1
|
Correia MR, Han SW, Escalante T, Moreira V. The role of the cyclooxygenase-2 pathway in tissue ischemia and revascularization following skeletal muscle injury induced by bothropic snake venom. Microvasc Res 2025; 157:104760. [PMID: 39510245 DOI: 10.1016/j.mvr.2024.104760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/14/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
Bothrops asper venom (Bav) contains metalloproteinases that disrupt the microvascular system, impairing muscle tissue regeneration after injury. This study investigated the impact of the cyclooxygenase-2 (COX-2) pathway on vascular injury and revascularization in muscle injuries induced by Bav. Mice were injected with Bav into the gastrocnemius muscle and treated with lumiracoxib, a selective COX-2 inhibitor, 30 min, 2 days, and 6 days post-Bav injection. Muscle tissue was analyzed at 24 h, 7 days, and 21 days post-injection. A decrease in COX-2 expression at 24 h post-Bav injection indicated significant necrosis and tissue loss. Both Bav injection and lumiracoxib treatment influenced the decrease of prostaglandin (PG)D2 and PGE2 production. Seven and 21 days post-Bav injections, COX-2 expression increased, along with PGDs levels unaffected by lumiracoxib, indicating that the other isoform COX-1 pathway could contribute to the release of PGs. Bav/lumiracoxib treated animals presented exacerbated limb ischemia, implying that COX-2-derived prostaglandins preserve vessel integrity. CD31, an angiogenesis marker, initially (24 h) decreased post-Bav injection but increased at 7 and 21 days in Bav/lumiracoxib mice, suggesting a down-modulatory role for COX-2-derived prostaglandins in early angiogenesis and tissue regeneration. Vascular endothelial growth factor (VEGF) production rose 7 days post-Bav injection, supporting its role in angiogenesis. Previous treatment with lumiracoxib promoted release of VEGF levels 21 days post-Bav injury showing that the inhibition of COX-2 pathway in the early stage of revascularization stimulates the neovascularization regulated by elevated release of VEGF. Similarly, metalloproteinases (MMPs), such as MMP-9, MMP-10, and MMP-13, crucial for vascular remodeling, were elevated 21 days after Bav/lumiracoxib treatment. In conclusion, the COX-2 pathway is essential to decrease the high grade of ischemia caused by acute injury induced by Bav. However, the decrease of activity in the COX-2 pathway in the first stages of revascularization contributes to the elevated production of key pro-angiogenic mediators that up-regulate the restoration of microvasculature and blood flow in muscle tissue injured by botropic venoms.
Collapse
Affiliation(s)
- Melissa Rodrigues Correia
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | - Sang Won Han
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo SP, Brazil
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Vanessa Moreira
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Nakagomi T, Narita A, Nishie H, Nakano-Doi A, Sawano T, Fukuda Y, Matsuyama T. L-PGDS-PGD2-DP1 Axis Regulates Phagocytosis by CD36 + MGs/MΦs That Are Exclusively Present Within Ischemic Areas After Stroke. Cells 2024; 13:1737. [PMID: 39451255 PMCID: PMC11505914 DOI: 10.3390/cells13201737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Brain injuries, such as ischemic stroke, cause cell death. Although phagocytosis of cellular debris is mainly performed by microglia/macrophages (MGs/MΦs), excessive accumulation beyond their phagocytic capacities results in waste product buildup, delaying brain cell regeneration. Therefore, it is essential to increase the potential for waste product removal from damaged brains. Lipocalin-type prostaglandin D synthase (L-PGDS) is the primary synthase for prostaglandin D2 (PGD2) and has been reported as a scavenger of waste products. However, the mechanism by which the L-PGDS-PGD2 axis exerts such an effect remains unelucidated. In this study, using a mouse model of ischemic stroke, we found that L-PGDS and its downstream signaling pathway components, including PGD2 and PGD2 receptor DP1 (but not DP2), were significantly upregulated in ischemic areas. Immunohistochemistry revealed the predominant expression of L-PGDS in the leptomeninges of ischemic areas and high expression levels of DP1 in CD36+ MGs/MΦs that were specifically present within ischemic areas. Furthermore, PGD2 treatment promoted the conversion of MGs/MΦs into CD36+ scavenger types and increased phagocytic activities of CD36+ MGs/MΦs. Because CD36+ MGs/MΦs specifically appeared within ischemic areas after stroke, our findings suggest that the L-PGDS-PGD2-DP1 axis plays an important role in brain tissue repair by regulating phagocytic activities of CD36+ MGs/MΦs.
