1
|
Barones L, Weihs W, Schratter A, Janata A, Kodajova P, Bergmeister H, Kenner L, Holzer M, Behringer W, Högler S. Cold aortic flush after ventricular fibrillation cardiac arrest reduces inflammatory reaction but not neuronal loss in the pig cerebral cortex. Sci Rep 2025; 15:11659. [PMID: 40185805 PMCID: PMC11971268 DOI: 10.1038/s41598-025-95611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
This study aims to retrospectively compare two resuscitation methods (extracorporeal cardiopulmonary resuscitation (ECPR) vs. emergency preservation and resuscitation (EPR)) by pathohistologically assessing pig brains in a ventricular fibrillation cardiac arrest (VFCA) model. In prospective studies from 2004 to 2006, swine underwent VFCA for 13 (n = 6), 15 (n = 14) or 17 (n = 6) minutes with ECPR (ECPR13, ECPR15 and ECPR17). Another 15 min VFCA group (n = 8) was resuscitated with EPR and chest compressions (EPR15 + CC). Brains of animals surviving for nine days (ECPR13 n = 4, ECPR15 n = 2, ECPR17 n = 1, EPR15 + CC n = 7) were harvested. Eight different brain regions were analyzed with the image analysis software QuPath using HE-staining, GFAP- and Iba1-immunohistochemistry. Only ECPR13 and EPR15 + CC animals were included in statistical analysis, due to low survival rates in the other groups. All VFCA samples showed significantly fewer viable neurons compared to shams, but no significant differences between ECPR13 and EPR15 + CC animals were observed. ECPR13 animals showed significantly more glial activation in all cerebral cortex regions compared to shams and in occipital, temporal and parietal cortex compared to EPR15 + CC. In conclusion, EPR + CC resulted in a significantly reduced inflammatory reaction in cerebral cortex compared to ECPR but did not influence the extent of neuronal death after VFCA.
Collapse
Affiliation(s)
- Lisa Barones
- Laboratory Animal Pathology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Wolfgang Weihs
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Andreas Janata
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Petra Kodajova
- Laboratory Animal Pathology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Helga Bergmeister
- Center for Biomedical Research and Translational Surgery and Ludwig Boltzmann Institute for Cardiovascular Research, Medical University Vienna, Vienna, Austria
| | - Lukas Kenner
- Laboratory Animal Pathology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
| | - Michael Holzer
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Wilhelm Behringer
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Sandra Högler
- Laboratory Animal Pathology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Ritchie EM, Acar D, Zhong S, Pu Q, Li Y, Zheng B, Jin Y. Translatome analysis reveals cellular network in DLK-dependent hippocampal glutamatergic neuron degeneration. eLife 2025; 13:RP101173. [PMID: 40067879 PMCID: PMC11896613 DOI: 10.7554/elife.101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
The conserved MAP3K12/Dual Leucine Zipper Kinase (DLK) plays versatile roles in neuronal development, axon injury and stress responses, and neurodegeneration, depending on cell-type and cellular contexts. Emerging evidence implicates abnormal DLK signaling in several neurodegenerative diseases. However, our understanding of the DLK-dependent gene network in the central nervous system remains limited. Here, we investigated the roles of DLK in hippocampal glutamatergic neurons using conditional knockout and induced overexpression mice. We found that dorsal CA1 and dentate gyrus neurons are vulnerable to elevated expression of DLK, while CA3 neurons appear less vulnerable. We identified the DLK-dependent translatome that includes conserved molecular signatures and displays cell-type specificity. Increasing DLK signaling is associated with disruptions to microtubules, potentially involving STMN4. Additionally, primary cultured hippocampal neurons expressing different levels of DLK show altered neurite outgrowth, axon specification, and synapse formation. The identification of translational targets of DLK in hippocampal glutamatergic neurons has relevance to our understanding of selective neuron vulnerability under stress and pathological conditions.
Collapse
Affiliation(s)
- Erin M Ritchie
- Department of Neurobiology, School of Biological Sciences, University of California San DiegoLa JollaUnited States
- Biomedical Sciences Graduate Program, School of Medicine, University of California San DiegoLa JollaUnited States
| | - Dilan Acar
- Department of Neurobiology, School of Biological Sciences, University of California San DiegoLa JollaUnited States
| | - Siming Zhong
- Department of Neurobiology, School of Biological Sciences, University of California San DiegoLa JollaUnited States
| | - Qianyi Pu
- Department of Neurobiology, School of Biological Sciences, University of California San DiegoLa JollaUnited States
| | - Yunbo Li
- Department of Neurobiology, School of Biological Sciences, University of California San DiegoLa JollaUnited States
| | - Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California San DiegoLa JollaUnited States
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California San DiegoLa JollaUnited States
- Department of Neurosciences, School of Medicine, University of California San DiegoLa JollaUnited States
- Kavli Institute for Brain and Mind, University of California San DiegoLa JollaUnited States
| |
Collapse
|
3
|
Vaillend C, Aoki Y, Mercuri E, Hendriksen J, Tetorou K, Goyenvalle A, Muntoni F. Duchenne muscular dystrophy: recent insights in brain related comorbidities. Nat Commun 2025; 16:1298. [PMID: 39900900 PMCID: PMC11790952 DOI: 10.1038/s41467-025-56644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025] Open
Abstract
Duchenne muscular dystrophy (DMD), the most common childhood muscular dystrophy, arises from DMD gene mutations, affecting the production of muscle dystrophin protein. Brain dystrophin-gene products are also transcribed via internal promoters. Their deficiency contributes to comorbidities, including intellectual disability ( ~ 22% of patients), autism ( ~ 6%) and attention deficit disorders ( ~ 18%), representing a major unmet need for patients and families. Thus, improvement of their diagnosis and treatment is needed. Dystrophic mouse models exhibit similar phenotypes, where genetic therapies restoring brain dystrophins improve their behaviour. This suggests that future genetic therapies could address both muscle and brain dysfunction in DMD patients.
