1
|
Wu Y, Luo J, Xu B. Insights into the anticancer effects of galangal and galangin: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156085. [PMID: 39353308 DOI: 10.1016/j.phymed.2024.156085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUNDS Cancer continues to be the leading cause of death worldwide, significantly impacting both health and the economy. Natural products have emerged as promising sources for the development of new anticancer drugs, with galangal and their active ingredient, galangin, garnering substantial interest. PURPOSE This study summarizes recent findings on the anticancer properties of galangal and galangin, highlighting their potential to target various cancer types. METHODS We systematically searched the literature across PubMed, Web of Science, and Google Scholar, using keywords such as "Alpinia officinarum," "Alpinia galanga", "galangal," and "galangin." This thorough approach allowed us to gather and compile a comprehensive collection of existing research on the topic. RESULTS This article provided a thorough analysis of the distribution of galangal, the methods used to extract the active compounds of galangal, and the anticancer properties of both galangin and galangal. It is important to note that galangal and galangin primarily function by regulating the signaling pathways of PI3K/Akt, MAPK, AMPK, p53, NF-κB, and Ras/RAF/MEK/ERK, which in turn triggers apoptosis, autophagy, and ROS while preventing the migration and invasion of cancer cells. We also discussed their toxicity, bioavailability, and clinical uses. CONCLUSION In conclusion, galangal extract and galangin have a lot of promise for treating cancer. It is anticipated that this review will further advance the use of galangal extract and galangin as potential cancer treatment medications. Moreover, the discovery and development of drugs based on galangal has enormous potential for the therapy of cancer.
Collapse
Affiliation(s)
- Yingzi Wu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jinhai Luo
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China.
| |
Collapse
|
2
|
Liu Y, Liu Q, Shang H, Li J, Chai H, Wang K, Guo Z, Luo T, Liu S, Liu Y, Wang X, Zhang H, Wu C, Song SJ, Yang J. Potential application of natural compounds in ischaemic stroke: Focusing on the mechanisms underlying "lysosomocentric" dysfunction of the autophagy-lysosomal pathway. Pharmacol Ther 2024; 263:108721. [PMID: 39284368 DOI: 10.1016/j.pharmthera.2024.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/06/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Ischaemic stroke (IS) is the second leading cause of death and a major cause of disability worldwide. Currently, the clinical management of IS still depends on restoring blood flow via pharmacological thrombolysis or mechanical thrombectomy, with accompanying disadvantages of narrow therapeutic time window and risk of haemorrhagic transformation. Thus, novel pathophysiological mechanisms and targeted therapeutic candidates are urgently needed. The autophagy-lysosomal pathway (ALP), as a dynamic cellular lysosome-based degradative process, has been comprehensively studied in recent decades, including its upstream regulatory mechanisms and its role in mediating neuronal fate after IS. Importantly, increasing evidence has shown that IS can lead to lysosomal dysfunction, such as lysosomal membrane permeabilization, impaired lysosomal acidity, lysosomal storage disorder, and dysfunctional lysosomal ion homeostasis, which are involved in the IS-mediated defects in ALP function. There is tightly regulated crosstalk between transcription factor EB (TFEB), mammalian target of rapamycin (mTOR) and lysosomal function, but their relationship remains to be systematically summarized. Notably, a growing body of evidence emphasizes the benefits of naturally derived compounds in the treatment of IS via modulation of ALP function. However, little is known about the roles of natural compounds as modulators of lysosomes in the treatment of IS. Therefore, in this context, we provide an overview of the current understanding of the mechanisms underlying IS-mediated ALP dysfunction, from a lysosomal perspective. We also provide an update on the effect of natural compounds on IS, according to their chemical structural types, in different experimental stroke models, cerebral regions and cell types, with a primary focus on lysosomes and autophagy initiation. This review aims to highlight the therapeutic potential of natural compounds that target lysosomal and ALP function for IS treatment.
Collapse
Affiliation(s)
- Yueyang Liu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hanxiao Shang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jichong Li
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - He Chai
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Kaixuan Wang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zhenkun Guo
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Tianyu Luo
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shiqi Liu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yan Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xuemei Wang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hangyi Zhang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Chunfu Wu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Jingyu Yang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
3
|
Abd Rahman IZ, Adam SH, Hamid AA, Mokhtar MH, Mustafar R, Kashim MIAM, Febriza A, Mansor NI. Potential Neuroprotective Effects of Alpinia officinarum Hance (Galangal): A Review. Nutrients 2024; 16:3378. [PMID: 39408345 PMCID: PMC11478918 DOI: 10.3390/nu16193378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: This review aims to provide a detailed understanding of the current evidence on Alpinia officinarum Hance (A. officinarum) and its potential therapeutic role in central nervous system (CNS) disorders. CNS disorders encompass a wide range of disorders affecting the brain and spinal cord, leading to various neurological, cognitive and psychiatric impairments. In recent years, natural products have emerged as potential neuroprotective agents for the treatment of CNS disorders due to their outstanding bioactivity and favourable safety profile. One such plant is A. officinarum, also known as lesser galangal, a perennial herb from the Zingiberaceae family. Its phytochemical compounds such as flavonoids and phenols have been documented to have a powerful antioxidants effect, capable of scavenging free radicals and preventing oxidative damage. Methods: In this review, we critically evaluate the in vitro and in vivo studies and examine the mechanisms by which A. officinarum exerts its neuroprotective effect. Results: Several studies have confirmed that A. officinarum exerts its neuroprotective effects by reducing oxidative stress and cell apoptosis, promoting neurite outgrowth, and modulating neurotransmitter levels and signalling pathways. Conclusions: Although previous studies have shown promising results in various models of neurological disorders, the underlying mechanisms of A. officinarum in Alzheimer's (AD) and Parkinson's disease (PD) are still poorly understood. Further studies on brain tissue and cognitive and motor functions in animal models of AD and PD are needed to validate the results observed in in vitro studies. In addition, further clinical studies are needed to confirm the safety and efficacy of A. officinarum in CNS disorders.
Collapse
Affiliation(s)
- Izzat Zulhilmi Abd Rahman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (A.A.H.); (M.H.M.)
| | - Siti Hajar Adam
- Preclinical Department, Faculty of Medicine & Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia;
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (A.A.H.); (M.H.M.)
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (A.A.H.); (M.H.M.)
| | - Ruslinda Mustafar
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Mohd Izhar Ariff Mohd Kashim
- Centre of Shariah, Faculty of Islamic Studies, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
- Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Ami Febriza
- Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar 90221, South Sulawesi, Indonesia;
| | - Nur Izzati Mansor
- Department of Nursing, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
4
|
Xu Y, Xu C, Song H, Feng X, Ma L, Zhang X, Li G, Mu C, Tan L, Zhang Z, Liu Z, Luo Z, Yang C. Biomimetic bone-periosteum scaffold for spatiotemporal regulated innervated bone regeneration and therapy of osteosarcoma. J Nanobiotechnology 2024; 22:250. [PMID: 38750519 PMCID: PMC11094931 DOI: 10.1186/s12951-024-02430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/20/2024] [Indexed: 05/19/2024] Open
Abstract
The complexity of repairing large segment defects and eradicating residual tumor cell puts the osteosarcoma clinical management challenging. Current biomaterial design often overlooks the crucial role of precisely regulating innervation in bone regeneration. Here, we develop a Germanium Selenium (GeSe) co-doped polylactic acid (PLA) nanofiber membrane-coated tricalcium phosphate bioceramic scaffold (TCP-PLA/GeSe) that mimics the bone-periosteum structure. This biomimetic scaffold offers a dual functionality, combining piezoelectric and photothermal conversion capabilities while remaining biodegradable. When subjected to ultrasound irradiation, the US-electric stimulation of TCP-PLA/GeSe enables spatiotemporal control of neurogenic differentiation. This feature supports early innervation during bone formation, promoting early neurogenic differentiation of Schwann cells (SCs) by increasing intracellular Ca2+ and subsequently activating the PI3K-Akt and Ras signaling pathways. The biomimetic scaffold also demonstrates exceptional osteogenic differentiation potential under ultrasound irradiation. In rabbit model of large segment bone defects, the TCP-PLA/GeSe demonstrates promoted osteogenesis and nerve fibre ingrowth. The combined attributes of high photothermal conversion capacity and the sustained release of anti-tumor selenium from the TCP-PLA/GeSe enable the synergistic eradication of osteosarcoma both in vitro and in vivo. This strategy provides new insights on designing advanced biomaterials of repairing large segment bone defect and osteosarcoma.
Collapse
Affiliation(s)
- Yan Xu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Xu
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Huan Song
- Otorhinolaryngology Head and Neck Surgery, Wuhan Fourth Hospital, Wuhan, Hubei, 430033, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoguang Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Congpu Mu
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Lei Tan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhengdong Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China.
