1
|
Bencker C, Gschwandtner L, Nayman S, Grikšienė R, Nguyen B, Nater UM, Guennoun R, Sundström-Poromaa I, Pletzer B, Bixo M, Comasco E. Progestagens and progesterone receptor modulation: Effects on the brain, mood, stress, and cognition in females. Front Neuroendocrinol 2025; 76:101160. [PMID: 39515587 DOI: 10.1016/j.yfrne.2024.101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Progesterone is a highly lipophilic gonadal hormone that can influence behavior and mental health through its receptors in the brain. Fluctuations in progesterone levels across critical periods of a females life are associated with increased susceptibility to mental conditions. This review highlights the effects of progestagens, including progesterone and synthetic progestins, on the brain, mood, stress, and cognition in females. The primary focus is on experimental pharmacological research that teases out the distinct effects of progestagens from those of estrogens. Additionally, the key literature on puberty, the menstrual cycle, pregnancy, perimenopause, hormonal contraceptives, and menopausal hormone therapy is reviewed, although conclusions are limited by the nested effects of progestagens and estrogens. Single study-findings suggest an influence of progesterone on amygdala reactivity related to processing of emotional stimuli and memory. In patients with premenstrual dysphoric disorder, progesterone receptor modulation improves premenstrual mood symptoms and potentially enhances fronto-cingulate control over emotion processing. The interaction between progestagens and the systems involved in the regulation of stress seems to influence subjective experiences of mood and stress. Sparse studies investigating the effects of progestin-only contraceptives suggest effects of progestagens on the brain, mood, and stress. Progesterone and progestins used for contraception can influence neural processes as myelination and neuroprotection, exerting protective effects against stroke. Concerning menopausal hormonal therapy, the effects of progestins are largely unknown. Levels of progesterone as well as type, administration route, timing, dose regimen, metabolism, and intracellular activity of progestins in hormonal contraceptives and menopausal hormonal therapy are factors whose effects remain to be elucidated. Altogether, current knowledge highlights the potential role of progestagens in females health but also calls for well-designed pharmaco-behavioral studies disentangling the effects of progestagens from those of estrogens.
Collapse
Affiliation(s)
- Celine Bencker
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria; University Research Platform "Stress of Life (SOLE) - Processes and Mechanisms underlying Everyday Life Stress", University of Vienna, Vienna, Austria
| | - Laura Gschwandtner
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria; University Research Platform "Stress of Life (SOLE) - Processes and Mechanisms underlying Everyday Life Stress", University of Vienna, Vienna, Austria
| | - Sibel Nayman
- Research Group Longitudinal and Intervention Research, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Ramunė Grikšienė
- Department of Neurobiology and Biophysics, Life Science Center, Vilnius University, Lithuania
| | | | - Urs M Nater
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria; University Research Platform "Stress of Life (SOLE) - Processes and Mechanisms underlying Everyday Life Stress", University of Vienna, Vienna, Austria
| | | | | | - Belinda Pletzer
- Department of Psychology, Centre for Cognitive Neuroscience, University of Salzburg, Austria
| | - Marie Bixo
- Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, Sweden
| | - Erika Comasco
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Sweden.
| |
Collapse
|
2
|
Demori I, Losacco S, Giordano G, Mucci V, Blanchini F, Burlando B. Fibromyalgia pathogenesis explained by a neuroendocrine multistable model. PLoS One 2024; 19:e0303573. [PMID: 38990866 PMCID: PMC11238986 DOI: 10.1371/journal.pone.0303573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/26/2024] [Indexed: 07/13/2024] Open
Abstract
Fibromyalgia (FM) is a central disorder characterized by chronic pain, fatigue, insomnia, depression, and other minor symptoms. Knowledge about pathogenesis is lacking, diagnosis difficult, clinical approach puzzling, and patient management disappointing. We conducted a theoretical study based on literature data and computational analysis, aimed at developing a comprehensive model of FM pathogenesis and addressing suitable therapeutic targets. We started from the evidence that FM must involve a dysregulation of central pain processing, is female prevalent, suggesting a role for the hypothalamus-pituitary-gonadal (HPG) axis, and is stress-related, suggesting a role for the HP-adrenocortical (HPA) axis. Central pathogenesis was supposed to involve a pain processing loop system including the thalamic ventroposterolateral nucleus (VPL), the primary somatosensory cortex (SSC), and the thalamic reticular nucleus (TRN). For decreasing GABAergic and/or increasing glutamatergic transmission, the loop system crosses a bifurcation point, switching from monostable to bistable, and converging on a high-firing-rate steady state supposed to be the pathogenic condition. Thereafter, we showed that GABAergic transmission is positively correlated with gonadal-hormone-derived neurosteroids, notably allopregnanolone, whereas glutamatergic transmission is positively correlated with stress-induced glucocorticoids, notably cortisol. Finally, we built a dynamic model describing a multistable, double-inhibitory loop between HPG and HPA axes. This system has a high-HPA/low-HPG steady state, allegedly reached in females under combined premenstrual/postpartum brain allopregnanolone withdrawal and stress condition, driving the thalamocortical loop to the high-firing-rate steady state, and explaining the connection between endocrine and neural mechanisms in FM pathogenesis. Our model accounts for FM female prevalence and stress correlation, suggesting the use of neurosteroid drugs as a possible solution to currently unsolved problems in the clinical treatment of the disease.
Collapse
Affiliation(s)
- Ilaria Demori
- Department of Pharmacy, DIFAR, University of Genova, Genova, Italy
| | - Serena Losacco
- Department of Pharmacy, DIFAR, University of Genova, Genova, Italy
| | - Giulia Giordano
- Department of Industrial Engineering, University of Trento, Trento, (TN), Italy
- Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands
| | - Viviana Mucci
- School of Science, Western Sydney University, Penrith, Australia
| | - Franco Blanchini
- Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy
| | - Bruno Burlando
- Department of Pharmacy, DIFAR, University of Genova, Genova, Italy
| |
Collapse
|
3
|
Reddy DS. Neurosteroids as Novel Anticonvulsants for Refractory Status Epilepticus and Medical Countermeasures for Nerve Agents: A 15-Year Journey to Bring Ganaxolone from Bench to Clinic. J Pharmacol Exp Ther 2024; 388:273-300. [PMID: 37977814 PMCID: PMC10801762 DOI: 10.1124/jpet.123.001816] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023] Open
Abstract
This article describes recent advances in the use of neurosteroids as novel anticonvulsants for refractory status epilepticus (RSE) and as medical countermeasures (MCs) for organophosphates and chemical nerve agents (OPNAs). We highlight a comprehensive 15-year journey to bring the synthetic neurosteroid ganaxolone (GX) from bench to clinic. RSE, including when caused by nerve agents, is associated with devastating morbidity and permanent long-term neurologic dysfunction. Although recent approval of benzodiazepines such as intranasal midazolam and intranasal midazolam offers improved control of acute seizures, novel anticonvulsants are needed to suppress RSE and improve neurologic function outcomes. Currently, few anticonvulsant MCs exist for victims of OPNA exposure and RSE. Standard-of-care MCs for postexposure treatment include benzodiazepines, which do not effectively prevent or mitigate seizures resulting from nerve agent intoxication, leaving an urgent unmet medical need for new anticonvulsants for RSE. Recently, we pioneered neurosteroids as next-generation anticonvulsants that are superior to benzodiazepines for treatment of OPNA intoxication and RSE. Because GX and related neurosteroids that activate extrasynaptic GABA-A receptors rapidly control seizures and offer robust neuroprotection by reducing neuronal damage and neuroinflammation, they effectively improve neurologic outcomes after acute OPNA exposure and RSE. GX has been selected for advanced, Biomedical Advanced Research and Development Authority-supported phase 3 trials of RSE and nerve agent seizures. In addition, in mechanistic studies of neurosteroids at extrasynaptic receptors, we identified novel synthetic analogs with features that are superior to GX for current medical needs. Development of new MCs for RSE is complex, tedious, and uncertain due to scientific and regulatory challenges. Thus, further research will be critical to fill key gaps in evaluating RSE and anticonvulsants in vulnerable (pediatric and geriatric) populations and military persons. SIGNIFICANCE STATEMENT: Following organophosphate and nerve agent intoxication, refractory status epilepticus (RSE) occurs despite benzodiazepine treatment. RSE occurs in 40% of status epilepticus patients, with a 35% mortality rate and significant neurological morbidity in survivors. To treat RSE, neurosteroids are better anticonvulsants than benzodiazepines. Our pioneering use of neurosteroids for RSE and nerve agents led us to develop ganaxolone as a novel anticonvulsant and neuroprotectant with significantly improved neurological outcomes. This article describes the bench-to-bedside journey of bringing neurosteroid therapy to patients, with ganaxolone leading the way.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, Texas and Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
4
|
Reddy DS, Mbilinyi RH, Estes E. Preclinical and clinical pharmacology of brexanolone (allopregnanolone) for postpartum depression: a landmark journey from concept to clinic in neurosteroid replacement therapy. Psychopharmacology (Berl) 2023; 240:1841-1863. [PMID: 37566239 PMCID: PMC10471722 DOI: 10.1007/s00213-023-06427-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
This article describes the critical role of neurosteroids in postpartum depression (PPD) and outlines the landmark pharmacological journey of brexanolone as a first-in-class neurosteroid antidepressant with significant advantages over traditional antidepressants. PPD is a neuroendocrine disorder that affects about 20% of mothers after childbirth and is characterized by symptoms including persistent sadness, fatigue, dysphoria, as well as disturbances in cognition, emotion, appetite, and sleep. The main pathology behind PPD is the postpartum reduction of neurosteroids, referred to as neurosteroid withdrawal, a concept pioneered by our preclinical studies. We developed neurosteroid replacement therapy (NRT) as a rational approach for treating PPD and other conditions related to neurosteroid deficiency, unveiling the power of neurosteroids as novel anxiolytic-antidepressants. The neurosteroid, brexanolone (BX), is a progesterone-derived allopregnanolone that rapidly relieves anxiety and mood deficits by activating GABA-A receptors, making it a transformational treatment for PPD. In 2019, the FDA approved BX, an intravenous formulation of allopregnanolone, as an NRT to treat PPD. In clinical studies, BX significantly improved PPD symptoms within hours of administration, with tolerable side effects including headache, dizziness, and somnolence. We identified the molecular mechanism of BX in a neuronal PPD-like milieu. The mechanism of BX involves activation of both synaptic and extrasynaptic GABA-A receptors, which promote tonic inhibition and serve as a key target for PPD and related conditions. Neurosteroids offer several advantages over traditional antidepressants, including rapid onset, unique mechanism, and lack of tolerance upon repeated use. Some limitations of BX therapy include lack of aqueous solubility, limited accessibility, hospitalization for treatment, lack of oral product, and serious adverse events at high doses. However, the unmet need for synthetic neurosteroids to address this critical condition supersedes these limitations. Recently, we developed novel hydrophilic neurosteroids with a superior profile and improved drug delivery. Overall, approval of BX is a major milestone in the field of neurotherapeutics, paving the way for the development of novel synthetic neurosteroids to treat depression, epilepsy, and status epilepticus.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, 77807, USA.
- Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
| | - Robert H Mbilinyi
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, 77807, USA
| | - Emily Estes
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, 77807, USA
| |
Collapse
|
5
|
Gallo AT, Addis S, Martyn V, Ramanathan H, Wilkerson GK, Bennett KS, Hood SD, Stampfer H, Hulse GK. The role of flumazenil in generalised anxiety disorder: a pilot naturalistic open-label study with a focus on treatment resistance. Ther Adv Psychopharmacol 2023; 13:20451253231156400. [PMID: 36937113 PMCID: PMC10021101 DOI: 10.1177/20451253231156400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/23/2023] [Indexed: 03/18/2023] Open
Abstract
Background Anxiety disorders are highly prevalent and chronic disorders with treatment resistance to current pharmacotherapies occurring in approximately one in three patients. It has been postulated that flumazenil (FMZ) is efficacious in the management of anxiety disorders via the removal of α4β2δ gamma-aminobutyric acid A receptors. Objective To assess the safety and feasibility of continuous low-dose FMZ infusions for the management of generalised anxiety disorder (GAD) and collect preliminary efficacy data. Design Uncontrolled, open-label pilot study. Method Participants had a primary diagnosis of generalised anxiety disorder (GAD) and received two consecutive subcutaneous continuous low-dose FMZ infusions. Each infusion contained 16 mg of FMZ and was delivered over 96 ± 19.2 h. The total dose of FMZ delivered was 32 mg over approximately 8 days. Sodium valproate was given to participants at risk of seizure. The primary outcome was the change in stress and anxiety subscale scores on the Depression Anxiety Stress Scale-21 between baseline, day 8, and day 28. Results Nine participants with a primary diagnosis of GAD were treated with subcutaneous continuous low-dose FMZ infusions; seven participants met the criteria for treatment resistance. There was a significant decrease in anxiety and stress between baseline and day 8 and baseline and day 28. There was also a significant improvement in subjective sleep quality from baseline to day 28 measured by the Jenkins Sleep Scale. No serious adverse events occurred. Conclusion This study presents preliminary results for subcutaneous continuous low-dose FMZ's effectiveness and safety in GAD. The findings suggest that it is a safe, well-tolerated, and feasible treatment option in this group of patients. Future randomised control trials are needed in this field to determine the efficacy of this treatment.
