1
|
Lazarov NE, Atanasova DY. Neurochemical Anatomy of the Mammalian Carotid Body. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 237:63-103. [PMID: 37946078 DOI: 10.1007/978-3-031-44757-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Carotid body (CB) glomus cells in most mammals, including humans, contain a broad diversity of classical neurotransmitters, neuropeptides and gaseous signaling molecules as well as their cognate receptors. Among them, acetylcholine, adenosine triphosphate and dopamine have been proposed to be the main excitatory transmitters in the mammalian CB, although subsequently dopamine has been considered an inhibitory neuromodulator in almost all mammalian species except the rabbit. In addition, co-existence of biogenic amines and neuropeptides has been reported in the glomus cells, thus suggesting that they store and release more than one transmitter in response to natural stimuli. Furthermore, certain metabolic and transmitter-degrading enzymes are involved in the chemotransduction and chemotransmission in various mammals. However, the presence of the corresponding biosynthetic enzyme for some transmitter candidates has not been confirmed, and neuroactive substances like serotonin, gamma-aminobutyric acid and adenosine, neuropeptides including opioids, substance P and endothelin, and gaseous molecules such as nitric oxide have been shown to modulate the chemosensory process through direct actions on glomus cells and/or by producing tonic effects on CB blood vessels. It is likely that the fine balance between excitatory and inhibitory transmitters and their complex interactions might play a more important than suggested role in CB plasticity.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy and Histology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria.
| | | |
Collapse
|
2
|
Jones AA, Framnes-DeBoer SN, Shipp A, Arble DM. Caloric restriction prevents obesity- and intermittent hypoxia-induced cardiac remodeling in leptin-deficient ob/ob mice. Front Physiol 2022; 13:963762. [PMID: 36160851 PMCID: PMC9493268 DOI: 10.3389/fphys.2022.963762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Intermittent hypoxia (IH), a key characteristic of obstructive sleep apnea, is independently associated with cardiometabolic impairment. While endogenous leptin levels may provide cardioprotective effects against hypoxia, leptin resistance is common among obese individuals presenting with obstructive sleep apnea. Methods: Here, we assessed left ventricle (LV) function using M-mode echocardiography in lean wild-type, calorically-restricted ob/ob, and obese ob/ob mice before and after 6 days of IH to determine how obesity and intermittent hypoxia interact to affect cardiac function independent of leptin signaling. Results: Calorically-restricting ob/ob mice for 4 weeks prior to IH exposure prevented weight gain (−2.1 ± 1.4 g) compared to free-fed ob/ob mice (8.7 ± 1.1 g). Free-fed ob/ob mice exhibited increased LV mass (0.713 ± 0.008 g) relative to wild-type mice (0.685 ± 0.004 g) and increased posterior wall thickness (0.089 ± 0.006 cm) relative to calorically-restricted ob/ob mice (0.072 ± 0.004 cm). Following 6 days of IH, free-fed ob/ob mice exhibited increases in cardiac output (44.81 ± 2.97 pre-IH vs. 57.14 ± 3.09 ml/min post-IH), LV diameter (0.400 ± 0.007 pre-IH vs. 0.428 ± 0.009 cm post-IH) and end diastolic volume (0.160 ± 0.007 pre-IH vs. 0.195 ± 0.012 ml post-IH) that were not detected in wild-type or calorically-restricted ob/ob mice. Conclusion: Caloric restriction can prevent obesity-induced LV hypertrophy and protect against acute IH-induced cardiac remodeling independent of leptin signaling. These findings may have clinical implications for obstructive sleep apnea.
Collapse
Affiliation(s)
- Aaron A. Jones
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | | | - Arianne Shipp
- Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, United States
| | - Deanna M. Arble
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
- *Correspondence: Deanna M. Arble,
| |
Collapse
|
3
|
Ciriello J, Moreau JM, Caverson MM, Moranis R. Leptin: A Potential Link Between Obstructive Sleep Apnea and Obesity. Front Physiol 2022; 12:767318. [PMID: 35153807 PMCID: PMC8829507 DOI: 10.3389/fphys.2021.767318] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/17/2021] [Indexed: 12/02/2022] Open
Abstract
Chronic intermittent hypoxia (CIH), a pathophysiological manifestation of obstructive sleep apnea (OSA), is strongly correlated with obesity, as patients with the disease experience weight gain while exhibiting elevated plasma levels of leptin. This study was done to determine whether a relationship may exist between CIH and obesity, and body energy balance and leptin signaling during CIH. Sprague-Dawley rats were exposed to 96 days of CIH or normoxic control conditions, and were assessed for measures of body weight, food and water intake, and food conversion efficiency. At the completion of the study leptin sensitivity, locomotor activity, fat pad mass and plasma leptin levels were determined within each group. Additionally, the hypothalamic arcuate nucleus (ARC) was isolated and assessed for changes in the expression of proteins associated with leptin receptor signaling. CIH animals were found to have reduced locomotor activity and food conversion efficiency. Additionally, the CIH group had increased food and water intake over the study period and had a higher body weight compared to normoxic controls at the end of the study. Basal plasma concentrations of leptin were significantly elevated in CIH exposed animals. To test whether a resistance to leptin may have occurred in the CIH animals due to the elevated plasma levels of leptin, an acute exogenous (ip) leptin (0.04 mg/kg carrier-free recombinant rat leptin) injection was administered to the normoxic and CIH exposed animals. Leptin injections into the normoxic controls reduced their food intake, whereas CIH animals did not alter their food intake compared to vehicle injected CIH animals. Within ARC, CIH animals had reduced protein expression of the short form of the obese (leptin) receptor (isoform OBR100) and showed a trend toward an elevated protein expression of the long form of obese (leptin) receptor (OBRb). In addition, pro-opiomelanocortin (POMC) protein expression was reduced, but increased expression of the phosphorylated extracellular-signal-regulated kinase 1/2 (pERK1/2) and of the suppressor of cytokine signaling 3 (SOCS3) proteins was observed in the CIH group, with little change in phosphorylated signal transducer and activator of transcription 3 (pSTAT3). Taken together, these data suggest that long-term exposure to CIH, as seen in obstructive sleep apnea, may contribute to a state of leptin resistance promoting an increase in body weight.