- School of Clinical Medicine, Department of Orthopedics, Chengdu Medical College, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China.
| | - Zhongyuan Liu
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Zhiqiang Luo
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
5
|
Shi YS, Zhang Y, Luo X, Yang HK, He YS. 1,7-diphenyl-4-hepten-3-one mitigates Alzheimer's-like pathology by inhibiting pyroptosis via activating the Nrf2 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3065-3075. [PMID: 37878046 DOI: 10.1007/s00210-023-02765-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/30/2023] [Indexed: 10/26/2023]
Abstract
Pyroptosis-mediated neuron death plays a crucial role in neurodegenerative diseases, such as Alzheimer's disease (AD). However, the effect of 1,7-diphenyl-4-hepten-3-one (C1), a natural diarylheptanoid, on AD is unclear. Herein, we investigated the therapeutic effect of C1 on APP/PS1 mice and β-amyloid (Aβ)-induced HT22 cells. Our findings showed that C1 attenuated cognitive impairment and mitigated pathological damage in APP/PS1 mice. Furthermore, we found that C1 prevented oxidative stress damage and decreased the levels of pyroptosis-related proteins. In vitro experiments showed that C1 can improve the proliferation of Aβ-induced HT22 cells and decrease the levels of pyroptosis-related proteins in them. When Nrf2 was silenced, the positive effects of C1 in inhibiting pyroptosis were inhibited. Particularly, the production of pyroptosis-associated proteins, including NLRP3, GSDMD, and caspase-1, and the secretion of pro-inflammatory molecules, including IL-1 and IL-18, were increased. Altogether, these findings indicate that C1 can mitigate AD-like pathology via the inhibition of pyroptosis by activating the Nrf2 pathway. We believe that this study can provide alternative strategies for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yu-Sheng Shi
- Ma'anshan People's Hospital, Ma'anshan, 243000, China
- Anhui Medical University, Hefei, 230032, China
| | - Yan Zhang
- Ma'anshan People's Hospital, Ma'anshan, 243000, China
- Anhui Medical University, Hefei, 230032, China
- Chiba University, Matsudo, 2718501, Japan
| | - Xiao Luo
- Ma'anshan People's Hospital, Ma'anshan, 243000, China
| | - Hong-Kai Yang
- Ma'anshan People's Hospital, Ma'anshan, 243000, China
| | - Yong-Sheng He
- Ma'anshan People's Hospital, Ma'anshan, 243000, China.
| |
Collapse
|
6
|
Al Garni HA, El-Halawany AM, Koshak AE, Malebari AM, Alzain AA, Mohamed GA, Ibrahim SRM, El-Sayed NS, Abdallah HM. Potential antioxidant, α-glucosidase, butyrylcholinesterase and acetylcholinesterase inhibitory activities of major constituents isolated from Alpinia officinarum hance rhizomes: computational studies and in vitro validation. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:391-410. [PMID: 38769919 DOI: 10.1080/1062936x.2024.2352725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Alpinia officinarum is a commonly used spice with proven folk uses in various traditional medicines. In the current study, six compounds were isolated from its rhizomes, compounds 1-3 were identified as diarylheptanoids, while 4-6 were identified as flavonoids and phenolic acids. The isolated compounds were subjected to virtual screening against α-glucosidase, butyrylcholinesterase (BChE), and acetylcholinesterase (AChE) enzymes to evaluate their potential antidiabetic and anti-Alzheimer's activities. Molecular docking and dynamics studies revealed that 3 exhibited a strong binding affinity to human a α- glucosidase crystal structure compared to acarbose. Furthermore, 2 and 5 demonstrated high potency against AChE. The virtual screening results were further supported by in vitro assays, which assessed the compounds' effects on α-glucosidase, cholinesterases, and their antioxidant activities. 5-Hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1-phenylheptan-3-one (2) showed potent antioxidant effect in both ABTs and ORAC assays, while p-hydroxy cinnamic acid (6) was the most potent in the ORAC assay. In contrary, kaempferide (4) and galangin (5) showed the most potent effect in metal chelation assay. 5-Hydroxy-1,7-diphenylhepta-4,6-dien-3-one (3) and 6 revealed the most potent effect as α-glucosidase inhibitors where compound 3 showed more potent effect compared to acarbose. Galangin (5) revealed a higher selectivity to BChE, while 2 showed the most potent activity to (AChE).
Collapse
Affiliation(s)
- H A Al Garni
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A M El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - A E Koshak
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A M Malebari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani, Sudan
| | - G A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - S R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - N S El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - H M Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Martín D, Ruano D, Yúfera A, Daza P. Electrical pulse stimulation parameters modulate N2a neuronal differentiation. Cell Death Discov 2024; 10:49. [PMID: 38272891 PMCID: PMC10810886 DOI: 10.1038/s41420-024-01820-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Electrical pulse stimulation has been used to enhance the differentiation or proliferation of neuronal progenitor cells in tissue engineering and cancer treatment. Therefore, a comprehensive investigation of the effects caused by its parameters is crucial for improvements in those fields. We propose a study of pulse parameters, to allow the control of N2a cell line fate and behavior. We have focused on designing an experimental setup that allows for the knowledge and control over the environment and the stimulation signals applied. To map the effects of the stimulation on N2a cells, their morphology and the cellular and molecular reactions induced by the pulse stimulation have been analyzed. Immunofluorescence, rt-PCR and western blot analysis have been carried out for this purpose, as well as cell counting. Our results show that low-amplitude electrical pulse stimulation promotes proliferation of N2a cells, whilst amplitudes in the range 250 mV/mm-500 mV/mm induce differentiation. Amplitudes higher than 750 mV/mm produce cell damage at low frequencies. For high frequencies, large amplitudes are needed to cause cell death. An inverse relation has been found between cell density and pulse-induced neuronal differentiation. The best condition for neuronal differentiation was found to be 500 mV/mm at 100 Hz. These findings have been confirmed by up-regulation of the Neurod1 gene. Our preliminary study of the molecular effects of electrical pulse stimulation on N2a offers premonitory clues of the PI3K/Akt/GSK-3β pathway implications on the neuronal differentiation process through ES. In general, we have successfully mapped the sensitivity of N2a cells to electrical pulse stimulation parameters.
Collapse
Affiliation(s)
- Daniel Martín
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain.
- Instituto de Microelectrónica de Sevilla (IMSE), Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain.
| | - Diego Ruano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
| | - Alberto Yúfera
- Instituto de Microelectrónica de Sevilla (IMSE), Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
- Departamento de Tecnología Electrónica, ETSII, Universidad de Sevilla, Sevilla, Spain
| | - Paula Daza
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
8
|
Felegyi-Tóth CA, Heilmann T, Buda E, Stipsicz B, Simon A, Boldizsár I, Bősze S, Riethmüller E, Alberti Á. Evaluation of the Chemical Stability, Membrane Permeability and Antiproliferative Activity of Cyclic Diarylheptanoids from European Hornbeam ( Carpinus betulus L.). Int J Mol Sci 2023; 24:13489. [PMID: 37686297 PMCID: PMC10488193 DOI: 10.3390/ijms241713489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Four cyclic diarylheptanoids-carpinontriols A (1) and B (2), giffonin X (3) and 3,12,17-trihydroxytricyclo [12.3.1.12,6]nonadeca-1(18),2(19),3,5,14,16-hexaene-8,11-dione (4)-were isolated from Carpinus betulus (Betulaceae). Chemical stability of the isolated diarylheptanoids was evaluated as a function of storage temperature (-15, 5, 22 °C) and time (12 and 23 weeks). The effect of the solvent and the pH (1.2, 6.8, 7.4) on the stability of these diarylheptanoids was also investigated. Compounds 2 and 4 showed good stability both in aqueous and methanolic solutions at all investigated temperatures. Only 2 was stable at all three studied biorelevant pH values. Degradation products of 1 and 3 were formed by the elimination of a water molecule from the parent compounds, as confirmed by ultrahigh-performance liquid chromatography-high-resolution tandem mass spectrometry (UHPLC-HR-MS). The permeability of the compounds across biological membranes was evaluated by the parallel artificial membrane permeability assay (PAMPA). Compound 3 possesses a logPe value of -5.92 ± 0.04 in the blood-brain barrier-specific PAMPA-BBB study, indicating that it may be able to cross the blood-brain barrier via passive diffusion. The in vitro antiproliferative activity of the compounds was investigated against five human cancer cell lines, confirming that 1 inhibits cell proliferation in A2058 human metastatic melanoma cells.