Collapse
Affiliation(s)
- Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400, Saclay, Paris, France
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Eugenio Mercuri
- Department of Paediatric Neurology, Catholic University, Rome, Italy
| | - Jos Hendriksen
- Kempenhaeghe Centre for Neurological Learning Disabilities, Heeze, the Netherlands; Maastricht University, School for Mental Health and Neuroscience, Maastricht, the Netherlands.
| | - Konstantina Tetorou
- University College London Great Ormond Street Institute of Child Health, London, UK
| | - Aurelie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000, Versailles, France.
| | - Francesco Muntoni
- University College London Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
4
|
Kharkongor R, Stephen J, Khan U, Radhakrishnan R. Exposure to an enriched environment and fucoidan supplementation ameliorate learning and memory function in rats subjected to global cerebral ischemia. Neurosci Lett 2025; 847:138094. [PMID: 39736397 DOI: 10.1016/j.neulet.2024.138094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/01/2025]
Abstract
An enriched environment (EE) constitutes a proficient strategy that instigates social, cognitive, and motor faculties, fostering healing and heightening learning and memory function after ischemia, while fucoidan derived from brown seaweed encompasses a diverse array of bioactivities and is known to possess neuroprotective properties. This study aims to investigate the effectiveness of combining fucoidan and EE in a rat model of vascular dementia to overcome cognitive challenges. The rats were randomly assigned as Sham, Lesion - 4-vessel occlusion (4VO) i.e., transient global cerebral ischemia (tGCI), 4VO + F50mg/kg, 4VO + EE, and 4VO + F50mg/kg + EE. At the end of the study periods, the rats were exposed to the Novel object task, T-maze, and the Morris water maze. The profile of hippocampal pyramidal neurons and their dendrites was assessed through the CFV, and Golgi cox stained brain sections. Neuroinflammatory markers (IL-1β, IL-6, NF-κB, TNF-α) and synaptogenic markers (BDNF, SYP, PSD-95) were evaluated through western blot analysis. The levels of oxidative stress marker (LPO) and antioxidants (SOD, CAT, GSH, GST, GPX) in the hippocampus were quantified through biochemical assay. The findings revealed that the cognitive deficits were significantly reduced in both the 4VO + F50mg/kg and 4VO + F50mg/kg + EE treatment groups and inflammatory markers were reduced with increased antioxidant levels and synaptogenic markers when compared with the lesion group. However, through this study, the combination therapy involving fucoidan and exposure to an EE was proven effective in preserving neural integrity and restoring cognitive function against the damage caused by oxidative stress and inflammation following tGCI.
Collapse
Affiliation(s)
- Ronyson Kharkongor
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - JenishaChris Stephen
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - UlfathTasneem Khan
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Rameshkumar Radhakrishnan
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India.
| |
Collapse
|
5
|
Feng Y, Wu J, Yuan M, Xu T, Li J, Hou D. Causal association between brain structure and obstructive sleep apnea: A mendelian randomization study. Sleep Med 2024; 122:14-19. [PMID: 39106615 DOI: 10.1016/j.sleep.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
OBJECTIVE Previous studies have reported contradictory findings regarding the relationship between obstructive sleep apnea (OSA) and abnormal brain morphology. Furthermore, the causal relationship between OSA and brain morphology has not been clearly established. The aim of this study was to utilize Mendelian randomization (MR) analysis to investigate the impact of obstructive sleep apnea (OSA) on brain morphology and determine its potential causal relationship. METHODS Firstly, the inverse-variance weighted (IVW) method was employed to assess the causal effects of OSA on cortical surface area and brain structure volume. Additionally, two additional MR methods, namely weighted median and MR-Egger, were used to supplement the results from IVW. Subsequently, a reverse MR analysis was conducted to determine the direction of causality. Furthermore, sensitivity analyses were performed including Cochrane's Q test, MR-Egger intercept test, MR-PRESSO global test, and leave-one-out analysis. RESULTS The results of the study showed that OSA patients had a tendency towards decreased cortical surface area and hippocampal volume in the precuneus region compared to individuals without OSA, while the superior temporal cortical surface area showed an increase. The results from the weighted median and MR-Egger analyses were consistent with those from the IVW analysis. Sensitivity tests confirmed the reliability of the causal estimates. CONCLUSIONS This study provides preliminary evidence of an association between OSA and brain structure using large-scale genome-wide association data. The results demonstrate that OSA is associated with changes in brain structure. Therefore, individuals with OSA should be vigilant about the risks of related diseases due to alterations in brain tissue.
Collapse
Affiliation(s)
- Yanjing Feng
- Department of Neurology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, China; Department of Neurology, Baoding No. 1 Central Hospital of Heibei Medical University, Baoding, Hebei, 071000, China
| | - Jinze Wu
- Department of Neurology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Mingyang Yuan
- Department of Neurology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Ting Xu
- Department of Neurology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jiaxin Li
- Department of Neurology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Deren Hou
- Department of Neurology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, China.
| |
Collapse
|
6
|
Manco C, Cortese R, Leoncini M, Plantone D, Gentile G, Luchetti L, Zhang J, Di Donato I, Salvadori E, Poggesi A, Cosottini M, Mascalchi M, Federico A, Dotti MT, Battaglini M, Inzitari D, Pantoni L, De Stefano N. Hippocampal atrophy and white matter lesions characteristics can predict evolution to dementia in patients with vascular mild cognitive impairment. J Neurol Sci 2024; 464:123163. [PMID: 39128160 DOI: 10.1016/j.jns.2024.123163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Vascular mild cognitive impairment (VMCI) is a transitional condition that may evolve into Vascular Dementia(VaD). Hippocampal volume (HV) is suggested as an early marker for VaD, the role of white matter lesions (WMLs) in neurodegeneration remains debated. OBJECTIVES Evaluate HV and WMLs as predictive markers of VaD in VMCI patients by assessing: (i)baseline differences in HV and WMLs between converters to VaD and non-converters, (ii) predictive power of HV and WMLs for VaD, (iii) associations between HV, WMLs, and cognitive decline, (iv)the role of WMLs on HV. METHODS This longitudinal multicenter study included 110 VMCI subjects (mean age:74.33 ± 6.63 years, 60males/50females) from the VMCI-Tuscany Study database. Subjects underwent brain MRI and cognitive testing, with 2-year follow-up data on VaD progression. HV and WMLs were semi-automatically segmented and measured. ANCOVA assessed group differences, while linear and logistic regression models evaluated predictive power. RESULTS After 2 years, 32/110 VMCI patients progressed to VaD. Converting patients had lower HV(p = 0.015) and higher lesion volumes in the posterior thalamic radiation (p = 0.046), splenium of the corpus callosum (p = 0.016), cingulate gyrus (p = 0.041), and cingulum hippocampus(p = 0.038). HV alone did not fully explain progression (p = 0.059), but combined with WMLs volume, the model was significant (p = 0.035). The best prediction model (p = 0.001) included total HV (p = 0.004) and total WMLs volume of the posterior thalamic radiation (p = 0.005) and cingulate gyrus (p = 0.005), achieving 80% precision, 81% specificity, and 74% sensitivity. Lower HV were linked to poorer performance on the Rey Auditory-Verbal Learning Test delayed recall (RAVLT) and Mini Mental State Examination (MMSE). CONCLUSIONS HV and WMLs are significant predictors of progression from VMCI to VaD. Lower HV correlate with worse cognitive performance on RAVLT and MMSE tests.
