1
|
Xu Y, Qiu Z, Gu C, Yu S, Wang S, Li C, Yao X, Li W. Propionate alleviates itch in murine models of atopic dermatitis by modulating sensory TRP channels of dorsal root ganglion. Allergy 2024; 79:1271-1290. [PMID: 38164798 DOI: 10.1111/all.15998] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Itch is the most common symptom of atopic dermatitis (AD) and significantly decreases the quality of life. Skin microbiome is involved in AD pathogenesis, whereas its role in the regulation of itch remains elusive. In this study, we aimed to investigate the effects of skin microbial metabolite propionate on acute and chronic pruritus and to explore the mechanism. METHODS Using various mouse models of itch, the roles of propionate were explored by behavioral tests and histopathology/immunofluorescent analysis. Primary-cultured dorsal root ganglion neurons and HEK293 cells expressing recombinant human TRP channels were utilized for in vitro calcium imaging/in vivo miniature two-photon imaging in combination with electrophysiology and molecular docking approaches for investigation of the mechanism. RESULTS Propionate significantly alleviated itch and alloknesis in various mouse models of pruritus and AD and decreased the density of intraepidermal nerve fibers. Propionate reduced the responsiveness of dorsal root ganglion neurons to pruritogens in vitro, attenuated the hyper-excitability in sensory neurons in MC903-induced AD model, and inhibited capsaicin-evoked hTRPV1 currents (IC50 = 20.08 ± 1.11 μM) via interacting with the vanilloid binding site. Propionate also decreased the secretion of calcitonin gene-related peptide by nerves in MC903-induced AD mouse model, which further attenuated itch and skin inflammation. CONCLUSION Our study revealed a protective effect of propionate against persistent itch through direct modulation of sensory TRP channels and neuropeptide production in neurons. Regulation of itch via the skin microbiome might be a novel strategy for the treatment of AD.
Collapse
Affiliation(s)
- Yao Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Zhuoqiong Qiu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Chaoying Gu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Su Yu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Shangshang Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Changlin Li
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, China
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for skin diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Wei Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| |
Collapse
|
2
|
Kim B, Rothenberg ME, Sun X, Bachert C, Artis D, Zaheer R, Deniz Y, Rowe P, Cyr S. Neuroimmune interplay during type 2 inflammation: Symptoms, mechanisms, and therapeutic targets in atopic diseases. J Allergy Clin Immunol 2024; 153:879-893. [PMID: 37634890 PMCID: PMC11215634 DOI: 10.1016/j.jaci.2023.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/17/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Type 2 inflammation is characterized by overexpression and heightened activity of type 2 cytokines, mediators, and cells that drive neuroimmune activation and sensitization to previously subthreshold stimuli. The consequences of altered neuroimmune activity differ by tissue type and disease; they include skin inflammation, sensitization to pruritogens, and itch amplification in atopic dermatitis and prurigo nodularis; airway inflammation and/or hyperresponsiveness, loss of expiratory volume, airflow obstruction and increased mucus production in asthma; loss of sense of smell in chronic rhinosinusitis with nasal polyps; and dysphagia in eosinophilic esophagitis. We describe the neuroimmune interactions that underlie the various sensory and autonomic pathologies in type 2 inflammatory diseases and present recent advances in targeted treatment approaches to reduce type 2 inflammation and its associated symptoms in these diseases. Further research is needed to better understand the neuroimmune mechanisms that underlie chronic, sustained inflammation and its related sensory pathologies in diseases associated with type 2 inflammation.
Collapse
Affiliation(s)
- Brian Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, Calif
| | - Claus Bachert
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Muenster, Muenster, Germany; First Affiliated Hospital, Sun Yat-Sen University, International Airway Research Center, Guangzhou, China
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY
| | | | - Yamo Deniz
- Regeneron Pharmaceuticals, Tarrytown, NY
| | | | - Sonya Cyr
- Regeneron Pharmaceuticals, Tarrytown, NY
| |
Collapse
|
3
|
Follansbee T, Dong X. A tactile twist: decoding the phenomena of mechanical itch and alloknesis. Front Mol Neurosci 2023; 16:1278151. [PMID: 37771556 PMCID: PMC10523328 DOI: 10.3389/fnmol.2023.1278151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023] Open
Abstract
Itch is a sensation in the skin which provokes the desire to scratch. In the past few decades there has been a significant elucidation of the immune and neural pathways which underly the sensation of itch. An interesting divergence in the itch pathway relates to the type of stimulation used to evoke an itchy sensation. Commonly, chemical mediators of itch such as histamine are injected into the skin where they activate their cognate receptors on sensory neurons. Another way to evoke itch, particularly in patients with chronic itch, is to use light mechanical stimulation. Investigation into these pathways utilizing the mouse model have shown that the neuronal pathways which underly chemical itch are distinct from those which mediate itch in response to mechanical stimulation. Specific populations of primary sensory neurons, spinal interneurons and transmission neurons have been identified which suggests a labeled line for itch transmission. Additionally, Piezo channels, which underly mechanosensation, were discovered to play an important role in the mechanical itch pathway. Given these novel findings relating to the mechanical itch pathway, the purpose of this review is to summarize the reports from human subjects and animal studies to highlight the advances in our understanding of mechanical itch and alloknesis.