Collapse
Affiliation(s)
- Csenge Anna Felegyi-Tóth
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (C.A.F.-T.); (T.H.); (E.B.); (A.S.); (I.B.); (E.R.)
| | - Tímea Heilmann
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (C.A.F.-T.); (T.H.); (E.B.); (A.S.); (I.B.); (E.R.)
| | - Eszter Buda
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (C.A.F.-T.); (T.H.); (E.B.); (A.S.); (I.B.); (E.R.)
| | - Bence Stipsicz
- Institute of Biology, Doctoral School of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary;
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary;
| | - Alexandra Simon
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (C.A.F.-T.); (T.H.); (E.B.); (A.S.); (I.B.); (E.R.)
| | - Imre Boldizsár
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (C.A.F.-T.); (T.H.); (E.B.); (A.S.); (I.B.); (E.R.)
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Szilvia Bősze
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary;
- National Public Health Center, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - Eszter Riethmüller
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (C.A.F.-T.); (T.H.); (E.B.); (A.S.); (I.B.); (E.R.)
| | - Ágnes Alberti
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (C.A.F.-T.); (T.H.); (E.B.); (A.S.); (I.B.); (E.R.)
| |
Collapse
|
9
|
Sie YY, Chen LC, Li CJ, Yuan YH, Hsiao SH, Lee MH, Wang CC, Hou WC. Inhibition of Acetylcholinesterase and Amyloid-β Aggregation by Piceatannol and Analogs: Assessing In Vitro and In Vivo Impact on a Murine Model of Scopolamine-Induced Memory Impairment. Antioxidants (Basel) 2023; 12:1362. [PMID: 37507902 PMCID: PMC10376691 DOI: 10.3390/antiox12071362] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Currently, no drug is effective in delaying the cognitive impairment of Alzheimer's disease, which ranks as one of the top 10 causes of death worldwide. Hydroxylated stilbenes are active compounds that exist in fruit and herbal plants. Piceatannol (PIC) and gnetol (GNT), which have one extra hydroxyl group in comparison to resveratrol (RSV), and rhapontigenin (RHA) and isorhapontigenin (isoRHA), which were metabolized from PIC in vivo and contain the same number of hydroxyl groups as RSV, were evaluated for their effects on Alzheimer's disease-associated factors in vitro and in animal experiments. Among the five hydroxylated stilbenes, PIC was shown to be the most active in DPPH radical scavenging and in inhibitory activities against acetylcholinesterase and amyloid-β peptide aggregations, with concentrations for half-maximal inhibitions of 40.2, 271.74, and 0.48 μM. The different interactions of the five hydroxylated stilbenes with acetylcholinesterase or amyloid-β were obtained by molecular docking. The scopolamine-induced ICR mice fed with PIC (50 mg/kg) showed an improved learning behavior in the passive avoidance tests and had significant differences (p < 0.05) compared with those in the control group. The RHA and isoRHA at 10 μM were proven to stimulate neurite outgrowths in the SH-SY5Y cell models. These results reveal that nutraceuticals or functional foods containing PIC have the potential for use in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yi-Yan Sie
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Liang-Chieh Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Cai-Jhen Li
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Hsiang Yuan
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Sheng-Hung Hsiao
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Mei-Hsien Lee
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Chiung Wang
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Wen-Chi Hou
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
10
|
Bagci O, Tumer S, Altungoz O. Chromosome 1p status in neuroblastoma correlates with higher expression levels of miRNAs targeting neuronal differentiation pathway. In Vitro Cell Dev Biol Anim 2023; 59:100-108. [PMID: 36800078 DOI: 10.1007/s11626-023-00750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023]
Abstract
Neuroblastoma (NB) is characterized by acquired segmental and numerical chromosome aberrations. Although deletions of distal 1p and 11q are frequent alterations, no candidate tumor suppressor gene residing in these chromosomal sites could be identified so far. In the present study, we detected the genomic imbalances of six neuroblastoma cell lines using the multiplex ligation-dependent probe amplification (MLPA) technique and the microRNA (miRNA) expression profiles of the cell lines by a microarray study. According to MLPA results, we aimed to assess the miRNA expression profiles of the cell lines harboring 11q and 1p deletions. The cell lines with 1p deletions revealed statistically significant higher levels of expression for 29 miRNAs in contrast to the cell lines without 1p deletion in microarray study. We also performed GO enrichment analysis for predicted targets of the differentially expressed miRNAs. According to GO enrichment analysis, miRNAs that showed the high change in expression was associated with neuronal differentiation. We showed that hsa-miR-494, hsa-miR-495, and hsa-miR-543 target most of mRNAs in neuronal differentiation pathway. Although limited to the cell lines, our results highly suggest that NBs with different segmental chromosome abnormalities may have different dysregulated miRNA expression signatures that target the genes involved in neuronal differentiation.
Collapse
Affiliation(s)
- Ozkan Bagci
- Department of Medical Biology and Genetics, School of Medicine, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey.,Department of Medical Genetics, School of Medicine, Selcuk University, Konya, Turkey
| | - Sait Tumer
- Department of Medical Biology and Genetics, School of Medicine, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey.,Acibadem Genetic Diagnosis Center, Istanbul, Turkey
| | - Oguz Altungoz
- Department of Medical Biology and Genetics, School of Medicine, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey.
| |
Collapse
|
11
|
Postnatal Changes of Somatostatin Expression in Hippocampi of C57BL/6 Mice; Modulation of Neuroblast Differentiation in the Hippocampus. Vet Sci 2023; 10:vetsci10020081. [PMID: 36851385 PMCID: PMC9964365 DOI: 10.3390/vetsci10020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/05/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
(1) Background: Somatostatin (SST) exhibits expressional changes in the brain during development, but its role is not still clear in brain development. (2) Methods: We investigated postnatal SST expression and its effects on hippocampal neurogenesis via administering SST subcutaneously to P7 mice for 7 days. (3) Results: In the hippocampal CA1 region, SST immunoreactivity reaches peak at P14. However, SST immunoreactivity significantly decreased at P21. In the CA2/3 region, the SST expression pattern was similar to the CA1, and SST-immunoreactive cells were most abundant at P14. In the dentate gyrus, SST-immunoreactive cells were most abundant at P7 and P14 in the polymorphic layer; as in CA1-3 regions, the immunoreactivity decreased at P21. To elucidate the role of SST in postnatal development, we administered SST subcutaneously to P7 mice for 7 days. In the subgranular zone of the hippocampal dentate gyrus, a significant increase was observed in immunoreactivity of doublecortin (DCX)-positive neuroblast after administration of SST.; (4) Conclusions: SST expression in the hippocampal sub-regions is transiently increased during the postnatal formation of the hippocampus and decreases after P21. In addition, SST is involved in neuroblast differentiation in the dentate gyrus of the hippocampus.
Collapse
|
12
|
Tan MH, Xu XH, Yuan TJ, Hou X, Wang J, Jiang ZH, Peng LH. Self-powered smart patch promotes skin nerve regeneration and sensation restoration by delivering biological-electrical signals in program. Biomaterials 2022; 283:121413. [DOI: 10.1016/j.biomaterials.2022.121413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 11/02/2022]
|
13
|
Xiao H, Zhang Q, Zhong P, Tang G, Tao L, Huang Z, Guo D, Liao Y, Peng Y, Wu ZL, Wang Y, Ye WC, Shi L. Securinine Promotes Neuronal Development and Exhibits Antidepressant-like Effects via mTOR Activation. ACS Chem Neurosci 2021; 12:3650-3661. [PMID: 34541857 DOI: 10.1021/acschemneuro.1c00381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Impaired differentiation of newborn neurons or abnormalities at the synapses resulted from stress maladaptation could be the key etiology of depression. Recent studies have shown that mTOR, a crucial factor for neuronal differentiation and synapse development, acts as a common factor that mediates the rapid antidepression effects of several new-class antidepressants. In this study, the antidepressant-like activity of securinine, an alkaloid that has central nervous system stimulation ability, was investigated. Both securinine and its enantiomer virosecurinine exhibited potent in vitro activity on neuronal differentiation and synapse development in Neuro-2a cells and cultured hippocampal neurons, and this activity was dependent on the activation of the AKT-mTOR-S6K pathway. Interestingly, only securinine but not virosecurinine showed mTOR stimulation and antidepressant-like activity in mice. Importantly, a single dose of securinine was capable of alleviating the behavioral deficits induced by both acute and chronic stress models within 30 min of administration, suggesting that securinine has rapid onset of action. Moreover, neither a single dose nor a 3 week treatment of securinine had adverse effects on exploratory locomotion of mice. Together, this study identifies that securinine is a potent agent in promoting neuronal differentiation and synapse formation and shows rapid antidepressant-like activity, without inducing abnormal locomotion, via mTOR activation.