Collapse
Affiliation(s)
- Carlo Manco
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Rosa Cortese
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy.
| | | | - Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Giordano Gentile
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; Siena Imaging SRL, 53100 Siena, Italy
| | - Ludovico Luchetti
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; Siena Imaging SRL, 53100 Siena, Italy
| | | | | | - Emilia Salvadori
- Department of Biomedical and Clinical Sciences, University of Milano, Italy
| | - Anna Poggesi
- NEUROFARBA Department, Neuroscience Section, University of Florence, Florence, Italy
| | - Mirco Cosottini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mario Mascalchi
- Department of Clinical and Experimental Biomedical Sciences -"Mario Serio", University of Florence, Florence, Italy
| | - Antonio Federico
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Maria Teresa Dotti
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Marco Battaglini
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; Siena Imaging SRL, 53100 Siena, Italy
| | - Domenico Inzitari
- NEUROFARBA Department, Neuroscience Section, University of Florence, Florence, Italy
| | - Leonardo Pantoni
- Department of Biomedical and Clinical Sciences, University of Milano, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| |
Collapse
|
7
|
Dasdelen D, Solmaz M, Mogulkoc R, Baltaci AK, Erdogan E. Apoptosis of hippocampus and cerebellum induced with brain ischemia reperfusion prevented by 3',4'-dihydroxyflavonol (DiOHF). Biotech Histochem 2024; 99:225-237. [PMID: 38940209 DOI: 10.1080/10520295.2024.2360496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
The present study aimed to determine the effect of 3',4'-dihydroxyflavonol (DiOHF) on apoptosis in the cerebellum and hippocampus in rats with ischemia-reperfusion. A total of 38 Wistar albino male rats were used. Experimental groups were designed as Group 1-Sham; Group 2-Ischemia-reperfusion (IR), in which animals were anesthetized and carotid arteries ligated for 30 minutes (ischemia) and reperfused 30 minutes; Group 3- IR + DiOHF (10 mg/kg); Group 4- Ischemia + DiOHF (10 mg/kg) + reperfusion; Group 5-DiOHF + IR. DiOHF was supplemented as 10 mg/kg by intraperitoneal injection 30 minutes before IR. Following application, the animals were sacrificed under general anesthetic by cervical dislocation, and the cerebellum and hippocampus tissues were analyzed for apoptosis. IR significantly increased hippocampus and cerebellum apoptosis activity, confirmed by Hematoxylin-Eosin, TUNEL labeling, and Caspase-8 activity. However, these values were significantly suppressed by the administration of DiOHF, especially when used before the ischemia and reperfusion. The results of the study show that increased apoptosis in the cerebellum and hippocampus tissue was inhibited by intraperitoneal DiOHF supplementation.
Collapse
Affiliation(s)
- Dervis Dasdelen
- Medical School, Deparment of Physiology, Selcuk University, Konya, Turkey
| | - Merve Solmaz
- Medical School Deparment of Histology, Selcuk University, Konya, Turkey
| | - Rasim Mogulkoc
- Medical School, Deparment of Physiology, Selcuk University, Konya, Turkey
| | | | - Ender Erdogan
- Medical School Deparment of Histology, Selcuk University, Konya, Turkey
| |
Collapse
|
8
|
McCall DM, Homayouni R, Yu Q, Raz S, Ofen N. Meta-Analysis of Hippocampal Volume and Episodic Memory in Preterm and Term Born Individuals. Neuropsychol Rev 2024; 34:478-495. [PMID: 37060422 DOI: 10.1007/s11065-023-09583-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/22/2022] [Indexed: 04/16/2023]
Abstract
Preterm birth (< 37 weeks gestation) has been associated with memory deficits, which has prompted investigation of possible alterations in hippocampal volume in this population. However, existing literature reports varying effects of premature birth on hippocampal volume. Specifically, it is unclear whether smaller hippocampal volume in preterm-born individuals is merely reflective of smaller total brain volume. Further, it is not clear if hippocampal volume is associated with episodic memory functioning in preterm-born individuals. Meta-analysis was used to investigate the effects of premature birth on hippocampal volume and episodic memory from early development to young adulthood (birth to 26). PubMed, PsychINFO, and Web of Science were searched for English peer-reviewed articles that included hippocampal volume of preterm and term-born individuals. Thirty articles met the inclusion criteria. Separate meta-analyses were used to evaluate standardized mean differences between preterm and term-born individuals in uncorrected and corrected hippocampal volume, as well as verbal and visual episodic memory. Both uncorrected and corrected hippocampal volume were smaller in preterm-born compared to term-born individuals. Although preterm-born individuals had lower episodic memory performance than term-born individuals, the limited number of studies only permitted a qualitative review of the association between episodic memory performance and hippocampal volume. Tested moderators included mean age, pre/post-surfactant era, birth weight, gestational age, demarcation method, magnet strength, and slice thickness. With this meta-analysis, we provide novel evidence of the effects of premature birth on hippocampal volume.
Collapse
Affiliation(s)
- Dana M McCall
- Institute of Gerontology, Wayne State University, Detroit, MI, USA.