Collapse
Affiliation(s)
- Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan; (A.N.); (A.N.-D.)
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan;
| | - Aya Narita
- Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan; (A.N.); (A.N.-D.)
| | - Hideaki Nishie
- Nippon Zoki Pharmaceutical Co., Ltd., 4-2-3 Hirano-machi, Chuo-ku, Osaka 541-0046, Japan; (H.N.); (Y.F.)
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan; (A.N.); (A.N.-D.)
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan;
| | - Toshinori Sawano
- Department of Biomedical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Japan;
| | - Yu Fukuda
- Nippon Zoki Pharmaceutical Co., Ltd., 4-2-3 Hirano-machi, Chuo-ku, Osaka 541-0046, Japan; (H.N.); (Y.F.)
| | - Tomohiro Matsuyama
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan;
| |
Collapse
|
3
|
Lénárt N, Cserép C, Császár E, Pósfai B, Dénes Á. Microglia-neuron-vascular interactions in ischemia. Glia 2024; 72:833-856. [PMID: 37964690 DOI: 10.1002/glia.24487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Cerebral ischemia is a devastating condition that results in impaired blood flow in the brain leading to acute brain injury. As the most common form of stroke, occlusion of cerebral arteries leads to a characteristic sequence of pathophysiological changes in the brain tissue. The mechanisms involved, and comorbidities that determine outcome after an ischemic event appear to be highly heterogeneous. On their own, the processes leading to neuronal injury in the absence of sufficient blood supply to meet the metabolic demand of the cells are complex and manifest at different temporal and spatial scales. While the contribution of non-neuronal cells to stroke pathophysiology is increasingly recognized, recent data show that microglia, the main immune cells of the central nervous system parenchyma, play previously unrecognized roles in basic physiological processes beyond their inflammatory functions, which markedly change during ischemic conditions. In this review, we aim to discuss some of the known microglia-neuron-vascular interactions assumed to contribute to the acute and delayed pathologies after cerebral ischemia. Because the mechanisms of neuronal injury have been extensively discussed in several excellent previous reviews, here we focus on some recently explored pathways that may directly or indirectly shape neuronal injury through microglia-related actions. These discoveries suggest that modulating gliovascular processes in different forms of stroke and other neurological disorders might have presently unexplored therapeutic potential in combination with neuroprotective and flow restoration strategies.
Collapse
Affiliation(s)
- Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Eszter Császár
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
4
|
Zeng C, Liu J, Zheng X, Hu X, He Y. Prostaglandin and prostaglandin receptors: present and future promising therapeutic targets for pulmonary arterial hypertension. Respir Res 2023; 24:263. [PMID: 37915044 PMCID: PMC10619262 DOI: 10.1186/s12931-023-02559-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH), Group 1 pulmonary hypertension (PH), is a type of pulmonary vascular disease characterized by abnormal contraction and remodeling of the pulmonary arterioles, manifested by pulmonary vascular resistance (PVR) and increased pulmonary arterial pressure, eventually leading to right heart failure or even death. The mechanisms involved in this process include inflammation, vascular matrix remodeling, endothelial cell apoptosis and proliferation, vasoconstriction, vascular smooth muscle cell proliferation and hypertrophy. In this study, we review the mechanisms of action of prostaglandins and their receptors in PAH. MAIN BODY PAH-targeted therapies, such as endothelin receptor antagonists, phosphodiesterase type 5 inhibitors, activators of soluble guanylate cyclase, prostacyclin, and prostacyclin analogs, improve PVR, mean pulmonary arterial pressure, and the six-minute walk distance, cardiac output and exercise capacity and are licensed for patients with PAH; however, they have not been shown to reduce mortality. Current treatments for PAH primarily focus on inhibiting excessive pulmonary vasoconstriction, however, vascular remodeling is recalcitrant to currently available therapies. Lung transplantation remains the definitive treatment for patients with PAH. Therefore, it is imperative to identify novel targets for improving pulmonary vascular remodeling in PAH. Studies have confirmed that prostaglandins and their receptors play important roles in the occurrence and development of PAH through vasoconstriction, vascular smooth muscle cell proliferation and migration, inflammation, and extracellular matrix remodeling. CONCLUSION Prostacyclin and related drugs have been used in the clinical treatment of PAH. Other prostaglandins also have the potential to treat PAH. This review provides ideas for the treatment of PAH and the discovery of new drug targets.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Jing Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Xialei Zheng
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Xinqun Hu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China.