Collapse
Affiliation(s)
| | - Stephen Addis
- Fresh Start Recovery Programme, Subiaco, WA,
Australia
| | - Vlad Martyn
- Fresh Start Recovery Programme, Subiaco, WA,
Australia
| | - Hishani Ramanathan
- Division of Psychiatry, Medical School, The
University of Western Australia, Nedlands, WA, Australia
| | - Grace K Wilkerson
- Division of Psychiatry, Medical School, The
University of Western Australia, Nedlands, WA, Australia
| | - Kellie S Bennett
- Division of Psychiatry, Medical School, The
University of Western Australia, Nedlands, WA, Australia
| | - Sean D Hood
- Division of Psychiatry, Medical School, The
University of Western Australia, Nedlands, WA, Australia
| | - Hans Stampfer
- Division of Psychiatry, Medical School, The
University of Western Australia, Nedlands, WA, Australia
| | - Gary K Hulse
- Division of Psychiatry, Medical School, The
University of Western Australia, Nedlands, WA, Australia
- School of Medical and Health Sciences, Edith
Cowan University, Joondalup, WA, Australia
- Fresh Start Recovery Programme, Subiaco, WA,
Australia
| |
Collapse
|
6
|
Medel-Matus JS, Orozco-Suárez S, Escalante RG. Factors not considered in the study of drug-resistant epilepsy: Psychiatric comorbidities, age, and gender. Epilepsia Open 2022. [PMID: 34967149 DOI: 10.1002/epi4.12576.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
In basic research and clinical practice, the control of seizures has been the most important goal, but it should not be the only one. There are factors that remain poorly understood in the study of refractory epilepsy such as the age and gender of patients and the presence of psychiatric comorbidities. It is known that in patients with drug-resistant epilepsy (DRE), the comorbidities contribute to the deterioration of the quality of life, increase the severity, and worsen the prognosis of epilepsy. Some studies have demonstrated that patients diagnosed with a co-occurrence of epilepsy and psychiatric disorders are more likely to present refractory seizures and the probability of seizure remission after pharmacotherapy is reduced. The evidence of this association suggests the presence of shared pathogenic mechanisms that may include endocrine disorders, neuroinflammatory processes, disturbances of neurotransmitters, and mechanisms triggered by stress. Additionally, significant demographic, clinical, and electrographic differences have been observed between women and men with epilepsy. Epilepsy affects the female gender in a greater proportion, although there are no studies that report whether refractoriness affects more females. The reasons behind these sex differences are unclear; however, it is likely that sex hormones and sex brain differences related to chromosomal genes play an important role. On the other hand, it has been shown in industrialized countries that prevalence of DRE is higher in the elderly when compared to youngsters. Conversely, this phenomenon is not observed in developing regions, where more cases are found in children and young adults. The correct identification and management of these factors is crucial in order to improve the quality of life of the patients.
Collapse
Affiliation(s)
- Jesús Servando Medel-Matus
- Department of Pediatrics, Neurology Division, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Sandra Orozco-Suárez
- Unit of Medical Research in Neurological Diseases, Specialty Hospital "Dr. Bernardo Sepúlveda", National Medical Center S.XXI, Mexico City, Mexico
| | - Ruby G Escalante
- Department of Pediatrics, Neurology Division, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
7
|
Medel‐Matus JS, Orozco‐Suárez S, Escalante RG. Factors not considered in the study of drug-resistant epilepsy: Psychiatric comorbidities, age, and gender. Epilepsia Open 2022; 7 Suppl 1:S81-S93. [PMID: 34967149 PMCID: PMC9340311 DOI: 10.1002/epi4.12576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 11/10/2022] Open
Abstract
In basic research and clinical practice, the control of seizures has been the most important goal, but it should not be the only one. There are factors that remain poorly understood in the study of refractory epilepsy such as the age and gender of patients and the presence of psychiatric comorbidities. It is known that in patients with drug-resistant epilepsy (DRE), the comorbidities contribute to the deterioration of the quality of life, increase the severity, and worsen the prognosis of epilepsy. Some studies have demonstrated that patients diagnosed with a co-occurrence of epilepsy and psychiatric disorders are more likely to present refractory seizures and the probability of seizure remission after pharmacotherapy is reduced. The evidence of this association suggests the presence of shared pathogenic mechanisms that may include endocrine disorders, neuroinflammatory processes, disturbances of neurotransmitters, and mechanisms triggered by stress. Additionally, significant demographic, clinical, and electrographic differences have been observed between women and men with epilepsy. Epilepsy affects the female gender in a greater proportion, although there are no studies that report whether refractoriness affects more females. The reasons behind these sex differences are unclear; however, it is likely that sex hormones and sex brain differences related to chromosomal genes play an important role. On the other hand, it has been shown in industrialized countries that prevalence of DRE is higher in the elderly when compared to youngsters. Conversely, this phenomenon is not observed in developing regions, where more cases are found in children and young adults. The correct identification and management of these factors is crucial in order to improve the quality of life of the patients.
Collapse
Affiliation(s)
- Jesús Servando Medel‐Matus
- Department of PediatricsNeurology DivisionDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCaliforniaUSA
| | - Sandra Orozco‐Suárez
- Unit of Medical Research in Neurological DiseasesSpecialty Hospital “Dr. Bernardo Sepúlveda”National Medical Center S.XXIMexico CityMexico
| | - Ruby G. Escalante
- Department of PediatricsNeurology DivisionDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
8
|
Anxiety-like Behavior and GABAAR/BDZ Binding Site Response to Progesterone Withdrawal in a Stress-Vulnerable Strain, the Wistar Kyoto Rats. Int J Mol Sci 2022; 23:ijms23137259. [PMID: 35806264 PMCID: PMC9266311 DOI: 10.3390/ijms23137259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 12/10/2022] Open
Abstract
Stress susceptibility could play a role in developing premenstrual anxiety due to abnormalities in the hypothalamus–pituitary–adrenal (HPA) axis and impairments in the GABAA receptors’ benzodiazepine (BDZ) site. Hence, we studied the stress-vulnerable Wistar Kyoto rat strain (WKY) to evaluate progesterone withdrawal (PW) effects on anxiety, HPA axis response, and to explore indicators of GABAA functionality in the BDZ site. For five days, ovariectomized WKY rats were administered 2.0 mg/kg of progesterone. Twenty-four hours after the last administration, rats were tested in the anxiety-like burying behavior test (BBT) or elevated plus maze test (EPM), and corticosterone was determined. [3H]Flunitrazepam binding autoradiography served as the BDZ binding site index of the GABAA receptor in amygdala nuclei and hippocampus’s dentate gyrus (DG). Finally, different doses of diazepam in PW-WKY rats were tested in the BBT. PW induced anxiety-like behaviors in both BBT and EPM compared with No-PW rats. PW increased corticosterone, but was blunted when combined with PW and BBT. PW increased [3H]Flunitrazepam binding in the DG and central amygdala compared with No-PW rats. Diazepam at a low dose induced an anxiogenic-like response in PW rats, suggesting a paradoxical response to benzodiazepines. Overall, PW induced anxiety-like behavior, a blunted HPA axis response, and higher GABAAR/BZD binding site sensitivity in a stress-vulnerable rat strain. These findings demonstrate the role of stress-susceptibility in GABAAR functionality in a preclinical approximation of PMDD.
Collapse
|
9
|
Echevarria-Cooper DM, Hawkins NA, Misra SN, Huffman AM, Thaxton T, Thompson CH, Ben-Shalom R, Nelson AD, Lipkin AM, George AL, Bender KJ, Kearney JA. Cellular and behavioral effects of altered NaV1.2 sodium channel ion permeability in Scn2aK1422E mice. Hum Mol Genet 2022; 31:2964-2988. [PMID: 35417922 PMCID: PMC9433730 DOI: 10.1093/hmg/ddac087] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/28/2022] [Accepted: 04/09/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic variants in SCN2A, encoding the NaV1.2 voltage-gated sodium channel, are associated with a range of neurodevelopmental disorders with overlapping phenotypes. Some variants fit into a framework wherein gain-of-function missense variants that increase neuronal excitability lead to developmental and epileptic encephalopathy, while loss-of-function variants that reduce neuronal excitability lead to intellectual disability and/or autism spectrum disorder (ASD) with or without co-morbid seizures. One unique case less easily classified using this framework is the de novo missense variant SCN2A-p.K1422E, associated with infant-onset developmental delay, infantile spasms and features of ASD. Prior structure–function studies demonstrated that K1422E substitution alters ion selectivity of NaV1.2, conferring Ca2+ permeability, lowering overall conductance and conferring resistance to tetrodotoxin (TTX). Based on heterologous expression of K1422E, we developed a compartmental neuron model incorporating variant channels that predicted reductions in peak action potential (AP) speed. We generated Scn2aK1422E mice and characterized effects on neurons and neurological/neurobehavioral phenotypes. Cultured cortical neurons from heterozygous Scn2aK1422E/+ mice exhibited lower current density with a TTX-resistant component and reversal potential consistent with mixed ion permeation. Recordings from Scn2aK1442E/+ cortical slices demonstrated impaired AP initiation and larger Ca2+ transients at the axon initial segment during the rising phase of the AP, suggesting complex effects on channel function. Scn2aK1422E/+ mice exhibited rare spontaneous seizures, interictal electroencephalogram abnormalities, altered induced seizure thresholds, reduced anxiety-like behavior and alterations in olfactory-guided social behavior. Overall, Scn2aK1422E/+ mice present with phenotypes similar yet distinct from other Scn2a models, consistent with complex effects of K1422E on NaV1.2 channel function.
Collapse
Affiliation(s)
- Dennis M Echevarria-Cooper
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, USA, 60611
| | - Nicole A Hawkins
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611
| | - Sunita N Misra
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611.,Departments of Pediatrics, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA 60611
| | - Alexandra M Huffman
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611
| | - Tyler Thaxton
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611
| | - Christopher H Thompson
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611
| | - Roy Ben-Shalom
- Mind Institute and Department of Neurology, University of California, Davis, Sacramento, CA, United States 95817
| | - Andrew D Nelson
- Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA 94158
| | - Anna M Lipkin
- Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA 94158.,Neuroscience Graduate Program, University of California, San Francisco, CA, USA 94158
| | - Alfred L George
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, USA, 60611
| | - Kevin J Bender
- Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA 94158
| | - Jennifer A Kearney
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, USA, 60611
| |
Collapse
|
10
|
Abstract
BACKGROUND Anxiety disorders are highly prevalent affecting up to 33.7% of people over a lifetime. Although many treatment options are available, they are often associated with unacceptable side-effect profiles and approximately one in three patients are treatment resistant. Allopregnanolone, a neuroactive steroid acting as a positive allosteric modulator at the GABAA receptor, is synthesised in response to stress and acts to negatively modulate the hypothalamic-pituitary-adrenal axis. FINDINGS After chronic exposure to and withdrawal from allopregnanolone, an increase in α4β2δ GABAA receptors results in a reduced inhibitory effect of allopregnanolone, resulting in decreased inhibition and, therefore, increased neuronal excitability. The relationship between allopregnanolone and increased α4β2δ GABAA receptors has been demonstrated in animal models during methamphetamine withdrawal and puberty, events both associated with stress. The effect of allopregnanolone during these events is anxiogenic, a paradoxical action to its usual anxiolytic effects. Flumazenil, the GABAA receptor antagonist, has been shown to cause receptor internalisation of α4β2δ GABAA receptors, which may results in anxiolysis. CONCLUSION We propose that chronic stress and chronic exposure to and withdrawal from allopregnanolone in anxiety disorders result in alterations in GABAA receptor function, which can be corrected by flumazenil. As such, flumazenil may exhibit anxiolytic properties in patients with increased α4β2δ GABAA receptor expression.
