previous studies, the present results suggest that Reelin regulates the structural and biochemical properties of adult hippocampal synapses by increasing their density and morphological complexity and by modifying the distribution and trafficking of major glutamatergic components.
Collapse
Affiliation(s)
- Carles Bosch
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), MadridSpain; Vall d'Hebron Institut de RecercaBarcelona, Spain
| | - Ashraf Muhaisen
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), MadridSpain; Vall d'Hebron Institut de RecercaBarcelona, Spain; Institute of Neurosciences, University of BarcelonaBarcelona, Spain
| | - Lluís Pujadas
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), MadridSpain; Vall d'Hebron Institut de RecercaBarcelona, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), MadridSpain; Vall d'Hebron Institut de RecercaBarcelona, Spain; Institute of Neurosciences, University of BarcelonaBarcelona, Spain; Institució Catalana de Recerca i Estudis Avançats AcademiaBarcelona, Spain
| | - Albert Martínez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona Barcelona, Spain
| |
Collapse
|
11
|
Mahmoud GS, Amer AS. Co-Application of Corticosterone and Growth Hormone Upregulates NR2B Protein and Increases the NR2B:NR2A Ratio and Synaptic Transmission in the Hippocampus. Sultan Qaboos Univ Med J 2014; 14:e486-e494. [PMID: 25364551 PMCID: PMC4205060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/10/2014] [Accepted: 06/04/2014] [Indexed: 06/04/2023] Open
Abstract
OBJECTIVES This in vitro study aimed to investigate the possible mechanism underlying the protective effect of growth hormone (GH) on hippocampal function during periods of heightened glucocorticoid exposure. METHODS This study was conducted between January and June 2005 at the Joan C. Edwards School of Medicine, Marshall University, in Huntington, West Virginia, USA. The effects of the co-application of GH and corticosterone (CORT) were tested at different concentrations on the field excitatory postsynaptic potentials (fEPSPs) of the hippocampal slices of rats in two different age groups. Changes in the protein expression of N-methyl-D-aspartate receptor (NMDAR) subunits NR1, NR2B and NR2A were measured in hippocampal brain slices treated with either artificial cerebrospinal fluid (ACSF), low doses of CORT alone or both CORT and GH for three hours. RESULTS The co-application of CORT and GH was found to have an additive effect on hippocampal synaptic transmission compared to either drug alone. Furthermore, the combined use of low concentrations of GH and CORT was found to have significantly higher effects on the enhancement of fEPSPs in older rats compared to young ones. Both GH and CORT enhanced the protein expression of the NR2A subunit. Simultaneous exposure to low concentrations of GH and CORT significantly enhanced NR2B expression and increased the NR2B:NR2A ratio. In contrast, perfusion with CORT alone caused significant suppression in the NR1 and NR2B protein expression and a decrease in the NR2B:NR2A ratio. CONCLUSION These results suggest that NMDARs provide a potential target for mediating the GH potential protective effect against stress and age-related memory and cognitive impairment.
Collapse
Affiliation(s)
- Ghada S. Mahmoud
- Departments of Medical Physiology, Assiut University, Assiut, Egypt
| | - Ayman S. Amer
- Human Anatomy & Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
12
|
Abstract
Emerging data indicate that growth hormone (GH) therapy could have a role in improving cognitive function. GH replacement therapy in experimental animals and human patients counteracts the dysfunction of many behaviours related to the central nervous system (CNS). Various behaviours, such as cognitive behaviours related to learning and memory, are known to be induced by GH; the hormone might interact with specific receptors located in areas of the CNS that are associated with the functional anatomy of these behaviours. GH is believed to affect excitatory circuits involved in synaptic plasticity, which alters cognitive capacity. GH also has a protective effect on the CNS, as indicated by its beneficial effects in patients with spinal cord injury. Data collected from animal models indicates that GH might also stimulate neurogenesis. This Review discusses the mechanisms underlying the interactions between GH and the CNS, and the data emerging from animal and human studies on the relationship between GH and cognitive function. In this article, particular emphasis is given to the role of GH as a treatment for patients with cognitive impairment resulting from deficiency of the hormone.
