1
|
Sinha A, Nickerson G, Bouyain S, Matthews RT. Contactin-1 is a critical neuronal cell surface receptor for perineuronal net structure. J Biol Chem 2025; 301:108504. [PMID: 40220999 DOI: 10.1016/j.jbc.2025.108504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/19/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
Perineuronal nets (PNNs) are neuron-specific, mesh-like, substructures within the central nervous system extracellular matrix. They form on specific subsets of neurons and are well-established as key regulators of plasticity. The appearance of PNNs coincides with the developmental transition of the brain from a more to less plastic state with numerous studies implicating PNNs in regulating this transition. Additionally, recent work has also linked PNNs to several neuropsychiatric and neurodevelopmental disorders. However, despite this growing interest in PNNs, the mechanisms by which they modulate neural functions are poorly understood. This limited mechanistic understanding of PNNs is derived from the fact that there are limited models, tools, or techniques that specifically target PNNs without disrupting the surrounding neural extracellular matrix. Our work, therefore, focuses on understanding how PNNs form on the surface of cells with the ultimate goal of developing models and tools to manipulate and disrupt PNNs specifically. Here, using a phosphatidylinositol specific phospholipase-C, we first demonstrate that PNN components are bound to the cell surface by a glycosylphosphatidylinositol-linked receptor protein. Furthermore, we demonstrate, through the exogenous addition of WT and a mutant variant of phoshpacan to primary cortical neurons, that contactin-1 is the glycosylphosphatidylinositol-linked protein critical for retaining nets to the cell surface. We believe the identification of contactin-1 as a key cell-surface protein for PNN structure is a very significant step forward in our understanding of the formation and structure of nets. It will offer new strategies to dissect the assembly of this specialized neural matrix.
Collapse
Affiliation(s)
- Ashis Sinha
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Gabrielle Nickerson
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Samuel Bouyain
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA.
| | - Russell T Matthews
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
2
|
Sinha A, Nickerson G, Bouyain S, Matthews RT. Contactin-1 is a critical neuronal cell surface receptor for perineuronal net structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622114. [PMID: 39605332 PMCID: PMC11601535 DOI: 10.1101/2024.11.05.622114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Perineuronal nets (PNNs), are neuron-specific substructures within the neural extracellular matrix (ECM). These reticular structures form on a very small subset of neurons in the central nervous system (CNS) and yet have a profound impact in regulating neuronal development and physiology. PNNs are well-established as key regulators of plasticity in the CNS. Their appearance coincides with the developmental transition of the brain more to less plastic state. And, importantly, numerous studies have demonstrated that indeed PNNs play a primary role in regulating this transition. There is, however, a growing literature implicating PNNs in numerous roles in neural physiology beyond their role in regulating developmental plasticity. Accordingly, numerous studies have shown PNNs are altered in a variety of neurological and neuropsychiatric diseases, linking them to these conditions. Despite the growing interest in PNNs, the mechanisms by which they modulate neural functions are poorly understood. We believe the limited mechanistic understanding of PNNs is derived from the fact that there are limited models, tools or techniques that specifically target PNNs in a cell-autonomous manner and without also disrupting the surrounding neural ECM. These limitations are primarily due to our incomplete understanding of PNN composition and structure. In particular, there is little understanding of the neuronal cell surface receptors that nucleate these structures on subset of neurons on which they form in the CNS. Therefore, the main focus our work is to identify the neuronal cell surface proteins critical for PNN formation and structure. In our previous studies we demonstrated PNN components are immobilized on the neuronal surface by two distinct mechanisms, one dependent on the hyaluronan backbone of PNNs and the other mediated by a complex formed by receptor protein tyrosine phosphatase zeta (RPTPζ) and tenascin-R (Tnr). Here we first demonstrate that the Tnr-RPTPζ complex in PNNs is bound to the cell surface by a glycosylphosphatidylinositol (GPI)-linked receptor protein. Using a biochemical and structural approach we demonstrate the GPI-linked protein critical for binding the Tnr-RPTPζ complex in PNNs is contactin-1 (Cntn1). We further show the binding of this complex in PNNs by Cntn1 is critical for PNN structure. We believe identification of CNTN1 as a key cell-surface protein for PNN structure is a very significant step forward in our understanding of PNN formation and structure and will offer new strategies and targets to manipulate PNNs and better understand their function.
Collapse
Affiliation(s)
- Ashis Sinha
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Gabrielle Nickerson
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Samuel Bouyain
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri 64110
| | - Russell T. Matthews
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
3
|
Koff M, Monagas-Valentin P, Novikov B, Chandel I, Panin V. Protein O-mannosylation: one sugar, several pathways, many functions. Glycobiology 2023; 33:911-926. [PMID: 37565810 PMCID: PMC10859634 DOI: 10.1093/glycob/cwad067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Recent research has unveiled numerous important functions of protein glycosylation in development, homeostasis, and diseases. A type of glycosylation taking the center stage is protein O-mannosylation, a posttranslational modification conserved in a wide range of organisms, from yeast to humans. In animals, protein O-mannosylation plays a crucial role in the nervous system, whereas protein O-mannosylation defects cause severe neurological abnormalities and congenital muscular dystrophies. However, the molecular and cellular mechanisms underlying protein O-mannosylation functions and biosynthesis remain not well understood. This review outlines recent studies on protein O-mannosylation while focusing on the functions in the nervous system, summarizes the current knowledge about protein O-mannosylation biosynthesis, and discusses the pathologies associated with protein O-mannosylation defects. The evolutionary perspective revealed by studies in the Drosophila model system are also highlighted. Finally, the review touches upon important knowledge gaps in the field and discusses critical questions for future research on the molecular and cellular mechanisms associated with protein O-mannosylation functions.
Collapse
Affiliation(s)
- Melissa Koff
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Pedro Monagas-Valentin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Boris Novikov
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Ishita Chandel
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Vladislav Panin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| |
Collapse
|
4
|
Quereda C, Pastor À, Martín-Nieto J. Involvement of abnormal dystroglycan expression and matriglycan levels in cancer pathogenesis. Cancer Cell Int 2022; 22:395. [PMID: 36494657 PMCID: PMC9733019 DOI: 10.1186/s12935-022-02812-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Dystroglycan (DG) is a glycoprotein composed of two subunits that remain non-covalently bound at the plasma membrane: α-DG, which is extracellular and heavily O-mannosyl glycosylated, and β-DG, an integral transmembrane polypeptide. α-DG is involved in the maintenance of tissue integrity and function in the adult, providing an O-glycosylation-dependent link for cells to their extracellular matrix. β-DG in turn contacts the cytoskeleton via dystrophin and participates in a variety of pathways transmitting extracellular signals to the nucleus. Increasing evidence exists of a pivotal role of DG in the modulation of normal cellular proliferation. In this context, deficiencies in DG glycosylation levels, in particular those affecting the so-called matriglycan structure, have been found in an ample variety of human tumors and cancer-derived cell lines. This occurs together with an underexpression of the DAG1 mRNA and/or its α-DG (core) polypeptide product or, more frequently, with a downregulation of β-DG protein levels. These changes are in general accompanied in tumor cells by a low expression of genes involved in the last steps of the α-DG O-mannosyl glycosylation pathway, namely POMT1/2, POMGNT2, CRPPA, B4GAT1 and LARGE1/2. On the other hand, a series of other genes acting earlier in this pathway are overexpressed in tumor cells, namely DOLK, DPM1/2/3, POMGNT1, B3GALNT2, POMK and FKTN, hence exerting instead a pro-oncogenic role. Finally, downregulation of β-DG, altered β-DG processing and/or impaired β-DG nuclear levels are increasingly found in human tumors and cell lines. It follows that DG itself, particular genes/proteins involved in its glycosylation and/or their interactors in the cell could be useful as biomarkers of certain types of human cancer, and/or as molecular targets of new therapies addressing these neoplasms.