Collapse
Affiliation(s)
- Alexander T Gallo
- Division of Psychiatry, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Gary K Hulse
- Division of Psychiatry, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Fresh Start Recovery Programme, Subiaco, WA, Australia
| |
Collapse
|
11
|
Reddy DS. Neurosteroid replacement therapy for catamenial epilepsy, postpartum depression and neuroendocrine disorders in women. J Neuroendocrinol 2022; 34:e13028. [PMID: 34506047 PMCID: PMC9247111 DOI: 10.1111/jne.13028] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022]
Abstract
Neurosteroids are involved in the pathophysiology of many neuroendocrine disorders in women. This review describes recent advancements in pharmacology of neurosteroids and emphasizes the benefits of neurosteroid replacement therapy for the management of neuroendocrine disorders such as catamenial epilepsy (CE), postpartum depression (PPD) and premenstrual brain conditions. Neurosteroids are endogenous modulators of neuronal excitability. A variety of neurosteroids are present in the brain including allopregnanolone (AP), allotetrahydro-deoxycorticosterone and androstanediol. Neurosteroids interact with synaptic and extrasynaptic GABAA receptors in the brain. AP and related neurosteroids, which are positive allosteric modulators of GABAA receptors, are powerful anticonvulsants, anxiolytic, antistress and neuroprotectant agents. In CE, seizures are most often clustered around a specific menstrual period in women. Neurosteroid withdrawal-linked plasticity in extrasynaptic receptors has been shown to play a key role in catamenial seizures, anxiety and other mood disorders. Based on our extensive research spanning two decades, we have proposed and championed neurosteroid replacement therapy as a rational strategy for treating disorders marked by neurosteroid-deficiency, such as CE and other related ovarian or menstrual disorders. In 2019, AP (renamed as brexanolone) was approved for treating PPD. A variety of synthetic neurosteroids are in clinical trials for epilepsy, depression and other brain disorders. Recent advancements in our understanding of neurosteroids have entered a new era of drug discovery and one that offers a high therapeutic potential for treating complex brain disorders.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, USA
| |
Collapse
|
12
|
Wei S, Wang F, Liu J, Wang Y. Editorial: Neural circuits and neuroendocrine mechanisms of major depressive disorder and premenstrual dysphoric disorder: Toward precise targets for translational medicine and drug development. Front Psychiatry 2022; 13:983604. [PMID: 35958656 PMCID: PMC9360792 DOI: 10.3389/fpsyt.2022.983604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Sheng Wei
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fushun Wang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China
| | - Jianfeng Liu
- Department of Psychological and Brain Sciences, College of Liberal Arts, Texas A&M University, College Station, TX, United States
| | - Yang Wang
- Department of Integrative Medicine, Xiangya Hospital of Central South, Changsha, China
| |
Collapse
|
13
|
Abstract
BACKGROUND This is an updated version of a Cochrane Review previously published in 2019. Catamenial epilepsy describes worsening seizures in relation to the menstrual cycle and may affect around 40% of women with epilepsy. Vulnerable days of the menstrual cycle for seizures are perimenstrually (C1 pattern), at ovulation (C2 pattern), and during the luteal phase (C3 pattern). A reduction in progesterone levels premenstrually and reduced secretion during the luteal phase is implicated in catamenial C1 and C3 patterns. A reduction in progesterone has been demonstrated to reduce sensitivity to the inhibitory neurotransmitter in preclinical studies, hence increasing risk of seizures. A pre-ovulatory surge in oestrogen has been implicated in the C2 pattern of seizure exacerbation, although the exact mechanism by which this surge increases risk is uncertain. Current treatment practices include the use of pulsed hormonal (e.g. progesterone) and non-hormonal treatments (e.g. clobazam or acetazolamide) in women with regular menses, and complete cessation of menstruation using synthetic hormones (e.g. medroxyprogesterone (Depo-Provera) or gonadotropin-releasing hormone (GnRH) analogues (triptorelin and goserelin)) in women with irregular menses. Catamenial epilepsy and seizure exacerbation is common in women with epilepsy. Women may not receive appropriate treatment for their seizures because of uncertainty regarding which treatment works best and when in the menstrual cycle treatment should be taken, as well as the possible impact on fertility, the menstrual cycle, bone health, and cardiovascular health. This review aims to address these issues to inform clinical practice and future research. OBJECTIVES To evaluate the efficacy and tolerability of hormonal and non-hormonal treatments for seizures exacerbated by the menstrual cycle in women with regular or irregular menses. We synthesised the evidence from randomised and quasi-randomised controlled trials of hormonal and non-hormonal treatments in women with catamenial epilepsy of any pattern. SEARCH METHODS We searched the following databases on 20 July 2021 for the latest update: Cochrane Register of Studies (CRS Web) and MEDLINE Ovid (1946 to 19 July 2021). CRS Web includes randomised controlled trials (RCTs) or quasi-RCTs from PubMed, Embase, ClinicalTrials.gov, the World Health Organization International Clinical Trials Registry Platform, the Cochrane Central Register of Controlled Trials (CENTRAL), and the specialised registers of Cochrane Review Groups including Cochrane Epilepsy. We used no language restrictions. We checked the reference lists of retrieved studies for additional reports of relevant studies. SELECTION CRITERIA We included RCTs and quasi-RCTs of blinded or open-label design that randomised participants individually (i.e. cluster-randomised trials were excluded). We included cross-over trials if each treatment period was at least 12 weeks in length and the trial had a suitable wash-out period. We included the following types of interventions: women with any pattern of catamenial epilepsy who received a hormonal or non-hormonal drug intervention in addition to an existing antiepileptic drug regimen for a minimum treatment duration of 12 weeks. DATA COLLECTION AND ANALYSIS We extracted data on study design factors and participant demographics for the included studies. The primary outcomes of interest were: proportion seizure-free, proportion of responders (at least 50% decrease in seizure frequency from baseline), and change in seizure frequency. Secondary outcomes included: number of withdrawals, number of women experiencing adverse events of interest (seizure exacerbation, cardiac events, thromboembolic events, osteoporosis and bone health, mood disorders, sedation, menstrual cycle disorders, and fertility issues), and quality of life outcomes. MAIN RESULTS Following title, abstract, and full-text screening, we included eight full-text articles reporting on four double-blind, placebo-controlled RCTs. We included two cross-over RCTs of pulsed norethisterone, and two parallel RCTs of pulsed progesterone recruiting a total of 192 women aged between 13 and 45 years with catamenial epilepsy. We found no RCTs for non-hormonal treatments of catamenial epilepsy or for women with irregular menses. Meta-analysis was not possible for the primary outcomes, therefore we undertook a narrative synthesis. For the two RCTs evaluating norethisterone versus placebo (24 participants), there were no reported treatment differences for change in seizure frequency. Outcomes for the proportion seizure-free and 50% responders were not reported. For the two RCTs evaluating progesterone versus placebo (168 participants), the studies reported conflicting results for the primary outcomes. One progesterone RCT reported no significant difference between progesterone 600 mg/day taken on day 14 to 28 and placebo with respect to 50% responders, seizure freedom rates, and change in seizure frequency for any seizure type. The other progesterone RCT reported a decrease in seizure frequency from baseline in the progesterone group that was significantly higher than the decrease in seizure frequency from baseline in the placebo group. The results of secondary efficacy outcomes showed no significant difference between groups in the pooled progesterone RCTs in terms of treatment withdrawal for any reason (pooled risk ratio (RR) 1.56, 95% confidence interval (CI) 0.81 to 3.00, P = 0.18, I2 = 0%) or treatment withdrawals due to adverse events (pooled RR 2.91, 95% CI 0.53 to 16.17, P = 0.22, I2 = 0%). No treatment withdrawals were reported from the norethisterone RCTs. The RCTs reported limited information on adverse events, although one progesterone RCT reported no significant difference in the number of women experiencing adverse events (diarrhoea, dyspepsia, nausea, vomiting, fatigue, nasopharyngitis, dizziness, headache, and depression). No studies reported on quality of life. We judged the evidence for outcomes related to the included progesterone RCTs to be of low to moderate certainty due to risk of bias, and for outcomes related to the included norethisterone RCTs to be of very low certainty due to serious imprecision and risk of bias. AUTHORS' CONCLUSIONS This review provides very low-certainty evidence of no treatment difference between norethisterone and placebo, and moderate- to low-certainty evidence of no treatment difference between progesterone and placebo for catamenial epilepsy. However, as all the included studies were underpowered, important clinical effects cannot be ruled out. Our review highlights an overall deficiency in the literature base on the effectiveness of a wide range of other hormonal and non-hormonal interventions currently being used in practice, particularly for those women who do not have regular menses. Further clinical trials are needed in this area.
Collapse
Affiliation(s)
| | - Sarah J Nevitt
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
14
|
Reddy DS. Brain structural and neuroendocrine basis of sex differences in epilepsy. HANDBOOK OF CLINICAL NEUROLOGY 2021; 175:223-233. [PMID: 33008527 DOI: 10.1016/b978-0-444-64123-6.00016-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This chapter reviews the current information about sex differences in epilepsy and potential mechanisms underlying sex differences in seizure susceptibility and epilepsy. The susceptibility to and occurrence of seizures are generally higher in men than women. There is gender-specific epilepsies such as catamenial epilepsy, a neuroendocrine condition in which seizures are most often clustered around the perimenstrual or periovulatory period in adult women. Structural differences in cerebral morphology, the structural and functional circuits may render men and women differentially vulnerable to seizure disorders and epileptogenic processes. Changes in seizure sensitivity are evident at puberty, pregnancy, and menopause, often attributed to circulating steroid hormones and neurosteroids as well as neuroplasticity in receptor systems. An improved understanding of the sexual dimorphism in neural circuits and the neuroendocrine basis of sex differences or resistance to protective drugs is essential to develop sex-specific therapies for seizure conditions.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, United States.
| |
Collapse
|
15
|
Regulation of GABA A Receptors Induced by the Activation of L-Type Voltage-Gated Calcium Channels. MEMBRANES 2021; 11:membranes11070486. [PMID: 34209589 PMCID: PMC8304739 DOI: 10.3390/membranes11070486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022]
Abstract
GABAA receptors are pentameric ion channels that mediate most synaptic and tonic extrasynaptic inhibitory transmissions in the central nervous system. There are multiple GABAA receptor subtypes constructed from 19 different subunits in mammals that exhibit different regional and subcellular distributions and distinct pharmacological properties. Dysfunctional alterations of GABAA receptors are associated with various neuropsychiatric disorders. Short- and long-term plastic changes in GABAA receptors can be induced by the activation of different intracellular signaling pathways that are triggered, under physiological and pathological conditions, by calcium entering through voltage-gated calcium channels. This review discusses several mechanisms of regulation of GABAA receptor function that result from the activation of L-type voltage gated calcium channels. Calcium influx via these channels activates different signaling cascades that lead to changes in GABAA receptor transcription, phosphorylation, trafficking, and synaptic clustering, thus regulating the inhibitory synaptic strength. These plastic mechanisms regulate the interplay of synaptic excitation and inhibition that is crucial for the normal function of neuronal circuits.
Collapse
|
16
|
Luo Y, Kusay AS, Jiang T, Chebib M, Balle T. Delta-containing GABA A receptors in pain management: Promising targets for novel analgesics. Neuropharmacology 2021; 195:108675. [PMID: 34153311 DOI: 10.1016/j.neuropharm.2021.108675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 12/26/2022]
Abstract
Communication between nerve cells depends on the balance between excitatory and inhibitory circuits. GABA, the major inhibitory neurotransmitter, regulates this balance and insufficient GABAergic activity is associated with numerous neuropathological disorders including pain. Of the various GABAA receptor subtypes, the δ-containing receptors are particularly interesting drug targets in management of chronic pain. These receptors are pentameric ligand-gated ion channels composed of α, β and δ subunits and can be activated by ambient levels of GABA to generate tonic conductance. However, only a few ligands preferentially targeting δ-containing GABAA receptors have so far been identified, limiting both pharmacological understanding and drug-discovery efforts, and more importantly, understanding of how they affect pain pathways. Here, we systemically review and discuss the known drugs and ligands with analgesic potential targeting δ-containing GABAA receptors and further integrate the biochemical nature of the receptors with clinical perspectives in pain that might generate interest among researchers and clinical physicians to encourage analgesic discovery efforts leading to more efficient therapies.