- Department of Neuropsychology, Gundersen Health System, La Crosse, WI, USA.
| | - Roya Homayouni
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Qijing Yu
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | - Sarah Raz
- Department of Psychology, Wayne State University, Detroit, MI, USA
- Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI, USA
| | - Noa Ofen
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
- Department of Psychology, Wayne State University, Detroit, MI, USA
- Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
9
|
Bertagna F, Ahmad S, Lewis R, Silva SRP, McFadden J, Huang CLH, Matthews HR, Jeevaratnam K. Loose patch clamp membrane current measurements in cornus ammonis 1 neurons in murine hippocampal slices. Ann N Y Acad Sci 2024; 1535:62-75. [PMID: 38602714 DOI: 10.1111/nyas.15123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/19/2023] [Accepted: 02/16/2024] [Indexed: 04/12/2024]
Abstract
Hippocampal pyramidal neuronal activity has been previously studied using conventional patch clamp in isolated cells and brain slices. We here introduce the loose patch clamping study of voltage-activated currents from in situ pyramidal neurons in murine cornus ammonis 1 hippocampal coronal slices. Depolarizing pulses of 15-ms duration elicited early transient inward, followed by transient and prolonged outward currents in the readily identifiable junctional region between the stratum pyramidalis (SP) and oriens (SO) containing pyramidal cell somas and initial segments. These resembled pyramidal cell currents previously recorded using conventional patch clamp. Shortening the depolarizing pulses to >1-2 ms continued to evoke transient currents; hyperpolarizing pulses to varying voltages evoked decays whose time constants could be shortened to <1 ms, clarifying the speed of clamping in this experimental system. The inward and outward currents had distinct pharmacological characteristics and voltage-dependent inactivation and recovery from inactivation. Comparative recordings from the SP, known to contain pyramidal cell somas, demonstrated similar current properties. Recordings from the SO and stratum radiatum demonstrated smaller inward and outward current magnitudes and reduced transient outward currents, consistent with previous conventional patch clamp results from their different interneuron types. The loose patch clamp method is thus useful for in situ studies of neurons in hippocampal brain slices.
Collapse
Affiliation(s)
- Federico Bertagna
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, UK
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Shiraz Ahmad
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Rebecca Lewis
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, UK
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - S Ravi P Silva
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, UK
- Advanced Technology Institute, University of Surrey, Guildford, UK
| | - Johnjoe McFadden
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, UK
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Christopher L-H Huang
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- Physiological Laboratory, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Hugh R Matthews
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Kamalan Jeevaratnam
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, UK
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
10
|
Kharkongor R, Nambi P, Radhakrishnan R. Fucoidan protects CA1 pyramidal neurons of the hippocampus and preserves the cognitive profile of rats subjected to transient forebrain ischemia. Brain Res 2024; 1828:148769. [PMID: 38237671 DOI: 10.1016/j.brainres.2024.148769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
Fucoidan, a polysaccharide derived from brown seaweeds, especially Fucus Vesiculosus has been documented as an effective neuroprotectant. This study investigates the efficacy of fucoidan in mitigating the cognitive deficits in the rat model of vascular dementia induced through the 4-vessel occlusions (4VO) method. Male Wistar rats weighing about 250-300 g were randomly assigned into four groups, sham, lesion (4VO), 4VO + F5mg/kg, and 4VO + F50mg/kg. The rats were assessed for cognitive behaviour performance through novel object task, T-maze and Morris water maze, and finally, the hippocampus from the brain was harvested to quantify the profile of CA1 pyramidal neurons through CFV staining and the expression of inflammatory markers and angiogenic markers were quantified through western blot assessment on day7 and 30 of the study period. The rats were treated with fucoidan at a dose of 50 mg/kg. body weight showed improved spatial learning and memory compared to the lesion group and the cytoarchitecture of CA1 pyramidal cells was observed to be well preserved. The expression of IL1β, IL6, TNFα, NFk-B, CD68 and HIFα were found to be down-regulated, while on the contrary the VEGFR2 and angiopoietin-1 were up regulated in the 4VO + F50mg/kg group when compared with the lesion group. In conclusion, this study ascertains the role of fucoidan in support of the cognitive profile of rats subjected to vascular dementia and in preserving the CA1 pyramidal neurons of the hippocampus by regulating the inflammatory and angiogenic factors.
Collapse
Affiliation(s)
- Ronyson Kharkongor
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Pradeepkumar Nambi
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Rameshkumar Radhakrishnan
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India.
| |
Collapse
|
11
|
Davidson TL, Stevenson RJ. Vulnerability of the Hippocampus to Insults: Links to Blood-Brain Barrier Dysfunction. Int J Mol Sci 2024; 25:1991. [PMID: 38396670 PMCID: PMC10888241 DOI: 10.3390/ijms25041991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The hippocampus is a critical brain substrate for learning and memory; events that harm the hippocampus can seriously impair mental and behavioral functioning. Hippocampal pathophysiologies have been identified as potential causes and effects of a remarkably diverse array of medical diseases, psychological disorders, and environmental sources of damage. It may be that the hippocampus is more vulnerable than other brain areas to insults that are related to these conditions. One purpose of this review is to assess the vulnerability of the hippocampus to the most prevalent types of insults in multiple biomedical domains (i.e., neuroactive pathogens, neurotoxins, neurological conditions, trauma, aging, neurodegenerative disease, acquired brain injury, mental health conditions, endocrine disorders, developmental disabilities, nutrition) and to evaluate whether these insults affect the hippocampus first and more prominently compared to other brain loci. A second purpose is to consider the role of hippocampal blood-brain barrier (BBB) breakdown in either causing or worsening the harmful effects of each insult. Recent research suggests that the hippocampal BBB is more fragile compared to other brain areas and may also be more prone to the disruption of the transport mechanisms that act to maintain the internal milieu. Moreover, a compromised BBB could be a factor that is common to many different types of insults. Our analysis indicates that the hippocampus is more vulnerable to insults compared to other parts of the brain, and that developing interventions that protect the hippocampal BBB may help to prevent or ameliorate the harmful effects of many insults on memory and cognition.
Collapse
Affiliation(s)
- Terry L. Davidson
- Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Avenue, NW, Washington, DC 20016, USA
| | | |
Collapse
|
12
|
Berisha DE, Rizvi B, Chappel-Farley MG, Tustison N, Taylor L, Dave A, Sattari NS, Chen IY, Lui KK, Janecek JC, Keator D, Neikrug AB, Benca RM, Yassa MA, Mander BA. Cerebrovascular pathology mediates associations between hypoxemia during rapid eye movement sleep and medial temporal lobe structure and function in older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.28.577469. [PMID: 38328085 PMCID: PMC10849660 DOI: 10.1101/2024.01.28.577469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Obstructive sleep apnea (OSA) is common in older adults and is associated with medial temporal lobe (MTL) degeneration and memory decline in aging and Alzheimer's disease (AD). However, the underlying mechanisms linking OSA to MTL degeneration and impaired memory remains unclear. By combining magnetic resonance imaging (MRI) assessments of cerebrovascular pathology and MTL structure with clinical polysomnography and assessment of overnight emotional memory retention in older adults at risk for AD, cerebrovascular pathology in fronto-parietal brain regions was shown to statistically mediate the relationship between OSA-related hypoxemia, particularly during rapid eye movement (REM) sleep, and entorhinal cortical thickness. Reduced entorhinal cortical thickness was, in turn, associated with impaired overnight retention in mnemonic discrimination ability across emotional valences for high similarity lures. These findings identify cerebrovascular pathology as a contributing mechanism linking hypoxemia to MTL degeneration and impaired sleep-dependent memory in older adults.