Collapse
|
4
|
Iturriaga R, Alcayaga J, Chapleau MW, Somers VK. Carotid body chemoreceptors: physiology, pathology, and implications for health and disease. Physiol Rev 2021; 101:1177-1235. [PMID: 33570461 PMCID: PMC8526340 DOI: 10.1152/physrev.00039.2019] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The carotid body (CB) is the main peripheral chemoreceptor for arterial respiratory gases O2 and CO2 and pH, eliciting reflex ventilatory, cardiovascular, and humoral responses to maintain homeostasis. This review examines the fundamental biology underlying CB chemoreceptor function, its contribution to integrated physiological responses, and its role in maintaining health and potentiating disease. Emphasis is placed on 1) transduction mechanisms in chemoreceptor (type I) cells, highlighting the role played by the hypoxic inhibition of O2-dependent K+ channels and mitochondrial oxidative metabolism, and their modification by intracellular molecules and other ion channels; 2) synaptic mechanisms linking type I cells and petrosal nerve terminals, focusing on the role played by the main proposed transmitters and modulatory gases, and the participation of glial cells in regulation of the chemosensory process; 3) integrated reflex responses to CB activation, emphasizing that the responses differ dramatically depending on the nature of the physiological, pathological, or environmental challenges, and the interactions of the chemoreceptor reflex with other reflexes in optimizing oxygen delivery to the tissues; and 4) the contribution of enhanced CB chemosensory discharge to autonomic and cardiorespiratory pathophysiology in obstructive sleep apnea, congestive heart failure, resistant hypertension, and metabolic diseases and how modulation of enhanced CB reactivity in disease conditions may attenuate pathophysiology.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, and Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mark W Chapleau
- Department of Internal Medicine, University of Iowa and Department of Veterans Affairs Medical Center, Iowa City, Iowa
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
5
|
A Leptin-Mediated Neural Mechanism Linking Breathing to Metabolism. Cell Rep 2020; 33:108358. [PMID: 33176139 DOI: 10.1016/j.celrep.2020.108358] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/27/2020] [Accepted: 10/16/2020] [Indexed: 01/10/2023] Open
Abstract
Breathing is coupled to metabolism. Leptin, a peptide mainly secreted in proportion to adipose tissue mass, increases energy expenditure with a parallel increase in breathing. We demonstrate that optogenetic activation of LepRb neurons in the nucleus of the solitary tract (NTS) mimics the respiratory stimulation after systemic leptin administration. We show that leptin activates the sodium leak channel (NALCN), thereby depolarizing a subset of glutamatergic (VGluT2) LepRb NTS neurons expressing galanin. Mice with selective deletion of NALCN in LepRb neurons have increased breathing irregularity and central apneas. On a high-fat diet, these mice gain weight with an associated depression of minute ventilation and tidal volume, which are not detected in control littermates. Anatomical mapping reveals LepRb NTS-originating glutamatergic axon terminals in a brainstem inspiratory premotor region (rVRG) and dorsomedial hypothalamus. These findings directly link a defined subset of NTS LepRb cells to the matching of ventilation to energy balance.
Collapse
|
6
|
Badoer E. The Carotid Body a Common Denominator for Cardiovascular and Metabolic Dysfunction? Front Physiol 2020; 11:1069. [PMID: 32982794 PMCID: PMC7478291 DOI: 10.3389/fphys.2020.01069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/04/2020] [Indexed: 11/28/2022] Open
Abstract
The carotid body is a highly vascularized organ designed to monitor oxygen levels. Reducing oxygen levels in blood results in increased activity of the carotid body cells and reflex increases in sympathetic nerve activity. A key contributor to elevated sympathetic nerve activity in neurogenic forms of hypertension is enhanced peripheral chemoreceptor activity. Hypertension commonly occurs in metabolic disorders, like obesity. Such metabolic diseases are serious global health problems. Yet, the mechanisms contributing to increased sympathetic nerve activity and hypertension in obesity are not fully understood and a better understanding is urgently required. In this review, we examine the literature that suggests that overactivity of the carotid body may also contribute to metabolic disturbances. The purine ATP is an important chemical mediator influencing the activity of the carotid body and the role of purines in the overactivity of the carotid body is explored. We will conclude with the suggestion that tonic overactivity of the carotid body may be a common denominator that contributes to the hypertension and metabolic dysfunction seen in conditions in which metabolic disease exists such as obesity or insulin resistance induced by high caloric intake. Therapeutic treatment targeting the carotid bodies may be a viable treatment since translation to the clinic could be more easily performed than expected via repurposing antagonists of purinergic receptors currently in clinical practice, and the use of other minimally invasive techniques that reduce the overactivity of the carotid bodies which may be developed for such clinical use.