Collapse
Affiliation(s)
- Fred Nyberg
- Department of Pharmaceutical Biosciences, Uppsala University, PO Box 591, S-751 24 Uppsala, Sweden
| | | |
Collapse
|
13
|
NCAM function in the adult brain: lessons from mimetic peptides and therapeutic potential. Neurochem Res 2013; 38:1163-73. [PMID: 23494903 DOI: 10.1007/s11064-013-1007-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 02/01/2013] [Accepted: 02/18/2013] [Indexed: 01/22/2023]
Abstract
Neural cell adhesion molecules (NCAMs) are complexes of transmembranal proteins critical for cell-cell interactions. Initially recognized as key players in the orchestration of developmental processes involving cell migration, cell survival, axon guidance, and synaptic targeting, they have been shown to retain these functions in the mature adult brain, in relation to plastic processes and cognitive abilities. NCAMs are able to interact among themselves (homophilic binding) as well as with other molecules (heterophilic binding). Furthermore, they are the sole molecule of the central nervous system undergoing polysialylation. Most interestingly polysialylated and non-polysialylated NCAMs display opposite properties. The precise contributions each of these characteristics brings in the regulations of synaptic and cellular plasticity in relation to cognitive processes in the adult brain are not yet fully understood. With the aim of deciphering the specific involvement of each interaction, recent developments led to the generation of NCAM mimetic peptides that recapitulate identified binding properties of NCAM. The present review focuses on the information such advances have provided in the understanding of NCAM contribution to cognitive function.
Collapse
|
14
|
Multiple spine boutons are formed after long-lasting LTP in the awake rat. Brain Struct Funct 2012; 219:407-14. [PMID: 23224218 DOI: 10.1007/s00429-012-0488-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/16/2012] [Indexed: 01/25/2023]
Abstract
The formation of multiple spine boutons (MSBs) has been associated with cognitive abilities including hippocampal-dependent associative learning and memory. Data obtained from cultured hippocampal slices suggest that the long-term maintenance of synaptic plasticity requires the formation of new synaptic contacts on pre-existing synapses. This postulate however, has never been tested in the awake, freely moving animals. In the current study, we induced long-term potentiation (LTP) in the dentate gyrus (DG) of awake adult rats and performed 3-D reconstructions of electron micrographs from thin sections of both axonal boutons and dendritic spines, 24 h post-induction. The specificity of the observed changes was demonstrated by comparison with animals in which long-term depression (LTD) had been induced, or with animals in which LTP was blocked by an N-methyl-D-aspartate (NMDA) antagonist. Our data demonstrate that whilst the number of boutons remains unchanged, there is a marked increase in the number of synapses per bouton 24 h after the induction of LTP. Further, we demonstrate that this increase is specific to mushroom spines and not attributable to their division. The present investigation thus fills the gap existing between behavioural and in vitro studies on the role of MSB formation in synaptic plasticity and cognitive abilities.
Collapse
|
15
|
Ohkawa N, Saitoh Y, Tokunaga E, Nihonmatsu I, Ozawa F, Murayama A, Shibata F, Kitamura T, Inokuchi K. Spine formation pattern of adult-born neurons is differentially modulated by the induction timing and location of hippocampal plasticity. PLoS One 2012; 7:e45270. [PMID: 23024813 PMCID: PMC3443223 DOI: 10.1371/journal.pone.0045270] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/14/2012] [Indexed: 12/13/2022] Open
Abstract
In the adult hippocampus dentate gyrus (DG), newly born neurons are functionally integrated into existing circuits and play important roles in hippocampus-dependent memory. However, it remains unclear how neural plasticity regulates the integration pattern of new neurons into preexisting circuits. Because dendritic spines are major postsynaptic sites for excitatory inputs, spines of new neurons were visualized by retrovirus-mediated labeling to evaluate integration. Long-term potentiation (LTP) was induced at 12, 16, or 21 days postinfection (dpi), at which time new neurons have no, few, or many spines, respectively. The spine expression patterns were investigated at one or two weeks after LTP induction. Induction at 12 dpi increased later spinogenesis, although the new neurons at 12 dpi didn't respond to the stimulus for LTP induction. Induction at 21 dpi transiently mediated spine enlargement. Surprisingly, LTP induction at 16 dpi reduced the spine density of new neurons. All LTP-mediated changes specifically appeared within the LTP-induced layer. Therefore, neural plasticity differentially regulates the integration of new neurons into the activated circuit, dependent on their developmental stage. Consequently, new neurons at different developmental stages may play distinct roles in processing the acquired information by modulating the connectivity of activated circuits via their integration.