Collapse
Affiliation(s)
- Destiny E. Berisha
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Batool Rizvi
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Miranda G. Chappel-Farley
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Nicholas Tustison
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Lisa Taylor
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Abhishek Dave
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
| | - Negin S. Sattari
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Ivy Y. Chen
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Kitty K. Lui
- San Diego State University/University of California San Diego, Joint Doctoral Program in Clinical Psychology, San Diego, CA, 92093, USA
| | - John C. Janecek
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - David Keator
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Ariel B. Neikrug
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Ruth M. Benca
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, 53706, WI, USA
- Department of Psychiatry and Behavioral Medicine, Wake Forest University, Winston-Salem, NC, 27109, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
| | - Michael A. Yassa
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
- Department of Neurology, University of California Irvine, Irvine CA, 92697, USA
| | - Bryce A. Mander
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine CA, 92697, USA
| |
Collapse
|
13
|
Einenkel AM, Salameh A. Selective vulnerability of hippocampal CA1 and CA3 pyramidal cells: What are possible pathomechanisms and should more attention be paid to the CA3 region in future studies? J Neurosci Res 2024; 102:e25276. [PMID: 38284845 DOI: 10.1002/jnr.25276] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/22/2023] [Accepted: 10/29/2023] [Indexed: 01/30/2024]
Abstract
Transient ischemia and reperfusion selectively damage neurons in brain, with hippocampal pyramidal cells being particularly vulnerable. Even within hippocampus, heterogeneous susceptibility is evident, with higher vulnerability of CA1 versus CA3 neurons described for several decades. Therefore, numerous studies have focused exclusively on CA1. Pediatric cardiac surgery is increasingly focusing on studies of hippocampal structures, and a negative impact of cardiopulmonary bypass on the hippocampus cannot be denied. Recent studies show a shift in selective vulnerability from neurons of CA1 to CA3. This review shows that cell damage is increased in CA3, sometimes stronger than in CA1, depending on several factors (method, species, age, observation period). Despite a highly variable pattern, several markers illustrate greater damage to CA3 neurons than previously assumed. Nevertheless, the underlying cellular mechanisms have not been fully deciphered to date. The complexity is reflected in possible pathomechanisms discussed here, with numerous factors (NMDA, kainate and AMPA receptors, intrinsic oxidative stress potential and various radicals, AKT isoforms, differences in vascular architecture, ratio of pro- and anti-apoptotic Bcl-2 factors, vulnerability of interneurons, mitochondrial dysregulation) contributing to either enhanced CA1 or CA3 vulnerability. Furthermore, differences in expressed genome, proteome, metabolome, and transcriptome in CA1 and CA3 appear to influence differential behavior after damaging stimuli, thus metabolomics-, transcriptomics-, and proteomics-based analyses represent a viable option to identify pathways of selective vulnerability in hippocampal neurons. These results emphasize that future studies should focus on the CA3 field in addition to CA1, especially with regard to improving therapeutic strategies after ischemic/hypoxic brain injury.
Collapse
Affiliation(s)
- Anne-Marie Einenkel
- Clinic for Pediatric Cardiology, University of Leipzig, Heart Centre, Leipzig, Germany
| | - Aida Salameh
- Clinic for Pediatric Cardiology, University of Leipzig, Heart Centre, Leipzig, Germany
| |
Collapse
|
14
|
Soltani A, Schworer EK, Amin R, Hoffman EK, Esbensen AJ. Executive Functioning, Language, and Behavioral Abilities Related to Obstructive Sleep Apnea in Down Syndrome. J Dev Behav Pediatr 2023; 44:e429-e435. [PMID: 37099648 PMCID: PMC10524295 DOI: 10.1097/dbp.0000000000001189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/20/2023] [Indexed: 04/28/2023]
Abstract
OBJECTIVES Obstructive sleep apnea (OSA) is highly prevalent among individuals with Down syndrome (DS), and the nonphysiological consequences of OSA require examination to inform treatment planning. This study aimed to investigate the association between OSA and aspects of language, executive functioning, behavioral, social abilities, and sleep problems in youth with DS aged 6 to 17 years. METHODS Multivariate analysis of covariance was used to compare 3 groups adjusted for age, participants with DS with untreated OSA (n = 28), participants with DS without OSA (n = 38), and participants with DS with treated OSA (n = 34). To be eligible for the study, participants had to have an estimated mental age of 3 years. No children were excluded based on estimated mental age. RESULTS After adjusting for age, participants with untreated OSA showed a common pattern of lower estimated marginal mean scores than those with treated OSA and those with no OSA in expressive and receptive vocabulary and higher estimated marginal mean scores with executive functions, everyday memory, attention, internalizing and externalizing behavior, social behavior, and sleep problems. However, only the group differences for executive function (emotional regulation) and internalizing behavior were statistically significant. CONCLUSION Study findings corroborate and extend prior findings related to OSA and clinical outcomes for youth with DS. The study highlights the importance of OSA treatment in youth with DS and provides clinical recommendations for this population. Additional studies are necessary to control the effects of health and demographic variables.