Collapse
Affiliation(s)
- Cristina Quereda
- grid.5268.90000 0001 2168 1800Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Campus Universitario San Vicente, P.O. Box 99, 03080 Alicante, Spain
| | - Àngels Pastor
- grid.5268.90000 0001 2168 1800Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Campus Universitario San Vicente, P.O. Box 99, 03080 Alicante, Spain
| | - José Martín-Nieto
- grid.5268.90000 0001 2168 1800Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Campus Universitario San Vicente, P.O. Box 99, 03080 Alicante, Spain ,grid.5268.90000 0001 2168 1800Instituto Multidisciplinar para el Estudio del Medio ‘Ramón Margalef’, Universidad de Alicante, 03080 Alicante, Spain
| |
Collapse
|
5
|
Malaker SA, Quanico J, Raffo-Romero A, Kobeissy F, Aboulouard S, Tierny D, Bertozzi CR, Fournier I, Salzet M. On-tissue spatially resolved glycoproteomics guided by N-glycan imaging reveal global dysregulation of canine glioma glycoproteomic landscape. Cell Chem Biol 2022; 29:30-42.e4. [PMID: 34102146 PMCID: PMC8617081 DOI: 10.1016/j.chembiol.2021.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/06/2021] [Accepted: 05/10/2021] [Indexed: 01/22/2023]
Abstract
Here, we present an approach to identify N-linked glycoproteins and deduce their spatial localization using a combination of matrix-assisted laser desorption ionization (MALDI) N-glycan mass spectrometry imaging (MSI) and spatially resolved glycoproteomics. We subjected glioma biopsies to on-tissue PNGaseF digestion and MALDI-MSI and found that the glycan HexNAc4-Hex5-NeuAc2 was predominantly expressed in necrotic regions of high-grade canine gliomas. To determine the underlying sialo-glycoprotein, various regions in adjacent tissue sections were subjected to microdigestion and manual glycoproteomic analysis. Results identified haptoglobin as the protein associated with HexNAc4-Hex5-NeuAc2, thus directly linking glycan imaging with intact glycopeptide identification. In total, our spatially resolved glycoproteomics technique identified over 400 N-, O-, and S- glycopeptides from over 30 proteins, demonstrating the diverse array of glycosylation present on the tissue slices and the sensitivity of our technique. Ultimately, this proof-of-principle work demonstrates that spatially resolved glycoproteomics greatly complement MALDI-MSI in understanding dysregulated glycosylation.
Collapse
Affiliation(s)
- Stacy Alyse Malaker
- Université de Lille 1, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000 Lille, France,Department of Chemistry and ChEM-H, Stanford University, Stanford, CA 94035, USA,Present address: Department of Chemistry, Yale University, New Haven, CT 06511, USA,These authors contributed equally
| | - Jusal Quanico
- Université de Lille 1, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000 Lille, France,Present address: Center for Proteomics, Antwerp University,Campus Groenenborger, Groenenborgerlaan 171, 2020 Antwerp, Belgium,These authors contributed equally
| | - Antonella Raffo-Romero
- Université de Lille 1, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000 Lille, France
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Soulaimane Aboulouard
- Université de Lille 1, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000 Lille, France
| | - Dominique Tierny
- OCR (Oncovet Clinical Research), Parc Eurasanté Lille Métropole, 80 rue du Dr Yersin, 59120 Loos, France
| | - Carolyn Ruth Bertozzi
- Department of Chemistry and ChEM-H, Stanford University, Stanford, CA 94035, USA,Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Isabelle Fournier
- Université de Lille 1, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000 Lille, France,Correspondence: (I.F.), (M.S.)
| | - Michel Salzet
- Université de Lille 1, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000 Lille, France,Lead contact,Correspondence: (I.F.), (M.S.)
| |
Collapse
|
6
|
Uribe ML, Martín-Nieto J, Quereda C, Rubio-Fernández M, Cruces J, Janssen GMC, de Ru AH, van Veelen PA, Hensbergen PJ. Retinal Proteomics of a Mouse Model of Dystroglycanopathies Reveals Molecular Alterations in Photoreceptors. J Proteome Res 2021; 20:3268-3277. [PMID: 34027671 PMCID: PMC8280732 DOI: 10.1021/acs.jproteome.1c00126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Mutations in the POMT1 gene, encoding a protein O-mannosyltransferase
essential for α-dystroglycan
(α-DG) glycosylation, are frequently observed in a group of
rare congenital muscular dystrophies, collectively known as dystroglycanopathies.
However, it is hitherto unclear whether the effects seen in affected
patients can be fully ascribed to α-DG hypoglycosylation. To
study this, here we used comparative mass spectrometry-based proteomics
and immunofluorescence microscopy and investigated the changes in
the retina of mice in which Pomt1 is specifically
knocked out in photoreceptor cells. Our results demonstrate significant
proteomic changes and associated structural alteration in photoreceptor
cells of Pomt1 cKO mice. In addition to the effects
related to impaired α-DG O-mannosylation, we
observed morphological alterations in the outer segment that are associated
with dysregulation of a relatively understudied POMT1 substrate (KIAA1549),
BBSome proteins, and retinal stress markers. In conclusion, our study
provides new hypotheses to explain the phenotypic changes that are
observed in the retina of patients with dystroglycanopathies.
Collapse
Affiliation(s)
- Mary Luz Uribe
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.,Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03080 Alicante, Spain
| | - José Martín-Nieto
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03080 Alicante, Spain.,Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Universidad de Alicante, 03080 Alicante, Spain
| | - Cristina Quereda
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03080 Alicante, Spain
| | - Marcos Rubio-Fernández
- Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Universidad de Alicante, 03080 Alicante, Spain
| | - Jesús Cruces
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - George M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Arnoud H de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Paul J Hensbergen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
7
|
Sytnyk V, Leshchyns'ka I, Schachner M. Neural glycomics: the sweet side of nervous system functions. Cell Mol Life Sci 2021; 78:93-116. [PMID: 32613283 PMCID: PMC11071817 DOI: 10.1007/s00018-020-03578-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/06/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
The success of investigations on the structure and function of the genome (genomics) has been paralleled by an equally awesome progress in the analysis of protein structure and function (proteomics). We propose that the investigation of carbohydrate structures that go beyond a cell's metabolism is a rapidly developing frontier in our expanding knowledge on the structure and function of carbohydrates (glycomics). No other functional system appears to be suited as well as the nervous system to study the functions of glycans, which had been originally characterized outside the nervous system. In this review, we describe the multiple studies on the functions of LewisX, the human natural killer cell antigen-1 (HNK-1), as well as oligomannosidic and sialic (neuraminic) acids. We attempt to show the sophistication of these structures in ontogenetic development, synaptic function and plasticity, and recovery from trauma, with a view on neurodegeneration and possibilities to ameliorate deterioration. In view of clinical applications, we emphasize the need for glycomimetic small organic compounds which surpass the usefulness of natural glycans in that they are metabolically more stable, more parsimonious to synthesize or isolate, and more advantageous for therapy, since many of them pass the blood brain barrier and are drug-approved for treatments other than those in the nervous system, thus allowing a more ready access for application in neurological diseases. We describe the isolation of such mimetic compounds using not only Western NIH, but also traditional Chinese medical libraries. With this review, we hope to deepen the interests in this exciting field.