Collapse
Affiliation(s)
- Emilio Badoer
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Kim LJ, Polotsky VY. Carotid Body and Metabolic Syndrome: Mechanisms and Potential Therapeutic Targets. Int J Mol Sci 2020; 21:E5117. [PMID: 32698380 PMCID: PMC7404212 DOI: 10.3390/ijms21145117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
The carotid body (CB) is responsible for the peripheral chemoreflex by sensing blood gases and pH. The CB also appears to act as a peripheral sensor of metabolites and hormones, regulating the metabolism. CB malfunction induces aberrant chemosensory responses that culminate in the tonic overactivation of the sympathetic nervous system. The sympatho-excitation evoked by CB may contribute to the pathogenesis of metabolic syndrome, inducing systemic hypertension, insulin resistance and sleep-disordered breathing. Several molecular pathways are involved in the modulation of CB activity, and their pharmacological manipulation may lead to overall benefits for cardiometabolic diseases. In this review, we will discuss the role of the CB in the regulation of metabolism and in the pathogenesis of the metabolic dysfunction induced by CB overactivity. We will also explore the potential pharmacological targets in the CB for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Lenise J. Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA;
| | | |
Collapse
|
8
|
Carotid body enlargement in hypertension and other comorbidities evaluated by ultrasonography. J Hypertens 2020; 37:1455-1462. [PMID: 30925145 DOI: 10.1097/hjh.0000000000002068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Carotid body hyperactivity is important for sympathetic-related diseases and carotid body volume may partly reflect carotid bodies' activity. Our objective was to identify the association between carotid body volume and hypertension or other sympathetic-related diseases. METHODS Consecutive individuals, undergoing carotid ultrasonography, who were eligible for the inclusion criteria were included. The bilateral carotid bodies were detected and volumetric parameters were measured by carotid ultrasonography in clinical. Clinical data of included participants were collected and analysed. RESULTS A total of 1226 consecutive individuals underwent carotid ultrasonography. Carotid bodies were detected as solid, pebble-shaped, hypoechoic structures and the overall carotid body detection rate was 78.7% (965/1226). Univariate and multivariate regression analyses indicated that hypertension, chronic heart failure (CHF), chronic lung disease, smoking and high BMI were positively associated with carotid body enlargement. Compared with controls (2.63 μl), carotid body volume was significantly elevated in simple hypertensive (3.11 μl, P < 0.001), simple CHF (3.27 μl, P = 0.004) and simple smoking (3.47 μl, P < 0.001) groups. Moreover, the individuals with three comorbidities (4.05 μl) had significantly larger carotid bodies than those with one (3.23 μl, P < 0.001) or two comorbidities (3.46 μl, P = 0.017), suggesting that there existed a cumulative effect of comorbidities on carotid body volume. CONCLUSION Carotid body enlargement is strongly associated with hypertension and other sympathetic-related diseases or risk factors, and carotid body volume evaluated by carotid ultrasonography may be further explored as a promising screening and evaluation predictor for carotid body modulation therapy in patients with hypertension and other sympathetic-related diseases.
Collapse
|
9
|
Gauda EB, Conde S, Bassi M, Zoccal DB, Almeida Colombari DS, Colombari E, Despotovic N. Leptin: Master Regulator of Biological Functions that Affects Breathing. Compr Physiol 2020; 10:1047-1083. [PMID: 32941688 DOI: 10.1002/cphy.c190031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity is a global epidemic in developed countries accounting for many of the metabolic and cardiorespiratory morbidities that occur in adults. These morbidities include type 2 diabetes, sleep-disordered breathing (SDB), obstructive sleep apnea, chronic intermittent hypoxia, and hypertension. Leptin, produced by adipocytes, is a master regulator of metabolism and of many other biological functions including central and peripheral circuits that control breathing. By binding to receptors on cells and neurons in the brainstem, hypothalamus, and carotid body, leptin links energy and metabolism to breathing. In this comprehensive article, we review the central and peripheral locations of leptin's actions that affect cardiorespiratory responses during health and disease, with a particular focus on obesity, SDB, and its effects during early development. Obesity-induced hyperleptinemia is associated with centrally mediated hypoventilation with decrease CO2 sensitivity. On the other hand, hyperleptinemia augments peripheral chemoreflexes to hypoxia and induces sympathoexcitation. Thus, "leptin resistance" in obesity is relative. We delineate the circuits responsible for these divergent effects, including signaling pathways. We review the unique effects of leptin during development on organogenesis, feeding behavior, and cardiorespiratory responses, and how undernutrition and overnutrition during critical periods of development can lead to cardiorespiratory comorbidities in adulthood. We conclude with suggestions for future directions to improve our understanding of leptin dysregulation and associated clinical diseases and possible therapeutic targets. Lastly, we briefly discuss the yin and the yang, specifically the contribution of relative adiponectin deficiency in adults with hyperleptinemia to the development of metabolic and cardiovascular disease. © 2020 American Physiological Society. Compr Physiol 10:1047-1083, 2020.
Collapse
Affiliation(s)
- Estelle B Gauda
- Division of Neonatology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Silvia Conde
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Lisboa, Portugal
| | - Mirian Bassi
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Debora Simoes Almeida Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Nikola Despotovic
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Abstract
Purpose of review
The obesity epidemic is progressively affecting majority of individuals worldwide leading to many adverse metabolic and cardiovascular outcomes. Increasingly concerning among them is obesity hypertension (HTN). In this review, we delve into the physiology and therapeutic options in obesity HTN as we discuss the implications of obesity HTN on society.
Recent findings
Obesity is the most common cause of primary HTN and is directly proportional to increases BMI. The significance of adiposity in obesity HTN centers on humoral mechanisms via stimulation of the renal-angiotensin system, leptin activity, sympathetic overdrive, and proinflammatory processes that potentiate vascular remodeling, which results in a higher incidence of the progression of many known serious cardiovascular diseases. Although lifestyle and medical therapies have been recommended for obesity and its sequelae, continued global progression of this disease has driven the development of newer therapies such as carotid baroreflex activation therapy, renal denervation, and selective leptin receptor antagonism.
Summary
The pathophysiology of obesity HTN has not yet been fully elucidated despite it being one of the oldest known diseases to mankind. Major efforts to understand obesity HTN endures, paving opportunities for newer and possibly superior therapeutic options
Collapse
|
11
|
Abstract
The carotid body (CB) is an arterial chemoreceptor organ located in the carotid bifurcation and has a well-recognized role in cardiorespiratory regulation. The CB contains neurosecretory sensory cells (glomus cells), which release transmitters in response to hypoxia, hypercapnia, and acidemia to activate afferent sensory fibers terminating in the respiratory and autonomic brainstem centers. Knowledge of the physiology of the CB has progressed enormously in recent years. Herein we review advances concerning the organization and function of the cellular elements of the CB, with emphasis on the molecular mechanisms of acute oxygen sensing by glomus cells. We introduce the modern view of the CB as a multimodal integrated metabolic sensor and describe the properties of the CB stem cell niche, which support CB growth during acclimatization to chronic hypoxia. Finally, we discuss the increasing medical relevance of CB dysfunction and its potential impact on the mechanisms of disease.