Collapse
Affiliation(s)
- Amanallah Soltani
- Department of Educational Psychology, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Emily K. Schworer
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- University of Wisconsin-Madison, Waisman Center, Madison, WI, USA
| | - Raouf Amin
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Emily K. Hoffman
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Anna J. Esbensen
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
15
|
André C, Kuhn E, Rehel S, Ourry V, Demeilliez-Servouin S, Palix C, Felisatti F, Champetier P, Dautricourt S, Yushkevich P, Vivien D, de La Sayette V, Chételat G, de Flores R, Rauchs G. Association of Sleep-Disordered Breathing and Medial Temporal Lobe Atrophy in Cognitively Unimpaired Amyloid-Positive Older Adults. Neurology 2023; 101:e370-e385. [PMID: 37258299 PMCID: PMC10435067 DOI: 10.1212/wnl.0000000000207421] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/03/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Sleep disordered breathing (SDB) has been related to amyloid deposition and an increased dementia risk. However, how SDB relates to medial temporal lobe neurodegeneration and subsequent episodic memory impairment is unclear. Our objective was to investigate the impact of amyloid positivity on the associations between SDB severity, medial temporal lobe subregions, and episodic memory performance in cognitively unimpaired older adults. METHODS Data were acquired between 2016 and 2020 in the context of the Age-Well randomized controlled trial of the Medit-Aging European project. Participants older than 65 years who were free of neurologic, psychiatric, or chronic medical diseases were recruited from the community. They completed a neuropsychological evaluation, in-home polysomnography, a Florbetapir PET, and an MRI, including a specific high-resolution assessment of the medial temporal lobe and hippocampal subfields. Multiple linear regressions were conducted to test interactions between amyloid status and SDB severity on the volume of MTL subregions, controlling for age, sex, education, and the ApoE4 status. Secondary analyses aimed at investigating the links between SDB, MTL subregional atrophy, and episodic memory performance at baseline and at a mean follow-up of 20.66 months in the whole cohort and in subgroups stratified according to amyloid status. RESULTS We included 122 cognitively intact community-dwelling older adults (mean age ± SD: 69.40 ± 3.85 years, 77 women, 26 Aβ+ individuals) in baseline analyses and 111 at follow-up. The apnea-hypopnea index interacted with entorhinal (β = -0.81, p < 0.001, pη2 = 0.19), whole hippocampal (β = -0.61, p < 0.001, pη2 = 0.10), subiculum (β = -0.56, p = 0.002, pη2 = 0.08), CA1 (β = -0.55, p = 0.002, pη2 = 0.08), and DG (β = -0.53, p = 0.003, pη2 = 0.08) volumes such that a higher sleep apnea severity was related to lower MTL subregion volumes in amyloid-positive individuals, but not in those who were amyloid negative. In the whole cohort, lower whole hippocampal (r = 0.27, p = 0.005) and CA1 (r = 0.28, p = 0.003) volumes at baseline were associated with worse episodic memory performance at follow-up. DISCUSSION Overall, we showed that SDB was associated with MTL atrophy in cognitively asymptomatic older adults engaged in the Alzheimer continuum, which may increase the risk of developing memory impairment over time. TRIAL REGISTRATION INFORMATION ClinicalTrials.gov Identifier: NCT02977819.
Collapse
Affiliation(s)
- Claire André
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Elizabeth Kuhn
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Stéphane Rehel
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Valentin Ourry
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Solène Demeilliez-Servouin
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Cassandre Palix
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Francesca Felisatti
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Pierre Champetier
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Sophie Dautricourt
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Paul Yushkevich
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Denis Vivien
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Vincent de La Sayette
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Gaël Chételat
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Robin de Flores
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Géraldine Rauchs
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France.
| |
Collapse
|
16
|
Lee J, Thomas Broome S, Jansen MI, Mandwie M, Logan GJ, Marzagalli R, Musumeci G, Castorina A. Altered Hippocampal and Striatal Expression of Endothelial Markers and VIP/PACAP Neuropeptides in a Mouse Model of Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:11118. [PMID: 37446298 DOI: 10.3390/ijms241311118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Neuropsychiatric systemic lupus erythematosus (NPSLE) is one of the most common and severe manifestations of lupus; however, its pathogenesis is still poorly understood. While there is sparse evidence suggesting that the ongoing autoimmunity may trigger pathogenic changes to the central nervous system (CNS) microvasculature, culminating in inflammatory/ischemic damage, further evidence is still needed. In this study, we used the spontaneous mouse model of SLE (NZBWF1 mice) to investigate the expression of genes and proteins associated with endothelial (dys)function: tissue and urokinase plasminogen activators (tPA and uPA), intercellular and vascular adhesion molecules 1 (ICAM-1 and VCAM-1), brain derived neurotrophic factor (BDNF), endothelial nitric oxide synthase (eNOS) and Krüppel-like factor 4 (KLF4) and neuroprotection/immune modulation: pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal peptide (VIP), PACAP receptor (PAC1), VIP receptors 1 and 2 (VPAC1 and VPAC2). Analyses were carried out both in the hippocampus and striatum of SLE mice of two different age groups (2 and 7 months old), since age correlates with disease severity. In the hippocampus, we identified a gene/protein expression profile indicative of mild endothelial dysfunction, which increased in severity in aged SLE mice. These alterations were paralleled by moderate alterations in the expression of VIP, PACAP and related receptors. In contrast, we report a robust upregulation of endothelial activation markers in the striatum of both young and aged mice, concurrent with significant induction of the VIP/PACAP system. These data identify molecular signatures of endothelial alterations in the hippocampus and striatum of NZBWF1 mice, which are accompanied by a heightened expression of endogenous protective/immune-modulatory neuropeptides. Collectively, our results support the idea that NPSLE may cause alterations of the CNS micro-vascular compartment that cannot be effectively counteracted by the endogenous activity of the neuropeptides PACAP and VIP.
Collapse
Affiliation(s)
- Jayden Lee
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sarah Thomas Broome
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Margo Iris Jansen
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mawj Mandwie
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Grant J Logan
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Rubina Marzagalli
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95124 Catania, Italy
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
17
|
Martinez Villar G, Daneault V, Martineau-Dussault MÈ, Baril AA, Gagnon K, Lafond C, Gilbert D, Thompson C, Marchi NA, Lina JM, Montplaisir J, Carrier J, Gosselin N, André C. Altered resting-state functional connectivity patterns in late middle-aged and older adults with obstructive sleep apnea. Front Neurol 2023; 14:1215882. [PMID: 37470008 PMCID: PMC10353887 DOI: 10.3389/fneur.2023.1215882] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/05/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Obstructive sleep apnea (OSA) is increasingly recognized as a risk factor for cognitive decline, and has been associated with structural brain alterations in regions relevant to memory processes and Alzheimer's disease. However, it is unclear whether OSA is associated with disrupted functional connectivity (FC) patterns between these regions in late middle-aged and older populations. Thus, we characterized the associations between OSA severity and resting-state FC between the default mode network (DMN) and medial temporal lobe (MTL) regions. Second, we explored whether significant FC changes differed depending on cognitive status and were associated with cognitive performance. Methods Ninety-four participants [24 women, 65.7 ± 6.9 years old, 41% with Mild Cognitive Impairment (MCI)] underwent a polysomnography, a comprehensive neuropsychological assessment and a resting-state functional magnetic resonance imaging (MRI). General linear models were conducted between OSA severity markers (i.e., the apnea-hypopnea, oxygen desaturation and microarousal indices) and FC values between DMN and MTL regions using CONN toolbox. Partial correlations were then performed between OSA-related FC patterns and (i) OSA severity markers in subgroups stratified by cognitive status (i.e., cognitively unimpaired versus MCI) and (ii) cognitive scores in the whole sample. All analyzes were controlled for age, sex and education, and considered significant at a p < 0.05 threshold corrected for false discovery rate. Results In the whole sample, a higher apnea-hypopnea index was significantly associated with lower FC between (i) the medial prefrontal cortex and bilateral hippocampi, and (ii) the left hippocampus and both the posterior cingulate cortex and precuneus. FC patterns were not associated with the oxygen desaturation index, or micro-arousal index. When stratifying the sample according to cognitive status, all associations remained significant in cognitively unimpaired individuals but not in the MCI group. No significant associations were observed between cognition and OSA severity or OSA-related FC patterns. Discussion OSA severity was associated with patterns of lower FC in regions relevant to memory processes and Alzheimer's disease. Since no associations were found with cognitive performance, these FC changes could precede detectable cognitive deficits. Whether these FC patterns predict future cognitive decline over the long-term needs to be investigated.