| | - Yuhu He
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China.
| |
Collapse
|
5
|
Guo T, Liu B, Zeng R, Lin R, Guo J, Yu G, Xu Y, Tan X, Xie K, Zhou Y. The vasoconstrictor activities of prostaglandin D 2 via the thromboxane prostanoid receptor and E prostanoid receptor-3 outweigh its concurrent vasodepressor effect mainly through D prostanoid receptor-1 ex vivo and in vivo. Eur J Pharmacol 2023; 956:175963. [PMID: 37543159 DOI: 10.1016/j.ejphar.2023.175963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Prostaglandin (PG) D2, a commonly considered vasodilator through D prostanoid receptor-1 (DP1), might also evoke vasoconstriction via acting on the thromboxane (Tx)-prostanoid receptor (the original receptor of TxA2; TP) and/or E prostanoid receptor-3 (one of the vasoconstrictor receptors of PGE2; EP3). This study aimed to test the above hypothesis in the mouse renal vascular bed (main renal arteries and perfused kidneys) and/or mesenteric resistance arteries and determine how the vasoconstrictor mechanism influences the overall PGD2 effect on systemic blood pressure under in vivo conditions. Experiments were performed on control wild-type (WT) mice and mice with deficiencies in TP (TP-/-) and/or EP3 (EP3-/-). Here we show that PGD2 indeed evoked vasoconstrictor responses in the above-mentioned tissues of WT mice, which were however not only reduced by TP-/- or EP3-/-, but also reversed by TP-/-/EP3-/- in some of the above tissues (mesenteric resistance arteries or perfused kidneys) to dilator reactions that were reduced by non-selective DP antagonism. A slight or mild pressor response was also observed with PGD2 under in vivo conditions, and this was again reversed to a depressor response in TP-/- or TP-/-/EP3-/- mice. Non-selective DP antagonism reduced the PGD2-evoked depressor response in TP-/-/EP3-/- mice as well. These results thus demonstrate that like other PGs, PGD2 activates TP and/or EP3 to evoke vasoconstrictor activities, which can outweigh its concurrent vasodepressor activity mediated mainly through DP1, and hence result in a pressor response, although the response might only be of a slight or mild extent.
Collapse
Affiliation(s)
- Tingting Guo
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China.
| | - Ruhui Zeng
- Department of Gynaecology and Obstetrics, First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Rui Lin
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Jinwei Guo
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Gang Yu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yineng Xu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Xiangzhai Tan
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Kaiqi Xie
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China.