Collapse
Affiliation(s)
- Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041, Guangdong, China
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
8
|
Reelin Counteracts Chondroitin Sulfate Proteoglycan-Mediated Cortical Dendrite Growth Inhibition. eNeuro 2020; 7:ENEURO.0168-20.2020. [PMID: 32641498 PMCID: PMC7393641 DOI: 10.1523/eneuro.0168-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/28/2022] Open
Abstract
Disruptions in neuronal dendrite development alter brain circuitry and are associated with debilitating neurological disorders. Nascent apical dendrites of cortical excitatory neurons project into the marginal zone (MZ), a cell-sparse layer characterized by intense chondroitin sulfate proteoglycan (CSPG) expression. Paradoxically, CSPGs are known to broadly inhibit neurite growth and regeneration. This raises the possibility that the growing apical dendrite is somehow insensitive to CSPG-mediated neurite growth inhibition. To test this, developing cortical neurons were challenged with both soluble CSPGs and CSPG-positive stripe substrates in vitro. Soluble CSPGs inhibited dendritic growth and cortical dendrites respected CSPG stripe boundaries, effects that could be counteracted by prior CSPG inactivation by chondroitinase. Importantly, addition of Reelin, an extracellular signaling protein highly expressed in the MZ, partially rescued dendritic growth in the presence of CSPGs. High-resolution confocal imaging revealed that the CSPG-enriched areas of the MZ spatially correspond with the areas of reduced dendritic density in the Reelin null (reeler) cortex compared with controls. Chondroitinase injections into reeler explants resulted in increased dendritic growth into the MZ, recovering to near wild-type levels. Activation of the serine threonine kinase Akt is required for Reelin-dependent dendritic growth and we find that CSPGs induce Akt dephosphorylation, an effect that can be counteracted by Reelin addition. In contrast, CSPG application had no effect on the cytoplasmic adaptor Dab1, which is rapidly phosphorylated in response to Reelin and is upstream of Akt. These findings suggest CSPGs do inhibit cortical dendritic growth, but this effect can be counteracted by Reelin signaling.
Collapse
|
9
|
CRISPR/Cas9-mediated mutation of asparagine-linked glycosylation 13 transcript variant 1 causes epilepsy in mice. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
10
|
Larsen ISB, Narimatsu Y, Clausen H, Joshi HJ, Halim A. Multiple distinct O-Mannosylation pathways in eukaryotes. Curr Opin Struct Biol 2019; 56:171-178. [PMID: 30999272 DOI: 10.1016/j.sbi.2019.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/29/2022]
Abstract
Protein O-mannosylation (O-Man), originally discovered in yeast five decades ago, is an important post-translational modification (PTM) conserved from bacteria to humans, but not found in plants or nematodes. Until recently, the homologous family of ER-located protein O-mannosyl transferases (PMT1-7 in yeast; POMT1/POMT2 in humans), were the only known enzymes involved in directing O-Man biosynthesis in eukaryotes. However, recent studies demonstrate the existence of multiple distinct O-Man glycosylation pathways indicating that the genetic and biosynthetic regulation of O-Man in eukaryotes is more complex than previously envisioned. Introduction of sensitive glycoproteomics strategies provided an expansion of O-Man glycoproteomes in eukaryotes (yeast and mammalian cell lines) leading to the discovery of O-Man glycosylation on important mammalian cell adhesion (cadherin superfamily) and signaling (plexin family) macromolecules, and to the discovery of unique nucleocytoplasmic O-Man glycosylation in yeast. It is now evident that eukaryotes have multiple distinct O-Man glycosylation pathways including: i) the classical PMT1-7 and POMT1/POMT2 pathway conserved in all eukaryotes apart from plants; ii) a yet uncharacterized nucleocytoplasmic pathway only found in yeast; iii) an ER-located pathway directed by the TMTC1-4 genes found in metazoans and protists and primarily dedicated to the cadherin superfamily; and iv) a yet uncharacterized pathway found in metazoans primarily dedicated to plexins. O-Man glycosylation is thus emerging as a much more widespread and evolutionary diverse PTM with complex genetic and biosynthetic regulation. While deficiencies in the POMT1/POMT2 O-Man pathway underlie muscular dystrophies, the TMTC1-4 pathway appear to be involved in distinct congenital disorders with neurodevelopmental phenotypes. Here, we review and discuss the recent discoveries of the new non-classical O-Man glycosylation pathways, their substrates, functions and roles in disease.
Collapse
Affiliation(s)
- Ida Signe Bohse Larsen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | - Adnan Halim
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
11
|
Xia Z, Ouyang D, Li Q, Li M, Zou Q, Li L, Yi W, Zhou E. The Expression, Functions, Interactions and Prognostic Values of PTPRZ1: A Review and Bioinformatic Analysis. J Cancer 2019; 10:1663-1674. [PMID: 31205522 PMCID: PMC6548002 DOI: 10.7150/jca.28231] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023] Open
Abstract
Available studies demonstrate that receptor-type tyrosine-protein phosphatase zeta (PTPRZ1) is expressed in different tumor tissues, and functions in cell proliferation, cell adhesion and migration, epithelial-to-mesenchymal transition, cancer stem cells and treatment resistance by interacting with or binding to several molecules. These included pleiotrophin (PTN), midkine, interleukin-34, β-catenin, VEGF, NF-κB, HIF-2, PSD-95, MAGI-3, contactin and ErbB4. PTPRZ1 was involved in survival signaling and could predict the prognosis of several tumors. This review discusses: the current knowledge about PTPRZ1, its expression, co-receptors, ligands, functions, signaling pathway, prognostic values and therapeutic agents that target PTPRZ1.
Collapse
Affiliation(s)
- Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dengjie Ouyang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qianying Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Moyun Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiongyan Zou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lun Li
- Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Enxiang Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Bilotta A, Dattilo V, D'Agostino S, Belviso S, Scalise S, Bilotta M, Gaudio E, Paduano F, Perrotti N, Florio T, Fusco A, Iuliano R, Trapasso F. A novel splice variant of the protein tyrosine phosphatase PTPRJ that encodes for a soluble protein involved in angiogenesis. Oncotarget 2018; 8:10091-10102. [PMID: 28052032 PMCID: PMC5354644 DOI: 10.18632/oncotarget.14350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/13/2016] [Indexed: 02/01/2023] Open
Abstract
PTPRJ is a receptor protein tyrosine phosphatase with tumor suppressor activity. Very little is known about the role of PTPRJ ectodomain, although recently both physiological and synthetic PTPRJ ligands have been identified. A putative shorter spliced variant, coding for a 539 aa protein corresponding to the extracellular N-terminus of PTPRJ, is reported in several databases but, currently, no further information is available. Here, we confirmed that the PTPRJ short isoform (named sPTPRJ) is a soluble protein secreted into the supernatant of both endothelial and tumor cells. Like PTPRJ, also sPTPRJ undergoes post-translational modifications such as glycosylation, as assessed by sPTPRJ immunoprecipitation. To characterize its functional activity, we performed an endothelial cell tube formation assay and a wound healing assay on HUVEC cells overexpressing sPTPRJ and we found that sPTPRJ has a proangiogenic activity. We also showed that sPTPRJ expression down-regulates endothelial adhesion molecules, that is a hallmark of proangiogenic activity. Moreover, sPTPRJ mRNA levels in human high-grade glioma, one of the most angiogenic tumors, are higher in tumor samples compared to controls. Further studies will be helpful not only to clarify the way sPTPRJ works but also to supply clues to circumvent its activity in cancer therapy.