Collapse
Affiliation(s)
- Yujia Luo
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Ali Saad Kusay
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Tian Jiang
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Mary Chebib
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Thomas Balle
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
17
|
Kapur J, Joshi S. Progesterone modulates neuronal excitability bidirectionally. Neurosci Lett 2021; 744:135619. [PMID: 33421486 PMCID: PMC7821816 DOI: 10.1016/j.neulet.2020.135619] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022]
Abstract
Progesterone acts on neurons directly by activating its receptor and through metabolic conversion to neurosteroids. There is emerging evidence that progesterone exerts excitatory effects by activating its cognate receptors (progesterone receptors, PRs) through enhanced expression of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs). Progesterone metabolite 5α,3α-tetrahydro-progesterone (allopregnanolone, THP) mediates its anxiolytic and sedative actions through the potentiation of synaptic and extrasynaptic γ-aminobutyric acid type-A receptors (GABAARs). Here, we review progesterone's neuromodulatory actions exerted through PRs and THP and their opposing role in regulating seizures, catamenial epilepsy, and seizure exacerbation associated with progesterone withdrawal.
Collapse
Affiliation(s)
- Jaideep Kapur
- Department of Neurology, University of Virginia-HSC, Charlottesville, VA, 22908, United States; Department of Neuroscience, University of Virginia-HSC, Charlottesville, VA, 22908, United States; UVA Brain Institute, University of Virginia-HSC, Charlottesville, VA, 22908, United States
| | - Suchitra Joshi
- Department of Neurology, University of Virginia-HSC, Charlottesville, VA, 22908, United States.
| |
Collapse
|
18
|
Lévesque M, Biagini G, Avoli M. Neurosteroids and Focal Epileptic Disorders. Int J Mol Sci 2020; 21:ijms21249391. [PMID: 33321734 PMCID: PMC7763947 DOI: 10.3390/ijms21249391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
Neurosteroids are a family of compounds that are synthesized in principal excitatory neurons and glial cells, and derive from the transformation of cholesterol into pregnenolone. The most studied neurosteroids—allopregnanolone and allotetrahydrodeoxycorticosterone (THDOC)—are known to modulate GABAA receptor-mediated transmission, thus playing a role in controlling neuronal network excitability. Given the role of GABAA signaling in epileptic disorders, neurosteroids have profound effects on seizure generation and play a role in the development of chronic epileptic conditions (i.e., epileptogenesis). We review here studies showing the effects induced by neurosteroids on epileptiform synchronization in in vitro brain slices, on epileptic activity in in vivo models, i.e., in animals that were made epileptic with chemoconvulsant treatment, and in epileptic patients. These studies reveal that neurosteroids can modulate ictogenesis and the occurrence of pathological network activity such as interictal spikes and high-frequency oscillations (80–500 Hz). Moreover, they can delay the onset of spontaneous seizures in animal models of mesial temporal lobe epilepsy. Overall, this evidence suggests that neurosteroids represent a new target for the treatment of focal epileptic disorders.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute-Hospital & Department of Neurology and Neurosurgery, 3801 University Street, Montreal, QC H3A 2B4, Canada;
- Correspondence: ; Tel.: +1-514-398-8909
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Università 4, 41121 Modena, Italy;
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital & Department of Neurology and Neurosurgery, 3801 University Street, Montreal, QC H3A 2B4, Canada;
- Department of Physiology, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
19
|
Christian CA, Reddy DS, Maguire J, Forcelli PA. Sex Differences in the Epilepsies and Associated Comorbidities: Implications for Use and Development of Pharmacotherapies. Pharmacol Rev 2020; 72:767-800. [PMID: 32817274 PMCID: PMC7495340 DOI: 10.1124/pr.119.017392] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The epilepsies are common neurologic disorders characterized by spontaneous recurrent seizures. Boys, girls, men, and women of all ages are affected by epilepsy and, in many cases, by associated comorbidities as well. The primary courses of treatment are pharmacological, dietary, and/or surgical, depending on several factors, including the areas of the brain affected and the severity of the epilepsy. There is a growing appreciation that sex differences in underlying brain function and in the neurobiology of epilepsy are important factors that should be accounted for in the design and development of new therapies. In this review, we discuss the current knowledge on sex differences in epilepsy and associated comorbidities, with emphasis on those aspects most informative for the development of new pharmacotherapies. Particular focus is placed on sex differences in the prevalence and presentation of various focal and generalized epilepsies; psychiatric, cognitive, and physiologic comorbidities; catamenial epilepsy in women; sex differences in brain development; the neural actions of sex and stress hormones and their metabolites; and cellular mechanisms, including brain-derived neurotrophic factor signaling and neuronal-glial interactions. Further attention placed on potential sex differences in epilepsies, comorbidities, and drug effects will enhance therapeutic options and efficacy for all patients with epilepsy. SIGNIFICANCE STATEMENT: Epilepsy is a common neurological disorder that often presents together with various comorbidities. The features of epilepsy and seizure activity as well as comorbid afflictions can vary between men and women. In this review, we discuss sex differences in types of epilepsies, associated comorbidities, pathophysiological mechanisms, and antiepileptic drug efficacy in both clinical patient populations and preclinical animal models.
Collapse
Affiliation(s)
- Catherine A Christian
- Department of Molecular and Integrative Physiology, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois (C.A.C.); Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas (D.S.R.); Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts (J.M.); and Departments of Pharmacology and Physiology and Neuroscience, Georgetown University, Washington, D.C. (P.A.F.)
| | - Doodipala Samba Reddy
- Department of Molecular and Integrative Physiology, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois (C.A.C.); Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas (D.S.R.); Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts (J.M.); and Departments of Pharmacology and Physiology and Neuroscience, Georgetown University, Washington, D.C. (P.A.F.)
| | - Jamie Maguire
- Department of Molecular and Integrative Physiology, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois (C.A.C.); Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas (D.S.R.); Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts (J.M.); and Departments of Pharmacology and Physiology and Neuroscience, Georgetown University, Washington, D.C. (P.A.F.)
| | - Patrick A Forcelli
- Department of Molecular and Integrative Physiology, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois (C.A.C.); Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas (D.S.R.); Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts (J.M.); and Departments of Pharmacology and Physiology and Neuroscience, Georgetown University, Washington, D.C. (P.A.F.)
| |
Collapse
|
20
|
Li J, Leverton LK, Naganatanahalli LM, Christian-Hinman CA. Seizure burden fluctuates with the female reproductive cycle in a mouse model of chronic temporal lobe epilepsy. Exp Neurol 2020; 334:113492. [PMID: 33007292 DOI: 10.1016/j.expneurol.2020.113492] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 12/30/2022]
Abstract
Women with catamenial epilepsy often experience increased seizure burden near the time of ovulation (periovulatory) or menstruation (perimenstrual). To date, a rodent model of chronic temporal lobe epilepsy (TLE) that exhibits similar endogenous fluctuations in seizures has not been identified. Here, we investigated whether seizure burden changes with the estrous cycle in the intrahippocampal kainic acid (IHKA) mouse model of TLE. Adult female IHKA mice and saline-injected controls were implanted with EEG electrodes in the ipsilateral hippocampus. At one and two months post-injection, 24/7 video-EEG recordings were collected and estrous cycle stage was assessed daily. Seizures were detected using a custom convolutional neural network machine learning process. Seizure burden was compared within each mouse between diestrus and combined proestrus and estrus days (pro/estrus) at two months post-injection. IHKA mice showed higher seizure burden on pro/estrus compared with diestrus, characterized by increased time in seizures and longer seizure duration. When all IHKA mice were included, no group differences were observed in seizure frequency or EEG power. However, increased baseline seizure burden on diestrus was correlated with larger cycle-associated differences, and when analyses were restricted to mice that showed the severe epilepsy typical of the IHKA model, increased seizure frequency on pro/estrus was also revealed. Controls showed no differences in EEG parameters with cycle stage. These results suggest that the stages of proestrus and estrus are associated with higher seizure burden in IHKA mice. The IHKA model may thus recapitulate at least some aspects of reproductive cycle-associated seizure clustering.
Collapse
Affiliation(s)
- Jiang Li
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Leanna K Leverton
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Laxmi Manisha Naganatanahalli
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Catherine A Christian-Hinman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
21
|
Bengtsson S, Bäckström T, Brinton R, Irwin R, Johansson M, Sjöstedt J, Wang M. GABA-A receptor modulating steroids in acute and chronic stress; relevance for cognition and dementia? Neurobiol Stress 2020; 12:100206. [PMID: 31921942 PMCID: PMC6948369 DOI: 10.1016/j.ynstr.2019.100206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/13/2019] [Accepted: 12/18/2019] [Indexed: 01/10/2023] Open
Abstract
Cognitive dysfunction, dementia and Alzheimer's disease (AD) are increasing as the population worldwide ages. Therapeutics for these conditions is an unmet need. This review focuses on the role of the positive GABA-A receptor modulating steroid allopregnanolone (APα), it's role in underlying mechanisms for impaired cognition and of AD, and to determine options for therapy of AD. On one hand, APα given intermittently promotes neurogenesis, decreases AD-related pathology and improves cognition. On the other, continuous exposure of APα impairs cognition and deteriorates AD pathology. The disparity between these two outcomes led our groups to analyze the mechanisms underlying the difference. We conclude that the effects of APα depend on administration pattern and that chronic slightly increased APα exposure is harmful to cognitive function and worsens AD pathology whereas single administrations with longer intervals improve cognition and decrease AD pathology. These collaborative assessments provide insights for the therapeutic development of APα and APα antagonists for AD and provide a model for cross laboratory collaborations aimed at generating translatable data for human clinical trials.
Collapse
Affiliation(s)
- S.K.S. Bengtsson
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - T. Bäckström
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - R. Brinton
- Center for Innovation in Brain Science, Professor Departments of Pharmacology and Neurology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - R.W. Irwin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - M. Johansson
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - J. Sjöstedt
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - M.D. Wang
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| |
Collapse
|
22
|
Kelicen-Ugur P, Cincioğlu-Palabıyık M, Çelik H, Karahan H. Interactions of Aromatase and Seladin-1: A Neurosteroidogenic and Gender Perspective. Transl Neurosci 2019; 10:264-279. [PMID: 31737354 PMCID: PMC6843488 DOI: 10.1515/tnsci-2019-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022] Open
Abstract
Aromatase and seladin-1 are enzymes that have major roles in estrogen synthesis and are important in both brain physiology and pathology. Aromatase is the key enzyme that catalyzes estrogen biosynthesis from androgen precursors and regulates the brain’s neurosteroidogenic activity. Seladin-1 is the enzyme that catalyzes the last step in the biosynthesis of cholesterol, the precursor of all hormones, from desmosterol. Studies indicated that seladin-1 is a downstream mediator of the neuroprotective activity of estrogen. Recently, we also showed that there is an interaction between aromatase and seladin-1 in the brain. Therefore, the expression of local brain aromatase and seladin-1 is important, as they produce neuroactive steroids in the brain for the protection of neuronal damage. Increasing steroid biosynthesis specifically in the central nervous system (CNS) without affecting peripheral hormone levels may be possible by manipulating brain-specific promoters of steroidogenic enzymes. This review emphasizes that local estrogen, rather than plasma estrogen, may be responsible for estrogens’ protective effects in the brain. Therefore, the roles of aromatase and seladin-1 and their interactions in neurodegenerative events such as Alzheimer’s disease (AD), ischemia/reperfusion injury (stroke), and epilepsy are also discussed in this review.