Collapse
Affiliation(s)
- Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41013, Spain; , .,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sevilla 41013, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41013, Spain; , .,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sevilla 41013, Spain
| |
Collapse
|
12
|
Shin MK, Eraso CC, Mu YP, Gu C, Yeung BHY, Kim LJ, Liu XR, Wu ZJ, Paudel O, Pichard LE, Shirahata M, Tang WY, Sham JSK, Polotsky VY. Leptin Induces Hypertension Acting on Transient Receptor Potential Melastatin 7 Channel in the Carotid Body. Circ Res 2019; 125:989-1002. [PMID: 31545149 PMCID: PMC6842127 DOI: 10.1161/circresaha.119.315338] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
RATIONALE Obesity leads to resistant hypertension and mechanisms are poorly understood, but high plasma levels of leptin have been implicated. Leptin increases blood pressure acting both centrally in the dorsomedial hypothalamus and peripherally. Sites of the peripheral hypertensive effect of leptin have not been identified. We previously reported that leptin enhanced activity of the carotid sinus nerve, which transmits chemosensory input from the carotid bodies (CBs) to the medullary centers, and this effect was abolished by nonselective blockers of Trp (transient receptor potential) channels. We searched our mouse CB transcriptome database and found that the Trpm7 (transient receptor potential melastatin 7) channel was the most abundant Trp channel. OBJECTIVE To examine if leptin induces hypertension acting on the CB Trpm7. METHODS AND RESULTS C57BL/6J (n=79), leptin receptor (LepRb) deficient db/db mice (n=22), and LepRb-EGFP (n=4) mice were used. CB Trpm7 and LepRb gene expression was determined and immunohistochemistry was performed; CB glomus cells were isolated and Trpm7-like current was recorded. Blood pressure was recorded continuously in (1) leptin-treated C57BL/6J mice with intact and denervated CB; (2) leptin-treated C57BL/6J mice, which also received a nonselective Trpm7 blocker FTY720 administered systemically or topically to the CB area; (3) leptin-treated C57BL/6J mice transfected with Trpm7 small hairpin RNA to the CB, and (4) Leprb deficient obese db/db mice before and after Leprb expression in CB. Leptin receptor and Trpm7 colocalized in the CB glomus cells. Leptin induced a nonselective cation current in these cells, which was inhibited by Trpm7 blockers. Leptin induced hypertension in C57BL/6J mice, which was abolished by CB denervation, Trpm 7 blockers, and Trpm7 small hairpin RNA applied to CBs. Leprb overexpression in CB of Leprb-deficient db/db mice demethylated the Trpm7 promoter, increased Trpm7 gene expression, and induced hypertension. CONCLUSIONS We conclude that leptin induces hypertension acting on Trmp7 in CB, which opens horizons for new therapy.
Collapse
Affiliation(s)
- Mi-Kyung Shin
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (M.-K.S., C.G., B.H.Y.Y., L.J.K., J.S.K.S., V.Y.P.)
| | - Candela Caballero Eraso
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Spain (C.C.E.)
| | - Yun-Ping Mu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China (Y.-P.M., X.-R.L., Z.-J.W.)
| | - Chenjuan Gu
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (M.-K.S., C.G., B.H.Y.Y., L.J.K., J.S.K.S., V.Y.P.)
| | - Bonnie H Y Yeung
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (M.-K.S., C.G., B.H.Y.Y., L.J.K., J.S.K.S., V.Y.P.)
| | - Lenise J Kim
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (M.-K.S., C.G., B.H.Y.Y., L.J.K., J.S.K.S., V.Y.P.)
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Brazil (L.J.K.)
| | - Xiao-Ru Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China (Y.-P.M., X.-R.L., Z.-J.W.)
| | - Zhi-Juan Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China (Y.-P.M., X.-R.L., Z.-J.W.)
| | - Omkar Paudel
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (O.P., L.E.P., M.S.)
| | - Luis E Pichard
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (O.P., L.E.P., M.S.)
| | - Machiko Shirahata
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (O.P., L.E.P., M.S.)
| | | | - James S K Sham
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (M.-K.S., C.G., B.H.Y.Y., L.J.K., J.S.K.S., V.Y.P.)
| | - Vsevolod Y Polotsky
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (M.-K.S., C.G., B.H.Y.Y., L.J.K., J.S.K.S., V.Y.P.)