Collapse
Affiliation(s)
- Taylor Follansbee
- Department of Neuroscience, Howard Huges Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xinzhong Dong
- Department of Neuroscience, Howard Huges Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Kang SY, Um JY, Chung BY, Kim JC, Park CW, Kim HO. Differential Diagnosis and Treatment of Itching in Children and Adolescents. Biomedicines 2021; 9:919. [PMID: 34440123 PMCID: PMC8389554 DOI: 10.3390/biomedicines9080919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
Itching is prevalent in children with skin disorders and associated with effects on their mood, quality of life, and social functioning. Surprisingly, there are no data on childhood prevalence of pruritus in the general population. The aim of this article is to explore the epidemiology, clinical manifestation, and treatment for itch (pruritus) in the pediatric population (from infancy to adolescence), and to be helpful to primary care physicians who assess and diagnose pediatric patients with itching. In this study, we searched for specific keywords using PubMed and MEDLINE (Ovid) and, then, refined the retrieved searches for each cause and treatment. As a result of reviewing the literature, atopic dermatitis was shown to be the most common cause of itching, especially during infancy and through preschool. Not only skin disorders but also systemic diseases, drugs, and postburn states can predispose an individual to itching in childhood. There are traditional and newly developed treatment modalities for itching in pediatric patients. However, because the pharmacokinetics and pharmacodynamics of childhood are different from those of adults, the medications for itching have to be applied carefully for these age groups. There are many areas to be elucidated regarding the prevalence and objective assessment of pruritus in pediatric patients. Moreover, the safety profiles of medications in the pediatric population need to be better understood. Further studies to investigate itching in childhood are warranted.
Collapse
Affiliation(s)
| | | | | | | | | | - Hye-One Kim
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University, Seoul KS013, Korea; (S.-Y.K.); (J.-Y.U.); (B.-Y.C.); (J.-C.K.); (C.-W.P.)
| |
Collapse
|
5
|
Umehara Y, Kiatsurayanon C, Trujillo-Paez JV, Chieosilapatham P, Peng G, Yue H, Nguyen HLT, Song P, Okumura K, Ogawa H, Niyonsaba F. Intractable Itch in Atopic Dermatitis: Causes and Treatments. Biomedicines 2021; 9:biomedicines9030229. [PMID: 33668714 PMCID: PMC7996203 DOI: 10.3390/biomedicines9030229] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
Itch or pruritus is the hallmark of atopic dermatitis and is defined as an unpleasant sensation that evokes the desire to scratch. It is also believed that itch is a signal of danger from various environmental factors or physiological abnormalities. Because histamine is a well-known substance inducing itch, H1-antihistamines are the most frequently used drugs to treat pruritus. However, H1-antihistamines are not fully effective against intractable itch in patients with atopic dermatitis. Given that intractable itch is a clinical problem that markedly decreases quality of life, its treatment in atopic dermatitis is of high importance. Histamine-independent itch may be elicited by various pruritogens, including proteases, cytokines, neuropeptides, lipids, and opioids, and their cognate receptors, such as protease-activated receptors, cytokine receptors, Mas-related G protein-coupled receptors, opioid receptors, and transient receptor potential channels. In addition, cutaneous hyperinnervation is partly involved in itch sensitization in the periphery. It is believed that dry skin is a key feature of intractable itch in atopic dermatitis. Treatment of the underlying conditions that cause itch is necessary to improve the quality of life of patients with atopic dermatitis. This review describes current insights into the pathophysiology of itch and its treatment in atopic dermatitis.