| |
Collapse
|
6
|
Takata F, Nakagawa S, Matsumoto J, Dohgu S. Blood-Brain Barrier Dysfunction Amplifies the Development of Neuroinflammation: Understanding of Cellular Events in Brain Microvascular Endothelial Cells for Prevention and Treatment of BBB Dysfunction. Front Cell Neurosci 2021; 15:661838. [PMID: 34588955 PMCID: PMC8475767 DOI: 10.3389/fncel.2021.661838] [Citation(s) in RCA: 270] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is involved in the onset or progression of various neurodegenerative diseases. Initiation of neuroinflammation is triggered by endogenous substances (damage-associated molecular patterns) and/or exogenous pathogens. Activation of glial cells (microglia and astrocytes) is widely recognized as a hallmark of neuroinflammation and triggers the release of proinflammatory cytokines, leading to neurotoxicity and neuronal dysfunction. Another feature associated with neuroinflammatory diseases is impairment of the blood-brain barrier (BBB). The BBB, which is composed of brain endothelial cells connected by tight junctions, maintains brain homeostasis and protects neurons. Impairment of this barrier allows trafficking of immune cells or plasma proteins into the brain parenchyma and subsequent inflammatory processes in the brain. Besides neurons, activated glial cells also affect BBB integrity. Therefore, BBB dysfunction can amplify neuroinflammation and act as a key process in the development of neuroinflammation. BBB integrity is determined by the integration of multiple signaling pathways within brain endothelial cells through intercellular communication between brain endothelial cells and brain perivascular cells (pericytes, astrocytes, microglia, and oligodendrocytes). For prevention of BBB disruption, both cellular components, such as signaling molecules in brain endothelial cells, and non-cellular components, such as inflammatory mediators released by perivascular cells, should be considered. Thus, understanding of intracellular signaling pathways that disrupt the BBB can provide novel treatments for neurological diseases associated with neuroinflammation. In this review, we discuss current knowledge regarding the underlying mechanisms involved in BBB impairment by inflammatory mediators released by perivascular cells.
Collapse
Affiliation(s)
- Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinsuke Nakagawa
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Junichi Matsumoto
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
7
|
Fréchette L, Degrandmaison J, Binda C, Boisvert M, Côté L, Michaud T, Lalumière MP, Gendron L, Parent JL. Identification of the interactome of the DP1 receptor for Prostaglandin D 2: Regulation of DP1 receptor signaling and trafficking by IQGAP1. Biochim Biophys Acta Gen Subj 2021; 1865:129969. [PMID: 34352343 DOI: 10.1016/j.bbagen.2021.129969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND Mechanisms governing localization, trafficking and signaling of G protein-coupled receptors (GPCRs) are critical in cell function. Protein-protein interactions are determinant in these processes. However, there are very little interacting proteins known to date for the DP1 receptor for prostaglandin D2. METHODS We performed LC-MS/MS analyses of the DP1 receptor interactome in HEK293 cells. To functionally validate our LC-MS/MS data, we studied the implications of the interaction with the IQGAP1 scaffold protein in the trafficking and signaling of DP1. RESULTS In addition to expected interacting proteins such as heterotrimeric G protein subunits, we identified proteins involved in signaling, trafficking, and folding localized in various cell compartments. Endogenous DP1-IQGAP1 co-immunoprecipitation was observed in colon cancer HT-29 cells. The interaction was augmented by DP1 agonist activation in HEK293 cells and GST-pulldown assays showed that IQGAP1 binds to intracellular loops 2 and 3 of DP1. Co-localization of the two proteins was observed by confocal microscopy at the cell periphery and in intracellular vesicles in the basal state. PGD2 treatment resulted in the redistribution of the DP1-IQGAP1 co-localization in the perinuclear vicinity. DP1 receptor internalization was promoted by overexpression of IQGAP1, while it was diminished by IQGAP1 knockdown with DsiRNAs. DP1-mediated ERK1/2 activation was augmented and sustained overtime by overexpression of IQGAP1 when compared to DP1 expressed alone. IQGAP1 knockdown decreased ERK1/2 activation by DP1 stimulation. Interestingly, ERK1/2 signaling by DP1 was increased when IQGAP2 was silenced, while it was impaired by IQGAP3 knockdown. CONCLUSIONS Our findings define the putative DP1 interactome, a patho-physiologically important receptor, and validated the interaction with IQGAP1 in DP1 function. Our data also reveal that IQGAP proteins may differentially regulate GPCR signaling. GENERAL SIGNIFICANCE The identified putative DP1-interacting proteins open multiple lines of research in DP1 and GPCR biology in various cell compartments.