| |
Collapse
|
13
|
Caballero-Eraso C, Shin MK, Pho H, Kim LJ, Pichard LE, Wu ZJ, Gu C, Berger S, Pham L, Yeung HYB, Shirahata M, Schwartz AR, Tang WYW, Sham JSK, Polotsky VY. Leptin acts in the carotid bodies to increase minute ventilation during wakefulness and sleep and augment the hypoxic ventilatory response. J Physiol 2018; 597:151-172. [PMID: 30285278 DOI: 10.1113/jp276900] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/03/2018] [Indexed: 01/10/2023] Open
Abstract
KEY POINTS Leptin is a potent respiratory stimulant. A long functional isoform of leptin receptor, LepRb , was detected in the carotid body (CB), a key peripheral hypoxia sensor. However, the effect of leptin on minute ventilation (VE ) and the hypoxic ventilatory response (HVR) has not been sufficiently studied. We report that LepRb is present in approximately 74% of the CB glomus cells. Leptin increased carotid sinus nerve activity at baseline and in response to hypoxia in vivo. Subcutaneous infusion of leptin increased VE and HVR in C57BL/6J mice and this effect was abolished by CB denervation. Expression of LepRb in the carotid bodies of LepRb deficient obese db/db mice increased VE during wakefulness and sleep and augmented the HVR. We conclude that leptin acts on LepRb in the CBs to stimulate breathing and HVR, which may protect against sleep disordered breathing in obesity. ABSTRACT Leptin is a potent respiratory stimulant. The carotid bodies (CB) express the long functional isoform of leptin receptor, LepRb , but the role of leptin in CB has not been fully elucidated. The objectives of the current study were (1) to examine the effect of subcutaneous leptin infusion on minute ventilation (VE ) and the hypoxic ventilatory response to 10% O2 (HVR) in C57BL/6J mice before and after CB denervation; (2) to express LepRb in CB of LepRb -deficient obese db/db mice and examine its effects on breathing during sleep and wakefulness and on HVR. We found that leptin enhanced carotid sinus nerve activity at baseline and in response to 10% O2 in vivo. In C57BL/6J mice, leptin increased VE from 1.1 to 1.5 mL/min/g during normoxia (P < 0.01) and from 3.6 to 4.7 mL/min/g during hypoxia (P < 0.001), augmenting HVR from 0.23 to 0.31 mL/min/g/Δ F I O 2 (P < 0.001). The effects of leptin on VE and HVR were abolished by CB denervation. In db/db mice, LepRb expression in CB increased VE from 1.1 to 1.3 mL/min/g during normoxia (P < 0.05) and from 2.8 to 3.2 mL/min/g during hypoxia (P < 0.02), increasing HVR. Compared to control db/db mice, LepRb transfected mice showed significantly higher VE throughout non-rapid eye movement (20.1 vs. -27.7 mL/min respectively, P < 0.05) and rapid eye movement sleep (16.5 vs 23.4 mL/min, P < 0.05). We conclude that leptin acts in CB to augment VE and HVR, which may protect against sleep disordered breathing in obesity.
Collapse
Affiliation(s)
- Candela Caballero-Eraso
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain
| | - Mi-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luis E Pichard
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhi-Juan Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chenjuan Gu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Slava Berger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luu Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ho-Yee Bonnie Yeung
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Machiko Shirahata
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alan R Schwartz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wan-Yee Winnie Tang
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - James S K Sham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Ciriello J, Moreau JM, McCoy A, Jones DL. Effect of intermittent hypoxia on arcuate nucleus in the leptin-deficient rat. Neurosci Lett 2016; 626:112-8. [PMID: 27222924 DOI: 10.1016/j.neulet.2016.05.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 04/27/2016] [Accepted: 05/16/2016] [Indexed: 11/16/2022]
Abstract
Intermittent hypoxia (IH) is a major pathophysiological consequence of obstructive sleep apnea. Recently, it has been shown that IH results in changes in body energy balance, leptin secretion and concomitant alterations in arcuate nucleus (ARC). In this study, the role of leptin on these changes was investigated in leptin-deficient rats exposed to IH or normoxic control conditions. Body weights, consumatory and locomotor behaviours, and protein signaling in ARC were assessed immediately after IH exposure. Compared to normoxia, IH altered body weight, food intake, locomotor pattern, and the plasma concentration of leptin and angiotensin II in the wild-type rat. However, these changes were not observed in the leptin-deficient rat. Within ARC of wild-type animals, IH increased phosphorylated signal transducer and activator of transcription 3 and pro-opiomelanocortin protein expression, but not in the leptin-deficient rat. The long-form leptin receptor protein expression was not altered following IH in either rat strain. These data suggest that leptin is involved in mediating the alterations to body energy balance and ARC activity following IH.
Collapse
Affiliation(s)
- John Ciriello
- Department of Physiology and Pharmacology, The University of Western Ontario, London N6A 5C1, Canada.
| | - Jason M Moreau
- Department of Physiology and Pharmacology, The University of Western Ontario, London N6A 5C1, Canada
| | - Aaron McCoy
- Sigma Advanced Genetic Engineering Labs, Sigma-Aldrich Corp., St. Louis, MO, USA
| | - Douglas L Jones
- Department of Physiology and Pharmacology, The University of Western Ontario, London N6A 5C1, Canada; Department of Medicine, The University of Western Ontario, London N6A 5C1, Canada
| |
Collapse
|
15
|
Mark AL, Somers VK. Obesity, Hypoxemia, and Hypertension: Mechanistic Insights and Therapeutic Implications. Hypertension 2016; 68:24-6. [PMID: 27160202 DOI: 10.1161/hypertensionaha.116.07338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Allyn L Mark
- From the Department of Internal Medicine, the Obesity Research and Education Initiative, and the Center for Hypertension Research, University of Iowa Carver College of Medicine, Iowa City (A.L.M.); and Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (V.K.S.).
| | - Virend K Somers
- From the Department of Internal Medicine, the Obesity Research and Education Initiative, and the Center for Hypertension Research, University of Iowa Carver College of Medicine, Iowa City (A.L.M.); and Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (V.K.S.)