Collapse
Affiliation(s)
- Noriaki Ohkawa
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
- JST, CREST, Kawaguchi, Japan
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
| | - Yoshito Saitoh
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
- JST, CREST, Kawaguchi, Japan
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
| | - Eri Tokunaga
- JST, CREST, Kawaguchi, Japan
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
| | - Itsuko Nihonmatsu
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
| | - Fumiko Ozawa
- JST, CREST, Kawaguchi, Japan
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
| | - Akiko Murayama
- JST, CREST, Kawaguchi, Japan
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
| | - Fumi Shibata
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kaoru Inokuchi
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
- JST, CREST, Kawaguchi, Japan
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
- * E-mail:
| |
Collapse
|
16
|
Peterson JD, Goldberg JA, Surmeier DJ. Adenosine A2a receptor antagonists attenuate striatal adaptations following dopamine depletion. Neurobiol Dis 2011; 45:409-16. [PMID: 21964253 DOI: 10.1016/j.nbd.2011.08.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 08/11/2011] [Accepted: 08/31/2011] [Indexed: 11/24/2022] Open
Abstract
The motor symptoms of Parkinson's disease (PD) are widely thought to arise from an imbalance in the activity of the two major striatal efferent pathways following the loss of dopamine (DA) signaling. In striatopallidal, indirect pathway spiny projection neurons (iSPNs), intrinsic excitability rises following the loss of inhibitory D2 receptor signaling. Because these receptors are normally counterbalanced by adenosine A2a adenosine receptors, antagonists of these receptors are being examined as an adjunct to conventional pharmacological therapies. However, little is known about the effects of sustained A2a receptor antagonism on striatal adaptations in PD models. To address this issue, the A2a receptor antagonist SCH58261 was systemically administered to DA-depleted mice. After 5 days of treatment, the effects of SCH58261 on iSPNs were examined in brain slices using electrophysiological and optical approaches. SCH58261 treatment did not prevent spine loss in iSPNs following depletion, but did significantly attenuate alterations in synaptic currents, spine morphology and dendritic excitability. In part, these effects were attributable to the ability of SCH58261 to blunt the effects of DA depletion on cholinergic interneurons, another striatal cell type that co-expresses A2a and D(2) receptors. Collectively, these results suggest that A2a receptor antagonism improves striatal function in PD models by attenuating iSPN adaptations to DA depletion.
Collapse
Affiliation(s)
- Jayms D Peterson
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
17
|
Recovery from chronic monocular deprivation following reactivation of thalamocortical plasticity by dark exposure. Nat Commun 2011; 2:317. [PMID: 21587234 DOI: 10.1038/ncomms1312] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 04/13/2011] [Indexed: 11/08/2022] Open
Abstract
Chronic monocular deprivation induces severe amblyopia that is resistant to spontaneous reversal. However, dark exposure initiated in adulthood reactivates synaptic plasticity in the visual cortex and promotes recovery from chronic monocular deprivation in Long Evans rats. Here we show that chronic monocular deprivation induces a significant decrease in the density of dendritic spines on principal neurons throughout the deprived visual cortex. Nevertheless, dark exposure followed by reverse deprivation promotes the recovery of dendritic spine density of neurons in all laminae. Importantly, the ocular dominance of neurons in thalamo-recipient laminae of the cortex, and the amplitude of the thalamocortical visually evoked potential recover following dark exposure and reverse deprivation. Thus, dark exposure reactivates widespread synaptic plasticity in the adult visual cortex, including thalamocortical synapses, during the recovery from chronic monocular deprivation.