Collapse
Affiliation(s)
- Louis Fréchette
- Département de Médecine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jade Degrandmaison
- Département de Médecine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Chantal Binda
- Département de Médecine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marilou Boisvert
- Département de Médecine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Laurie Côté
- Département de Médecine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Thomas Michaud
- Département de Médecine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marie-Pier Lalumière
- Département de Médecine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Département d'Anesthésiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-Luc Parent
- Département de Médecine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada; Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
8
|
G-Protein-Coupled Receptors and Ischemic Stroke: a Focus on Molecular Function and Therapeutic Potential. Mol Neurobiol 2021; 58:4588-4614. [PMID: 34120294 DOI: 10.1007/s12035-021-02435-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/18/2021] [Indexed: 01/22/2023]
Abstract
In ischemic stroke, there is only one approved drug, tissue plasminogen activator, to be used in clinical conditions for thrombolysis. New neuroprotective therapies for ischemic stroke are desperately needed. Several targets and pathways have been shown to confer neuroprotective effects in ischemic stroke. G-protein-coupled receptors (GPCRs) are one of the most frequently targeted receptors for developing novel therapeutics for central nervous system disorders. GPCRs are a large family of cell surface receptors that response to a wide variety of extracellular stimuli. GPCRs are involved in a wide range of physiological and pathological processes. More than 90% of the identified non-sensory GPCRs are expressed in the brain, where they play important roles in regulating mood, pain, vision, immune responses, cognition, and synaptic transmission. There is also good evidence that GPCRs are implicated in the pathogenesis of stroke. This review narrates the pathophysiological role and possible targeted therapy of GPCRs in ischemic stroke.
Collapse
|
9
|
Zeng H, Liu N, Liu XX, Yang YY, Zhou MW. α-Synuclein in traumatic and vascular diseases of the central nervous system. Aging (Albany NY) 2020; 12:22313-22334. [PMID: 33188159 PMCID: PMC7695413 DOI: 10.18632/aging.103675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
α-Synuclein (α-Syn) is a small, soluble, disordered protein that is widely expressed in the nervous system. Although its physiological functions are not yet fully understood, it is mainly involved in synaptic vesicle transport, neurotransmitter synthesis and release, cell membrane homeostasis, lipid synthesis, mitochondrial and lysosomal activities, and heavy metal removal. The complex and inconsistent pathological manifestations of α-Syn are attributed to its structural instability, mutational complexity, misfolding, and diverse posttranslational modifications. These effects trigger mitochondrial dysfunction, oxidative stress, and neuroinflammatory responses, resulting in neuronal death and neurodegeneration. Several recent studies have discovered the pathogenic roles of α-Syn in traumatic and vascular central nervous system diseases, such as traumatic spinal cord injury, brain injury, and stroke, and in aggravating the processes of neurodegeneration. This review aims to highlight the structural and pathophysiological changes in α-Syn and its mechanism of action in traumatic and vascular diseases of the central nervous system.