| |
Collapse
|
16
|
The impact of chronic intermittent hypoxia on hematopoiesis and the bone marrow microenvironment. Pflugers Arch 2016; 468:919-32. [PMID: 26856724 PMCID: PMC4842224 DOI: 10.1007/s00424-016-1797-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/21/2015] [Accepted: 01/26/2016] [Indexed: 12/18/2022]
Abstract
Obstructive sleep apnea (OSA) is a highly prevalent sleep-related breathing disorder which is associated with patient morbidity and an elevated risk of developing hypertension and cardiovascular diseases. There is ample evidence for the involvement of bone marrow (BM) cells in the pathophysiology of cardiovascular diseases but a connection between OSA and modulation of the BM microenvironment had not been established. Here, we studied how chronic intermittent hypoxia (CIH) affected hematopoiesis and the BM microenvironment, in a rat model of OSA. We show that CIH followed by normoxia increases the bone marrow hypoxic area, increases the number of multipotent hematopoietic progenitors (CFU assay), promotes erythropoiesis, and increases monocyte counts. In the BM microenvironment of CIH-subjected animals, the number of VE-cadherin-expressing blood vessels, particularly sinusoids, increased, accompanied by increased smooth muscle cell coverage, while vWF-positive vessels decreased. Molecularly, we investigated the expression of endothelial cell-derived genes (angiocrine factors) that could explain the cellular phenotypes. Accordingly, we observed an increase in colony-stimulating factor 1, vascular endothelium growth factor, delta-like 4, and angiopoietin-1 expression. Our data shows that CIH induces vascular remodeling in the BM microenvironment, which modulates hematopoiesis, increasing erythropoiesis, and circulating monocytes. Our study reveals for the first time the effect of CIH in hematopoiesis and suggests that hematopoietic changes may occur in OSA patients.
Collapse
|
17
|
Paleczny B, Siennicka A, Zacharski M, Jankowska EA, Ponikowska B, Ponikowski P. Increased body fat is associated with potentiation of blood pressure response to hypoxia in healthy men: relations with insulin and leptin. Clin Auton Res 2016; 26:107-16. [PMID: 26781642 PMCID: PMC4819928 DOI: 10.1007/s10286-015-0338-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/16/2015] [Indexed: 12/18/2022]
Abstract
Background Increased peripheral chemosensitivity (PChS) has been proposed
as mechanism underlying obesity-related sympathoactivation, with insulin and/or leptin as possible mediators. However, human data on PChS in obesity are scarce. Therefore, we explored this issue in a sample of 41 healthy men aged 30–59 years, divided according to body fat percentage (fat %) into two groups: <25 and ≥25 %. Methods PChS was assessed using transient hypoxia method [respiratory (PChS-MV), heart rate (PChS-HR), and blood pressure (PChS-SBP) responses were calculated]. Baroreflex sensitivity (BRS-Seq) was assessed using sequence method. Fasting plasma insulin and leptin levels were measured. Homeostatic model assessment (HOMA) was used to assess insulin sensitivity/resistance. Results Individuals with ≥25 % body fat demonstrated increased PChS-SBP (p < 0.01), but unchanged PChS-MV and PChS-HR (both p > 0.4). PChS-SBP was related positively with anthropometric characteristics (e.g. waist circumference, fat %), plasma insulin and HOMA (all p < 0.05), and negatively with BRS-Seq (p = 0.001), but not with plasma leptin (p = 0.27). Conclusions In healthy men, overweight/obesity is accompanied by augmented blood pressure response from peripheral chemoreceptors, while respiratory and heart rate responses remain unaltered. Hyperinsulinaemia and insulin resistance (but not hyperleptinaemia) are associated with augmented pressure response from chemoreceptors. Electronic supplementary material The online version of this article (doi:10.1007/s10286-015-0338-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bartłomiej Paleczny
- Department of Physiology, Wroclaw Medical University, ul. Chałubińskiego 10, 50-368, Wroclaw, Poland. .,Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland.
| | - Agnieszka Siennicka
- Department of Physiology, Wroclaw Medical University, ul. Chałubińskiego 10, 50-368, Wroclaw, Poland.,Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland
| | - Maciej Zacharski
- Department of Biochemistry, Pharmacology and Toxicology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Ewa Anita Jankowska
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland.,Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Beata Ponikowska
- Department of Physiology, Wroclaw Medical University, ul. Chałubińskiego 10, 50-368, Wroclaw, Poland
| | - Piotr Ponikowski
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland.,Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
18
|
Effects of angiotensin II on leptin and downstream leptin signaling in the carotid body during acute intermittent hypoxia. Neuroscience 2015; 310:430-41. [DOI: 10.1016/j.neuroscience.2015.09.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 08/11/2015] [Accepted: 09/24/2015] [Indexed: 11/19/2022]
|
19
|
Ciriello J, Moreau JM, McCoy AM, Jones DL. Leptin dependent changes in the expression of tropomyosin receptor kinase B protein in nucleus of the solitary tract to acute intermittent hypoxia. Neurosci Lett 2015; 602:115-9. [PMID: 26163463 DOI: 10.1016/j.neulet.2015.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/30/2015] [Accepted: 07/03/2015] [Indexed: 11/25/2022]
Abstract
To investigate the possibility that leptin exerts an effect in NTS by inducing changes in the expression of pre- and/or post-synaptic proteins, experiments were done in Sprague-Dawley wild-type rats (WT) rats and leptin-deficient rats (Lep(Δ151/Δ151); KILO rat) exposed to 8h of continuous intermittent hypoxia (IH) or normoxia. Protein was extracted from the caudal medial NTS and analyzed by western blot for the expression of brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB), synaptophysin, synaptopodin and growth-associated protein-43 (GAP-43). In WT rats, BDNF and GAP 43 protein expression levels were not altered after IH or normoxia, although there was a trend towards an increase in BDNF expression. On the other hand, after IH, protein expression of both isoforms of the BDNF receptor TrkB (gp95 and gp145) was higher. Furthermore, synaptophysin protein expression was lower compared to normoxic WT rats. In the KILO rat, no changes were observed in the protein expression of BDNF, TrkB, or GAP 43 after IH when compared to KILO normoxic controls. However, synaptophysin was lower in the IH exposed KILO rat compared to normoxic controls, as found in the WT rat. Expression of synaptopodin was not detected in NTS in either IH or normoxic animals of all groups. These results suggest that leptin released during IH may contribute to neurotrophic changes occurring within NTS and that these changes may be associated with altered chemoreceptor reflex function.