Collapse
Affiliation(s)
- Yoshie Umehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Chanisa Kiatsurayanon
- Institute of Dermatology, Department of Medical Services, Ministry of Public Health, Bangkok 10400, Thailand;
| | - Juan Valentin Trujillo-Paez
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Panjit Chieosilapatham
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hainan Yue
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hai Le Thanh Nguyen
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Pu Song
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China;
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
- Faculty of International Liberal Arts, Juntendo University, Tokyo 113-8421, Japan
- Correspondence: ; Tel.: +81-3-5802-1591; Fax: +81-3-3813-5512
| |
Collapse
|
6
|
Sheahan TD, Warwick CA, Fanien LG, Ross SE. The Neurokinin-1 Receptor is Expressed with Gastrin-Releasing Peptide Receptor in Spinal Interneurons and Modulates Itch. J Neurosci 2020; 40:8816-8830. [PMID: 33051347 PMCID: PMC7659450 DOI: 10.1523/jneurosci.1832-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/25/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
The neurokinin-1 receptor (NK1R; encoded by Tacr1) is expressed in spinal dorsal horn neurons and has been suggested to mediate itch in rodents. However, previous studies relied heavily on neurotoxic ablation of NK1R spinal neurons, which limited further dissection of their function in spinal itch circuitry. To address this limitation, we leveraged a newly developed Tacr1CreER mouse line to characterize the role of NK1R spinal neurons in itch. We show that pharmacological activation of spinal NK1R and chemogenetic activation of Tacr1CreER spinal neurons increases itch behavior in male and female mice, whereas pharmacological inhibition of spinal NK1R suppresses itch behavior. We use fluorescence in situ hybridization (FISH) to characterize the endogenous expression of Tacr1 throughout the superficial and deeper dorsal horn (DDH), as well as the lateral spinal nucleus (LSN), of mouse and human spinal cord. Retrograde labeling studies in mice from the parabrachial nucleus (PBN) show that less than 20% of superficial Tacr1CreER dorsal horn neurons are spinal projection neurons, and thus the majority of Tacr1CreER are local interneurons. We then use a combination of in situ hybridization and ex vivo two-photon Ca2+ imaging of the mouse spinal cord to establish that NK1R and the gastrin-releasing peptide receptor (GRPR) are coexpressed within a subpopulation of excitatory superficial dorsal horn (SDH) neurons. These findings are the first to suggest a role for NK1R interneurons in itch and extend our understanding of the complexities of spinal itch circuitry.SIGNIFICANCE STATEMENT The spinal cord is a critical hub for processing somatosensory input, yet which spinal neurons process itch input and how itch signals are encoded within the spinal cord is not fully understood. We demonstrate neurokinin-1 receptor (NK1R) spinal neurons mediate itch behavior in mice and that the majority of NK1R spinal neurons are local interneurons. These NK1R neurons comprise a subset of gastrin-releasing peptide receptor (GRPR) interneurons and are thus positioned at the center of spinal itch transmission. We show NK1R mRNA expression in human spinal cord, underscoring the translational relevance of our findings in mice. This work is the first to suggest a role for NK1R interneurons in itch and extends our understanding of the complexities of spinal itch circuitry.
Collapse
Affiliation(s)
- Tayler D Sheahan
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh 15213, Pennsylvania
| | - Charles A Warwick
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh 15213, Pennsylvania
| | - Louis G Fanien
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh 15213, Pennsylvania
| | - Sarah E Ross
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh 15213, Pennsylvania
| |
Collapse
|
7
|
Tran M, Braz JM, Hamel K, Kuhn J, Todd AJ, Basbaum AI. Ablation of spinal cord estrogen receptor α-expressing interneurons reduces chemically induced modalities of pain and itch. J Comp Neurol 2020; 528:1629-1643. [PMID: 31872868 PMCID: PMC7317200 DOI: 10.1002/cne.24847] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022]
Abstract
Estrogens are presumed to underlie, at least in part, the greater pain sensitivity and chronic pain prevalence that women experience compared to men. Although previous studies revealed populations of estrogen receptor-expressing neurons in primary afferents and in superficial dorsal horn neurons, there is little to no information as to the contribution of these neurons to the generation of acute and chronic pain. Here we molecularly characterized neurons in the mouse superficial spinal cord dorsal horn that express estrogen receptor α (ERα) and explored the behavioral consequences of their ablation. We found that spinal ERα-positive neurons are largely excitatory interneurons and many coexpress substance P, a marker for a discrete subset of nociceptive, excitatory interneurons. After viral, caspase-mediated ablation of spinal ERα-expressing cells, we observed a significant decrease in the first phase of the formalin test, but in male mice only. ERα-expressing neuron-ablation also reduced pruritogen-induced scratching in both male and female mice. There were no ablation-related changes in mechanical or heat withdrawal thresholds or in capsaicin-induced nocifensive behavior. In chronic pain models, we found no change in Complete Freund's adjuvant-induced thermal or mechanical hypersensitivity, or in partial sciatic nerve injury-induced mechanical allodynia. We conclude that ERα labels a subpopulation of excitatory interneurons that are specifically involved in chemically evoked persistent pain and pruritogen-induced itch.