Collapse
Affiliation(s)
- Hong Zeng
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Nan Liu
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Xiao-Xie Liu
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yan-Yan Yang
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Mou-Wang Zhou
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
10
|
Rittchen S, Rohrer K, Platzer W, Knuplez E, Bärnthaler T, Marsh LM, Atallah R, Sinn K, Klepetko W, Sharma N, Nagaraj C, Heinemann A. Prostaglandin D 2 strengthens human endothelial barrier by activation of E-type receptor 4. Biochem Pharmacol 2020; 182:114277. [PMID: 33038299 DOI: 10.1016/j.bcp.2020.114277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Life-threatening inflammatory conditions such as acute respiratory distress syndrome or sepsis often go hand in hand with severe vascular leakage. During inflammation, endothelial cell integrity and intact barrier function are crucial to limit leukocyte and plasma extravasation. Prostaglandin D2 (PGD2) is a potent inflammatory lipid mediator with vasoactive properties. Previous studies suggest that PGD2 is involved in the regulation of endothelial barrier function; however, it is unclear whether this is also true for primary human pulmonary microvascular endothelial cells. Furthermore, as PGD2 is a highly promiscuous ligand, we set out to determine which receptors are important in human pulmonary endothelial cells. In the current study, we found that PGD2 and the DP1 agonist BW245c potently strengthened pulmonary and dermal microvascular endothelial cell barrier function and protected against thrombin-induced barrier disruption. Yet surprisingly, these effects were mediated only to a negligible extent via DP1 receptor activation. In contrast, we observed that the EP4 receptor was most important and mediated the barrier enhancement by PGD2 and BW245c. Stimulation with PGE2 or PGD2 reduced AKT phosphorylation which could be reversed by prior blockade of EP4 receptors. These data demonstrate a novel mechanism by which PGD2 may modulate inflammation and emphasizes the role of EP4 receptors in human endothelial cell function.
Collapse
Affiliation(s)
- Sonja Rittchen
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Kathrin Rohrer
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Wolfgang Platzer
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Eva Knuplez
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Thomas Bärnthaler
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Reham Atallah
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Katharina Sinn
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Neha Sharma
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Akos Heinemann
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria; BioTechMed, Graz, Austria.
| |
Collapse
|
11
|
He Y, Zuo C, Jia D, Bai P, Kong D, Chen D, Liu G, Li J, Wang Y, Chen G, Yan S, Xiao B, Zhang J, Piao L, Li Y, Deng Y, Li B, Roux PP, Andreasson KI, Breyer RM, Su Y, Wang J, Lyu A, Shen Y, Yu Y. Loss of DP1 Aggravates Vascular Remodeling in Pulmonary Arterial Hypertension via mTORC1 Signaling. Am J Respir Crit Care Med 2020; 201:1263-1276. [PMID: 31917615 DOI: 10.1164/rccm.201911-2137oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rationale: Vascular remodeling, including smooth muscle cell hypertrophy and proliferation, is the key pathological feature of pulmonary arterial hypertension (PAH). Prostaglandin I2 analogs (beraprost, iloprost, and treprostinil) are effective in the treatment of PAH. Of note, the clinically favorable effects of treprostinil in severe PAH may be attributable to concomitant activation of DP1 (D prostanoid receptor subtype 1).Objectives: To study the role of DP1 in the progression of PAH and its underlying mechanism.Methods: DP1 levels were examined in pulmonary arteries of patients and animals with PAH. Multiple genetic and pharmacologic approaches were used to investigate DP1-mediated signaling in PAH.Measurements and Main Results: DP1 expression was downregulated in hypoxia-treated pulmonary artery smooth muscle cells and in pulmonary arteries from rodent PAH models and patients with idiopathic PAH. DP1 deletion exacerbated pulmonary artery remodeling in hypoxia-induced PAH, whereas pharmacological activation or forced expression of the DP1 receptor had the opposite effect in different rodent models. DP1 deficiency promoted pulmonary artery smooth muscle cell hypertrophy and proliferation in response to hypoxia via induction of mTORC1 (mammalian target of rapamycin complex 1) activity. Rapamycin, an inhibitor of mTORC1, alleviated the hypoxia-induced exacerbation of PAH in DP1-knockout mice. DP1 activation facilitated raptor dissociation from mTORC1 and suppressed mTORC1 activity through PKA (protein kinase A)-dependent phosphorylation of raptor at Ser791. Moreover, treprostinil treatment blocked the progression of hypoxia-induced PAH in mice in part by targeting the DP1 receptor.Conclusions: DP1 activation attenuates hypoxia-induced pulmonary artery remodeling and PAH through PKA-mediated dissociation of raptor from mTORC1. These results suggest that the DP1 receptor may serve as a therapeutic target for the management of PAH.