Collapse
Affiliation(s)
- John Ciriello
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Jason M Moreau
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Aaron M McCoy
- Sigma Advanced Genetic Engineering Laboratory, Sigma-ldrich Corp., St. Louis, MO 63146, USA
| | - Douglas L Jones
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
20
|
The Carotid Body Does Not Mediate the Acute Ventilatory Effects of Leptin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 860:379-85. [DOI: 10.1007/978-3-319-18440-1_43] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Olea E, Agapito MT, Gallego-Martin T, Rocher A, Gomez-Niño A, Obeso A, Gonzalez C, Yubero S. Intermittent hypoxia and diet-induced obesity: effects on oxidative status, sympathetic tone, plasma glucose and insulin levels, and arterial pressure. J Appl Physiol (1985) 2014; 117:706-19. [DOI: 10.1152/japplphysiol.00454.2014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Obstructive sleep apnea (OSA) consists of sleep-related repetitive obstructions of upper airways that generate episodes of recurrent or intermittent hypoxia (IH). OSA commonly generates cardiovascular and metabolic pathologies defining the obstructive sleep apnea syndrome (OSAS). Literature usually links OSA-associated pathologies to IH episodes that would cause an oxidative status and a carotid body-mediated sympathetic hyperactivity. Because cardiovascular and metabolic pathologies in obese patients and those with OSAS are analogous, we used models (24-wk-old Wistar rats) of IH (applied from weeks 22 to 24) and diet-induced obesity (O; animals fed a high-fat diet from weeks 12 to 24) to define the effect of each individual maneuver and their combination on the oxidative status and sympathetic tone of animals, and to quantify cardiovascular and metabolic parameters and their deviation from normality. We found that IH and O cause an oxidative status (increased lipid peroxides and diminished activities of superoxide dismutases), an inflammatory status (augmented C-reactive protein and nuclear factor kappa-B activation), and sympathetic hyperactivity (augmented plasma and renal artery catecholamine levels and synthesis rate); combined treatments worsened those alterations. IH and O augmented liver lipid content and plasma cholesterol, triglycerides, leptin, glycemia, insulin levels, and HOMA index, and caused hypertension; most of these parameters were aggravated when IH and O were combined. IH diminished ventilatory response to hypoxia, and hypercapnia and O created a restrictive ventilatory pattern; a combination of treatments led to restrictive hypoventilation. Data demonstrate that IH and O cause comparable metabolic and cardiovascular pathologies via misregulation of the redox status and sympathetic hyperactivity.
Collapse
Affiliation(s)
- Elena Olea
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, School of Medicine, Vallodolid, Spain; and Institute of Molecular Biology and Genetics, CIBER Enfermedades Respiratorias, CIBERES, Institute of Salud Carlos III, Vallodolid, Spain
| | - Maria Teresa Agapito
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, School of Medicine, Vallodolid, Spain; and Institute of Molecular Biology and Genetics, CIBER Enfermedades Respiratorias, CIBERES, Institute of Salud Carlos III, Vallodolid, Spain
| | - Teresa Gallego-Martin
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, School of Medicine, Vallodolid, Spain; and Institute of Molecular Biology and Genetics, CIBER Enfermedades Respiratorias, CIBERES, Institute of Salud Carlos III, Vallodolid, Spain
| | - Asuncion Rocher
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, School of Medicine, Vallodolid, Spain; and Institute of Molecular Biology and Genetics, CIBER Enfermedades Respiratorias, CIBERES, Institute of Salud Carlos III, Vallodolid, Spain
| | - Angela Gomez-Niño
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, School of Medicine, Vallodolid, Spain; and Institute of Molecular Biology and Genetics, CIBER Enfermedades Respiratorias, CIBERES, Institute of Salud Carlos III, Vallodolid, Spain
| | - Ana Obeso
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, School of Medicine, Vallodolid, Spain; and Institute of Molecular Biology and Genetics, CIBER Enfermedades Respiratorias, CIBERES, Institute of Salud Carlos III, Vallodolid, Spain
| | - Constancio Gonzalez
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, School of Medicine, Vallodolid, Spain; and Institute of Molecular Biology and Genetics, CIBER Enfermedades Respiratorias, CIBERES, Institute of Salud Carlos III, Vallodolid, Spain
| | - Sara Yubero
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, School of Medicine, Vallodolid, Spain; and Institute of Molecular Biology and Genetics, CIBER Enfermedades Respiratorias, CIBERES, Institute of Salud Carlos III, Vallodolid, Spain
| |
Collapse
|
22
|
Farzin M, Albert T, Pierce N, VandenBrooks JM, Dodge T, Harrison JF. Acute and chronic effects of atmospheric oxygen on the feeding behavior of Drosophila melanogaster larvae. JOURNAL OF INSECT PHYSIOLOGY 2014; 68:23-29. [PMID: 25008193 DOI: 10.1016/j.jinsphys.2014.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/24/2014] [Accepted: 06/28/2014] [Indexed: 06/03/2023]
Abstract
All insects studied to date show reduced growth rates in hypoxia. Drosophila melanogaster reared in moderate hypoxia (10 kPa PO2) grow more slowly and form smaller adults, but the mechanisms responsible are unclear, as metabolic rates are not oxygen-limited. It has been shown that individual fruit flies do not grow larger in hyperoxia (40 kPa PO2), but populations of flies evolve larger size. Here we studied the effect of acute and chronic variation in atmospheric PO2 (10, 21, 40 kPa) on feeding behavior of third instar larvae of D.melanogaster to assess whether oxygen effects on growth rate can be explained by effects on feeding behavior. Hypoxic-reared larvae grew and developed more slowly, and hyperoxic-rearing did not affect growth rate, maximal larval mass or developmental time. The effect of acute exposure to varying PO2 on larval bite rates matched the pattern observed for growth rates, with a 22% reduction in 10 kPa PO2 and no effect of 40 kPa PO2. Chronic rearing in hypoxia had few effects on the responses of feeding rates to oxygen, but chronic rearing in hyperoxia caused feeding rates to be strongly oxygen-dependent. Hypoxia produced similar reductions in bite rate and in the volume of tunnels excavated by larvae, supporting bite rate as an index of feeding behavior. Overall, our data show that reductions in feeding rate can explain reduced growth rates in moderate hypoxia for Drosophila, contributing to reduced body size, and that larvae cannot successfully compensate for this level of hypoxia with developmental plasticity.