Collapse
Affiliation(s)
- Anna Bilotta
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Vincenzo Dattilo
- Department of Scienze della Salute, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Sabrina D'Agostino
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Stefania Belviso
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Stefania Scalise
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Mariaconcetta Bilotta
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Eugenio Gaudio
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Lymphoma and Genomics Research Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Francesco Paduano
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Tecnologica Research Institute, Biomedical Section, Crotone, Italy
| | - Nicola Perrotti
- Department of Scienze della Salute, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Tullio Florio
- Laboratory of Pharmacology, Dept. of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia e Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University Federico II of Napoli, Napoli, Italy
| | - Rodolfo Iuliano
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Francesco Trapasso
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
13
|
Sheikh MO, Halmo SM, Wells L. Recent advancements in understanding mammalian O-mannosylation. Glycobiology 2017; 27:806-819. [PMID: 28810660 PMCID: PMC6082599 DOI: 10.1093/glycob/cwx062] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/25/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023] Open
Abstract
The post-translational glycosylation of select proteins by O-linked mannose (O-mannose or O-man) is a conserved modification from yeast to humans and has been shown to be necessary for proper development and growth. The most well studied O-mannosylated mammalian protein is α-dystroglycan (α-DG). Hypoglycosylation of α-DG results in varying severities of congenital muscular dystrophies, cancer progression and metastasis, and inhibited entry and infection of certain arenaviruses. Defects in the gene products responsible for post-translational modification of α-DG, primarily glycosyltransferases, are the basis for these diseases. The multitude of clinical phenotypes resulting from defective O-mannosylation highlights the biomedical significance of this unique modification. Elucidation of the various O-mannose biosynthetic pathways is imperative to understanding a broad range of human diseases and for the development of novel therapeutics. In this review, we will focus on recent discoveries delineating the various enzymes, structures and functions associated with O-mannose-initiated glycoproteins. Additionally, we discuss current gaps in our knowledge of mammalian O-mannosylation, discuss the evolution of this pathway, and illustrate the utility and limitations of model systems to study functions of O-mannosylation.
Collapse
Affiliation(s)
- M Osman Sheikh
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Stephanie M Halmo
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
14
|
Manya H, Endo T. Glycosylation with ribitol-phosphate in mammals: New insights into the O-mannosyl glycan. Biochim Biophys Acta Gen Subj 2017; 1861:2462-2472. [PMID: 28711406 DOI: 10.1016/j.bbagen.2017.06.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND O-mannosyl glycans have been found in a limited number of glycoproteins of the brain, nerves, and skeletal muscles, particularly in α-dystroglycan (α-DG). Defects in O-mannosyl glycan on α-DG are the primary cause of a group of congenital muscular dystrophies, which are collectively termed α-dystroglycanopathy. Recent studies have revealed various O-mannosyl glycan structures, which can be classified as core M1, core M2, and core M3 glycans. Although many dystroglycanopathy genes are involved in core M3 processing, the structure and biosynthesis of core M3 glycan remains only partially understood. SCOPE OF REVIEW This review presents recent findings about the structure, biosynthesis, and pathology of O-mannosyl glycans. MAJOR CONCLUSIONS Recent studies have revealed that the entire structure of core M3 glycan, including ribitol-5-phosphate, is a novel structure in mammals; its unique biosynthetic pathway has been elucidated by the identification of new causative genes for α-dystroglycanopathies and their functions. GENERAL SIGNIFICANCE O-mannosyl glycan has a novel, unique structure that is important for the maintenance of brain and muscle functions. These findings have opened up a new field in glycoscience. These studies will further contribute to the understanding of the pathomechanism of α-dystroglycanopathy and the development of glycotherapeutics. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.
Collapse
Affiliation(s)
- Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan.
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan.
| |
Collapse
|
15
|
Morise J, Takematsu H, Oka S. The role of human natural killer-1 (HNK-1) carbohydrate in neuronal plasticity and disease. Biochim Biophys Acta Gen Subj 2017; 1861:2455-2461. [PMID: 28709864 DOI: 10.1016/j.bbagen.2017.06.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/01/2017] [Accepted: 06/17/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND The human natural killer-1 (HNK-1) carbohydrate, a unique trisaccharide possessing sulfated glucuronic acid in a non-reducing terminus (HSO3-3GlcAß1-3Galß1-4GlcNAc-), is highly expressed in the nervous system and its spatiotemporal expression is strictly regulated. Mice deficient in the gene encoding a key enzyme, GlcAT-P, of the HNK-1 biosynthetic pathway exhibit almost complete disappearance of the HNK-1 epitope in the brain, significant reduction of long-term potentiation, and aberration of spatial learning and memory formation. In addition to its physiological roles in higher brain function, the HNK-1 carbohydrate has attracted considerable attention as an autoantigen associated with peripheral demyelinative neuropathy, which relates to IgM paraproteinemia, because of high immunogenicity. It has been suggested, however, that serum autoantibodies in IgM anti-myelin-associated glycoprotein (MAG) antibody-associated neuropathy patients show heterogeneous reactivity to the HNK-1 epitope. SCOPE OF REVIEW We have found that structurally distinct HNK-1 epitopes are expressed in specific proteins in the nervous system. Here, we overview the current knowledge of the involvement of these HNK-1 epitopes in the regulation of neural plasticity and discuss the impact of different HNK-1 antigens of anti-MAG neuropathy patients. MAJOR CONCLUSIONS We identified the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor subunit GluA2 and aggrecan as HNK-1 carrier proteins. The HNK-1 epitope on GluA2 and aggrecan regulates neural plasticity in different ways. Furthermore, we found the clinical relationship between reactivity of autoantibodies to the different HNK-1 epitopes and progression of anti-MAG neuropathy. GENERAL SIGNIFICANCE The HNK-1 epitope is indispensable for the acquisition of normal neuronal function and can be a good target for the establishment of diagnostic criteria for anti-MAG neuropathy.
Collapse
Affiliation(s)
- Jyoji Morise
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiromu Takematsu
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Shogo Oka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
16
|
Larsen ISB, Narimatsu Y, Joshi HJ, Yang Z, Harrison OJ, Brasch J, Shapiro L, Honig B, Vakhrushev SY, Clausen H, Halim A. Mammalian O-mannosylation of cadherins and plexins is independent of protein O-mannosyltransferases 1 and 2. J Biol Chem 2017; 292:11586-11598. [PMID: 28512129 DOI: 10.1074/jbc.m117.794487] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Indexed: 11/06/2022] Open
Abstract
Protein O-mannosylation is found in yeast and metazoans, and a family of conserved orthologous protein O-mannosyltransferases is believed to initiate this important post-translational modification. We recently discovered that the cadherin superfamily carries O-linked mannose (O-Man) glycans at highly conserved residues in specific extracellular cadherin domains, and it was suggested that the function of E-cadherin was dependent on the O-Man glycans. Deficiencies in enzymes catalyzing O-Man biosynthesis, including the two human protein O-mannosyltransferases, POMT1 and POMT2, underlie a subgroup of congenital muscular dystrophies designated α-dystroglycanopathies, because deficient O-Man glycosylation of α-dystroglycan disrupts laminin interaction with α-dystroglycan and the extracellular matrix. To explore the functions of O-Man glycans on cadherins and protocadherins, we used a combinatorial gene-editing strategy in multiple cell lines to evaluate the role of the two POMTs initiating O-Man glycosylation and the major enzyme elongating O-Man glycans, the protein O-mannose β-1,2-N-acetylglucosaminyltransferase, POMGnT1. Surprisingly, O-mannosylation of cadherins and protocadherins does not require POMT1 and/or POMT2 in contrast to α-dystroglycan, and moreover, the O-Man glycans on cadherins are not elongated. Thus, the classical and evolutionarily conserved POMT O-mannosylation pathway is essentially dedicated to α-dystroglycan and a few other proteins, whereas a novel O-mannosylation process in mammalian cells is predicted to serve the large cadherin superfamily and other proteins.