Collapse
Affiliation(s)
- Yuhu He
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Caojian Zuo
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Department of Cardiology, Shanghai General Hospital, and
| | - Daile Jia
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peiyuan Bai
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Deping Kong
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Di Chen
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guizhu Liu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Juanjuan Li
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyang Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Guilin Chen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shuai Yan
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bing Xiao
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lingjuan Piao
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanli Li
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yi Deng
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Bin Li
- Orthopedic Institute, Soochow University, Jiangsu, China
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer and.,Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Katrin I Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Richard M Breyer
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, Tennessee.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ankang Lyu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Nakamura A, Otani K, Shichita T. Lipid mediators and sterile inflammation in ischemic stroke. Int Immunol 2020; 32:719-725. [DOI: 10.1093/intimm/dxaa027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022] Open
Abstract
Abstract
Stroke is one of the major causes of lethality and disability, yet few effective therapies have been established for ischemic stroke. Inflammation in the ischemic brain is induced by the infiltration and subsequent activation of immune cells. Loss of cerebral blood flow and ischemic brain-cell death trigger the activation of infiltrating immune cells and drastic changes in the lipid content of the ischemic brain. In particular, polyunsaturated fatty acids and their metabolites regulate cerebral post-ischemic inflammation and ischemic stroke pathologies. In this review, we discuss the relationships between the lipid mediators and cerebral post-ischemic inflammation and their relevance to possible future therapeutic strategies targeting lipid mediators for ischemic stroke.
Collapse
Affiliation(s)
- Akari Nakamura
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kento Otani
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Takashi Shichita
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
- Precursory Research for Innovative Medical Care (PRIME), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| |
Collapse
|
13
|
Distinctive effect of anesthetics on the effect of limb remote ischemic postconditioning following ischemic stroke. PLoS One 2020; 15:e0227624. [PMID: 31945776 PMCID: PMC6964983 DOI: 10.1371/journal.pone.0227624] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
Limb remote ischemic postconditioning (LRIP) has been reported as an effective method to reduce the induced experimental stroke damage after ischemic reperfusion (IR) injury. Studies suggest that anesthetics used during induction of ischemic stroke can reduce IR injury, which could affect the actual mechanisms of neuroprotection by LRIP. This study focuses on the comparative effects of anesthetics such as isoflurane and ketamine-xylazine on ischemic injury when used during LRIP. Adult C57BL/6 mice were anesthetized by isoflurane or halothane, and transient middle cerebral artery occlusion (MCAO) was induced through insertion of the filament. Under isoflurane or ketamine-xylazine anesthesia, LRIP was performed after 90 min of reperfusion by carrying out three cycles of 5 min ischemia/5 min reperfusion of the bilateral hind limbs for one session per day for a total of 3 days. Results showed that the use of different anesthetics—isoflurane or ketamine-xylazine—during LRIP had no effects on body weight. However, LRIP was able to improve neurological function as observed by the neurological deficit score in ischemic mice. Interestingly, the neurological deficit in the group where ketamine-xylazine was used was better than the group where isoflurane was used during LRIP. Furthermore, the LRIP was able to prolong the period of the ischemic mice on the rotarod and this effect was more significant in the groups where ketamine-xylazine was used during LRIP. Moreover, LRIP significantly attenuated the infarction volume; however, this effect was independent of the anesthetic used during LRIP. From these results, we conclude that ischemic mice that were subjected to LRIP under ketamine-xylazine anesthesia had better neurological deficit outcomes after stroke.