Collapse
Affiliation(s)
- Guillermo Martinez Villar
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Véronique Daneault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
| | - Marie-Ève Martineau-Dussault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Andrée-Ann Baril
- Douglas Mental Health Institute, McGill University, Montréal, QC, Canada
| | - Katia Gagnon
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Laboratory and Sleep Clinic, Hôpital en Santé Mentale Rivière-des-Prairies, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
| | - Chantal Lafond
- Department of Pulmonology, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Danielle Gilbert
- Department of Radiology, Radio-Oncology and Nuclear Medicine, Université de Montréal, QC, Canada
- Department of Radiology, Hopital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l'Ile-de, Montréal, QC, Canada
| | - Cynthia Thompson
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
| | - Nicola Andrea Marchi
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
- Center for Investigation and Research in Sleep, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean-Marc Lina
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Département de Génie Electrique, École de Technologie Supérieure, Montréal, QC, Canada
| | - Jacques Montplaisir
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychiatry, Université de Montréal, Montréal, QC, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Claire André
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
18
|
Ferrier FJ, Saul I, Khoury N, Ruiz AJ, Lao EJP, Escobar I, Dave KR, Young JI, Perez-Pinzon MA. Post cardiac arrest physical exercise mitigates cell death in the septal and thalamic nuclei and ameliorates contextual fear conditioning deficits in rats. J Cereb Blood Flow Metab 2023; 43:446-459. [PMID: 36369732 PMCID: PMC9941858 DOI: 10.1177/0271678x221137539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/14/2022]
Abstract
A major concern for cardiac arrest (CA) survivors is the manifestation of long-term cognitive impairments. Physical exercise (PE) is a well-established approach to improve cognitive functions under certain pathological conditions. We previously showed that PE post-CA mitigates cognitive deficits, but the underlying mechanisms remain unknown. To define neuroprotective mechanisms, we analyzed whether PE post-CA protects neurons involved in memory. We first performed a contextual fear conditioning (CFC) test to confirm that PE post-CA preserves memory in rats. We then conducted a cell-count analysis and determined the number of live cells in the hippocampus, and septal and thalamic nuclei, all areas involved in cognitive functions. Lastly, we performed RNA-seq to determine PE post-CA effect on gene expression. Following CA, exercised rats had preserved CFC memory than sham PE animals. Despite this outcome, PE post-CA did not protect hippocampal cells from dying. However, PE ameliorated cell death in septal and thalamic nuclei compared to sham PE animals, suggesting that these nuclei are crucial in mitigating cognitive decline post-CA. Interestingly, PE affected regulation of genes related to neuroinflammation, plasticity, and cell death. These findings reveal potential mechanisms whereby PE post-CA preserves cognitive functions by protecting septal and thalamic cells via gene regulation.
Collapse
Affiliation(s)
- Fernando J Ferrier
- Peritz Scheinberg Cerebral Vascular Disease Research
Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami,
FL, USA
- Neuroscience Program, University of Miami Leonard M. Miller
School of Medicine, Miami FL
| | - Isabel Saul
- Peritz Scheinberg Cerebral Vascular Disease Research
Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami,
FL, USA
- Department of Neurology, University of Miami Leonard M. Miller
School of Medicine, Miami, FL, USA
| | - Nathalie Khoury
- Peritz Scheinberg Cerebral Vascular Disease Research
Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami,
FL, USA
- Neuroscience Program, University of Miami Leonard M. Miller
School of Medicine, Miami FL
| | - Alexander J Ruiz
- Peritz Scheinberg Cerebral Vascular Disease Research
Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami,
FL, USA
| | - Efrain J Perez Lao
- Peritz Scheinberg Cerebral Vascular Disease Research
Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami,
FL, USA
- Neuroscience Program, University of Miami Leonard M. Miller
School of Medicine, Miami FL
- Hussman Institute for Human Genetics, University of Miami
Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Iris Escobar
- Peritz Scheinberg Cerebral Vascular Disease Research
Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami,
FL, USA
- Neuroscience Program, University of Miami Leonard M. Miller
School of Medicine, Miami FL
| | - Kunjan R Dave
- Peritz Scheinberg Cerebral Vascular Disease Research
Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami,
FL, USA
- Neuroscience Program, University of Miami Leonard M. Miller
School of Medicine, Miami FL
- Department of Neurology, University of Miami Leonard M. Miller
School of Medicine, Miami, FL, USA
| | - Juan I Young
- Hussman Institute for Human Genetics, University of Miami
Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Miguel A Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research
Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami,
FL, USA
- Neuroscience Program, University of Miami Leonard M. Miller
School of Medicine, Miami FL
- Department of Neurology, University of Miami Leonard M. Miller
School of Medicine, Miami, FL, USA
| |
Collapse
|
19
|
Lan XB, Ni YS, Liu N, Wei W, Liu Y, Yang JM, Ma L, Bai R, Zhang J, Yu JQ. Neuroprotective effects of oxymatrine on hypoxic-ischemic brain damage in neonatal rats by activating the Wnt/β-catenin pathway. Biomed Pharmacother 2023; 159:114266. [PMID: 36652736 DOI: 10.1016/j.biopha.2023.114266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Neuronal apoptosis is a major pathological process associated with neurological dysfunction in neonates after hypoxic-ischemic brain damage (HIBD). Our previous study demonstrated that oxymatrine (OMT) exerts potential neuroprotective effects on neonatal rats subjected to hypoxic-ischemic insult. However, the underlying molecular mechanism remains unclear. In this study, we investigated the effects of OMT-mediated neuroprotection on neonatal HIBD by attempting to determine its effect on the Wnt/β-catenin signaling pathway and explored the underlying mechanism. Both 7-day-old rat pups and primary hippocampus neurons were used to establish the HIBD and oxygen-glucose deprivation (OGD) injury models, respectively. Our results demonstrated that OMT treatment significantly increased cerebral blood flow and reduced S100B concentration, infarct volume, and neuronal apoptosis in neonatal rats. In vitro, OMT markedly increased cell viability and MMP level and decreased DNA damage. Moreover, OMT improved the mRNA and protein levels of Wnt1 and β-catenin, inhibited the expression of DKK1 and GSK-3β, enhanced the nuclear transfer of β-catenin, and promoted the binding activity of β-catenin with Tcf-4; however, it downregulated the expression of cleaved caspase-3 and cleaved caspase-9. Notably, the introduction of XAV-939 (a Wnt/β-catenin signaling inhibitor) reversed the positive effects of OMT both in vivo and in vitro. Collectively, our findings demonstrated that OMT exerted a neuroprotective effect on neonatal HIBD by inhibiting neuronal apoptosis, which was partly via the activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiao-Bing Lan