Collapse
Affiliation(s)
- Ida Signe Bohse Larsen
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| | - Yoshiki Narimatsu
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| | - Hiren Jitendra Joshi
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| | - Zhang Yang
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| | | | - Julia Brasch
- the Department of Biochemistry and Molecular Biophysics
| | - Lawrence Shapiro
- the Department of Biochemistry and Molecular Biophysics.,Zuckerman Mind Brain Behavior Institute, Department of Systems Biology, and
| | - Barry Honig
- the Department of Biochemistry and Molecular Biophysics.,Zuckerman Mind Brain Behavior Institute, Department of Systems Biology, and.,Howard Hughes Medical Institute Columbia University, New York, New York 10032
| | - Sergey Y Vakhrushev
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| | - Henrik Clausen
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| | - Adnan Halim
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| |
Collapse
|
17
|
Neurodevelopmental Changes in Excitatory Synaptic Structure and Function in the Cerebral Cortex of Sanfilippo Syndrome IIIA Mice. Sci Rep 2017; 7:46576. [PMID: 28418018 PMCID: PMC5394534 DOI: 10.1038/srep46576] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/17/2017] [Indexed: 12/22/2022] Open
Abstract
Sanfilippo syndrome, MPS IIIA-D, results from deficits in lysosomal enzymes that specifically degrade heparan sulfate, a sulfated glycosaminoglycan. The accumulation of heparan sulfate results in neurological symptoms, culminating in extensive neurodegeneration and early death. To study the impact of storage in postnatal neurodevelopment, we examined murine models of MPS IIIA, which lack the enzyme sulfamidase. We show that changes occur in excitatory postsynaptic structure and function in the somatosensory cortex prior to signs of neurodegeneration. These changes coincide with accumulation of heparan sulfate with characteristic non-reducing ends, which is present at birth in the mutant mice. Accumulation of heparan sulfate was also detected in primary cultures of cortical neural cells, especially astrocytes. Accumulation of heparan sulfate in cultured astrocytes corresponded with augmented extracellular heparan sulfate and glypican 4 levels. Heparan sulfate from the cerebral cortex of MPS IIIA mice showed enhanced ability to increase glutamate AMPA receptor subunits at the cell surface of wild type neurons. These data support the idea that abnormalities in heparan sulfate content and distribution contribute to alterations in postsynaptic function. Our findings identify a disease-induced developmental phenotype that temporally overlaps with the onset of behavioral changes in a mouse model of MPS IIIA.
Collapse
|
18
|
Yu J, Grant OC, Pett C, Strahl S, Stahl S, Woods RJ, Westerlind U. Induction of Antibodies Directed Against Branched Core O-Mannosyl Glycopeptides-Selectivity Complimentary to the ConA Lectin. Chemistry 2017; 23:3466-3473. [PMID: 28079948 PMCID: PMC5548291 DOI: 10.1002/chem.201605627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Indexed: 01/31/2023]
Abstract
Mammalian protein O-mannosylation, initiated by attachment of α-mannopyranose to Ser or Thr residues, comprise a group of post-translational modifications (PTMs) involved in muscle and brain development. Recent advances in glycoproteomics methodology and the "SimpleCell" strategy have enabled rapid identification of glycoproteins and specific glycosylation sites. Despite the enormous progress made, the biological impact of the mammalian O-mannosyl glycoproteome remains largely unknown to date. Tools are still needed to investigate the structure, role, and abundance of O-mannosyl glycans. Although O-mannosyl branching has been shown to be of relevance in integrin-dependent cell migration, and also plays a role in demyelinating diseases, such as multiple sclerosis, a broader understanding of the biological roles of branched O-mannosyl glycans is lacking in part due to the paucity of detection tools. In this work, a glycopeptide vaccine construct was synthesized and used to generate antibodies against branched O-mannosyl glycans. Glycopeptide microarray screening revealed high selectivity of the induced antibodies for branched glycan core structures presented on different peptide backbones, with no cross-reactivity observed with related linear glycans. For comparison, microarray screening of the mannose-binding lectin concanavalin A (ConA), which is commonly used in glycoproteomics workflows to enrich tryptic O-mannosyl peptides, showed that the ConA lectin did not recognize branched O-mannosyl glycans. The binding preference of ConA for short linear O-mannosyl glycans was rationalized in terms of molecular structure using crystallographic data augmented by molecular modeling. The contrast between the ConA binding specificity and that of the new antibodies indicates a novel role for the antibodies in studies of protein O-mannosylation.
Collapse
Affiliation(s)
- Jin Yu
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V., ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Christian Pett
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V., ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | | | - Sabine Stahl
- Centre for Organismal Studies (COS), Cell Chemistry, Heidelberg University, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Ulrika Westerlind
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V., ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| |
Collapse
|
19
|
Chondroitin sulfates and their binding molecules in the central nervous system. Glycoconj J 2017; 34:363-376. [PMID: 28101734 PMCID: PMC5487772 DOI: 10.1007/s10719-017-9761-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/31/2016] [Accepted: 01/04/2017] [Indexed: 01/05/2023]
Abstract
Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in the central nervous system (CNS) matrix. Its sulfation and epimerization patterns give rise to different forms of CS, which enables it to interact specifically and with a significant affinity with various signalling molecules in the matrix including growth factors, receptors and guidance molecules. These interactions control numerous biological and pathological processes, during development and in adulthood. In this review, we describe the specific interactions of different families of proteins involved in various physiological and cognitive mechanisms with CSs in CNS matrix. A better understanding of these interactions could promote a development of inhibitors to treat neurodegenerative diseases.
Collapse
|
20
|
Postnatal Gene Therapy Improves Spatial Learning Despite the Presence of Neuronal Ectopia in a Model of Neuronal Migration Disorder. Genes (Basel) 2016; 7:genes7120105. [PMID: 27916859 PMCID: PMC5192481 DOI: 10.3390/genes7120105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 11/25/2022] Open
Abstract
Patients with type II lissencephaly, a neuronal migration disorder with ectopic neurons, suffer from severe mental retardation, including learning deficits. There is no effective therapy to prevent or correct the formation of neuronal ectopia, which is presumed to cause cognitive deficits. We hypothesized that learning deficits were not solely caused by neuronal ectopia and that postnatal gene therapy could improve learning without correcting the neuronal ectopia formed during fetal development. To test this hypothesis, we evaluated spatial learning of cerebral cortex-specific protein O-mannosyltransferase 2 (POMT2, an enzyme required for O-mannosyl glycosylation) knockout mice and compared to the knockout mice that were injected with an adeno-associated viral vector (AAV) encoding POMT2 into the postnatal brains with Barnes maze. The data showed that the knockout mice exhibited reduced glycosylation in the cerebral cortex, reduced dendritic spine density on CA1 neurons, and increased latency to the target hole in the Barnes maze, indicating learning deficits. Postnatal gene therapy restored functional glycosylation, rescued dendritic spine defects, and improved performance on the Barnes maze by the knockout mice even though neuronal ectopia was not corrected. These results indicate that postnatal gene therapy improves spatial learning despite the presence of neuronal ectopia.