Collapse
Affiliation(s)
- Hanlin Xiao
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
- Nanshan Maternity and Child Healthcare Hospital of Shenzhen, Shenzhen 518067, Guangdong, China
| | - Qinghua Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Peiyun Zhong
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Genyun Tang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Medicine, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Lijun Tao
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zhengyi Huang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Daji Guo
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China
| | - Yumei Liao
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yinghui Peng
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zhen-Long Wu
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Ying Wang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Wen-Cai Ye
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
14
|
An J, Chen B, Tian D, Guo Y, Yan Y, Yang H. Regulation of Neurogenesis and Neuronal Differentiation by Natural Compounds. Curr Stem Cell Res Ther 2021; 17:756-771. [PMID: 34493197 DOI: 10.2174/1574888x16666210907141447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022]
Abstract
Neuronal damage or degeneration is the main feature of neurological diseases. Regulation of neurogenesis and neuronal differentiation is important in developing therapies to promote neuronal regeneration or synaptic network reconstruction. Neurogenesis is a multistage process in which neurons are generated and integrated into existing neuronal circuits. Neuronal differentiation is extremely complex because it can occur in different cell types and can be caused by a variety of inducers. Recently, natural compounds that induce neurogenesis and neuronal differentiation have attracted extensive attention. In this paper, the potential neural induction effects of medicinal plant-derived natural compounds on neural stem/progenitor cells (NS/PCs), the cultured neuronal cells, and mesenchymal stem cells (MSCs) are reviewed. The natural compounds that are efficacious in inducing neurogenesis and neuronal differentiation include phenolic acids, polyphenols, flavonoids, glucosides, alkaloids, terpenoids, quinones, coumarins, and others. They exert neural induction effects by regulating signal factors and cell-specific genes involved in the process of neurogenesis and neuronal differentiation, including specific proteins (β-tubulin III, MAP-2, tau, nestin, neurofilaments, GFAP, GAP-43, NSE), related genes and proteins (STAT3, Hes1, Mash1, NeuroD1, notch, cyclin D1, SIRT1, reggie-1), transcription factors (CREB, Nkx-2.5, Ngn1), neurotrophins (BDNF, NGF, NT-3) and signaling pathways (JAK/STAT, Wnt/β-catenin, MAPK, PI3K/Akt, GSK-3β/β-catenin, Ca2+/CaMKII/ATF1, Nrf2/HO-1, BMP). The natural compounds with neural induction effects are of great value for neuronal regenerative medicine and provide promising prevention and treatment strategies for neurological diseases.
Collapse
Affiliation(s)
- Jing An
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Bo Chen
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Ding Tian
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Yunshan Guo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Yuzhu Yan
- Clinical Lab, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Hao Yang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| |
Collapse
|
15
|
Liu H, Wang X, Shi Q, Li L, Zhang Q, Wu ZL, Huang XJ, Zhang QW, Ye WC, Wang Y, Shi L. Dimeric Diarylheptanoids with Neuroprotective Activities from Rhizomes of Alpinia officinarum. ACS OMEGA 2020; 5:10167-10175. [PMID: 32391504 PMCID: PMC7203958 DOI: 10.1021/acsomega.0c01019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Two novel dimeric diarylheptanoids, alpinidinoids A [(±)-1] and B (2), with two unusual coupling patterns, together with a new naturally occurring diarylheptanoid dimer possessing a rare pyridine ring linkage (alpinidinoid C, 3), were isolated from the rhizomes of Alpinia officinarum. Their structures including absolute configurations were determined by extensive spectroscopic methods and theoretical calculations. All isolates were examined for their neuroprotective activities against oxygen-glucose deprivation and reoxygenation (OGD/R) damage in primary cortical neurons. Remarkably, the dextrorotatory enantiomer of alpinidinoid A [(+)-1] significantly ameliorated OGD/R-induced neuronal apoptosis, which was dependent on the activation of the AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Hui Liu
- Institute of Traditional
Chinese Medicine & Natural Products, Jinan University, Guangzhou 510632, People’s Republic
of China
- JNU-HKUST Joint Laboratory for Neuroscience & Innovative
Drug Research, Jinan University, Guangzhou 510632, People’s Republic of China
- Guangdong
Province Key Laboratory of Pharmacodynamic Constituents of TCM &
New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Xiaojun Wang
- JNU-HKUST Joint Laboratory for Neuroscience & Innovative
Drug Research, Jinan University, Guangzhou 510632, People’s Republic of China
- Guangdong
Province Key Laboratory of Pharmacodynamic Constituents of TCM &
New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Qiaoyun Shi
- JNU-HKUST Joint Laboratory for Neuroscience & Innovative
Drug Research, Jinan University, Guangzhou 510632, People’s Republic of China
- Guangdong
Province Key Laboratory of Pharmacodynamic Constituents of TCM &
New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Liuren Li
- JNU-HKUST Joint Laboratory for Neuroscience & Innovative
Drug Research, Jinan University, Guangzhou 510632, People’s Republic of China
- Guangdong
Province Key Laboratory of Pharmacodynamic Constituents of TCM &
New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Qinghua Zhang
- JNU-HKUST Joint Laboratory for Neuroscience & Innovative
Drug Research, Jinan University, Guangzhou 510632, People’s Republic of China
- Guangdong
Province Key Laboratory of Pharmacodynamic Constituents of TCM &
New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Zhen-Long Wu
- Institute of Traditional
Chinese Medicine & Natural Products, Jinan University, Guangzhou 510632, People’s Republic
of China
- JNU-HKUST Joint Laboratory for Neuroscience & Innovative
Drug Research, Jinan University, Guangzhou 510632, People’s Republic of China
- Guangdong
Province Key Laboratory of Pharmacodynamic Constituents of TCM &
New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Xiao-Jun Huang
- Institute of Traditional
Chinese Medicine & Natural Products, Jinan University, Guangzhou 510632, People’s Republic
of China
- JNU-HKUST Joint Laboratory for Neuroscience & Innovative
Drug Research, Jinan University, Guangzhou 510632, People’s Republic of China
- Guangdong
Province Key Laboratory of Pharmacodynamic Constituents of TCM &
New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Qing-Wen Zhang
- State Key
Laboratory of Quality Research in Chinese Medicine, Institute of Chinese
Medical Sciences, University of Macau, Macao 999078, People’s Republic of China
| | - Wen-Cai Ye
- Institute of Traditional
Chinese Medicine & Natural Products, Jinan University, Guangzhou 510632, People’s Republic
of China
- JNU-HKUST Joint Laboratory for Neuroscience & Innovative
Drug Research, Jinan University, Guangzhou 510632, People’s Republic of China
- Guangdong
Province Key Laboratory of Pharmacodynamic Constituents of TCM &
New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Ying Wang
- Institute of Traditional
Chinese Medicine & Natural Products, Jinan University, Guangzhou 510632, People’s Republic
of China
- JNU-HKUST Joint Laboratory for Neuroscience & Innovative
Drug Research, Jinan University, Guangzhou 510632, People’s Republic of China
- Guangdong
Province Key Laboratory of Pharmacodynamic Constituents of TCM &
New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience & Innovative
Drug Research, Jinan University, Guangzhou 510632, People’s Republic of China
- Guangdong
Province Key Laboratory of Pharmacodynamic Constituents of TCM &
New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
| |
Collapse
|
16
|
Anterograde Viral Tracer Herpes Simplex Virus 1 Strain H129 Transports Primarily as Capsids in Cortical Neuron Axons. J Virol 2020; 94:JVI.01957-19. [PMID: 31969440 DOI: 10.1128/jvi.01957-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/13/2020] [Indexed: 01/28/2023] Open
Abstract
The features of herpes simplex virus 1 (HSV-1) strain 129 (H129), including natural neurotropism and anterograde transneuronal trafficking, make it a potential tool for anterograde neural circuitry tracing. Recently anterograde polysynaptic and monosynaptic tracers were developed from H129 and have been applied for the identification of novel connections and functions of different neural circuitries. However, how H129 viral particles are transported in neurons, especially those of the central nervous system, remains unclear. In this study, we constructed recombinant H129 variants with mCherry-labeled capsids and/or green fluorescent protein (GFP)-labeled envelopes and infected the cortical neurons to study axonal transport of H129 viral particles. We found that different types of viral particles were unevenly distributed in the nucleus, cytoplasm of the cell body, and axon. Most H129 progeny particles were unenveloped capsids and were transported as capsids rather than virions in the axon. Notably, capsids acquired envelopes at axonal varicosities and terminals where the sites forming synapses are connected with other neurons. Moreover, viral capsids moved more frequently in the anterograde direction in axons, with an average velocity of 0.62 ± 0.18 μm/s and maximal velocity of 1.80 ± 0.15 μm/s. We also provided evidence that axonal transport of capsids requires the kinesin-1 molecular motor. These findings support that H129-derived tracers map the neural circuit anterogradely and possibly transsynaptically. These data will guide future modifications and improvements of H129-based anterograde viral tracers.IMPORTANCE Anterograde transneuronal tracers derived from herpes simplex virus 1 (HSV-1) strain 129 (H129) are important tools for mapping neural circuit anatomic and functional connections. It is, therefore, critical to elucidate the transport pattern of H129 within neurons and between neurons. We constructed recombinant H129 variants with genetically encoded fluorescence-labeled capsid protein and/or glycoprotein to visualize viral particle movement in neurons. Both electron microscopy and light microscopy data show that H129 capsids and envelopes move separately, and notably, capsids are enveloped at axonal varicosity and terminals, which are the sites forming synapses to connect with other neurons. Superresolution microscopy-based colocalization analysis and inhibition of H129 particle movement by inhibitors of molecular motors support that kinesin-1 contributes to the anterograde transport of capsids. These results shed light into the mechanisms for anterograde transport of H129-derived tracer in axons and transmission between neurons via synapses, explaining the anterograde labeling of neural circuits by H129-derived tracers.