Collapse
Affiliation(s)
- Manoush Farzin
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Todd Albert
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Nicholas Pierce
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - John M VandenBrooks
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Tahnee Dodge
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States.
| |
Collapse
|
23
|
Hypothalamic orexin-A (hypocretin-1) neuronal projections to the vestibular complex and cerebellum in the rat. Brain Res 2014; 1579:20-34. [PMID: 25017945 DOI: 10.1016/j.brainres.2014.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/24/2014] [Accepted: 07/04/2014] [Indexed: 12/31/2022]
Abstract
Immunohistochemistry combined with retrograde tract-tracing techniques were used to investigate the distribution of orexin-A (OX-A)- and OX-A receptor-like (OX1) immunoreactivity within the vestibular complex and cerebellum, and the location of hypothalamic OX-A neurons sending axonal projections to these regions in the Wistar rat. OX-A immunoreactive fibers and presumptive terminals were found throughout the medial (MVe) and lateral (LVe) vestibular nuclei. Light fiber labeling was also observed in the spinal and superior vestibular nuclei. Within the cerebellum, dense fiber and presumptive terminal labeling was observed in the medial cerebellar nucleus (Med; fastigial nucleus), with less dense labeling in the interposed (Int) and lateral cerebellar nuclei (Lat; dentate nucleus). A few scattered OX-A immunoreactive fibers were also observed throughout the cortex of the paraflocculus. OX1-like immunoreactivity was found densely concentrated within LVe, moderate in MVe, and scattered within the spinal and superior vestibular nuclei. Within the cerebellum, OX1-like immunoreactivity was also observed densely within Med and in the dorsolateral aspects of Int. Additionally, OX1 like-labeling was found in Lat, and within the granular layer of the caudal paraflocculus cerebellar cortex. Fluorogold (FG) microinjected into these vestibular and cerebellar regions resulted in retrogradely labeled neurons throughout the ipsilateral hypothalamus. Retrogradely labeled neurons containing OX-A like immunoreactivity were observed dorsal and caudal to the anterior hypothalamic nucleus and extending laterally into the lateral hypothalamic area, with the largest number clustered around the dorsal aspects of the fornix in the perifornical area. A few FG OX-A like-immunoreactive neurons were also observed scattered throughout the dorsomedial, and posterior hypothalamic nuclei. These data indicate that axons from OX-A neurons terminate within the vestibular complex and deep cerebellar nuclei of the cerebellum and although the function of these pathways is unknown, they likely represent pathways by which hypothalamic OX-A containing neurons co-ordinate vestibulo-cerebellar motor and autonomic functions associated with ingestive behaviors.
Collapse
|
24
|
Ribeiro MJ, Sacramento JF, Gonzalez C, Guarino MP, Monteiro EC, Conde SV. Carotid body denervation prevents the development of insulin resistance and hypertension induced by hypercaloric diets. Diabetes 2013; 62:2905-16. [PMID: 23530003 PMCID: PMC3717872 DOI: 10.2337/db12-1463] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increased sympathetic activity is a well-known pathophysiological mechanism in insulin resistance (IR) and hypertension (HT). The carotid bodies (CB) are peripheral chemoreceptors that classically respond to hypoxia by increasing chemosensory activity in the carotid sinus nerve (CSN), causing hyperventilation and activation of the sympathoadrenal system. Besides its role in the control of ventilation, the CB has been proposed as a glucose sensor implicated in the control of energy homeostasis. However, to date no studies have anticipated its role in the development of IR. Herein, we propose that CB overstimulation is involved in the etiology of IR and HT, core metabolic and hemodynamic disturbances of highly prevalent diseases like the metabolic syndrome, type 2 diabetes, and obstructive sleep apnoea. We demonstrate that CB activity is increased in IR animal models and that CSN resection prevents CB overactivation and diet-induced IR and HT. Moreover, we show that insulin triggers CB, highlighting a new role for hyperinsulinemia as a stimulus for CB overactivation. We propose that CB is implicated in the pathogenesis of metabolic and hemodynamic disturbances through sympathoadrenal overactivation and may represent a novel therapeutic target in these diseases.
Collapse
Affiliation(s)
- Maria J. Ribeiro
- CEDOC (Centro de Estudos de Doenças Crónicas), Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, Lisboa, Portugal
| | - Joana F. Sacramento
- CEDOC (Centro de Estudos de Doenças Crónicas), Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, Lisboa, Portugal
| | - Constancio Gonzalez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Instituto de Biología y Genética Molecular, CSIC (Consejo Superior de Investigaciones Cientificas), Ciber de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria P. Guarino
- CEDOC (Centro de Estudos de Doenças Crónicas), Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, Lisboa, Portugal
| | - Emília C. Monteiro
- CEDOC (Centro de Estudos de Doenças Crónicas), Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, Lisboa, Portugal
| | - Sílvia V. Conde
- CEDOC (Centro de Estudos de Doenças Crónicas), Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, Lisboa, Portugal
- Corresponding author: Sílvia V. Conde,
| |
Collapse
|
25
|
Messenger SA, Moreau JM, Ciriello J. Effect of chronic intermittent hypoxia on leptin and leptin receptor protein expression in the carotid body. Brain Res 2013; 1513:51-60. [DOI: 10.1016/j.brainres.2013.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 01/20/2023]
|
26
|
Porzionato A, Macchi V, De Caro R. Role of the carotid body in obesity-related sympathoactivation. Hypertension 2013; 61:e57. [PMID: 23648701 DOI: 10.1161/hypertensionaha.113.01248] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|