Collapse
|
21
|
Protein O-Mannosylation in the Murine Brain: Occurrence of Mono-O-Mannosyl Glycans and Identification of New Substrates. PLoS One 2016; 11:e0166119. [PMID: 27812179 PMCID: PMC5094735 DOI: 10.1371/journal.pone.0166119] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 10/24/2016] [Indexed: 12/25/2022] Open
Abstract
Protein O-mannosylation is a post-translational modification essential for correct development of mammals. In humans, deficient O-mannosylation results in severe congenital muscular dystrophies often associated with impaired brain and eye development. Although various O-mannosylated proteins have been identified in the recent years, the distribution of O-mannosyl glycans in the mammalian brain and target proteins are still not well defined. In the present study, rabbit monoclonal antibodies directed against the O-mannosylated peptide YAT(α1-Man)AV were generated. Detailed characterization of clone RKU-1-3-5 revealed that this monoclonal antibody recognizes O-linked mannose also in different peptide and protein contexts. Using this tool, we observed that mono-O-mannosyl glycans occur ubiquitously throughout the murine brain but are especially enriched at inhibitory GABAergic neurons and at the perineural nets. Using a mass spectrometry-based approach, we further identified glycoproteins from the murine brain that bear single O-mannose residues. Among the candidates identified are members of the cadherin and plexin superfamilies and the perineural net protein neurocan. In addition, we identified neurexin 3, a cell adhesion protein involved in synaptic plasticity, and inter-alpha-trypsin inhibitor 5, a protease inhibitor important in stabilizing the extracellular matrix, as new O-mannosylated glycoproteins.
Collapse
|
22
|
Dwyer CA, Esko JD. Glycan susceptibility factors in autism spectrum disorders. Mol Aspects Med 2016; 51:104-14. [PMID: 27418189 DOI: 10.1016/j.mam.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 11/16/2022]
Abstract
Idiopathic autism spectrum disorders (ASDs) are neurodevelopmental disorders with unknown etiology. An estimated 1:68 children in the U.S. are diagnosed with ASDs, making these disorders a substantial public health issue. Recent advances in genome sequencing have identified numerous genetic variants across the ASD patient population. Many genetic variants identified occur in genes that encode glycosylated extracellular proteins (proteoglycans or glycoproteins) or enzymes involved in glycosylation (glycosyltransferases and sulfotransferases). It remains unknown whether "glycogene" variants cause changes in glycosylation and whether they contribute to the etiology and pathogenesis of ASDs. Insights into glycan susceptibility factors are provided by studies in the normal brain and congenital disorders of glycosylation, which are often accompanied by ASD-like behaviors. The purpose of this review is to present evidence that supports a contribution of extracellular glycans and glycoconjugates to the etiology and pathogenesis of idiopathic ASDs and other types of pervasive neurodevelopmental disorders.
Collapse
Affiliation(s)
- Chrissa A Dwyer
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
23
|
Yabuno K, Morise J, Kizuka Y, Hashii N, Kawasaki N, Takahashi S, Miyata S, Izumikawa T, Kitagawa H, Takematsu H, Oka S. A Sulfated Glycosaminoglycan Linkage Region is a Novel Type of Human Natural Killer-1 (HNK-1) Epitope Expressed on Aggrecan in Perineuronal Nets. PLoS One 2015; 10:e0144560. [PMID: 26659409 PMCID: PMC4686076 DOI: 10.1371/journal.pone.0144560] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/19/2015] [Indexed: 01/18/2023] Open
Abstract
Human natural killer-1 (HNK-1) carbohydrate (HSO3-3GlcAβ1-3Galβ1-4GlcNAc-R) is highly expressed in the brain and required for learning and neural plasticity. We previously demonstrated that expression of the HNK-1 epitope is mostly abolished in knockout mice for GlcAT-P (B3gat1), a major glucuronyltransferase required for HNK-1 biosynthesis, but remained in specific regions such as perineuronal nets (PNNs) in these mutant mice. Considering PNNs are mainly composed of chondroitin sulfate proteoglycans (CSPGs) and regulate neural plasticity, GlcAT-P-independent expression of HNK-1 in PNNs is suggested to play a role in neural plasticity. However, the function, structure, carrier glycoprotein and biosynthetic pathway for GlcAT-P-irrelevant HNK-1 epitope remain unclear. In this study, we identified a unique HNK-1 structure on aggrecan in PNNs. To determine the biosynthetic pathway for the novel HNK-1, we generated knockout mice for GlcAT-S (B3gat2), the other glucuronyltransferase required for HNK-1 biosynthesis. However, GlcAT-P and GlcAT-S double-knockout mice did not exhibit reduced HNK-1 expression compared with single GlcAT-P-knockout mice, indicating an unusual biosynthetic pathway for the HNK-1 epitope in PNNs. Aggrecan was purified from cultured cells in which GlcAT-P and -S are not expressed and we determined the structure of the novel HNK-1 epitope using liquid chromatography/mass spectrometry (LC/MS) as a sulfated linkage region of glycosaminoglycans (GAGs), HSO3-GlcA-Gal-Gal-Xyl-R. Taken together, we propose a hypothetical model where GlcAT-I, the sole glucuronyltransferase required for synthesis of the GAG linkage, is also responsible for biosynthesis of the novel HNK-1 on aggrecan. These results could lead to discovery of new roles of the HNK-1 epitope in neural plasticity.
Collapse
Affiliation(s)
- Keiko Yabuno
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Jyoji Morise
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yasuhiko Kizuka
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo, 158-8501, Japan
| | - Nana Kawasaki
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo, 158-8501, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology Faculty of Medicine University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Shinji Miyata
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Tomomi Izumikawa
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Hiromu Takematsu
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Shogo Oka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
24
|
Rankin-Gee EK, McRae PA, Baranov E, Rogers S, Wandrey L, Porter BE. Perineuronal net degradation in epilepsy. Epilepsia 2015; 56:1124-33. [DOI: 10.1111/epi.13026] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Elyse K. Rankin-Gee
- Department of Neurology; Stanford University School of Medicine; Palo Alto California U.S.A
| | - Paulette A. McRae
- Department of Neurology; The Children's Hospital of Philadelphia; The Perelman School of Medicine at the University of Pennsylvania; Philadelphia PA U.S.A
| | - Esther Baranov
- Department of Neurology; The Children's Hospital of Philadelphia; The Perelman School of Medicine at the University of Pennsylvania; Philadelphia PA U.S.A
| | - Stephanie Rogers
- Department of Neurology; The Children's Hospital of Philadelphia; The Perelman School of Medicine at the University of Pennsylvania; Philadelphia PA U.S.A
| | - Luke Wandrey
- Department of Neurology; The Children's Hospital of Philadelphia; The Perelman School of Medicine at the University of Pennsylvania; Philadelphia PA U.S.A
| | - Brenda E. Porter
- Department of Neurology; Stanford University School of Medicine; Palo Alto California U.S.A
- Department of Neurology; The Children's Hospital of Philadelphia; The Perelman School of Medicine at the University of Pennsylvania; Philadelphia PA U.S.A
| |
Collapse
|
25
|
Dwyer CA, Katoh T, Tiemeyer M, Matthews RT. Neurons and glia modify receptor protein-tyrosine phosphatase ζ (RPTPζ)/phosphacan with cell-specific O-mannosyl glycans in the developing brain. J Biol Chem 2015; 290:10256-73. [PMID: 25737452 DOI: 10.1074/jbc.m114.614099] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Indexed: 01/06/2023] Open
Abstract
Protein O-mannosylation is a glycan modification that is required for normal nervous system development and function. Mutations in genes involved in protein O-mannosyl glycosylation give rise to a group of neurodevelopmental disorders known as congenital muscular dystrophies (CMDs) with associated CNS abnormalities. Our previous work demonstrated that receptor protein-tyrosine phosphatase ζ (RPTPζ)/phosphacan is hypoglycosylated in a mouse model of one of these CMDs, known as muscle-eye-brain disease, a disorder that is caused by loss of an enzyme (protein O-mannose β-1,2-N-acetylglucosaminyltransferase 1) that modifies O-mannosyl glycans. In addition, monoclonal antibodies Cat-315 and 3F8 were demonstrated to detect O-mannosyl glycan modifications on RPTPζ/phosphacan. Here, we show that O-mannosyl glycan epitopes recognized by these antibodies define biochemically distinct glycoforms of RPTPζ/phosphacan and that these glycoforms differentially decorate the surface of distinct populations of neural cells. To provide a further structural basis for immunochemically based glycoform differences, we characterized the O-linked glycan heterogeneity of RPTPζ/phosphacan in the early postnatal mouse brain by multidimensional mass spectrometry. Structural characterization of the O-linked glycans released from purified RPTPζ/phosphacan demonstrated that this protein is a significant substrate for protein O-mannosylation and led to the identification of several novel O-mannose-linked glycan structures, including sulfo-N-acetyllactosamine containing modifications. Taken together, our results suggest that specific glycan modifications may tailor the function of this protein to the unique needs of specific cells. Furthermore, their absence in CMDs suggests that hypoglycosylation of RPTPζ/phosphacan may have different functional consequences in neurons and glia.