Collapse
|
18
|
Kraev I, Henneberger C, Rossetti C, Conboy L, Kohler LB, Fantin M, Jennings A, Venero C, Popov V, Rusakov D, Stewart MG, Bock E, Berezin V, Sandi C. A peptide mimetic targeting trans-homophilic NCAM binding sites promotes spatial learning and neural plasticity in the hippocampus. PLoS One 2011; 6:e23433. [PMID: 21887252 PMCID: PMC3160849 DOI: 10.1371/journal.pone.0023433] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/17/2011] [Indexed: 01/10/2023] Open
Abstract
The key roles played by the neural cell adhesion molecule (NCAM) in plasticity and cognition underscore this membrane protein as a relevant target to develop cognitive-enhancing drugs. However, NCAM is a structurally and functionally complex molecule with multiple domains engaged in a variety of actions, which raise the question as to which NCAM fragment should be targeted. Synthetic NCAM mimetic peptides that mimic NCAM sequences relevant to specific interactions allow identification of the most promising targets within NCAM. Recently, a decapeptide ligand of NCAM—plannexin, which mimics a homophilic trans-binding site in Ig2 and binds to Ig3—was developed as a tool for studying NCAM's trans-interactions. In this study, we investigated plannexin's ability to affect neural plasticity and memory formation. We found that plannexin facilitates neurite outgrowth in primary hippocampal neuronal cultures and improves spatial learning in rats, both under basal conditions and under conditions involving a deficit in a key plasticity-promoting posttranslational modification of NCAM, its polysialylation. We also found that plannexin enhances excitatory synaptic transmission in hippocampal area CA1, where it also increases the number of mushroom spines and the synaptic expression of the AMPAR subunits GluA1 and GluA2. Altogether, these findings provide compelling evidence that plannexin is an important facilitator of synaptic functional, structural and molecular plasticity in the hippocampal CA1 region, highlighting the fragment in NCAM's Ig3 module where plannexin binds as a novel target for the development of cognition-enhancing drugs.
Collapse
Affiliation(s)
- Igor Kraev
- Department of Life Sciences, The Open University, Milton Keynes, United Kingdom
| | - Christian Henneberger
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London (UCL), London, United Kingdom
| | - Clara Rossetti
- Laboratory of Behavioral Genetics, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Lisa Conboy
- Laboratory of Behavioral Genetics, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Lene B. Kohler
- Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Martina Fantin
- Laboratory of Behavioral Genetics, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Alistair Jennings
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London (UCL), London, United Kingdom
| | - Cesar Venero
- Department of Psychobiology, UNED, Ciudad Universitaria, Madrid, Spain
| | - Victor Popov
- Department of Life Sciences, The Open University, Milton Keynes, United Kingdom
| | - Dmitri Rusakov
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London (UCL), London, United Kingdom
| | - Michael G. Stewart
- Department of Life Sciences, The Open University, Milton Keynes, United Kingdom
- * E-mail: (CS); (MGS)
| | - Elisabeth Bock
- Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Vladimir Berezin
- Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, EPFL, Lausanne, Switzerland
- * E-mail: (CS); (MGS)
| |
Collapse
|
19
|
Popov VI, Kleschevnikov AM, Klimenko OA, Stewart MG, Belichenko PV. Three-dimensional synaptic ultrastructure in the dentate gyrus and hippocampal area CA3 in the Ts65Dn mouse model of Down syndrome. J Comp Neurol 2011; 519:1338-54. [PMID: 21452200 DOI: 10.1002/cne.22573] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Down syndrome (DS) results from trisomy of human chromosome 21. Ts65Dn mice are an established model for DS and show several phenotypes similar to those in people with DS. However, there is little data on the structural plasticity of synapses in the trisynaptic pathway in the hippocampus. Here we investigate 3D ultrastructure of synapses in the hippocampus of age-matched control (2N) and Ts65Dn male mice. Serial ultrathin sections and 3D reconstructions characterize synapses in the middle molecular layer (MML) of dentate gyrus and in thorny excrescences (TEs) in proximal portions of apical dendrites of CA3 pyramidal neurons. 3D analysis of synapses shows phenotypes that distinguish Ts65Dn from 2N mice. For the MML, synapse density was reduced by 15% in Ts65Dn vs. 2N mice (P < 0.05). Comparative 3D analyses demonstrate a significant decrease in the number of thorns per TE in CA3 in Ts65Dn vs. 2N mice (by ≈45%, P = 0.01). Individual thorn volume was 3 times smaller in Ts65Dn vs. 2N mice (P = 0.02). A significant decrease in the number of thorn projections per TE in Ts65Dn vs. 2N mice was accompanied by a decrease of filopodium-like protrusions on the surface of TEs (P = 0.02). However, the volume of postsynaptic densities in CA3 Ts65Dn and 2N mice was unchanged (P = 0.78). Our findings suggest that the high degree of plasticity of CA3 thorns may be connected with their filopodial origin. Alterations of 3D synaptic structure in Ts65Dn mice may further contribute to the diminished plasticity in DS.