Collapse
Affiliation(s)
- Pelin Kelicen-Ugur
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sıhhiye Ankara Turkey
| | - Mehtap Cincioğlu-Palabıyık
- Turkish Medicines and Medical Devices Agency (TITCK), Department of Regulatory Affairs, Division of Pharmacological Assessment, Ankara, Turkey
| | - Hande Çelik
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sıhhiye Ankara Turkey
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
23
|
Abstract
BACKGROUND Catamenial epilepsy describes a worsening of seizures in relation to the menstrual cycle and may affect around 40% of women with epilepsy. Vulnerable days of the menstrual cycle for seizures are perimenstrually (C1 pattern), at ovulation (C2 pattern), and during the luteal phase (C3 pattern). A reduction in progesterone levels premenstrually and reduced secretion during the luteal phase is implicated in catamenial C1 and C3 patterns. A reduction in progesterone has been demonstrated to reduce sensitivity to the inhibitory neurotransmitter in preclinical studies, hence increasing risk of seizures. A pre-ovulatory surge in oestrogen has been implicated in the C2 pattern of seizure exacerbation, although the exact mechanism by which this surge increases risk is uncertain. Current treatment practices include the use of pulsed hormonal (e.g. progesterone) and non-hormonal treatments (e.g. clobazam or acetazolamide) in women with regular menses, and complete cessation of menstruation using synthetic hormones (e.g. medroxyprogesterone (Depo-Provera) or gonadotropin-releasing hormone (GnRH) analogues (triptorelin and goserelin)) in women with irregular menses.Catamenial epilepsy and seizure exacerbation is common in women with epilepsy, and may have a significant negative impact on quality of life. Women may not be receiving appropriate treatment for their seizures because of uncertainty regarding which treatment works best and when in the menstrual cycle treatment should be taken, as well as the possible impact on fertility, the menstrual cycle, bone health, and cardiovascular health. This review aimed to address these issues in order to inform clinical practice and future research. OBJECTIVES To evaluate the efficacy and tolerability of hormonal and non-hormonal treatments for seizures exacerbated by the menstrual cycle in women with regular or irregular menses. We synthesised the evidence from randomised controlled trials of hormonal and non-hormonal treatments in women with catamenial epilepsy of any pattern. SEARCH METHODS We searched the following databases to 10 January 2019: Cochrane Register of Studies (CRS Web; includes the Cochrane Epilepsy Group Specialized Register and the Cochrane Central Register of Controlled Trials (CENTRAL)), MEDLINE (Ovid: 1946 to 9 January 2019), ClinicalTrials.gov, and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP). We used no language restrictions. We checked the reference lists of retrieved studies for additional reports of relevant studies. SELECTION CRITERIA We included randomised and quasi-randomised controlled trials (RCTs) of blinded or opeṉlabel design that randomised participants individually (i.e. cluster-randomised trials were excluded). We included cross-over trials if each treatment period was at least 12 weeks in length and the trial had a suitable wash-out period. Types of interventions included: women with any pattern of catamenial epilepsy who received a hormonal or non-hormonal drug intervention in addition to an existing antiepileptic drug regimen for a minimum treatment duration of 12 weeks. DATA COLLECTION AND ANALYSIS We extracted data on study design factors and participant demographics for the included studies. The primary outcomes of interest were: proportion seizure-free, proportion of responders (at least 50% decrease in seizure frequency from baseline), and mean change in seizure frequency. Secondary outcomes included: number of withdrawals, number of women experiencing adverse events of interest (seizure exacerbation, cardiac events, thromboembolic events, osteoporosis and bone health, mood disorders, sedation, menstrual cycle disorders, and fertility issues), and quality of life outcomes. MAIN RESULTS We identified 62 records from the databases and search strategies. Following title, abstract, and full-text screening, we included eight full-text articles reporting on four double-blind, placebo-controlled RCTs. We included two cross-over RCTs of pulsed norethisterone and two parallel RCTs of pulsed progesterone recruiting a total of 192 women aged between 13 and 45 years with catamenial epilepsy. We found no RCTs for non-hormonal treatments of catamenial epilepsy or for women with irregular menses.Meta-analysis was not possible for the primary outcomes, therefore we undertook a narrative synthesis. For the two RCTs evaluating norethisterone versus placebo (24 participants), there were no reported treatment differences for mean change in seizure frequency. Outcomes for the proportion seizure-free and 50% responders were not reported. For the RCTs evaluating progesterone versus placebo (168 participants), the studies reported conflicting results on the primary outcomes. One progesterone RCT reported no significant difference between progesterone 600 mg/day taken on day 14 to 28 and placebo with respect to 50% responders, seizure freedom rates, and change in seizure frequency for any seizure type. The other progesterone RCT reported that the decrease in seizure frequency from baseline in the progesterone group was significantly higher than the decrease in seizure frequency from baseline in the placebo group.Results of secondary efficacy outcomes showed no significant difference in terms of treatment withdrawal for any reason in the pooled progesterone RCTs when compared to placebo (pooled risk ratio (RR) 1.56, 95% confidence interval (CI) 0.81 to 3.00, P = 0.18, I2 = 0%) or for treatment withdrawals due to adverse events (pooled RR 2.91, 95% CI 0.53 to 16.17, P = 0.22, I2 = 0%). No treatment withdrawals from the norethisterone RCTs were reported. The RCTs reported limited information on adverse events, although one progesterone RCT reported no significant difference in the number of women experiencing adverse events (diarrhoea, dyspepsia, nausea, vomiting, fatigue, nasopharyngitis, dizziness, headache, and depression). No studies reported on quality of life.We judged the evidence from the included progesterone RCTs to be of low to moderate certainty due to risk of bias and from the included norethisterone RCTs to be of very low certainty due to serious imprecision and risk of bias. AUTHORS' CONCLUSIONS This review provides very low-certainty evidence of no treatment difference between norethisterone and placebo, and moderate- to low-certainty evidence of no treatment difference between progesterone and placebo for catamenial epilepsy. However, as all the included studies were underpowered, important clinical effects cannot be ruled out.Our review highlighted an overall deficiency in the literature base on the effectiveness of a wide range of other hormonal and non-hormonal interventions currently being used in practice, particularly for those patients who do not have regular menses. Further clinical trials are needed in this area.
Collapse
Affiliation(s)
- Melissa J Maguire
- Leeds General InfirmaryDepartment of NeurologyGreat George StreetLeedsUK
| | - Sarah J Nevitt
- University of LiverpoolDepartment of BiostatisticsBlock F, Waterhouse Building1‐5 Brownlow HillLiverpoolUKL69 3GL
| | | |
Collapse
|
24
|
Affiliation(s)
- Melissa J Maguire
- Leeds General Infirmary; Department of Neurology; Great George Street Leeds UK
| | - Sarah J Nevitt
- University of Liverpool; Department of Biostatistics; Block F, Waterhouse Building 1-5 Brownlow Hill Liverpool UK L69 3GL
| |
Collapse
|
25
|
Gravielle MC. Regulation of GABAA receptors by prolonged exposure to endogenous and exogenous ligands. Neurochem Int 2018; 118:96-104. [DOI: 10.1016/j.neuint.2018.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 02/08/2023]
|
26
|
Iqbal R, Jain GK, Siraj F, Vohora D. Aromatase inhibition by letrozole attenuates kainic acid-induced seizures but not neurotoxicity in mice. Epilepsy Res 2018; 143:60-69. [PMID: 29665500 DOI: 10.1016/j.eplepsyres.2018.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/02/2018] [Accepted: 04/07/2018] [Indexed: 12/11/2022]
Abstract
Evidence shows neurosteroids play a key role in regulating epileptogenesis. Neurosteroids such as testosterone modulate seizure susceptibility through its transformation to metabolites which show proconvulsant and anticonvulsant effects, respectively. Reduction of testosterone by aromatase generates proconvulsant 17-β estradiol. Alternatively, testosterone is metabolized into 5α-dihydrotestosterone (5α-DHT) by 5α-reductase, which is then reduced by 3α-hydroxysteroid oxidoreductase enzyme (3α-HSOR) to form anticonvulsant metabolite 3α-androstanediol (3α-Diol), a potent GABAA receptor modulating neurosteroid. The present study evaluated whether inhibition of aromatase inhibitor letrozole protects against seizures and neuronal degeneration induced by kainic acid (KA) (10 mg/kg, i.p.) in Swiss albino mice. Letrozole (1 mg/kg, i.p.) administered one hour prior to KA significantly increased the onset time of seizures and reduced the% incidence of seizures. Pretreatment with finasteride, a selective inhibitor of 5α-reductase and indomethacin, a selective inhibitor of 3α-hydroxysteroid oxidoreductase enzyme (3α-HSOR), reversed the protective effects of letrozole in KA-induced seizures in mice. Microscopic examination using cresyl violet staining revealed that letrozole did not modify KA-induced neurotoxicity in the CA1, CA3 and DG region of the hippocampus. Letrozole treatment resulted in the reduced levels of 17-β estradiol and elevated the levels of 5α-dihydrotestosterone (DHT) and 3α-Diol in the hippocampus. Finasteride and indomethacin attenuated letrozole-induced elevations of 5α-DHT and 3α-Diol. Our results indicate the potential anticonvulsant effects of letrozole against KA-induced seizures in mice that might be mediated by inhibiting aromatization of testosterone to 17β-estradiol, a proconvulsant hormone and by redirecting the synthesis to anticonvulsant metabolites, 5α-DHT and 3α-Diol. Acute aromatase inhibition, thus, might be used as an adjuvant in the treatment of status epilepticus and can be pursued further.
Collapse
Affiliation(s)
- Ramsha Iqbal
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Gaurav K Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Fouzia Siraj
- National Institute of Pathology, Indian Council of Medical Research, New Delhi, 110029, India
| | - Divya Vohora
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
27
|
Chuang SH, Reddy DS. Genetic and Molecular Regulation of Extrasynaptic GABA-A Receptors in the Brain: Therapeutic Insights for Epilepsy. J Pharmacol Exp Ther 2018; 364:180-197. [PMID: 29142081 PMCID: PMC5771312 DOI: 10.1124/jpet.117.244673] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
GABA-A receptors play a pivotal role in many brain diseases. Epilepsy is caused by acquired conditions and genetic defects in GABA receptor channels regulating neuronal excitability in the brain. The latter is referred to as GABA channelopathies. In the last two decades, major advances have been made in the genetics of epilepsy. The presence of specific GABAergic genetic abnormalities leading to some of the classic epileptic syndromes has been identified. Advances in molecular cloning and recombinant systems have helped characterize mutations in GABA-A receptor subunit genes in clinical neurology. GABA-A receptors are the prime targets for neurosteroids (NSs). However, GABA-A receptors are not static but undergo rapid changes in their number or composition in response to the neuroendocrine milieu. This review describes the recent advances in the genetic and neuroendocrine control of extrasynaptic and synaptic GABA-A receptors in epilepsy and its impact on neurologic conditions. It highlights the current knowledge of GABA genetics in epilepsy, with an emphasis on the neuroendocrine regulation of extrasynaptic GABA-A receptors in network excitability and seizure susceptibility. Recent advances in molecular regulation of extrasynaptic GABA-A receptor-mediated tonic inhibition are providing unique new therapeutic approaches for epilepsy, status epilepticus, and certain brain disorders. The discovery of an extrasynaptic molecular mechanism represents a milestone for developing novel therapies such as NS replacement therapy for catamenial epilepsy.
Collapse
Affiliation(s)
- Shu-Hui Chuang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
28
|
Samba Reddy D. Sex differences in the anticonvulsant activity of neurosteroids. J Neurosci Res 2017; 95:661-670. [PMID: 27870400 DOI: 10.1002/jnr.23853] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/21/2016] [Accepted: 07/06/2016] [Indexed: 12/11/2022]
Abstract
Epilepsy is one of the leading causes of chronic neurological morbidity worldwide. Acquired epilepsy may result from a number of conditions, such as brain injury, anoxia, tumors, stroke, neurotoxicity, and prolonged seizures. Sex differences have been observed in many seizure types; however, some sex-specific seizure disorders are much more prevalent in women. Despite some inconsistencies, substantial data indicates that sensitivity to seizure stimuli differs between the sexes. Men generally exhibit greater seizure susceptibility than women, whereas many women with epilepsy experience a cyclical occurrence of seizures that tends to center around the menstrual period, which has been termed catamenial epilepsy. Some epilepsy syndromes show gender differences with female predominance or male predominance. Steroid hormones, endogenous neurosteroids, and sexually dimorphic neural networks appear to play a key role in sex differences in seizure susceptibility. Neurosteroids, such as allopregnanolone, reflect sex differences in their anticonvulsant activity. This Review provides a brief overview of the evidence for sex differences in epilepsy and how sex differences influence the use of neurosteroids in epilepsy and epileptogenesis. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Sciences Center, College of Medicine, Bryan, Texas
| |
Collapse
|
29
|
Tuem KB, Atey TM. Neuroactive Steroids: Receptor Interactions and Responses. Front Neurol 2017; 8:442. [PMID: 28894435 PMCID: PMC5581316 DOI: 10.3389/fneur.2017.00442] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022] Open
Abstract
Neuroactive steroids (NASs) are naturally occurring steroids, which are synthesized centrally as de novo from cholesterol and are classified as pregnane, androstane, and sulfated neurosteroids (NSs). NASs modulate many processes via interacting with gamma-aminobutyric acid (GABA), N-methyl-d-aspartate, serotonin, voltage-gated calcium channels, voltage-dependent anion channels, α-adrenoreceptors, X-receptors of the liver, transient receptor potential channels, microtubule-associated protein 2, neurotrophin nerve growth factor, and σ1 receptors. Among these, NSs (especially allopregnanolone) have high potency and extensive GABA-A receptors and hence demonstrate anticonvulsant, anesthetic, central cytoprotectant, and baroreflex inhibitory effects. NSs are also involved in mood and learning via serotonin and anti-nociceptive activity via T-type voltage-gated Ca2+ channels. Moreover, they are modulators of mitochondrial function, synaptic plasticity, or regulators of apoptosis, which have a role in neuroprotective via voltage-dependent anion channels receptors. For proper functioning, NASs need to be in their normal level, whereas excess and deficiency may lead to abnormalities. When they are below the normal, NSs could have a part in development of depression, neuro-inflammation, multiple sclerosis, experimental autoimmune encephalitis, epilepsy, and schizophrenia. On the other hand, stress and attention deficit disorder could occur during excessive level. Overall, NASs are very important molecules with major neuropsychiatric activity.