Collapse
Affiliation(s)
- Chrissa A Dwyer
- From the Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York 13210 and
| | - Toshihiko Katoh
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Michael Tiemeyer
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Russell T Matthews
- From the Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York 13210 and
| |
Collapse
|
26
|
Yaji S, Manya H, Nakagawa N, Takematsu H, Endo T, Kannagi R, Yoshihara T, Asano M, Oka S. Major glycan structure underlying expression of the Lewis X epitope in the developing brain is O-mannose-linked glycans on phosphacan/RPTPβ. Glycobiology 2014; 25:376-85. [PMID: 25361541 DOI: 10.1093/glycob/cwu118] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Glycosylation is a major protein modification. Although proteins are glycosylated/further modulated by several glycosyltransferases during trafficking from the endoplasmic reticulum to the Golgi apparatus, a certain glycan epitope has only been detected on a limited number of proteins. Of these glycan epitopes, Lewis X is highly expressed in the early stage of a developing brain and plays important roles in cell-cell interaction. The Lewis X epitope is comprised of a trisaccharide (Galβ1-4 (Fucα1-3) GlcNAc), and a key enzyme for the expression of this epitope is α1,3-fucosyltransferase 9. However, the scaffolding glycan structure responsible for the formation of the Lewis X epitope as well as its major carrier protein has not been fully characterized in the nervous system. Here we showed that the Lewis X epitope was mainly expressed on phosphacan/receptor protein tyrosine phosphatase β (RPTPβ) in the developing mouse brain. Expression of the Lewis X epitope was markedly reduced in β1,4-galactosyltransferase 2 (β4GalT2) gene-deficient mice, which indicated that β4GalT2 is a major galactosyltransferase required for the Lewis X epitope. We also showed that the Lewis X epitope almost disappeared due to the knockout of protein O-mannose β1,2-N-acetylglucosaminyltransferase 1, an N-acetylglucosaminyltransferase essential for the synthesis of O-mannosylated glycans, which indicated that the O-mannosylated glycan is responsible for presenting the Lewis X epitope. Since O-mannosylated glycans on phosphacan/RPTPβ could also present human natural killer-1, another glycan epitope specifically expressed in the nervous system, our results revealed the importance of O-mannosylated glycan chains in the presentation of functional glycan epitopes in the brain.
Collapse
Affiliation(s)
- Shohei Yaji
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Naoki Nakagawa
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromu Takematsu
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Reiji Kannagi
- Advanced Medical Research Center, Aichi Medical University, Nagakutce, Japan
| | - Toru Yoshihara
- Division of Transgenic Animal Science, Advanced Science Research Center Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Masahide Asano
- Division of Transgenic Animal Science, Advanced Science Research Center
| | - Shogo Oka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
27
|
Pantazaka E, Papadimitriou E. Chondroitin sulfate-cell membrane effectors as regulators of growth factor-mediated vascular and cancer cell migration. Biochim Biophys Acta Gen Subj 2014; 1840:2643-50. [DOI: 10.1016/j.bbagen.2014.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 01/02/2014] [Accepted: 01/03/2014] [Indexed: 12/18/2022]
|
28
|
Brevican knockdown reduces late-stage glioma tumor aggressiveness. J Neurooncol 2014; 120:63-72. [PMID: 25052349 DOI: 10.1007/s11060-014-1541-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/06/2014] [Indexed: 12/26/2022]
Abstract
Growing evidence supports the important role of the tumor microenvironment (TME) in cancer biology. A defining aspect of the glioma TME is the unique composition and structure of its extracellular matrix (ECM), which enables tumor cells to overcome the inhibitory barriers of the adult central nervous system (CNS). In this way, the TME plays a role in glioma invasion and the cellular heterogeneity that distinguishes these tumors. Brain Enriched Hyaluronan Binding (BEHAB)/brevican (B/b), is a CNS-specific ECM constituent and is upregulated in the glioma TME. Previous studies have shown B/b exerts a pro-invasive function, suggesting it may represent a target to reduce glioma pathogenesis. Herein, we also provide evidence that B/b expression is enriched in the glioma initiating cell (GIC) niche. We demonstrate that B/b plays roles in the pathological progression, aggressiveness, and lethality of tumors derived from human GICs and traditional glioma cell lines. Interestingly, we found that B/b is not required to maintain the defining phenotypic properties of GICs and thereby acts primarily in late stages of glioma progression. This study suggests that the increased expression of B/b in the TME is a valuable therapeutic target for glioma.
Collapse
|
29
|
Yu J, Westerlind U. Synthesis of a glycopeptide vaccine conjugate for induction of antibodies recognizing O-mannosyl glycopeptides. Chembiochem 2014; 15:939-45. [PMID: 24753400 DOI: 10.1002/cbic.201300537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 01/30/2014] [Indexed: 01/30/2023]
Abstract
In spite of the clear importance of protein O-mannosylation in brain glycobiology, tools are lacking for specific detection, enrichment, and identification of proteins containing these modifycations. We envisioned inducing antibodies that specifically recognize O-mannose glycans on proteins and peptides. With this in mind, we prepared a glycopeptide vaccine construct containing the N-acetyllactosamine-extended mannose motif Galβ1-4GlcNAcβ1-2ManαThr, found as a common core structure on almost all mammalian O-mannosyl glycoproteins identified. O-mannose glycosylated amino acid building blocks and the corresponding glycopeptides were prepared by chemical synthesis and then conjugated to an immune carrier protein. After administration of the synthetic vaccine into rabbits, strong immune responses were obtained. Further evaluation by ELISA neutralization experiments and glycopeptide microarrays showed that the induced antibodies were highly specific to the glycopeptide antigen.
Collapse
Affiliation(s)
- Jin Yu
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227 Dortmund (Germany)
| | | |
Collapse
|
30
|
Hoshino H, Foyez T, Ohtake-Niimi S, Takeda-Uchimura Y, Michikawa M, Kadomatsu K, Uchimura K. KSGal6ST is essential for the 6-sulfation of galactose within keratan sulfate in early postnatal brain. J Histochem Cytochem 2014; 62:145-56. [PMID: 24152993 PMCID: PMC3902094 DOI: 10.1369/0022155413511619] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/02/2013] [Indexed: 11/22/2022] Open
Abstract
Keratan sulfate (KS) comprises repeating disaccharides of galactose (Gal) and N-acetylglucosamine (GlcNAc). Residues of Gal and GlcNAc in KS are potentially modified with sulfate at their C-6 positions. The 5D4 monoclonal antibody recognizes KS structures containing Gal and GlcNAc, both 6-sulfated, and has been used most extensively to evaluate KS expression in mammalian brains. We previously showed that GlcNAc6ST1 is an enzyme responsible for the synthesis of the 5D4 epitope in developing brain and in the adult brain, where it is induced after injury. It has been unclear which sulfotransferase is responsible for Gal-6-sulfation within the 5D4 KS epitope in developing brains. We produced mice deficient in KSGal6ST, a Gal-6-sulfotransferase. Western blotting and immunoprecipitation revealed that all 5D4-immunoreactivity to proteins, including phosphacan, were abolished in KSGal6ST-deficient postnatal brains. Likewise, the 5D4 epitope, expressed primarily in the cortical marginal zone and subplate and dorsal thalamus, was eliminated in KSGal6ST-deficient mice. Disaccharide analysis showed the loss of Gal-6-sulfate in KS of the KSGal6ST-deficient brains. Transfection studies revealed that GlcNAc6ST1 and KSGal6ST cooperated in the expression of the 5D4 KS epitope in HeLa cells. These results indicate that KSGal6ST is essential for C-6 sulfation of Gal within KS in early postnatal brains.