Collapse
Affiliation(s)
- Victor I Popov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia.
| | | | | | | | | |
Collapse
|
20
|
Egocentric working memory impairment and dendritic spine plastic changes in prefrontal neurons after NMDA receptor blockade in rats. Brain Res 2011; 1402:101-8. [PMID: 21696707 DOI: 10.1016/j.brainres.2011.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/06/2011] [Accepted: 06/04/2011] [Indexed: 12/29/2022]
Abstract
Working memory may involve context-dependent allocentric or own movement-dependent egocentric strategies. While allocentric working memory can be disrupted by N-methyl-D-aspartate (NMDA) blockage, the possible effects of NMDA receptor manipulation on the egocentric strategy have not been studied. Because dendritic spine plasticity in part underlies working memory-related behavioral efficiency, egocentric working memory performance was evaluated in adult rats following NMDA receptor blockade with 10mg/kg of the NMDA-receptor antagonist CPP, i.p. Dendritic spine density and the proportion of different spine types (thin, stubby, mushroom, wide, branched and double) were assessed in third-layer pyramidal neurons of the dorsomedial prefrontal cortex, after behavioral testing. Working memory was evaluated by challenging the rats to resolve twelve trials per day in a single-day session over five consecutive days, in a "cross-arm" maze and according to a delayed match-to-sample procedure. In control animals, the dendritic spine density remained unchanged after behavioral testing, although the proportion of mushroom spines decreased while that of the branched spines increased. NMDA receptor blockade impaired the behavioral performance of rats and resulted in a decrease in dendritic spine density when compared to the control animals, and dendritic spine types were unchanged. These results suggest that behavioral efficiency of egocentric working memory is dependent on NMDA receptor activation, and that plastic changes in spine cytoarchitecture may play a key role in behavioral performance.
Collapse
|
21
|
He K, Lee A, Song L, Kanold PO, Lee HK. AMPA receptor subunit GluR1 (GluA1) serine-845 site is involved in synaptic depression but not in spine shrinkage associated with chemical long-term depression. J Neurophysiol 2011; 105:1897-907. [PMID: 21307330 PMCID: PMC3075297 DOI: 10.1152/jn.00913.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 02/03/2011] [Indexed: 12/14/2022] Open
Abstract
The structure of dendritic spines is highly plastic and can be modified by neuronal activity. In addition, there is evidence that spine head size correlates with the synaptic α-amino-3-hydroxy-5-methylisoxazole propionic acid (AMPA) receptor (AMPAR) content, which suggests that they may be coregulated. Although there is evidence that there are overlapping mechanisms for structural and functional plasticity, the extent of the overlap needs further investigation. Specifically, it is unknown whether AMPAR levels determine spine size or whether both are regulated via parallel pathways. We studied the correlation between spine structural plasticity and long-term synaptic plasticity following chemical-induced long-term depression (chemLTD). In particular, we examined whether the regulation of AMPARs, which is implicated in LTD, is critical for spine morphological plasticity. We used mutant mice specifically lacking the serine-845 site on the type 1 glutamate receptor (GluR1, or GluA1) subunit of AMPARs (mutants). These mice specifically lack N-methyl-D-aspartate (NMDA) receptor (NMDAR)-dependent LTD and NMDAR activation-induced AMPAR endocytosis. We found that chemLTD causes a rapid and persistent shrinkage in spine head volume of hippocampal CA1 pyramidal neurons in wild types similar to that reported in other studies using low-frequency stimulation (LFS)-induced LTD. Surprisingly, we found that although S845A mutant mice display impaired chemLTD, the shrinkage of spine head volume occurred to a similar magnitude to that observed in wild types. Our results suggest that there is dissociation in the molecular mechanisms underlying functional LTD and spine shrinkage and that GluR1-S845 regulation is not necessary for spine morphological plasticity.