Collapse
Affiliation(s)
- May Tran
- Department of AnatomyUniversity of CaliforniaSan FranciscoCalifornia
| | - Joao Manuel Braz
- Department of AnatomyUniversity of CaliforniaSan FranciscoCalifornia
| | - Katherine Hamel
- Department of AnatomyUniversity of CaliforniaSan FranciscoCalifornia
| | - Julia Kuhn
- Department of AnatomyUniversity of CaliforniaSan FranciscoCalifornia
| | - Andrew J. Todd
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Allan I. Basbaum
- Department of AnatomyUniversity of CaliforniaSan FranciscoCalifornia
| |
Collapse
|
8
|
Lee SH, Tonello R, Choi Y, Jung SJ, Berta T. Sensory Neuron-Expressed TRPC4 Is a Target for the Relief of Psoriasiform Itch and Skin Inflammation in Mice. J Invest Dermatol 2020; 140:2221-2229.e6. [PMID: 32289348 DOI: 10.1016/j.jid.2020.03.959] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Psoriasis is an inflammatory skin disease associated with itch, which is a troublesome symptom with a few therapeutic options. TRPC4 is highly expressed in dorsal root ganglia (DRGs). Recently, we have revealed itch signaling in DRG neurons by which TRPC4 mediates itch to serotonergic antidepressants and demonstrated the antipruritic effect of the TRPC4 inhibitor ML204. However, the role of TRPC4 in acute and chronic itch is still largely unknown. Here, we have characterized the expression of TRPC4 in peptidergic DRG neurons and showed that acute itch induced by serotonin and histamine was attenuated in Trpc4-knockout mice and ML204-treated mice. We have also shown that silencing TRPC4 in DRG and its inhibition by intradermal injections were also effective in decreasing psoriatic itch after the repeated application of imiquimod, which is a preclinical model of psoriasis. Of clinical relevance, intradermal injections of ML204 in psoriasiform skin significantly reversed imiquimod-established chronic itch and cutaneous inflammation. Given that TRPC4 is expressed in human DRGs and a specific inhibitor is in clinical trials, our data not only expand our understanding of itch and psoriasis, but also reveal TRPC4 as a potential therapeutic target with considerable translational benefits.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Raquel Tonello
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Youngin Choi
- Department of Physiology, Medical School, Hanyang University, Seoul, Korea
| | - Sung Jun Jung
- Department of Physiology, Medical School, Hanyang University, Seoul, Korea
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, USA.
| |
Collapse
|
9
|
Barry DM, Liu XT, Liu B, Liu XY, Gao F, Zeng X, Liu J, Yang Q, Wilhelm S, Yin J, Tao A, Chen ZF. Exploration of sensory and spinal neurons expressing gastrin-releasing peptide in itch and pain related behaviors. Nat Commun 2020; 11:1397. [PMID: 32170060 PMCID: PMC7070094 DOI: 10.1038/s41467-020-15230-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrin-releasing peptide (GRP) functions as a neurotransmitter for non-histaminergic itch, but its site of action (sensory neurons vs spinal cord) remains controversial. To determine the role of GRP in sensory neurons, we generated a floxed Grp mouse line. We found that conditional knockout of Grp in sensory neurons results in attenuated non-histaminergic itch, without impairing histamine-induced itch. Using a Grp-Cre knock-in mouse line, we show that the upper epidermis of the skin is exclusively innervated by GRP fibers, whose activation via optogeneics and chemogenetics in the skin evokes itch- but not pain-related scratching or wiping behaviors. In contrast, intersectional genetic ablation of spinal Grp neurons does not affect itch nor pain transmission, demonstrating that spinal Grp neurons are dispensable for itch transmission. These data indicate that GRP is a neuropeptide in sensory neurons for non-histaminergic itch, and GRP sensory neurons are dedicated to itch transmission.
Collapse
Affiliation(s)
- Devin M Barry
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xue-Ting Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Center for Immunology, Inflammation, Immune-mediated disease, Guangzhou Medical University, 510260, Guangzhou, Guangdong, P.R. China
| | - Benlong Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xian-Yu Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Fang Gao
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiansi Zeng
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- College of Life Sciences, Xinyang Normal University, 237 Nanhu Road, 464000, Xinyang, P. R. China
| | - Juan Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Qianyi Yang
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Steven Wilhelm
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jun Yin
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ailin Tao
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Center for Immunology, Inflammation, Immune-mediated disease, Guangzhou Medical University, 510260, Guangzhou, Guangdong, P.R. China
| | - Zhou-Feng Chen
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
10
|
Kita T, Uchida K, Kato K, Suzuki Y, Tominaga M, Yamazaki J. FK506 (tacrolimus) causes pain sensation through the activation of transient receptor potential ankyrin 1 (TRPA1) channels. J Physiol Sci 2019; 69:305-316. [PMID: 30478741 PMCID: PMC10717736 DOI: 10.1007/s12576-018-0647-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
Abstract
FK506 (tacrolimus) is an immunosuppressant widely used as an ointment in the treatment of atopic dermatitis. However, local application of FK506 can evoke burning sensations in atopic dermatitis patients, and its mechanisms are unknown. In this study, we found that FK506 activates transient receptor potential ankyrin 1 (TRPA1) channels. In Ca2+-imaging experiments, increases in intracellular Ca2+ concentrations ([Ca2+]i) by FK506 were observed in HEK293T cells expressing hTRPA1 or hTRPM8. FK506-induced currents were observed in HEK293T cells expressing hTRPA1 or mTRPA1, but less or not at all in cells expressing hTRPV1 or hTRPM8 using a patch-clamp technique. FK506 also evoked single-channel opening of hTRPA1 in an inside-out configuration. FK506-induced [Ca2+]i increases were also observed in TRPA1-expressing mouse primary sensory neurons. Furthermore, injection of FK506 evoked licking or biting behaviors and these behaviors were almost abolished in TRPA1 knockout mice. These results indicate that FK506 might cause pain sensations through TRPA1 activation.