Collapse
Affiliation(s)
- Hitomi Hoshino
- Section of Pathophysiology and Neurobiology, Research, National Center for Geriatrics and Gerontology, (HH, SO, KU), Obu, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Use of Glycan-Targeted Antibodies/Lectins to Study the Expression/Function of Glycosyltransferases in the Nervous System. ADVANCES IN NEUROBIOLOGY 2014; 9:117-27. [DOI: 10.1007/978-1-4939-1154-7_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
32
|
Morise J, Kizuka Y, Yabuno K, Tonoyama Y, Hashii N, Kawasaki N, Manya H, Miyagoe-Suzuki Y, Takeda S, Endo T, Maeda N, Takematsu H, Oka S. Structural and biochemical characterization of O-mannose-linked human natural killer-1 glycan expressed on phosphacan in developing mouse brains. Glycobiology 2013; 24:314-24. [DOI: 10.1093/glycob/cwt116] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
33
|
Live D, Wells L, Boons GJ. Dissecting the molecular basis of the role of the O-mannosylation pathway in disease: α-dystroglycan and forms of muscular dystrophy. Chembiochem 2013; 14:2392-2402. [PMID: 24318691 PMCID: PMC3938021 DOI: 10.1002/cbic.201300417] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Indexed: 11/10/2022]
Abstract
Dystroglycanopathies form a subgroup of muscular dystrophies that arise from defects in enzymes that are implicated in the recently elucidated O-mannosylation pathway, thereby resulting in underglycosylation of α-dystroglycan. The emerging identification of additional brain proteins modified by O-mannosylation provides a broader context for interpreting the range of neurological consequences associated with dystroglycanopathies. This form of glycosylation is associated with protein mucin-like domains that present numerous serine and threonine residues as possible sites for modification. Furthermore, the O-Man glycans coexist in this region with O-GalNAc glycans (conventionally associated with such protein sequences), thus resulting in a complex glycoconjugate landscape. Sorting out the relationships between the various molecular defects in glycosylation and the modes of disease presentation, as well as the regulatory interplay among the O-Man glycans and the effects on other modes of glycosylation in the same domain, is challenging. Here we provide a perspective on chemical biology approaches employing synthetic and analytical methods to address these questions.
Collapse
Affiliation(s)
- David Live
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA), Phone: (+1) 706-542-4401, Fax: (+1) 706-542-4412
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA), Phone: (+1) 706-542-4401, Fax: (+1) 706-542-4412
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA), Phone: (+1) 706-542-4401, Fax: (+1) 706-542-4412
| |
Collapse
|
34
|
Mining the O-mannose glycoproteome reveals cadherins as major O-mannosylated glycoproteins. Proc Natl Acad Sci U S A 2013; 110:21018-23. [PMID: 24101494 DOI: 10.1073/pnas.1313446110] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The metazoan O-mannose (O-Man) glycoproteome is largely unknown. It has been shown that up to 30% of brain O-glycans are of the O-Man type, but essentially only alpha-dystroglycan (α-DG) of the dystrophin-glycoprotein complex is well characterized as an O-Man glycoprotein. Defects in O-Man glycosylation underlie congenital muscular dystrophies and considerable efforts have been devoted to explore this O-glycoproteome without much success. Here, we used our SimpleCell strategy using nuclease-mediated gene editing of a human cell line (MDA-MB-231) to reduce the structural heterogeneity of O-Man glycans and to probe the O-Man glycoproteome. In this breast cancer cell line we found that O-Man glycosylation is primarily found on cadherins and plexins on β-strands in extracellular cadherin and Ig-like, plexin and transcription factor domains. The positions and evolutionary conservation of O-Man glycans in cadherins suggest that they play important functional roles for this large group of cell adhesion glycoproteins, which can now be addressed. The developed O-Man SimpleCell strategy is applicable to most types of cell lines and enables proteome-wide discovery of O-Man protein glycosylation.
Collapse
|
35
|
Pacharra S, Hanisch FG, Mühlenhoff M, Faissner A, Rauch U, Breloy I. The Lecticans of Mammalian Brain Perineural Net Are O-Mannosylated. J Proteome Res 2013; 12:1764-71. [DOI: 10.1021/pr3011028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sandra Pacharra
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Köln, Germany
| | - Franz-Georg Hanisch
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Köln, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Köln, Germany
| | | | - Andreas Faissner
- Department for Cell Morphology and Molecular
Neurobiology, Ruhr-University Bochum, Bochum,
Germany
| | - Uwe Rauch
- Department of Experimental
Medical Science, Biomedical Center B12, Lund University, Lund, Sweden
| | - Isabelle Breloy
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Köln, Germany
| |
Collapse
|
36
|
Freeze HH. Understanding human glycosylation disorders: biochemistry leads the charge. J Biol Chem 2013; 288:6936-45. [PMID: 23329837 DOI: 10.1074/jbc.r112.429274] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nearly 70 inherited human glycosylation disorders span a breathtaking clinical spectrum, impacting nearly every organ system and launching a family-driven diagnostic odyssey. Advances in genetics, especially next generation sequencing, propelled discovery of many glycosylation disorders in single and multiple pathways. Interpretation of whole exome sequencing results, insights into pathological mechanisms, and possible therapies will hinge on biochemical analysis of patient-derived materials and animal models. Biochemical diagnostic markers and readouts offer a physiological context to confirm candidate genes. Recent discoveries suggest novel perspectives for textbook biochemistry and novel research opportunities. Basic science and patients are the immediate beneficiaries of this bidirectional collaboration.
Collapse
Affiliation(s)
- Hudson H Freeze
- Genetic Disease Program, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
37
|
Dobson CM, Hempel SJ, Stalnaker SH, Stuart R, Wells L. O-Mannosylation and human disease. Cell Mol Life Sci 2012; 70:2849-57. [PMID: 23115008 DOI: 10.1007/s00018-012-1193-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/02/2012] [Accepted: 10/08/2012] [Indexed: 12/21/2022]
Abstract
Glycosylation of proteins is arguably the most prevalent co- and post-translational modification. It is responsible for increased heterogeneity and functional diversity of proteins. Here we discuss the importance of one type of glycosylation, specifically O-mannosylation and its relationship to a number of human diseases. The most widely studied O-mannose modified protein is alpha-dystroglycan (α-DG). Recent studies have focused intensely on α-DG due to the severity of diseases associated with its improper glycosylation. O-mannosylation of α-DG is involved in cancer metastasis, arenavirus entry, and multiple forms of congenital muscular dystrophy [1, 2]. In this review, we discuss the structural and functional characteristics of O-mannose-initiated glycan structures on α-DG, enzymes involved in the O-mannosylation pathway, and the diseases that are a direct result of disruptions within this pathway.
Collapse
Affiliation(s)
- Christina M Dobson
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | | | | | | | | |
Collapse
|