Collapse
|
17
|
Ginsenoside Compound K Induces Adult Hippocampal Proliferation and Survival of Newly Generated Cells in Young and Elderly Mice. Biomolecules 2020; 10:biom10030484. [PMID: 32210026 PMCID: PMC7175218 DOI: 10.3390/biom10030484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 12/14/2022] Open
Abstract
Cognitive impairment can be associated with reduced adult hippocampal neurogenesis, and it may contribute to age-associated neurodegenerative diseases such as Alzheimer’s (AD). Compound K (CK) is produced from the protopanaxadiol (PPD)-type ginsenosides Rb1, Rb2, and Rc by intestinal microbial conversion. Although CK has been reported as an inducing effector for neuroprotection and improved cognition in hippocampus, its effect on adult neurogenesis has not been explored yet. Here, we investigated the effect of CK on hippocampal neurogenesis in both young (2 months) and elderly (24 months) mice. CK treatment increased the number of cells co-labeled with 5-ethynyl-2′-deoxyuridine (EdU) and proliferating cell nuclear antigen (PCNA); also, Ki67, specific markers for progenitor cells, was more expressed, thus enhancing the generation of new cells and progenitor cells in the dentate gyrus of both young and elderly mice. Moreover, CK treatment increased the number of cells co-labeled with EdU and NeuN, a specific marker for mature neuron in the dentate gyrus, suggesting that newly generated cells survived and differentiated into mature neurons at both ages. These findings demonstrate that CK increases adult hippocampal neurogenesis, which may be beneficial against neurodegenerative disorders such as AD.
Collapse
|
18
|
Huang M, Liang C, Li S, Zhang J, Guo D, Zhao B, Liu Y, Peng Y, Xu J, Liu W, Guo G, Shi L. Two Autism/Dyslexia Linked Variations of DOCK4 Disrupt the Gene Function on Rac1/Rap1 Activation, Neurite Outgrowth, and Synapse Development. Front Cell Neurosci 2020; 13:577. [PMID: 32009906 PMCID: PMC6974517 DOI: 10.3389/fncel.2019.00577] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) and dyslexia are both neurodevelopmental disorders with high prevalence in children. Both disorders have strong genetic basis, and share similar social communication deficits co-occurring with impairments of reading or language. However, whether these two disorders share common genetic risks remain elusive. DOCK4 (dedicator for cytokinesis 4), a guanine nucleotide exchange factor (GEF) for the small GTPase Rac1, is one of few genes that are associated with both ASD and dyslexia. Dock4 is important for neuronal development and social behaviors. Two DOCK4 variations, Exon27-52 deletion (protein product: Dock4-945VS) and a missense mutation at rs2074130 (protein product: Dock4-R853H), are associated with dyslexia and/or ASD with reading difficulties. The present study explores the molecular and cellular functions of these two DOCK4 variants on neuronal development, by comparing them with the wild-type Dock4 protein. Notably, it is revealed that both mutants of Dock4 showed decreased ability to activate not only Rac1, but also another small GTPase Rap1. Consistently, both mutants were dysfunctional for regulation of cell morphology and cytoskeleton. Using Neuro-2a cells and hippocampus neurons as models, we found that both mutants had compromised function in promoting neurite outgrowth and dendritic spine formation. Electrophysiological recordings further showed that R853H partially lost the ability to promote excitatory synaptic transmission, whereas 945VS totally lost the ability. Together, we identified R853 as a previously uncharacterized site for the regulation of the integrity of Dock4 function, and provides insights in understanding the common molecular pathophysiology of ASD and dyslexia.
Collapse
Affiliation(s)
- Miaoqi Huang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Chunmei Liang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Shengnan Li
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jifeng Zhang
- Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Daji Guo
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Bo Zhao
- Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Yuyang Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Yinghui Peng
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Junyu Xu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Guoqing Guo
- Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Moon H, Jeon SG, Kim JI, Kim HS, Lee S, Kim D, Park S, Moon M, Chung H. Pharmacological Stimulation of Nurr1 Promotes Cell Cycle Progression in Adult Hippocampal Neural Stem Cells. Int J Mol Sci 2019; 21:E4. [PMID: 31861329 PMCID: PMC6982043 DOI: 10.3390/ijms21010004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Nuclear receptor related-1 (Nurr1) protein performs a crucial role in hippocampal neural stem cell (hNSC) development as well as cognitive functions. We previously demonstrated that the pharmacological stimulation of Nurr1 by amodiaquine (AQ) promotes spatial memory by enhancing adult hippocampal neurogenesis. However, the role of Nurr1 in the cell cycle regulation of the adult hippocampus has not been investigated. This study aimed to examine changes in the cell cycle-related molecules involved in adult hippocampal neurogenesis induced by Nurr1 pharmacological stimulation. Fluorescence-activated cell sorting (FACS) analysis showed that AQ improved the progression of cell cycle from G0/G1 to S phase in a dose-dependent manner, and MEK1 or PI3K inhibitors attenuated this progression. In addition, AQ treatment increased the expression of cell proliferation markers MCM5 and PCNA, and transcription factor E2F1. Furthermore, pharmacological stimulation of Nurr1 by AQ increased the expression levels of positive cell cycle regulators such as cyclin A and cyclin-dependent kinases (CDK) 2. In contrast, levels of CDK inhibitors p27KIP1 and p57KIP2 were reduced upon treatment with AQ. Similar to the in vitro results, RT-qPCR analysis of AQ-administered mice brains revealed an increase in the levels of markers of cell cycle progression, PCNA, MCM5, and Cdc25a. Finally, AQ administration resulted in decreased p27KIP1 and increased CDK2 levels in the dentate gyrus of the mouse hippocampus, as quantified immunohistochemically. Our results demonstrate that the pharmacological stimulation of Nurr1 in adult hNSCs by AQ promotes the cell cycle by modulating cell cycle-related molecules.
Collapse
Affiliation(s)
- Haena Moon
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Korea; (H.M.); (S.L.); (D.K.)
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.G.J.); (H.s.K.)
| | - Jin-il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju 63243, Korea;
| | - Hyeon soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.G.J.); (H.s.K.)
| | - Sangho Lee
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Korea; (H.M.); (S.L.); (D.K.)
| | - Dongok Kim
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Korea; (H.M.); (S.L.); (D.K.)
| | - Seungjoon Park
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.G.J.); (H.s.K.)
| | - Hyunju Chung
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Korea; (H.M.); (S.L.); (D.K.)
| |
Collapse
|
20
|
Glu-mGluR2/3-ERK Signaling Regulates Apoptosis of Hippocampal Neurons in Diabetic-Depression Model Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3710363. [PMID: 31281399 PMCID: PMC6590571 DOI: 10.1155/2019/3710363] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/04/2019] [Accepted: 05/02/2019] [Indexed: 11/29/2022]
Abstract
Objectives Diabetes mellitus is frequently accompanied by depression (diabetes−depression, DD), and DD patients are at higher risk of diabetes-related disability and mortality than diabetes patients without depression. Hippocampal degeneration is a major pathological feature of DD. Here, we investigated the contribution of the Glu−mGluR2/3−ERK signaling pathway to apoptosis of hippocampal neurons in DD model rats. Methods The DD model was established by high-fat diet (HFD) feeding and streptozotocin (STZ) injection followed by chronic unpredictable mild stress (CUMS). Other groups were subjected to HFD + STZ only (diabetes alone) or CUMS only (depression alone). Deficits in hippocampus-dependent memory were assessed in the Morris water maze (MWM), motor activity in the open field test (OFT), and depression-like behavior in the forced swim test (FST). Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) was used to estimate the rate of hippocampal neuron apoptosis. Hippocampal glutamate (Glu) content was measured by high performance liquid chromatography. Hippocampal expression levels of mGluR2/3, ERK, and the apoptosis effector caspase-3 were estimated by immunohistochemistry and Western blotting. Results DD model rats demonstrated more severe depression-like behavior in the FST, greater spatial learning and memory deficits in the MWM, and reduced horizontal and vertical activity in the OFT compared to control, depression alone, and diabetes alone groups. All of these abnormalities were reversed by treatment with the mGluR2/3 antagonist LY341495. The DD group also exhibited greater numbers of TUNEL-positive hippocampal neurons than all other groups, and this increased apoptosis rate was reversed by LY341495. In addition, hippocampal expression levels of caspase-3 and mGluR2/3 were significantly higher, ERK expression was lower, and Glu was elevated in the DD group. The mGluR2//3 antagonist significantly altered all these features of DD. Conclusions Comorbid diabetes and depression are associated with enhanced hippocampal neuronal apoptosis and concomitantly greater hippocampal dysfunction. These pathogenic effects are regulated by the Glu−mGluR2/3−ERK signaling pathway.