Collapse
Affiliation(s)
- Tomo Kita
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Kunitoshi Uchida
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan.
| | - Kenichi Kato
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Yoshiro Suzuki
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
| | - Jun Yamazaki
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| |
Collapse
|
11
|
Wang C, Gu L, Ruan Y, Geng X, Xu M, Yang N, Yu L, Jiang Y, Zhu C, Yang Y, Zhou Y, Guan X, Luo W, Liu Q, Dong X, Yu G, Lan L, Tang Z. Facilitation of MrgprD by TRP-A1 promotes neuropathic pain. FASEB J 2018; 33:1360-1373. [PMID: 30148678 DOI: 10.1096/fj.201800615rr] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuropathic pain remains a therapeutic challenge because of its complicated mechanisms. Mas-related GPCR D (MrgprD) is specifically expressed in small-diameter, nociceptive neurons of dorsal root ganglia (DRGs) and is implicated in pain modulation. However, the underlying mechanism of MrgprD involved in neuropathic pain remains elusive. In this study, we used behavioral experiments and physiologic examination methods to investigate the role of MrgprD in chronic constriction injury (CCI)-induced neuropathic pain. We found that MrgprD is necessary for the initiation of mechanical hypersensitivity and cold allodynia, but not for heat allodynia. Moreover, we demonstrated that transient receptor potential cation channel (TRP)-A1 was the ion channel downstream of MrgprD, and the β-alanine-induced calcium signal was attributed mostly to TRP-A1 function. We further showed that PKA serves as a downstream mediator of β-alanine-activated MrgprD signaling to activate TRP-A1 in DRG neurons and in human embryonic kidney 293 cells, to coexpress MrgprD and TRP-A1 plasmids. Finally, we found that the β-alanine-induced pain behavior was increased, whereas the itching behavior was unchanged in CCI models compared with sham-injured animals. Knockout of TRPA1 also attenuated the β-alanine-induced pain behavior in CCI models. In conclusion, MrgprD is essential in cold allodynia in CCI-induced neuropathic pain through the PKA-TRP-A1 pathway. TRP-A1 facilitates MrgprD to development of neuropathic pain. Our findings reveal a novel mechanism of neuropathic pain formation and highlight MrgprD as a promising drug target for the treatment of neuropathic pain.-Wang, C., Gu, L., Ruan, Y., Geng, X., Xu, M., Yang, N., Yu, L., Jiang, Y., Zhu, C., Yang, Y., Zhou, Y., Guan, X., Luo, W., Liu, Q., Dong, X., Yu, G., Lan, L., Tang, Z. Facilitation of MrgprD by TRP-A1 promotes neuropathic pain.
Collapse
Affiliation(s)
- Changming Wang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, China
| | - Leying Gu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yonglan Ruan
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao Geng
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, China
| | - Miao Xu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Niuniu Yang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Traditional Chinese and Western Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Lei Yu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yucui Jiang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chan Zhu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Yang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Zhou
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaowei Guan
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qin Liu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA.,Center for the Study of Itch, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; and.,Howard Hughes Medical Institute, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Guang Yu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Lan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zongxiang Tang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Andersen HH, Akiyama T, Nattkemper LA, van Laarhoven A, Elberling J, Yosipovitch G, Arendt-Nielsen L. Alloknesis and hyperknesis—mechanisms, assessment methodology, and clinical implications of itch sensitization. Pain 2018; 159:1185-1197. [DOI: 10.1097/j.pain.0000000000001220] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Palkar R, Ongun S, Catich E, Li N, Borad N, Sarkisian A, McKemy DD. Cooling Relief of Acute and Chronic Itch Requires TRPM8 Channels and Neurons. J Invest Dermatol 2017; 138:1391-1399. [PMID: 29288650 DOI: 10.1016/j.jid.2017.12.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/08/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Abstract
Cooling or the application of mentholated liniments to the skin has been used to treat itch for centuries, yet remarkably little is known about how counter-stimuli such as these induce itch relief. Indeed, there is no clear consensus in the scientific literature as to whether or not cooling does in fact block the transduction of itch signals or if it is simply a placebo effect. This gap in our understanding led us to hypothesize that cooling is antipruritic and, like cooling analgesia, requires function of the cold-gated ion channel TRPM8, a receptor for menthol expressed on peripheral afferent nerve endings. Using a combination of pharmacologic, genetic, and mouse behavioral assays, we find that cooling inhibits both histaminergic and non-histaminergic itch pathways, and that inhibition of itch by cooling requires TRPM8 channels or intact and functional TRPM8-expressing afferent neurons. The cold mimetic menthol is also effective in ameliorating itch in a TRPM8-dependent manner. Moreover, we find that chronic itch can be ameliorated by cooling, demonstrating that this counter-stimulus activates a specific neural circuit that leads to broad itch relief and a potential cellular mechanism for treatment of chronic itch.