Collapse
Affiliation(s)
- Kald Beshir Tuem
- Department of Pharmacology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Tesfay Mehari Atey
- Clinical Pharmacy Unit, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
30
|
Clossen BL, Reddy DS. Catamenial-like seizure exacerbation in mice with targeted ablation of extrasynaptic δGABA-a receptors in the brain. J Neurosci Res 2017; 95:1906-1916. [PMID: 28236431 DOI: 10.1002/jnr.24028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/18/2016] [Accepted: 01/03/2017] [Indexed: 01/19/2023]
Abstract
Neurosteroids play a key role in catamenial epilepsy, a menstrual cycle-related seizure clustering in women with epilepsy. While neurosteroids act on all GABA-A receptor isoforms, they cause greater effects on extrasynaptic δGABA-A receptors that mediate tonic inhibition in the brain. Previously, we identified a potential GABA-A receptor mechanism for catamenial epilepsy. However, the precise functional role of extrasynaptic δGABA-A receptors in the pathophysiology of catamenial epilepsy remains unclear. In this study, we utilized mice lacking extrasynaptic δGABA-A receptors (δKO) to investigate whether reduction of tonic inhibition affects catamenial seizure susceptibility or intensity. Intact female wildtype (WT) and δKO mice were subjected to hippocampus kindling until they exhibited stage 5 seizures. Elevated gonadal hormone-based neurosteroid levels were induced by standard gonadotropin regimen and neurosteroid withdrawal (NSW) was triggered by finasteride. NSW increased susceptibility to, as well the intensity of evoked catamenial-like seizures in WT and δKO mice. However, fully kindled δKO mice exhibited an accelerated and augmented response to NSW, with a more rapid increase in seizure susceptibility and intensity than WT mice undergoing the NSW paradigm. Moreover, δKO mice in NSW showed reduced benzodiazepine sensitivity, but in stark contrast to the increased neurosteroid sensitivity observed in WT animals, δKO mice displayed no change in neurosteroid sensitivity in response to NSW. The increased catamenial seizure exacerbation and alterations in antiseizure drug responses are consistent with NSW-induced changes in the abundance of δGABA-A receptors. Collectively, these findings provide evidence of a potential protective role for extrasynaptic δGABA-A receptors in catamenial-like seizures. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bryan L Clossen
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
31
|
Reddy DS, Gangisetty O, Wu X. PR-independent neurosteroid regulation of α2-GABA-A receptors in the hippocampus subfields. Brain Res 2017; 1659:142-147. [PMID: 28137424 DOI: 10.1016/j.brainres.2017.01.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/27/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022]
Abstract
Progesterone (P) binding to the intracellular progesterone receptors (PRs) plays a key role in epilepsy via modulation of GABA-A receptor plasticity in the brain. This is thought to occur via conversion of P to neurosteroids such as allopregnanolone, an allosteric modulator of GABA-A receptors. In the female brain, the composition of GABA-A receptors is not static and undergoes dynamic spatial changes in response to fluctuations in P and neurosteroid levels. Synaptic α2-containing GABA-A receptors contribute to phasic neuronal excitability and seizure susceptibility. However, the mechanisms underlying α2-subunit plasticity remain unclear. Here, we utilized the neurosteroid synthesis inhibitor finasteride and PR knockout mice to investigate the role of PRs in α2-subunit in the hippocampus. α2-Subunit expression was significantly upregulated during the high-P state of diestrous stage and with P treatment in wildtype and PR knockout mice. In contrast, there was no change in α2-subunit expression when metabolism of P into neurosteroids was blocked by finasteride in both genotypes. These findings suggest that ovarian cycle-related P and neurosteroids regulate α2-GABA-A receptor expression in the hippocampus via a non-PR pathway, which may be relevant to menstrual-cycle related brain conditions.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA.
| | - Omkaram Gangisetty
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Xin Wu
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA
| |
Collapse
|
32
|
Reddy DS. The neuroendocrine basis of sex differences in epilepsy. Pharmacol Biochem Behav 2016; 152:97-104. [PMID: 27424276 DOI: 10.1016/j.pbb.2016.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/25/2016] [Accepted: 07/12/2016] [Indexed: 01/22/2023]
Abstract
Epilepsy affects people of all ages and both genders. Sex differences are well known in epilepsy. Seizure susceptibility and the incidence of epilepsy are generally higher in men than women. In addition, there are gender-specific epilepsies such as catamenial epilepsy, a neuroendocrine condition in which seizures are most often clustered around the perimenstrual or periovulatory period in adult women with epilepsy. Changes in seizure sensitivity are also evident at puberty, pregnancy, and menopause. Sex differences in seizure susceptibility and resistance to antiseizure drugs can be studied in experimental models. An improved understanding of the neuroendocrine basis of sex differences or resistance to protective drugs is essential to develop targeted therapies for sex-specific seizure conditions. This article provides a brief overview of the current status of sex differences in seizure susceptibility and the potential mechanisms underlying the gender differences in seizure sensitivity.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
33
|
Reddy DS, Estes WA. Clinical Potential of Neurosteroids for CNS Disorders. Trends Pharmacol Sci 2016; 37:543-561. [PMID: 27156439 DOI: 10.1016/j.tips.2016.04.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/02/2016] [Accepted: 04/05/2016] [Indexed: 11/27/2022]
Abstract
Neurosteroids are key endogenous molecules in the brain that affect many neural functions. We describe here recent advances in US National Institutes of Health (NIH)-sponsored and other clinical studies of neurosteroids for CNS disorders. The neuronal GABA-A receptor chloride channel is one of the prime molecular targets of neurosteroids. Allopregnanolone-like neurosteroids are potent allosteric agonists as well as direct activators of both synaptic and extrasynaptic GABA-A receptors. Hence, neurosteroids can maximally enhance synaptic phasic and extrasynaptic tonic inhibition. The resulting chloride current conductance generates a form of shunting inhibition that controls network excitability, seizures, and behavior. Such mechanisms of neurosteroids are providing innovative therapies for epilepsy, status epilepticus (SE), traumatic brain injury (TBI), fragile X syndrome (FXS), and chemical neurotoxicity. The neurosteroid field has entered a new era, and many compounds have reached advanced clinical trials. Synthetic analogs have several advantages over natural neurosteroids for clinical use because of their superior bioavailability and safety trends.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| | - William A Estes
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
34
|
Reddy DS. Catamenial Epilepsy: Discovery of an Extrasynaptic Molecular Mechanism for Targeted Therapy. Front Cell Neurosci 2016; 10:101. [PMID: 27147973 PMCID: PMC4840555 DOI: 10.3389/fncel.2016.00101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/04/2016] [Indexed: 01/22/2023] Open
Abstract
Catamenial epilepsy is a type of refractory epilepsy characterized by seizure clusters around perimenstrual or periovulatory period. The pathophysiology of catamenial epilepsy still remains unclear, yet there are few animal models to study this gender-specific disorder. The pathophysiology of perimenstrual catamenial epilepsy involves the withdrawal of the progesterone-derived GABAergic neurosteroids due to the decline in progesterone level at the time of menstruation. These manifestations can be faithfully reproduced in rodents by specific neuroendocrine manipulations. Since mice and rats, like humans, have ovarian cycles with circulating hormones, they appear to be suitable animal models for studies of perimenstrual seizures. Recently, we created specific experimental models to mimic perimenstrual seizures. Studies in rat and mouse models of catamenial epilepsy show enhanced susceptibility to seizures or increased seizure exacerbations following neurosteroid withdrawal. During such a seizure exacerbation period, there is a striking decrease in the anticonvulsant effect of commonly prescribed antiepileptics, such as benzodiazepines, but an increase in the anticonvulsant potency of exogenous neurosteroids. We discovered an extrasynaptic molecular mechanism of catamenial epilepsy. In essence, extrasynaptic δGABA-A receptors are upregulated during perimenstrual-like neuroendocrine milieu. Consequently, there is enhanced antiseizure efficacy of neurosteroids in catamenial models because δGABA-A receptors confer neurosteroid sensitivity and greater seizure protection. Molecular mechanisms such as these offer a strong rationale for the clinical development of a neurosteroid replacement therapy for catamenial epilepsy.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine Bryan, TX, USA
| |
Collapse
|
35
|
GABA withdrawal syndrome: GABAA receptor, synapse, neurobiological implications and analogies with other abstinences. Neuroscience 2015; 313:57-72. [PMID: 26592722 DOI: 10.1016/j.neuroscience.2015.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 11/07/2015] [Accepted: 11/10/2015] [Indexed: 11/22/2022]
Abstract
The sudden interruption of the increase of the concentration of the gamma-aminobutyric acid (GABA), determines an increase in neuronal activity. GABA withdrawal (GW) is a heuristic analogy, with withdrawal symptoms developed by other GABA receptor-agonists such as alcohol, benzodiazepines, and neurosteroids. GW comprises a model of neuronal excitability validated by electroencephalogram (EEG) in which high-frequency and high-amplitude spike-wave complexes appear. In brain slices, GW was identified by increased firing synchronization of pyramidal neurons and by changes in the active properties of the neuronal membrane. GW induces pre- and postsynaptic changes: a decrease in GABA synthesis/release, and the decrease in the expression and composition of GABAA receptors associated with increased calcium entry into the cell. GW is an excellent bioassay for studying partial epilepsy, epilepsy refractory to drug treatment, and a model to reverse or prevent the generation of abstinences from different drugs.
Collapse
|
36
|
|
37
|
Reddy SD, Younus I, Clossen BL, Reddy DS. Antiseizure Activity of Midazolam in Mice Lacking δ-Subunit Extrasynaptic GABA(A) Receptors. J Pharmacol Exp Ther 2015; 353:517-28. [PMID: 25784648 PMCID: PMC4429675 DOI: 10.1124/jpet.114.222075] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 03/16/2015] [Indexed: 12/31/2022] Open
Abstract
Midazolam is a benzodiazepine anticonvulsant with rapid onset and short duration of action. Midazolam is the current drug of choice for acute seizures and status epilepticus, including those caused by organophosphate nerve agents. The antiseizure activity of midazolam is thought to result from its allosteric potentiation of synaptic GABA(A) receptors in the brain. However, there are indications that benzodiazepines promote neurosteroid synthesis via the 18-kDa cholesterol transporter protein (TSPO). Therefore, we investigated the role of neurosteroids and their extrasynaptic GABA(A) receptor targets in the antiseizure activity of midazolam. Here, we used δ-subunit knockout (DKO) mice bearing a targeted deletion of the extrasynaptic receptors to investigate the contribution of the extrasynaptic receptors to the antiseizure activity of midazolam using the 6-Hz and hippocampus kindling seizure models. In both models, midazolam produced rapid and dose-dependent protection against seizures (ED50, 0.4 mg/kg). Moreover, the antiseizure potency of midazolam was undiminished in DKO mice compared with control mice. Pretreatment with PK11195 [1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide], a TSPO blocker, or finasteride, a 5α-reductase neurosteroid inhibitor, did not affect the antiseizure effect of midazolam. The antiseizure activity of midazolam was significantly reversed by pretreatment with flumazenil, a benzodiazepine antagonist. Plasma and brain levels of the neurosteroid allopregnanolone were not significantly greater in midazolam-treated animals. These studies therefore provide strong evidence that neurosteroids and extrasynaptic GABA(A) receptors are not involved in the antiseizure activity of midazolam, which mainly occurs through synaptic GABA(A) receptors via direct binding to benzodiazepine sites. This study reaffirms midazolam's use for controlling acute seizures and status epilepticus.