Collapse
|
21
|
Shi Q, Zhang Q, Peng Y, Zhang X, Wang Y, Shi L. A natural diarylheptanoid protects cortical neurons against oxygen–glucose deprivation-induced autophagy and apoptosis. J Pharm Pharmacol 2019; 71:1110-1118. [DOI: 10.1111/jphp.13096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/16/2019] [Indexed: 12/31/2022]
Abstract
Abstract
Objectives
This study aims to investigate the neuroprotective effects of curcumin analogues, 7-(4-Hydroxy-3-methoxyphenyl)-1-phenyl-4E-hepten-3-one (AO-2) on oxygen–glucose deprivation and re-oxygenation (OGD/R) induced injury in cortical neurons, which is a widely accepted in-vitro model for ischaemic reperfusion.
Methods
In this study, AO-2 was added to cortical neurons for 2 h as pretreatment, and then cortical neurons were subjected to OGD/R in the presence of AO-2 for 4 h. Cell viability was tested by 2′, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay and apoptosis by flow cytometry and Live & Dead cell assay. Western blot analysis detected the change in AKT/mTOR (mammalian target of rapamycin) signalling pathway.
Key findings
Treatment of AO-2 increased cell survival of OGD/R-treated cortical neurons. Transient AKT/mTOR inhibition, induction of the autophagy marker LC3-II (microtubule-associated protein 1A/1B-light chain 3 phosphatidylethanolamine conjugate), and cleavage of the apoptosis marker Caspase-3 were observed at different stages of OGD/R, and AO-2 reversed all three events. Importantly, treatment of the mTOR inhibitor rapamycin blocked the neuroprotective effects of AO-2 on reducing LC3-II and cleaved Caspase-3 expression and cancelled AO-2-mediated neuronal survival.
Conclusions
These results demonstrate that AO-2 increases resistance of cortical neurons to OGD/R by decreasing autophagy and cell apoptosis, which involves an mTOR-dependent mechanism.
Collapse
Affiliation(s)
- Qiaoyun Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Qinghua Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Yinghui Peng
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Xiaoqi Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Ying Wang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Abubakar IB, Malami I, Yahaya Y, Sule SM. A review on the ethnomedicinal uses, phytochemistry and pharmacology of Alpinia officinarum Hance. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:45-62. [PMID: 29803568 DOI: 10.1016/j.jep.2018.05.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alpinia officinarum Hance is a perennial plant that has been traditionally used for many decades to treat several ailments including inflammation, pain, stomach-ache, cold, amongst others. Pharmacological studies over the years have demonstrated remarkable bioactivities that could be further explored for development of new therapeutic agents against various ailments. AIM OF THE STUDY The paper critically reviewed the ethno-medicinal uses, pharmacology, and phytochemistry of A. officinarum. METHODS Keywords including A. officinarum and its synonyms were searched using electronic databases including ISI web of knowledge, Science direct, Scopus, PubMed, Google scholar and relevant database for Masters and Doctoral theses. RESULTS A. officinarum is prepared in Asia, Turkey, Morocco and Iran as a decoction, infusion or juice as a single preparation or in combination with other herbs, food or drinks for the treatment of general health problems including cold, inflammation, digestive disorders, etc. Pharmacological studies revealed the potent in vitro and in vivo bioactivities of various parts of A. officinarum that include anti-inflammatory, cytotoxicity, homeostasis, lipid regulation, antioxidant, antiviral, antimicrobial, antiosteoporosis, etc. Over 90 phytochemical constituents have been identified and isolated from A. officinarum comprising vastly of phenolic compounds especially diarylheptanoids isolated from the rhizome and considered the most active bioactive components. CONCLUSION In vitro and in vivo studies have confirmed the potency of A. officinarum. However, further studies are required to establish the mechanisms mediating its bioactivities in relation to the medicinal uses as well as investigating any potential toxicity for future clinical studies.
Collapse
Affiliation(s)
- Ibrahim Babangida Abubakar
- Department of Biochemistry, Faculty of Science, Kebbi State University of Science and Technology, PMB 1144 Aliero, Nigeria.
| | - Ibrahim Malami
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346 Sokoto, Nigeria.
| | - Yakubu Yahaya
- Department of Pure and Applied Chemistry, Faculty of Science, Kebbi State University of Science and Technology, PMB 1144 Aliero, Nigeria.
| | - Sahabi Manga Sule
- Department of Biological Sciences, Faculty of Science, Kebbi State University of Science and Technology, PMB 1144 Aliero, Nigeria.
| |
Collapse
|
23
|
Das M, Das S. Docosahexaenoic Acid (DHA) Induced Morphological Differentiation of Astrocytes Is Associated with Transcriptional Upregulation and Endocytosis of β 2-AR. Mol Neurobiol 2018; 56:2685-2702. [PMID: 30054857 DOI: 10.1007/s12035-018-1260-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
Docosahexaenoic acid (DHA), an important ω-3 fatty acid, is abundantly present in the central nervous system and is important in every step of brain development. Much of this knowledge has been based on studies of the role of DHA in the function of the neurons, and reports on its effect on the glial cells are few and far between. We have previously reported that DHA facilitates astrocyte differentiation in primary culture. We have further explored the signaling mechanism associated with this event. It was observed that a sustained activation of the extracellular signal-regulated kinase (ERK) appeared to be critical for DHA-induced differentiation of the cultured astrocytes. Prior exposure to different endocytic inhibitors blocked both ERK activation and differentiation of the astrocytes during DHA treatment suggesting that the observed induction of ERK-2 was purely endosomal. Unlike the β1-adrenergic receptor (β1-AR) antagonist, atenolol, pre-treatment of the cells with the β2-adrenergic receptor (β2-AR) antagonist, ICI-118,551 inhibited the DHA-induced differentiation process, indicating a downstream involvement of β2-AR in the differentiation process. qRT-PCR and western blot analysis demonstrated a significant induction in the mRNA and protein expression of β2-AR at 18-24 h of DHA treatment, suggesting that the induction of β2-AR may be due to transcriptional upregulation. Moreover, DHA caused activation of PKA at 6 h, followed by activation of downstream cAMP response element-binding protein, a known transcription factor for β2-AR. Altogether, the observations suggest that DHA upregulates β2-AR in astrocytes, which undergo endocytosis and signals for sustained endosomal ERK activation to drive the differentiation process.
Collapse
Affiliation(s)
- Moitreyi Das
- Neurobiology Division, Cell Biology & Physiology Department, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Sumantra Das
- Neurobiology Division, Cell Biology & Physiology Department, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
24
|
Jiang X, Dong X, Li SH, Zhou YP, Rayner S, Xia HM, Gao GF, Yuan H, Tang YP, Luo MH. Proteomic Analysis of Zika Virus Infected Primary Human Fetal Neural Progenitors Suggests a Role for Doublecortin in the Pathological Consequences of Infection in the Cortex. Front Microbiol 2018; 9:1067. [PMID: 29922247 PMCID: PMC5996093 DOI: 10.3389/fmicb.2018.01067] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/04/2018] [Indexed: 12/26/2022] Open
Abstract
Zika virus (ZIKV) infection is associated with severe neurological defects in fetuses and newborns, such as microcephaly. However, the underlying mechanisms remain to be elucidated. In this study, proteomic analysis on ZIKV-infected primary human fetal neural progenitor cells (NPCs) revealed that virus infection altered levels of cellular proteins involved in NPC proliferation, differentiation and migration. The transcriptional levels of some of the altered targets were also confirmed by qRT-PCR. Among the altered proteins, doublecortin (DCX) plays an important role in NPC differentiation and migration. Results showed that ZIKV infection downregulated DCX, at both mRNA and protein levels, as early as 1 day post infection (1 dpi), and lasted throughout the virus replication cycle (4 days). The downregulation of DCX was also observed in a ZIKV-infected fetal mouse brain model, which displayed decreased body weight, brain size and weight, as well as defective cortex structure. By screening the ten viral proteins of ZIKV, we found that both the expression of NS4A and NS5 were correlated with the downregulation of both mRNA and protein levels of DCX in NPCs. These data suggest that DCX is modulated following infection of the brain by ZIKV. How these observed changes of DCX expression translate in the pathological consequences of ZIKV infection and if other cellular proteins are equally involved remains to be investigated.