Collapse
Affiliation(s)
- Radhika Palkar
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California; Neuroscience Graduate Program, Department of Biological Sciences, University of Southern California, Los Angeles, California
| | - Serra Ongun
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California; Molecular and Computational Biology Graduate Program, Department of Biological Sciences, University of Southern California, Los Angeles, California
| | - Edward Catich
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California; Neuroscience Graduate Program, Department of Biological Sciences, University of Southern California, Los Angeles, California
| | - Natalie Li
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California
| | - Neil Borad
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California
| | - Angela Sarkisian
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California
| | - David D McKemy
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California; Molecular and Computational Biology Graduate Program, Department of Biological Sciences, University of Southern California, Los Angeles, California; Neuroscience Graduate Program, Department of Biological Sciences, University of Southern California, Los Angeles, California.
| |
Collapse
|
14
|
Akiyama T, Nagamine M, Davoodi A, Ivanov M, Carstens MI, Carstens E. Innocuous warming enhances peripheral serotonergic itch signaling and evokes enhanced responses in serotonin-responsive dorsal horn neurons in the mouse. J Neurophysiol 2017; 117:251-259. [PMID: 27784810 PMCID: PMC5220113 DOI: 10.1152/jn.00703.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/19/2016] [Indexed: 11/22/2022] Open
Abstract
Itch is often triggered by warming the skin in patients with itchy dermatitis, but the underlying mechanism is largely unknown. We presently investigated if warming the skin enhances histamine- or serotonin (5-HT)-evoked itch behavior or responses of sensory dorsal root ganglion (DRG) cells, and if responses of superficial dorsal horn neurons to innocuous warming are enhanced by these pruritogens. In a temperature-controlled environmental chamber, mice exhibited greater scratching following intradermal injection of 5-HT, but not histamine, SLIGRL, or BAM8-22, when the skin surface temperature was above 36°C. Calcium imaging of DRG cells in a temperature-controlled bath revealed that responses to 5-HT, but not histamine, were significantly greater at a bath temperature of 35°C vs. lower temperatures. Single-unit recordings revealed a subpopulation of superficial dorsal horn neurons responsive to intradermal injection of 5-HT. Of these, 58% responded to innocuous skin warming (37°C) prior to intradermal injection of 5-HT, while 100% responded to warming following intradermal injection of 5-HT. Warming-evoked responses were superimposed on the 5-HT-evoked elevation in firing and were significantly larger compared with responses pre-5-HT, as long as 30 min after the intradermal injection of 5-HT. Five-HT-insensitive units, and units that either did or did not respond to intradermal histamine, did not exhibit any increase in the incidence of warmth sensitivity or in the mean response to warming following intradermal injection of the pruritogen. The results suggest that 5-HT-evoked responses of pruriceptors are enhanced during skin warming, leading to increased firing of 5-HT-sensitive dorsal horn neurons that signal nonhistaminergic itch. NEW & NOTEWORTHY Skin warming often exacerbates itch in patients with itchy dermatitis. We demonstrate that warming the skin enhanced serotonin-evoked, but not histamine-evoked, itch behavior and responses of sensory dorsal root ganglion cells. Moreover, serotonin, but not histamine, enhanced responses of superficial dorsal horn neurons to innocuous warming. The results suggest that skin warming selectively enhances the responses of serotonin-sensitive pruriceptors, leading to increased firing of serotonin-sensitive dorsal horn neurons that signal nonhistaminergic itch.