Collapse
Affiliation(s)
- Kaiwen He
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
22
|
Viso A, Fernández de la Pradilla R, Tortosa M, García A, Flores A. Update 1 of: α,β-Diamino Acids: Biological Significance and Synthetic Approaches. Chem Rev 2011; 111:PR1-42. [DOI: 10.1021/cr100127y] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Alma Viso
- Instituto de Química Orgánica, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | | | - Mariola Tortosa
- Instituto de Química Orgánica, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Ana García
- Instituto de Química Orgánica, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Aida Flores
- Instituto de Química Orgánica, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| |
Collapse
|
23
|
Medvedev NI, Popov VI, Dallérac G, Davies HA, Laroche S, Kraev IV, Rodriguez Arellano JJ, Doyère V, Stewart MG. Alterations in synaptic curvature in the dentate gyrus following induction of long-term potentiation, long-term depression, and treatment with the N-methyl-D-aspartate receptor antagonist CPP. Neuroscience 2010; 171:390-7. [PMID: 20849931 DOI: 10.1016/j.neuroscience.2010.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/04/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
Abstract
Alterations in curvature of the post synaptic density (PSD) and apposition zone (AZ), are believed to play an important role in determining synaptic efficacy. In the present study we have examined curvature of PSDs and AZs 24 h following homosynaptic long-term potentiation (LTP), and heterosynaptic long-term depression (LTD) in vivo, in awake adult rats. High frequency stimulation (HFS) applied to the medial perforant path to the dentate gyrus induced LTP while HFS stimulation of the lateral perforant path induced LTD in the middle molecular layer of the dentate gyrus (DG). Curvature changes were analysed in this area using three dimensional (3-D) reconstructions of electron microscope images of ultrathin serial sections. Very large and significant changes in 3-D measurements of AZ and PSD curvature occurred 24 h following both LTP and LTD, with a flattening of the normal concavity of mushroom spine heads and a change to convexity for thin spines. An N-methyl-D-aspartate (NMDA) receptor antagonist CPP (3-[(R)-2-Carboxypiperazin-4-yl]-propyl-1-phosphonic acid) blocked the changes in curvature of mushroom and thin spine PSDs and apposition zones, actually increasing the concavity of mushroom spines as the spine engulfed the presynaptic bouton. In order to establish whether these changes resulted from the effect of the NMDA antagonist or from its coincidence with synaptic activation during testing we examined the effects of CPP alone on PSD and apposition zone curvature. It was found that CPP alone also caused a small decrease in curvature of both PSD and apposition zone of mushroom and thin spines.
Collapse
Affiliation(s)
- N I Medvedev
- Department of Life Sciences, The Open University, Milton Keynes, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Segal M. Dendritic spines, synaptic plasticity and neuronal survival: activity shapes dendritic spines to enhance neuronal viability. Eur J Neurosci 2010; 31:2178-84. [PMID: 20550565 DOI: 10.1111/j.1460-9568.2010.07270.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An emerging view of structure-function relations of synapses in central spiny neurons asserts that larger spines produce large synaptic currents and that these large spines are persistent ('memory') compared to small spines which are transient. Furthermore, 'learning' involves enlargement of small spine heads and their conversion to being large and stable. It is also assumed that the number of spines, hence the number of synapses, is reflected in the frequency of miniature excitatory postsynaptic currents (mEPSCs). Consequently, there is an assumption that the size and number of mEPSCs are closely correlated with, respectively, the physical size of synapses and number of spines. However, several recent observations do not conform to these generalizations, necessitating a reassessment of the model: spine dimension and synaptic responses are not always correlated. It is proposed that spines are formed and shaped by ongoing network activity, not necessarily by a 'learning' event, to the extent that, in the absence of such activity, new spines are not formed and existing ones disappear or convert into thin filopodia. In the absence of spines, neurons can still maintain synapses with afferent fibers, which can now terminate on its dendritic shaft. Shaft synapses are likely to produce larger synaptic currents than spine synapses. Following loss of their spines, neurons are less able to cope with the large synaptic inputs impinging on their dendritic shafts, and these inputs may lead to their eventual death. Thus, dendritic spines protect neurons from synaptic activity-induced rises in intracellular calcium concentrations.
Collapse
Affiliation(s)
- Menahem Segal
- Department of Neurobiology, The Weizmann Institute, Rehovot, Israel.
| |
Collapse
|