Collapse
|
14
|
Ahmad AS, Ottallah H, Maciel CB, Strickland M, Doré S. Role of the L-PGDS-PGD2-DP1 receptor axis in sleep regulation and neurologic outcomes. Sleep 2019; 42:zsz073. [PMID: 30893431 PMCID: PMC6559173 DOI: 10.1093/sleep/zsz073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/16/2019] [Indexed: 12/18/2022] Open
Abstract
To meet the new challenges of modern lifestyles, we often compromise a good night's sleep. In preclinical models as well as in humans, a chronic lack of sleep is reported to be among the leading causes of various physiologic, psychologic, and neurocognitive deficits. Thus far, various endogenous mediators have been implicated in inter-regulatory networks that collectively influence the sleep-wake cycle. One such mediator is the lipocalin-type prostaglandin D2 synthase (L-PGDS)-Prostaglandin D2 (PGD2)-DP1 receptor (L-PGDS-PGD2-DP1R) axis. Findings in preclinical models confirm that DP1R are predominantly expressed in the sleep-regulating centers. This finding led to the discovery that the L-PGDS-PGD2-DP1R axis is involved in sleep regulation. Furthermore, we showed that the L-PGDS-PGD2-DP1R axis is beneficial in protecting the brain from ischemic stroke. Protein sequence homology was also performed, and it was found that L-PGDS and DP1R share a high degree of homology between humans and rodents. Based on the preclinical and clinical data thus far pertaining to the role of the L-PGDS-PGD2-DP1R axis in sleep regulation and neurologic conditions, there is optimism that this axis may have a high translational potential in human therapeutics. Therefore, here the focus is to review the regulation of the homeostatic component of the sleep process with a special focus on the L-PGDS-PGD2-DP1R axis and the consequences of sleep deprivation on health outcomes. Furthermore, we discuss whether the pharmacological regulation of this axis could represent a tool to prevent sleep disturbances and potentially improve outcomes, especially in patients with acute brain injuries.
Collapse
Affiliation(s)
- Abdullah Shafique Ahmad
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Haneen Ottallah
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Carolina B Maciel
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL
| | - Michael Strickland
- Division of Biology and Biomedical Sciences, Washington University in Saint Louis, Saint Louis, MO
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
- Department of Psychiatry, University of Florida, Gainesville, FL
- Department of Pharmaceutics, University of Florida, Gainesville, FL
- Department of Psychology, University of Florida, Gainesville, FL
- Department of Neuroscience, University of Florida, Gainesville, FL
| |
Collapse
|
15
|
Ahmad AS, Mendes M, Hernandez D, Doré S. Efficacy of Laropiprant in Minimizing Brain Injury Following Experimental Intracerebral Hemorrhage. Sci Rep 2017; 7:9489. [PMID: 28842638 PMCID: PMC5573370 DOI: 10.1038/s41598-017-09994-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/01/2017] [Indexed: 12/31/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is one of the most devastating and disabling forms of stroke, yet effective treatments are still lacking. Prostaglandins and their receptors have been implicated in playing vital roles in ICH outcomes. Recently, laropiprant, a DP1 receptor antagonist, has been used in combination with niacin to abolish the prostaglandin D2-(PGD2)-induced flushing. Here, we test the hypothesis that laropiprant limits bleeding and rescues the brain from ICH. Wildtype (WT) and DP1-/- mice were subjected ICH and neurologic deficits and hemorrhagic lesion outcomes were evaluated at 72 hours after the ICH. To test the therapeutic potential of laropiprant, WT mice subjected to ICH were treated with laropiprant at 1 hour after the ICH. The putative effect of laropiprant on limiting hematoma expansion was tested by an in vivo tail bleeding cessation method and an ex vivo coagulation method. Finally, the roles of laropiprant on gliosis and iron accumulation were also investigated. A significant decrease in the injury volume was observed in DP1-/- as well as laropiprant-treated WT mice. The tail bleeding time was significantly lower in laropiprant group as compared with the vehicle group. Significantly lower Iba-1 and Perls' iron staining in DP1-/- and laropiprant-treated WT groups were observed. Altogether, the data suggest that laropiprant treatment post-ICH attenuates brain damage by targeting primary as well as secondary injuries.
Collapse
Affiliation(s)
- Abdullah Shafique Ahmad
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA.
- Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | - Monique Mendes
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Damian Hernandez
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA.
- Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Departments of Neurology, Psychiatry, Pharmaceutics, Psychology, and Neuroscience, University of Florida, Gainesville, FL, USA.
| |
Collapse
|