Collapse
Affiliation(s)
- T Akiyama
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California; and
- Departments of Dermatology, Anatomy, and Cell Biology, Temple Itch Center, Temple University, Philadelphia, Pennsylvania
| | - M Nagamine
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California; and
| | - A Davoodi
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California; and
| | - M Ivanov
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California; and
| | - M Iodi Carstens
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California; and
| | - E Carstens
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California; and
| |
Collapse
|
15
|
Hoeck EA, Marker JB, Gazerani P, H. Andersen H, Arendt-Nielsen L. Preclinical and human surrogate models of itch. Exp Dermatol 2016; 25:750-7. [DOI: 10.1111/exd.13078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Emil A. Hoeck
- SMI; Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Aalborg E Denmark
| | - Jens B. Marker
- SMI; Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Aalborg E Denmark
| | - Parisa Gazerani
- SMI; Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Aalborg E Denmark
| | - Hjalte H. Andersen
- SMI; Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Aalborg E Denmark
| | - Lars Arendt-Nielsen
- SMI; Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Aalborg E Denmark
| |
Collapse
|
16
|
Bell AM, Gutierrez-Mecinas M, Polgár E, Todd AJ. Spinal neurons that contain gastrin-releasing peptide seldom express Fos or phosphorylate extracellular signal-regulated kinases in response to intradermal chloroquine. Mol Pain 2016; 12:12/0/1744806916649602. [PMID: 27270268 PMCID: PMC4937990 DOI: 10.1177/1744806916649602] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/08/2016] [Indexed: 12/25/2022] Open
Abstract
Background Gastrin-releasing peptide (GRP) is thought to play a role in the itch evoked by intradermal injection of chloroquine. Although some early studies suggested that GRP was expressed in pruriceptive primary afferents, it is now thought that GRP in the spinal cord is derived mainly from a population of excitatory interneurons in lamina II, and it has been suggested that these are involved in the itch pathway. To test this hypothesis, we used the transcription factor Fos and phosphorylation of extracellular signal-regulated kinases (ERK) to look for evidence that interneurons expressing GRP were activated following intradermal injection of chloroquine into the calf, in mice that express enhanced green fluorescent protein (EGFP) in these cells. Results Injection of chloroquine resulted in numerous Fos- or phospho-ERK (pERK) positive cells in the somatotopically appropriate part of the superficial dorsal horn. The proportion of all neurons in this region that showed Fos or pERK was 18% and 21%, respectively. However, among the GRP–EGFP, only 7% were Fos-positive and 3% were pERK-positive. As such, GRP–EGFP cells were significantly less likely than other neurons to express Fos or to phosphorylate ERK. Conclusions Both expression of Fos and phosphorylation of ERK can be used to identify dorsal horn neurons activated by chloroquine injection. However, these results do not support the hypothesis that interneurons expressing GRP are critical components in the itch pathway.
Collapse
Affiliation(s)
- Andrew M Bell
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Maria Gutierrez-Mecinas
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Erika Polgár
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
17
|
A central role for spinal dorsal horn neurons that express neurokinin-1 receptors in chronic itch. Pain 2016; 156:1240-1246. [PMID: 25830923 DOI: 10.1097/j.pain.0000000000000172] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated roles for spinal neurons expressing the neurokinin-1 receptor (NK1R) and/or gastrin-releasing peptide receptor (GRPR) in a mouse model of ovalbumin (OVA)-induced chronic atopic dermatitis. Mice receiving repeated topical application of OVA exhibited atopic-like skin lesions and behavioral signs of chronic itch including spontaneous scratching, touch-evoked scratching (alloknesis), and enhancement of chloroquine-evoked scratching (hyperknesis). Substance P-saporin (SP-SAP) and bombesin-saporin (BB-SAP) were intrathecally injected into OVA-sensitized mice to neurotoxically ablate NK1R- or GRPR-expressing spinal neurons, respectively. SP-SAP diminished the expression of NK1R in the superficial spinal dorsal horn and significantly attenuated all behavioral signs of chronic itch. BB-SAP reduced the spinal dorsal horn expression of GRPR and significantly attenuated hyperknesis, with no effect on spontaneous scratching or alloknesis. To investigate whether NK1R-expressing spinal neurons project in ascending somatosensory pathways, we performed a double-label study. The retrograde tracer, Fluorogold (FG), was injected into either the somatosensory thalamus or lateral parabrachial nucleus. In the upper cervical (C1-2) spinal cord, most neurons retrogradely labeled with FG were located in the dorsomedial aspect of the superficial dorsal horn. Of FG-labeled spinal neurons, 89% to 94% were double labeled for NK1R. These results indicate that NK1R-expressing spinal neurons play a major role in the expression of symptoms of chronic itch and give rise to ascending somatosensory projections. Gastrin-releasing peptide receptor-expressing spinal neurons contribute to hyperknesis but not to alloknesis or ongoing itch. NK1R-expressing spinal neurons represent a potential target to treat chronic itch.