Collapse
Affiliation(s)
- Xuan Jiang
- Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China.,Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao Dong
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Shi-Hua Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yue-Peng Zhou
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Simon Rayner
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Hui-Min Xia
- Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Research Network of Immunity and Health, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Hui Yuan
- Department of Medicine, Medical College, Jianghan University, Wuhan, China
| | - Ya-Ping Tang
- Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Min-Hua Luo
- Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China.,Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Liu H, Wu ZL, Huang XJ, Peng Y, Huang X, Shi L, Wang Y, Ye WC. Evaluation of Diarylheptanoid-Terpene Adduct Enantiomers from Alpinia officinarum for Neuroprotective Activities. JOURNAL OF NATURAL PRODUCTS 2018; 81:162-170. [PMID: 29323912 DOI: 10.1021/acs.jnatprod.7b00803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Two pairs of new diarylheptanoid-monoterpene adduct enantiomers, (±)-alpininoids A and B [(±)-1 and (±)-2], as well as three pairs of new diarylheptanoid-sesquiterpene adduct enantiomers, (±)-alpininoids C-E [(±)-3-(±)-5], together with four known diarylheptanoids (6-9) were isolated from the rhizomes of Alpinia officinarum. Their structures with absolute configurations were elucidated on the basis of comprehensive spectroscopic analyses and computational calculation methods. The skeletons of these cyclohexene-containing hybrid natural products were hypothesized to be generated via a crucial Diels-Alder cycloaddition between the diarylheptanoids (7 and 8) and terpenes, of which 1 represents a new carbon skeleton. All isolated compounds were evaluated for their neuroprotective effects against MPP+ (1-methyl-4-phenylpyridinium)-induced cortical neuron injury. At a concentration of 16 μM, (+)-1 significantly increased cell viability when compared with MPP+ treatment alone.
Collapse
Affiliation(s)
- Hui Liu
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University , Guangzhou 510632, People's Republic of China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University , Guangzhou 510632, People's Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Zhen-Long Wu
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University , Guangzhou 510632, People's Republic of China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University , Guangzhou 510632, People's Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Xiao-Jun Huang
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University , Guangzhou 510632, People's Republic of China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University , Guangzhou 510632, People's Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Yinghui Peng
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University , Guangzhou 510632, People's Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Xiaojie Huang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University , Guangzhou 510632, People's Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University , Guangzhou 510632, People's Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Ying Wang
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University , Guangzhou 510632, People's Republic of China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University , Guangzhou 510632, People's Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University , Guangzhou 510632, People's Republic of China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University , Guangzhou 510632, People's Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| |
Collapse
|
26
|
Alberti Á, Riethmüller E, Béni S. Characterization of diarylheptanoids: An emerging class of bioactive natural products. J Pharm Biomed Anal 2017; 147:13-34. [PMID: 28958734 DOI: 10.1016/j.jpba.2017.08.051] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/24/2017] [Accepted: 08/26/2017] [Indexed: 01/11/2023]
Abstract
Diarylheptanoids are a class of secondary plant metabolites with a wide variety of bioactivity. Research on their phytochemistry and phytoanalysis is rapidly growing and the number of identified structures bearing the aryl-C7-aryl skeleton is at present approaching 500. Historically, the yellow pigment curcumin has been characterized as the first diarylheptanoid and the extensive research on naturally occurring analogues is still ongoing. In this review, studies dealing with the characterization of linear and cyclic derivatives are discussed from the phytoanalytical point of view. Isolation, fractionation and purification strategies from natural sources along with their chromatographic behavior and structural characteristics are discussed. The role of various techniques used for the extraction (such as Soxhlet extraction, sonication, maceration/percolation, microwave-assisted extraction, supercritical carbon dioxide extraction); isolation (liquid-liquid extraction, column chromatographic techniques, preparative thin-layer and high-performance liquid chromatography, centrifugal partition chromatography, counter-current chromatography); separation (thin-layer chromatography, high-performance liquid chromatography, gas chromatography, capillary electrophoresis) and structural characterization (UV/Vis spectroscopy, infrared spectroscopy, X-ray crystallography, mass spectrometry, nuclear magnetic resonance spectroscopy and circular dichroism spectroscopy) are critically reviewed.
Collapse
Affiliation(s)
- Ágnes Alberti
- Semmelweis University, Department of Pharmacognosy, 1085 Budapest, Üllői út, 26. Hungary.
| | - Eszter Riethmüller
- Semmelweis University, Department of Pharmacognosy, 1085 Budapest, Üllői út, 26. Hungary
| | - Szabolcs Béni
- Semmelweis University, Department of Pharmacognosy, 1085 Budapest, Üllői út, 26. Hungary.
| |
Collapse
|
27
|
Wirth A, Holst K, Ponimaskin E. How serotonin receptors regulate morphogenic signalling in neurons. Prog Neurobiol 2017; 151:35-56. [DOI: 10.1016/j.pneurobio.2016.03.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/09/2016] [Accepted: 03/19/2016] [Indexed: 11/25/2022]
|
28
|
Xiao H, Zhang Q, Peng Y, Tang G, Liao Y, Zhuang X, Ye WC, Wang Y, Shi L. 7-(4-Hydroxy-3-methoxyphenyl)-1-phenyl-4E-hepten-3-one alleviates Aβ1-42 induced cytotoxicity through PI3K-mTOR pathways. Biochem Biophys Res Commun 2017; 484:365-371. [DOI: 10.1016/j.bbrc.2017.01.125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/23/2017] [Indexed: 10/20/2022]
|
29
|
Liu ZW, Tang BQ, Zhang QH, Wang WJ, Huang XJ, Zhang J, Shi L, Zhang XQ, Ye WC. Ervaoffines E–G, three iboga-type alkaloids featuring ring C cleavage and rearrangement from Ervatamia officinalis. RSC Adv 2017. [DOI: 10.1039/c7ra03411c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Three novel alkaloids (1–3) reveal the high structural plasticity of ring C in iboga-type alkaloids.
Collapse
Affiliation(s)
- Zhi-Wen Liu
- Institute of Traditional Chinese Medicine & Natural Products
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
- Jinan University
- Guangzhou 510632
- People's Republic of China
| | - Ben-Qin Tang
- Department of Medical Science
- Shunde Polytechnic
- Foshan 528333
- People's Republic of China
| | - Qing-Hua Zhang
- Institute of Traditional Chinese Medicine & Natural Products
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
- Jinan University
- Guangzhou 510632
- People's Republic of China
| | - Wen-Jing Wang
- Institute of Traditional Chinese Medicine & Natural Products
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
- Jinan University
- Guangzhou 510632
- People's Republic of China
| | - Xiao-Jun Huang
- Institute of Traditional Chinese Medicine & Natural Products
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
- Jinan University
- Guangzhou 510632
- People's Republic of China
| | - Jian Zhang
- Institute of Traditional Chinese Medicine & Natural Products
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
- Jinan University
- Guangzhou 510632
- People's Republic of China
| | - Lei Shi
- Institute of Traditional Chinese Medicine & Natural Products
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
- Jinan University
- Guangzhou 510632
- People's Republic of China
| | - Xiao-Qi Zhang
- Institute of Traditional Chinese Medicine & Natural Products
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
- Jinan University
- Guangzhou 510632
- People's Republic of China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
- Jinan University
- Guangzhou 510632
- People's Republic of China
| |
Collapse
|
30
|
Current Opinion on the Role of Neurogenesis in the Therapeutic Strategies for Alzheimer Disease, Parkinson Disease, and Ischemic Stroke; Considering Neuronal Voiding Function. Int Neurourol J 2016; 20:276-287. [PMID: 28043116 PMCID: PMC5209581 DOI: 10.5213/inj.1632776.388] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/12/2016] [Indexed: 01/01/2023] Open
Abstract
Neurological diseases such as Alzheimer, Parkinson, and ischemic stroke have increased in occurrence and become important health issues throughout the world. There is currently no effective therapeutic strategy for addressing neurological deficits after the development of these major neurological disorders. In recent years, it has become accepted that adult neural stem cells located in the subventricular and subgranular zones have the ability to proliferate and differentiate in order to replace lost or damaged neural cells. There have been many limitations in the clinical application of both endogenous and exogenous neurogenesis for neurological disorders. However, many studies have investigated novel mechanisms in neurogenesis and have shown that these limitations can potentially be overcome with appropriate stimulation and various approaches. We will review concepts related to possible therapeutic strategies focused on the perspective of neurogenesis for the treatment of patients diagnosed with Alzheimer disease, Parkinson disease, and ischemic stroke based on current reports.