Collapse
Affiliation(s)
- Sandesh D Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Iyan Younus
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Bryan L Clossen
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
38
|
Perimenstrual-like hormonal regulation of extrasynaptic δ-containing GABAA receptors mediating tonic inhibition and neurosteroid sensitivity. J Neurosci 2015; 34:14181-97. [PMID: 25339733 DOI: 10.1523/jneurosci.0596-14.2014] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurosteroids are endogenous regulators of neuronal excitability and seizure susceptibility. Neurosteroids, such as allopregnanolone (AP; 3α-hydroxy-5α-pregnan-20-one), exhibit enhanced anticonvulsant activity in perimenstrual catamenial epilepsy, a neuroendocrine condition in which seizures are clustered around the menstrual period associated with neurosteroid withdrawal (NSW). However, the molecular mechanisms underlying such enhanced neurosteroid sensitivity remain unclear. Neurosteroids are allosteric modulators of both synaptic (αβγ2-containing) and extrasynaptic (αβδ-containing) GABAA receptors, but they display greater sensitivity toward δ-subunit receptors in dentate gyrus granule cells (DGGCs). Here we report a novel plasticity of extrasynaptic δ-containing GABAA receptors in the dentate gyrus in a mouse perimenstrual-like model of NSW. In molecular and immunofluorescence studies, a significant increase occurred in δ subunits, but not α1, α2, β2, and γ2 subunits, in the dentate gyrus of NSW mice. Electrophysiological studies confirmed enhanced sensitivity to AP potentiation of GABA-gated currents in DGGCs, but not in CA1 pyramidal cells, in NSW animals. AP produced a greater potentiation of tonic currents in DGGCs of NSW animals, and such enhanced AP sensitivity was not evident in δ-subunit knock-out mice subjected to a similar withdrawal paradigm. In behavioral studies, mice undergoing NSW exhibited enhanced seizure susceptibility to hippocampus kindling. AP has enhanced anticonvulsant effects in fully kindled wild-type mice, but not δ-subunit knock-out mice, undergoing NSW-induced seizures, confirming δ-linked neurosteroid sensitivity. These results indicate that perimenstrual NSW is associated with striking upregulation of extrasynaptic, δ-containing GABAA receptors that mediate tonic inhibition and neurosteroid sensitivity in the dentate gyrus. These findings may represent a molecular rationale for neurosteroid therapy of catamenial epilepsy.
Collapse
|
39
|
Devall AJ, Santos JM, Fry JP, Honour JW, Brandão ML, Lovick TA. Elevation of brain allopregnanolone rather than 5-HT release by short term, low dose fluoxetine treatment prevents the estrous cycle-linked increase in stress sensitivity in female rats. Eur Neuropsychopharmacol 2015; 25:113-23. [PMID: 25498416 DOI: 10.1016/j.euroneuro.2014.11.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
Abstract
Withdrawal from long-term dosing with exogenous progesterone precipitates increased anxiety-linked changes in behavior in animal models due to the abrupt decrease in brain concentration of allopregnanolone (ALLO), a neuroactive metabolite of progesterone. We show that a withdrawal-like effect also occurs during the late diestrus phase (LD) of the natural ovarian cycle in rats, when plasma progesterone and ALLO are declining but estrogen secretion maintains a stable low level. This effect at LD was prevented by short-term treatment with low dose fluoxetine. During LD, but not at other stages of the estrous cycle, exposure to anxiogenic stress induced by whole body vibration at 4 Hz for 5 min evoked a significant decrease in tail flick latency (stress-induced hyperalgesia) and a decrease in the number of Fos-positive neurons present in the periaqueductal gray (PAG). The threshold to evoke fear-like behaviors in response to electrical stimulation of the dorsal PAG was lower in the LD phase, indicating an increase in the intrinsic excitability of the PAG circuitry. All these effects were blocked by short-term administration of fluoxetine (2 × 1.75 mg kg(-1) i.p.) during LD. This dosage increased the whole brain concentration of ALLO, as determined using gas chromatography-mass spectrometry, but was without effect on the extracellular concentration of 5-HT in the dorsal PAG, as measured by microdialysis. We suggest that fluoxetine-induced rise in brain ALLO concentration during LD offsets the sharp physiological decline, thus removing the trigger for the development of anxiogenic withdrawal effects.
Collapse
Affiliation(s)
- Adam J Devall
- School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - Julia M Santos
- School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK; Laboratório de Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901 Ribeirão Preto, SP, Brazil
| | - Jonathan P Fry
- Department of Neuroscience, Physiology and Pharmacology, University College London, London W1E 6BT, UK
| | - John W Honour
- University College London Hospital, London NW1 2BU, UK
| | - Marcus L Brandão
- Laboratório de Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901 Ribeirão Preto, SP, Brazil
| | - Thelma A Lovick
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
40
|
Lovick TA. Sex determinants of experimental panic attacks. Neurosci Biobehav Rev 2014; 46 Pt 3:465-71. [DOI: 10.1016/j.neubiorev.2014.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/15/2014] [Accepted: 03/01/2014] [Indexed: 12/16/2022]
|
41
|
Neurosteroid, GABAergic and hypothalamic pituitary adrenal (HPA) axis regulation: what is the current state of knowledge in humans? Psychopharmacology (Berl) 2014; 231:3619-34. [PMID: 24756763 PMCID: PMC4135030 DOI: 10.1007/s00213-014-3572-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 04/06/2014] [Indexed: 11/25/2022]
Abstract
RATIONALE A robust epidemiological literature suggests an association between chronic stress and the development of affective disorders. However, the precise biological underpinnings of this relationship remain elusive. Central to the human response and adaptation to stress, activation and inhibition of the hypothalamic pituitary adrenal (HPA) axis involves a multi-level, multi-system, neurobiological stress response which is as comprehensive in its complexity as it is precarious. Dysregulation in this complex system has implications for human stress related illness. OBJECTIVES The pioneering research of Robert Purdy and colleagues has laid the groundwork for advancing our understanding of HPA axis regulation by stress-derived steroid hormones and their neuroactive metabolites (termed neurosteroids), which are potent allosteric modulators of GABAA receptor function in the central nervous system. This review will describe what is known about neurosteroid modulation of the HPA axis in response to both acute and chronic stress, particularly with respect to the current state of our knowledge of this process in humans. RESULTS Implications of this research to the development of human stress-related illness are discussed in the context of two human stress-related psychiatric disorders - major depressive disorder and premenstrual dysphoric disorder. CONCLUSIONS Neurosteroid-mediated HPA axis dysregulation is a potential pathophysiologic mechanism which may cross traditional psychiatric diagnostic classifications. Future research directions are identified.
Collapse
|
42
|
Neurosteroids and their role in sex-specific epilepsies. Neurobiol Dis 2014; 72 Pt B:198-209. [PMID: 24960208 DOI: 10.1016/j.nbd.2014.06.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/11/2014] [Accepted: 06/14/2014] [Indexed: 01/21/2023] Open
Abstract
Neurosteroids are involved in sex-specific epilepsies. Allopregnanolone and related endogenous neurosteroids in the brain control excessive neuronal excitability and seizure susceptibility. Neurosteroids activate GABA-A receptors, especially extrasynaptic αγδ-GABA-A receptor subtypes that mediate tonic inhibition and thus dampen network excitability. Our studies over the past decade have shown that neurosteroids are broad-spectrum anticonvulsants and confer seizure protection in various animal models. Neurosteroids also exert antiepileptogenic effects. There is emerging evidence on a critical role for neurosteroids in the pathophysiology of the sex-specific forms of epilepsies such as catamenial epilepsy, a menstrual cycle-related seizure disorder in women. Catamenial epilepsy is a neuroendocrine condition in which seizures are clustered around specific points in the menstrual cycle, most often around the perimenstrual or periovulatory period. Apart from ovarian hormones, fluctuations in neurosteroid levels could play a critical role in this gender-specific epilepsy. Neurosteroids also regulate the plasticity of synaptic and extrasynaptic GABA-A receptors in the hippocampus and other regions involved in epilepsy pathology. Based on these studies, we proposed a neurosteroid replacement therapy for catamenial epilepsy. Thus, neurosteroids are novel drug targets for pharmacotherapy of epilepsy.
Collapse
|
43
|
Bäckström T, Bixo M, Johansson M, Nyberg S, Ossewaarde L, Ragagnin G, Savic I, Strömberg J, Timby E, van Broekhoven F, van Wingen G. Allopregnanolone and mood disorders. Prog Neurobiol 2014; 113:88-94. [PMID: 23978486 DOI: 10.1016/j.pneurobio.2013.07.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/05/2013] [Accepted: 07/24/2013] [Indexed: 11/23/2022]
Abstract
UNLABELLED Certain women experience negative mood symptoms during the menstrual cycle and progesterone addition in estrogen treatments. In women with PMDD increased negative mood symptoms related to allopregnanolone increase during the luteal phase of ovulatory menstrual cycles. In anovulatory cycles no symptom or sex steroid increase occurs. This is unexpected as positive modulators of the GABA-A receptor are generally increasing mood. This paradoxical effect has brought forward a hypothesis that the symptoms are provoked by allopregnanolone the GABA-A receptor system. GABA-A is the major inhibitory system in the brain. Positive modulators of the GABA-A receptor include the progesterone metabolites allopregnanolone and pregnanolone, benzodiazepines, barbiturates, and alcohol. GABA-A receptor modulators are known, in low concentrations to induce adverse, anxiogenic effects whereas in higher concentrations show beneficial, calming properties. Positive GABA-A receptor modulators induce strong paradoxical effects e.g. negative mood in 3-8% of those exposed, while up to 25% have moderate symptoms thus similar as the prevalence of PMDD, 3-8% among women in fertile ages, and up to 25% have moderate symptoms of premenstrual syndrome (PMS). The mechanism behind paradoxical reaction might be similar among them who react on positive GABA-A receptor modulators and in women with PMDD. In women the severity of these mood symptoms are related to the allopregnanolone serum concentrations in an inverted U-shaped curve. Negative mood symptoms occur when the serum concentration of allopregnanolone is similar to endogenous luteal phase levels, while low and high concentrations have less effect on mood. Low to moderate progesterone/allopregnanolone concentrations in women increases the activity in the amygdala (measured with fMRI) similar to the changes seen during anxiety reactions. Higher concentrations give decreased amygdala activity similar as seen during benzodiazepine treatment with calming anxiolytic effects. Patients with PMDD show decreased sensitivity in GABA-A receptor sensitivity to diazepam and pregnanolone while increased sensitivity to allopregnanolone. This agrees with findings in animals showing a relation between changes in alpha4 and delta subunits of the GABA-A receptor and anxiogenic effects of allopregnanolone. CONCLUSION These findings suggest that negative mood symptoms in women with PMDD are caused by the paradoxical effect of allopregnanolone mediated via the GABA-A receptor.
Collapse
Affiliation(s)
- T Bäckström
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden.
| | - M Bixo
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - M Johansson
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - S Nyberg
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - L Ossewaarde
- GGNet, Institute for Mental Health Care, Department of Medical Psychology, Zutphen, The Netherlands
| | - G Ragagnin
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - I Savic
- Karolinska Institute, Stockholm Brain Institute, Department of Women's and Children's Health, Division of Pediatric Neurology, Stockholm, Sweden
| | - J Strömberg
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - E Timby
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - F van Broekhoven
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - G van Wingen
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Monasterio N, Vergara E, Morales T. Hormonal influences on neuroimmune responses in the CNS of females. Front Integr Neurosci 2014; 7:110. [PMID: 24478642 PMCID: PMC3894525 DOI: 10.3389/fnint.2013.00110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 12/25/2013] [Indexed: 11/26/2022] Open
Abstract
Particular reproductive stages such as lactation impose demands on the female. To cope with these demands, her physiology goes through numerous adaptations, for example, attenuation of immune and stress responses. Hormonal fluctuation during lactation exerts a strong influence, inducing neuroplasticity in the hypothalamus and extrahypothalamic regions, and diminishing the stress and inflammatory responses. Thus, hormones confer decreased vulnerability to the female brain. This mini-review focuses on the adaptations of the immune and stress response during maternity, and on the neuroprotective actions of progesterone and prolactin and their effects on inflammation. The importance of pregnancy and lactation as experimental models to study immune responses and disease is also highlighted.