Collapse
|
18
|
Tang M, Wu G, Wang Z, Yang N, Shi H, He Q, Zhu C, Yang Y, Yu G, Wang C, Yuan X, Liu Q, Guan Y, Dong X, Tang Z. Voltage-gated potassium channels involved in regulation of physiological function in MrgprA3-specific itch neurons. Brain Res 2016; 1636:161-171. [PMID: 26874069 DOI: 10.1016/j.brainres.2016.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 01/20/2016] [Accepted: 02/04/2016] [Indexed: 12/19/2022]
Abstract
Itch is described as an unpleasant or irritating skin sensation that elicits the desire or reflex to scratch. MrgprA3, one of members of the Mrgprs family, is specifically expressed in a subpopulation of dorsal root ganglion (DRG) in the peripheral nervous system (PNS). These MrgprA3-expressing DRG neurons have been identified as itch-specific neurons. They can be activated by the compound, chloroquine, which is used as a drug to treat malaria. In the present study, we labeled these itch-specific neurons using the method of molecular genetic markers, and then studied their electrophysiological properties. We also recorded the cutaneous MrgprA3(-) neurons retrogradely labeled by Dil dye (MrgprA3(-)-Dil). We first found that MrgprA3(+) neurons have a lower excitability than MrgprA3(-) neurons (MrgprA3(-)-non-Dil and MrgprA3(-)-Dil). The number of action potential (AP) was reduced more obviously in MrgprA3(+) neurons than that of in MrgprA3(-) neurons. In most cases, MrgprA3(+) neurons only generated single AP; however, in MrgprA3(-) neurons, the same stimulation could induce multiple AP firing due to the greater voltage-gated potassium (Kv) current existence in MrgprA3(+) than in MrgprA3(-) neurons. Thus, Kv current plays an important role in the regulation of excitability in itch-specific neurons.
Collapse
Affiliation(s)
- Min Tang
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China; College of Biology and Environmental Sciences, Jishou University, Jishou, China
| | - Guanyi Wu
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China; College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhongli Wang
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Niuniu Yang
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao Shi
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian He
- College of Biology and Environmental Sciences, Jishou University, Jishou, China
| | - Chan Zhu
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Yang
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guang Yu
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Changming Wang
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaolin Yuan
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qin Liu
- Department of Anesthesiology, Washington University in St. Louis, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University Schools of Medicine, Baltimore, MD, USA
| | - Xinzhong Dong
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zongxiang Tang
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
19
|
Ostadhadi S, Nikoui V, Haj-Mirzaian A, Kordjazy N, Dehpour AR. The role of PPAR-gamma receptor in pruritus. Eur J Pharmacol 2015; 762:322-325. [DOI: 10.1016/j.ejphar.2015.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 01/27/2023]
|
20
|
Akiyama T, Nagamine M, Davoodi A, Iodi Carstens M, Cevikbas F, Steinhoff M, Carstens E. Intradermal endothelin-1 excites bombesin-responsive superficial dorsal horn neurons in the mouse. J Neurophysiol 2015; 114:2528-34. [PMID: 26311187 DOI: 10.1152/jn.00723.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/24/2015] [Indexed: 01/21/2023] Open
Abstract
Endothelin-1 (ET-1) has been implicated in nonhistaminergic itch. Here we used electrophysiological methods to investigate whether mouse superficial dorsal horn neurons respond to intradermal (id) injection of ET-1 and whether ET-1-sensitive neurons additionally respond to other pruritic and algesic stimuli or spinal superfusion of bombesin, a homolog of gastrin-releasing peptide (GRP) that excites spinal itch-signaling neurons. Single-unit recordings were made from lumbar dorsal horn neurons in pentobarbital-anesthetized C57BL/6 mice. We searched for units that exhibited elevated firing after id injection of ET-1 (1 μg/μl). Responsive units were further tested with mechanical stimuli, bombesin (spinal superfusion, 200 μg·ml(-1)·min(-1)), heating, cooling, and additional chemicals [histamine, chloroquine, allyl isothiocyanate (AITC), capsaicin]. Of 40 ET-1-responsive units, 48% responded to brush and pinch [wide dynamic range (WDR)] and 52% to pinch only [high threshold (HT)]. Ninety-three percent responded to noxious heat, 50% to cooling, and >70% to histamine, chloroquine, AITC, and capsaicin. Fifty-seven percent responded to bombesin, suggesting that they participate in spinal itch transmission. That most ET-1-sensitive spinal neurons also responded to pruritic and algesic stimuli is consistent with previous studies of pruritogen-responsive dorsal horn neurons. We previously hypothesized that pruritogen-sensitive neurons signal itch. The observation that ET-1 activates nociceptive neurons suggests that both itch and pain signals may be generated by ET-1 to result in simultaneous sensations of itch and pain, consistent with observations that ET-1 elicits both itch- and pain-related behaviors in animals and burning itch sensations in humans.
Collapse
Affiliation(s)
- T Akiyama
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| | - M Nagamine
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| | - A Davoodi
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| | - M Iodi Carstens
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| | - F Cevikbas
- Departments of Dermatology and Surgery, University of California, San Francisco, California; and
| | - M Steinhoff
- Department of Dermatology and Charles Institute for Translational Dermatology, University College Dublin, Dublin, Ireland
| | - E Carstens
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California;
| |
Collapse
|
21
|
Maciel I, Azevedo V, Pereira T, Bogo M, Souza A, Gomez M, Campos M. The spinal inhibition of N-type voltage-gated calcium channels selectively prevents scratching behavior in mice. Neuroscience 2014; 277:794-805. [DOI: 10.1016/j.neuroscience.2014.07.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/02/2014] [Accepted: 07/29/2014] [Indexed: 11/27/2022]
|