Collapse
|
31
|
Tang G, Liu X, Ma N, Huang X, Wu ZL, Zhang W, Wang Y, Zhao BX, Wang ZY, Ip FCF, Ip NY, Ye WC, Shi L, Chen WM. Design and Synthesis of Dimeric Securinine Analogues with Neuritogenic Activities. ACS Chem Neurosci 2016; 7:1442-1451. [PMID: 27467236 DOI: 10.1021/acschemneuro.6b00188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurite outgrowth is crucial during neuronal development and regeneration, and strategies that aim at promoting neuritogenesis are beneficial for reconstructing synaptic connections after neuronal degeneration and injury. Using a bivalent analogue strategy as a successful approach, the current study identifies a series of novel dimeric securinine analogues as potent neurite outgrowth enhancers. Compounds 13, 14, 17-19, and 21-23, with different lengths of carbon chain of N,N-dialkyl substituting diacid amide linker between two securinine molecules at C-15 position, exhibited notable positive effects on both neuronal differentiation and neurite extension of neuronal cells. Compound 14, one of the most active compounds, was used as a representative compound for mechanistic studies. Its action on neurite outgrowth was through phosphorylation/activation of multiple signaling molecules including Ca2+/calmodulin-dependent protein kinase II (CaMKII), extracellular signal-regulated kinase (ERK) and Akt. These findings collectively identify a new group of beneficial compounds for neuritogenesis, and may provide insights on drug discovery of neural repair and regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fanny C. F. Ip
- Division
of Life Science, State Key Laboratory of Molecular Neuroscience and
Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,
Hong Kong, China
| | - Nancy Y. Ip
- Division
of Life Science, State Key Laboratory of Molecular Neuroscience and
Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,
Hong Kong, China
| | | | | | | |
Collapse
|
32
|
Xiang X, Li S, Zhuang X, Shi L. Arhgef1 negatively regulates neurite outgrowth through activation of RhoA signaling pathways. FEBS Lett 2016; 590:2940-55. [PMID: 27489999 DOI: 10.1002/1873-3468.12339] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/20/2016] [Accepted: 07/25/2016] [Indexed: 11/06/2022]
Abstract
Neurite outgrowth is essential for the establishment of functional neuronal connections during brain development. This study identifies that Arhgef1 is predominantly expressed in early neuronal developmental stages and negatively regulates neurite outgrowth. Knockdown of Arhgef1 in either Neuro-2a cells or primary cortical neurons leads to excess growth of neurites, whereas overexpression of Arhgef1 prominently restricts neurite formation. Arhgef1 strongly activates RhoA activity while concomitantly inhibits Rac1 and Cdc42 activities. Pharmacological blockade of RhoA activity restores normal neurite outgrowth in Arhgef1-overexpressed neurons. Importantly, Arhgef1 promotes F-actin polymerization in neurons, probably through inhibiting the activity of the actin-depolymerizing factor cofilin. Collectively, these findings reveal that Arhgef1 functions as a negative regulator of neurite outgrowth through regulating RhoA-cofilin pathway and actin dynamics.
Collapse
Affiliation(s)
- Xiaoliang Xiang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Shengnan Li
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Xiaoji Zhuang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
33
|
Lu D, Liu H, Ye W, Wang Y, Wu B. Structure- and isoform-specific glucuronidation of six curcumin analogs. Xenobiotica 2016; 47:304-313. [PMID: 27324181 DOI: 10.1080/00498254.2016.1193264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. In the present study, we aimed to characterize the glucuronidation of six curcumin analogs (i.e. RAO-3, RAO-8, RAO-9, RAO-18, RAO-19, and RAO-23) derived from galangal using human liver microsomes (HLM) and twelve expressed UGT enzymes. 2. Formation of glucuronide was confirmed using high-resolution mass spectrometry. Single glucuronide metabolite was generated from each of six curcumin analogs. The fragmentation patterns were analyzed and were found to differ significantly between alcoholic and phenolic glucuronides. 3. All six curcumin analogs except one (RAO-23) underwent significant glucuronidation in HLM and expressed UGT enzymes. In general, the methoxy group (close to the phenolic hydroxyl group) enhanced the glucuronidation liability of the curcumin analogs. 4. UGT1A9 and UGT2B7 were primarily responsible for the glucuronidation of two alcoholic analogs (RAO-3 and RAO-18). By contrast, UGT1A9 and four UGT2Bs (UGT2B4, 2B7, 2B15 and 2B17) played important roles in conjugating three phenolic analogs (RAO-8, RAO-9, and RAO-19). Interestingly, the conjugated double bonds system (in the aliphatic chain) was crucial to the substrate selectivity of gastrointestinal UGTs (i.e. UGT1A7, 1A8 and 1A10). 5. In conclusion, glucuronidation of six curcumin analogs from galangal were structure- and isoform-specific. The knowledge should be useful in identifying a curcumin analog with improved metabolic property.
Collapse
Affiliation(s)
- Danyi Lu
- a Division of Pharmaceutics , College of Pharmacy, Jinan University , Guangzhou , China and
| | - Hui Liu
- b Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University , Guangzhou , China
| | - Wencai Ye
- b Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University , Guangzhou , China
| | - Ying Wang
- b Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University , Guangzhou , China
| | - Baojian Wu
- a Division of Pharmaceutics , College of Pharmacy, Jinan University , Guangzhou , China and
| |
Collapse
|
34
|
Ginsenoside-Rd Promotes Neurite Outgrowth of PC12 Cells through MAPK/ERK- and PI3K/AKT-Dependent Pathways. Int J Mol Sci 2016; 17:ijms17020177. [PMID: 26840295 PMCID: PMC4783911 DOI: 10.3390/ijms17020177] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/12/2016] [Accepted: 01/22/2016] [Indexed: 12/16/2022] Open
Abstract
Panax ginseng is a famous herbal medicine widely used in Asia. Ginsenosides have been identified as the principle active ingredients for Panax ginseng’s biological activity, among which ginsenoside Rd (Rd) attracts extensive attention for its obvious neuroprotective activities. Here we investigated the effect of Rd on neurite outgrowth, a crucial process associated with neuronal repair. PC12 cells, which respond to nerve growth factor (NGF) and serve as a model for neuronal cells, were treated with different concentrations of Rd, and then their neurite outgrowth was evaluated. Our results showed that 10 μM Rd significantly increased the percentages of long neurite- and branching neurite-bearing cells, compared with respective controls. The length of the longest neurites and the total length of neurites in Rd-treated PC12 cells were much longer than that of respective controls. We also showed that Rd activated ERK1/2 and AKT but not PKC signalings, and inhibition of ERK1/2 by PD98059 or/and AKT by LY294002 effectively attenuated Rd-induced neurite outgrowth. Moreover, Rd upregulated the expression of GAP-43, a neuron-specific protein involved in neurite outgrowth, while PD98059 or/and LY294002 decreased Rd-induced increased GAP-43 expression. Taken together, our results provided the first evidence that Rd may promote the neurite outgrowth of PC12 cells by upregulating GAP-43 expression via ERK- and ARK-dependent signaling pathways.
Collapse
|
35
|
Liu ZW, Huang XJ, Xiao HL, Liu G, Zhang J, Shi L, Jiang RW, Zhang XQ, Ye WC. New iboga-type alkaloids from Ervatamia hainanensis. RSC Adv 2016. [DOI: 10.1039/c6ra00185h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The structures and absolute configurations of seven new iboga-type alkaloids 1–7 were determined by spectroscopic data, Mosher's method, single crystal X-ray diffraction and ECD analyses.
Collapse
Affiliation(s)
- Zhi-Wen Liu
- Institute of Traditional Chinese Medicine and Natural Products
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Xiao-Jun Huang
- Institute of Traditional Chinese Medicine and Natural Products
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Han-Lin Xiao
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Guo Liu
- Institute of Traditional Chinese Medicine and Natural Products
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Jian Zhang
- Institute of Traditional Chinese Medicine and Natural Products
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Lei Shi
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Ren-Wang Jiang
- Institute of Traditional Chinese Medicine and Natural Products
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Xiao-Qi Zhang
- Institute of Traditional Chinese Medicine and Natural Products
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine and Natural Products
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
| |
Collapse
|
36
|
Huang X, Tang G, Liao Y, Zhuang X, Dong X, Liu H, Huang XJ, Ye WC, Wang Y, Shi L. 7-(4-Hydroxyphenyl)-1-phenyl-4 E-hepten-3-one, a Diarylheptanoid from Alpinia officinarum, Protects Neurons against Amyloid-β Induced Toxicity. Biol Pharm Bull 2016; 39:1961-1967. [DOI: 10.1248/bpb.b16-00411] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiaojie Huang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University
| | - Genyun Tang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University
- Department of Medical Genetics, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine
| | - Yumei Liao
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University
| | - Xiaoji Zhuang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University
| | - Xiao Dong
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University
| | - Hui Liu
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University
| | - Xiao-Jun Huang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University
| | - Wen-Cai Ye
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University
| | - Ying Wang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University
| |
Collapse
|