Collapse
Affiliation(s)
- Nela Monasterio
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Santiago de Querétaro, México
| | - Edgar Vergara
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México Ciudad de México, México
| | - Teresa Morales
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Santiago de Querétaro, México
| |
Collapse
|
45
|
Lovick T. SSRIs and the female brain--potential for utilizing steroid-stimulating properties to treat menstrual cycle-linked dysphorias. J Psychopharmacol 2013; 27:1180-5. [PMID: 23704364 DOI: 10.1177/0269881113490327] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
One unexpected property of selective serotonin reuptake inhibitors is their ability, at doses well below those that effect 5-HT systems, to raise brain concentrations of neuroactive steroids such as the progesterone metabolite allopregnanolone. In women, rapid withdrawal from allopregnanolone when progesterone secretion drops sharply in the late luteal phase precipitates menstrual cycle-linked disorders such as premenstrual syndrome and catamenial epilepsy. Short-term, low-dose fluoxetine during the late luteal phase has the potential to prevent the development of such disorders, by raising brain allopregnanolone concentration. In female rats, withdrawal from allopregnanolone, as ovarian progesterone secretion falls rapidly in the late diestrus phase (similar to late luteal phase in women), induces upregulation of extrasynaptic GABAA receptors on GABAergic neurons in brain regions involved in mediating anxiety-like behaviors. The functional consequence of this receptor plasticity is disinhibition of principal neurons, hyperexcitable neuronal circuitry and increased behavioral responsiveness to anxiogenic stress. These withdrawal responses were prevented by short-term treatment with fluoxetine during the late diestrus phase, which raised brain allopregnanolone concentration, so blunting the rapid physiological fall. The steroid-stimulating properties of fluoxetine offer untapped opportunities for developing new treatments for menstrual cycle-linked disorders in women, which are precipitated by abrupt falls in brain concentration of allopregnanolone.
Collapse
Affiliation(s)
- Thelma Lovick
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| |
Collapse
|
46
|
Carver CM, Reddy DS. Neurosteroid interactions with synaptic and extrasynaptic GABA(A) receptors: regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability. Psychopharmacology (Berl) 2013; 230:151-88. [PMID: 24071826 PMCID: PMC3832254 DOI: 10.1007/s00213-013-3276-5] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 08/29/2013] [Indexed: 12/25/2022]
Abstract
RATIONALE Neurosteroids are steroids synthesized within the brain with rapid effects on neuronal excitability. Allopregnanolone, allotetrahydrodeoxycorticosterone, and androstanediol are three widely explored prototype endogenous neurosteroids. They have very different targets and functions compared to conventional steroid hormones. Neuronal γ-aminobutyric acid (GABA) type A (GABA(A)) receptors are one of the prime molecular targets of neurosteroids. OBJECTIVE This review provides a critical appraisal of recent advances in the pharmacology of endogenous neurosteroids that interact with GABA(A) receptors in the brain. Neurosteroids possess distinct, characteristic effects on the membrane potential and current conductance of the neuron, mainly via potentiation of GABA(A) receptors at low concentrations and direct activation of receptor chloride channel at higher concentrations. The GABA(A) receptor mediates two types of inhibition, now characterized as synaptic (phasic) and extrasynaptic (tonic) inhibition. Synaptic release of GABA results in the activation of low-affinity γ2-containing synaptic receptors, while high-affinity δ-containing extrasynaptic receptors are persistently activated by the ambient GABA present in the extracellular fluid. Neurosteroids are potent positive allosteric modulators of synaptic and extrasynaptic GABA(A) receptors and therefore enhance both phasic and tonic inhibition. Tonic inhibition is specifically more sensitive to neurosteroids. The resulting tonic conductance generates a form of shunting inhibition that controls neuronal network excitability, seizure susceptibility, and behavior. CONCLUSION The growing understanding of the mechanisms of neurosteroid regulation of the structure and function of the synaptic and extrasynaptic GABA(A) receptors provides many opportunities to create improved therapies for sleep, anxiety, stress, epilepsy, and other neuropsychiatric conditions.
Collapse
Affiliation(s)
- Chase Matthew Carver
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, 2008 Medical Research and Education Building, 8447 State Highway 47, Bryan, TX, 77807-3260, USA
| | | |
Collapse
|
47
|
Jeffrey M, Lang M, Gane J, Wu C, Burnham WM, Zhang L. A reliable method for intracranial electrode implantation and chronic electrical stimulation in the mouse brain. BMC Neurosci 2013; 14:82. [PMID: 23914984 PMCID: PMC3750568 DOI: 10.1186/1471-2202-14-82] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 08/02/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Electrical stimulation of brain structures has been widely used in rodent models for kindling or modeling deep brain stimulation used clinically. This requires surgical implantation of intracranial electrodes and subsequent chronic stimulation in individual animals for several weeks. Anchoring screws and dental acrylic have long been used to secure implanted intracranial electrodes in rats. However, such an approach is limited when carried out in mouse models as the thin mouse skull may not be strong enough to accommodate the anchoring screws. We describe here a screw-free, glue-based method for implanting bipolar stimulating electrodes in the mouse brain and validate this method in a mouse model of hippocampal electrical kindling. METHODS Male C57 black mice (initial ages of 6-8 months) were used in the present experiments. Bipolar electrodes were implanted bilaterally in the hippocampal CA3 area for electrical stimulation and electroencephalographic recordings. The electrodes were secured onto the skull via glue and dental acrylic but without anchoring screws. A daily stimulation protocol was used to induce electrographic discharges and motor seizures. The locations of implanted electrodes were verified by hippocampal electrographic activities and later histological assessments. RESULTS Using the glue-based implantation method, we implanted bilateral bipolar electrodes in 25 mice. Electrographic discharges and motor seizures were successfully induced via hippocampal electrical kindling. Importantly, no animal encountered infection in the implanted area or a loss of implanted electrodes after 4-6 months of repetitive stimulation/recording. CONCLUSION We suggest that the glue-based, screw-free method is reliable for chronic brain stimulation and high-quality electroencephalographic recordings in mice. The technical aspects described this study may help future studies in mouse models.
Collapse
Affiliation(s)
- Melanie Jeffrey
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Reddy DS. Role of hormones and neurosteroids in epileptogenesis. Front Cell Neurosci 2013; 7:115. [PMID: 23914154 PMCID: PMC3728472 DOI: 10.3389/fncel.2013.00115] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/01/2013] [Indexed: 12/03/2022] Open
Abstract
This article describes the emerging evidence of hormonal influence on epileptogenesis, which is a process whereby a brain becomes progressively epileptic due to an initial precipitating event of diverse origin such as brain injury, stroke, infection, or prolonged seizures. The molecular mechanisms underlying the development of epilepsy are poorly understood. Neuroinflammation and neurodegeneration appear to trigger epileptogenesis. There is an intense search for drugs that truly prevent the development of epilepsy in people at risk. Hormones play an important role in children and adults with epilepsy. Corticosteroids, progesterone, estrogens, and neurosteroids have been shown to affect seizure activity in animal models and in clinical studies. However, the impact of hormones on epileptogenesis has not been investigated widely. There is emerging new evidence that progesterone, neurosteroids, and endogenous hormones may play a role in regulating the epileptogenesis. Corticosterone has excitatory effects and triggers epileptogenesis in animal models. Progesterone has disease-modifying activity in epileptogenic models. The antiepileptogenic effect of progesterone has been attributed to its conversion to neurosteroids, which binds to GABA-A receptors and enhances phasic and tonic inhibition in the brain. Neurosteroids are robust anticonvulsants. There is pilot evidence that neurosteroids may have antiepileptogenic properties. Future studies may generate new insight on the disease-modifying potential of hormonal agents and neurosteroids in epileptogenesis.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center Bryan, TX, USA
| |
Collapse
|
49
|
Wu X, Gangisetty O, Carver CM, Reddy DS. Estrous cycle regulation of extrasynaptic δ-containing GABA(A) receptor-mediated tonic inhibition and limbic epileptogenesis. J Pharmacol Exp Ther 2013; 346:146-60. [PMID: 23667248 PMCID: PMC3684839 DOI: 10.1124/jpet.113.203653] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 05/09/2013] [Indexed: 12/11/2022] Open
Abstract
The ovarian cycle affects susceptibility to behavioral and neurologic conditions. The molecular mechanisms underlying these changes are poorly understood. Deficits in cyclical fluctuations in steroid hormones and receptor plasticity play a central role in physiologic and pathophysiologic menstrual conditions. It has been suggested that synaptic GABA(A) receptors mediate phasic inhibition in the hippocampus and extrasynaptic receptors mediate tonic inhibition in the dentate gyrus. Here we report a novel role of extrasynaptic δ-containing GABA(A) receptors as crucial mediators of the estrous cycle-related changes in neuronal excitability in mice, with hippocampus subfield specificity. In molecular and immunofluorescence studies, a significant increase occurred in δ-subunit, but not α4- and γ2-subunits, in the dentate gyrus during diestrus. However, δ-subunit upregulation was not evident in the CA1 region. The δ-subunit expression was undiminished by age and ovariectomy and in mice lacking progesterone receptors, but it was significantly reduced by finasteride, a neurosteroid synthesis inhibitor. Electrophysiologic studies confirmed greater potentiation of GABA currents by progesterone-derived neurosteroid allopregnanolone in dissociated dentate gyrus granule cells in diestrus than in CA1 pyramidal cells. The baseline conductance and allopregnanolone potentiation of tonic currents in dentate granule cells from hippocampal slices were higher than in CA1 pyramidal cells. In behavioral studies, susceptibility to hippocampus kindling epileptogenesis was lower in mice during diestrus. These results demonstrate the estrous cycle-related plasticity of neurosteroid-sensitive, δ-containing GABA(A) receptors that mediate tonic inhibition and seizure susceptibility. These findings may provide novel insight on molecular cascades of menstrual disorders like catamenial epilepsy, premenstrual syndrome, and migraine.
Collapse
MESH Headings
- 5-alpha Reductase Inhibitors/pharmacology
- Animals
- Behavior, Animal
- CA1 Region, Hippocampal/cytology
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/metabolism
- CA1 Region, Hippocampal/pathology
- Dentate Gyrus/cytology
- Dentate Gyrus/drug effects
- Dentate Gyrus/metabolism
- Dentate Gyrus/pathology
- Disease Susceptibility
- Epilepsy/blood
- Epilepsy/etiology
- Epilepsy/metabolism
- Epilepsy/pathology
- Estrous Cycle
- Female
- GABAergic Neurons/cytology
- GABAergic Neurons/drug effects
- GABAergic Neurons/metabolism
- GABAergic Neurons/pathology
- Gene Expression Regulation
- In Vitro Techniques
- Kindling, Neurologic
- Mice
- Mice, Knockout
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neural Inhibition/drug effects
- Neuronal Plasticity
- Pregnanolone/metabolism
- Progesterone/blood
- Protein Subunits/metabolism
- Receptors, GABA-A/biosynthesis
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
Collapse
Affiliation(s)
- Xin Wu
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas 77807-3260, USA
| | | | | | | |
Collapse
|
50
|
Bäckström T, Bixo M, Nyberg S, Savic I. Increased neurosteroid sensitivity--an explanation to symptoms associated with chronic work related stress in women? Psychoneuroendocrinology 2013; 38:1078-1089. [PMID: 23177572 DOI: 10.1016/j.psyneuen.2012.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 10/18/2012] [Accepted: 10/18/2012] [Indexed: 11/21/2022]
Abstract
Work related psychosocial stress can be accompanied by so called burnout syndrome with symptoms of mental exhaustion, physical fatigue, and cognitive dysfunction. Underlying mechanisms for acquiring burnout syndrome are not clear. Animal studies show that chronic stress is associated with altered release of GABA-A receptor modulating steroids (GAMS), altered composition of the GABA-A receptor and altered sensitivity to GAMS. In the present study we investigated if such changes occur in women with burnout syndrome. We further asked whether flumazenil (a benzodiazepine antagonist, but with positive modulating effects on GABA-A receptors with altered subunit composition) can block the effect of the GAMS allopregnanolone. Ten women with occupational psychosocial stress and burnout syndrome were compared with twelve healthy controls in an experimental setting. Saccadic eye velocity (SEV) was measured after an injection of allopregnanolone, followed by an injection of flumazenil and a second injection of allopregnanolone. The sensitivity to allopregnanolone was significantly higher in the patients compared to controls after the first injection (p=0.04) and the difference increased when the response per allopregnanolone concentration unit was compared (p=0.006). Following the flumazenil injection the burnout patients (p=0.016), but not controls, showed a decrease in SEV and flumazenil acted like a positive modulator that is agonistic. There was no significant difference between the groups after second allopregnanolone injection. In conclusion, patients with work related psychosocial stress and burnout syndrome show a different response to GABA-A receptor modulators than controls suggesting a changed GABA-A receptor function in these patients. More precisely we hypothesize that the α4 and delta subunits are up-regulated elevating the responsiveness to allopregnanolone and change the effect of flumazenil, which provides a potential explanation to the burnout syndrome. Flumazenil does not block the effect of allopregnanolone.
Collapse
Affiliation(s)
- Torbjörn Bäckström
- Umeå Neurosteroid Research Centre, Department of Clinical Science, Umeå University, Umeå, Sweden.
| | | | | | | |
Collapse
|