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yuan-Shu Ni
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Ning Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Wei Wei
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Jia-Mei Yang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Lin Ma
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Ru Bai
- College of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Jian Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China; State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jian-Qiang Yu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China; Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
20
|
Kravetz Z, Rainald SK. New aspects for the brain in Hartnup disease based on mining of high-resolution cellular mRNA expression data for SLC6A19. IBRO Neurosci Rep 2023; 14:393-397. [PMID: 37101820 PMCID: PMC10123343 DOI: 10.1016/j.ibneur.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/05/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Hartnup disease is an autosomal recessive, metabolic disorder caused by mutations of the neutral amino acid transporter, SLC6A19/B0AT1. Reduced absorption in the intestine and kidney results in deficiencies in neutral amino acids and their down-stream metabolites, including niacin, associated with skin lesions and neurological symptoms. The effects on the nervous system such as ataxia have been related to systemic deficiencies of tryptophan (and other neutral amino acids) as no expression of the B0AT1 transporter was found in the brain. In the intestine, SLC6A19 cooperates with ACE2 which has received major attention as the cellular receptor for SARS-CoV-2. When transcriptomics data for ACE2 and its partner proteins were examined, a previously unrecognized expression of Slc6a19 mRNA in the ependymal cells of the mouse brain was encountered that is set into the context of neurological manifestations of Hartnup disease with this communication. A novel role for SLC6A19/B0AT1 in amino acid transport from CSF into ependymal cells is proposed and a role of niacin in ependymal cells highlighted.
Collapse
|
21
|
Wang L, Wang Y, Chen Y, Liu B, Chou D, Bian X, Li R, Wang M, Zheng C. Rhynchophylline ameliorates cerebral ischemia by improving the synaptic plasticity in a middle cerebral artery occlusion induced stroke model. Eur J Pharmacol 2023; 940:175390. [PMID: 36400162 DOI: 10.1016/j.ejphar.2022.175390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Previous studies have documented that rhynchophylline exerts antioxidative and anti-inflammatory effects on ischemic neuronal damage in vitro or in vivo. There is a considerable lack of direct evidence for its role in neural function and neuroplasticity after ischemic stroke. AIMS This study aims to explore the role of rhynchophylline in middle cerebral artery occlusion (MCAO) induced ischemic stroke model and the potential mechanisms. METHODS Mice were randomly divided into the following three groups: Sham, MCAO + ddH2O, and MCAO + Rhy(40 mg/kg by oral gavage) groups. Cerebral ischemia was induced by MCAO. Cerebral blood flow was monitored to indicate the success of the ischemic model. The neurological severity score and a series of related behavior tests were performed(after MCAO 3d,7d,14d,21d,28d). Golgi staining and Sholl analysis were used to evaluate the complexity of dendrites and the density of dendritic spines. Immunohistochemistry was used to detect the expression of synapsin I and NeuN. RESULTS Administration of rhynchophylline for 7 consecutive days after the onset of cerebral ischemia alleviated the sensory-motor functional defects and ameliorated hippocampus-dependent spatial memory injury as well as reduced the infarct volume induced by MCAO. However, golgi staining and sholl analysis showed that rhynchophylline improved dendritic complexity and spine density as well as the synaptic plasticity. Furthermore,the expression of synapsin I and Neun was significantly reduced after cerebral ischemia and rhynchophylline administration ameliorated the loss of synapsin I. CONCLUSION Rhynchophylline is a promising treatment for ischemic stroke via improving synaptic plasticity and ameliorating the sensory-motor function.
Collapse
Affiliation(s)
- Lei Wang
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Yuguang Wang
- Department of Orthopaedics, Characteristic Medical Center of Chinese People's Armed Police Force, China
| | - YuJie Chen
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Bo Liu
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Dylan Chou
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Xingyu Bian
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Ruoxin Li
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Mingxiao Wang
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China.
| | - Chen Zheng
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China.
| |
Collapse
|
22
|
Chen Y, Zhang M, Zhou Y, Li P. Case Report: A novel mutation in WFS1 gene (c.1756G>A p.A586T) is responsible for early clinical features of cognitive impairment and recurrent ischemic stroke. Front Genet 2023; 14:1072978. [PMID: 36816038 PMCID: PMC9932685 DOI: 10.3389/fgene.2023.1072978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Wolfram syndrome 1 (WFS1) gene mutations can be dominantly or recessively inherited, and the onset of the clinical picture is highly heterogeneity in both appearance and degree of severity. Different types of WFS1 mutations have been identified. Autosomal recessive mutations in the WFS1 gene will underlie Wolfram syndrome 1 (WS1), a rare and severe neurodegenerative disease characterized by diabetes insipidus, diabetes mellitus, optic atrophy, deafness, and other neurological, urological and psychiatric abnormalities. Other WFS1-related disorders such as low-frequency sensorineural hearing impairment (LFSNHI) and Wolfram syndrome-like disease with autosomal dominant transmission have been described. It is difficult to establish genotype-phenotype correlations because of the molecular complexity of wolframin protein. In this report, we presented a case of WSF1 gene mutation-related disease with cognitive impairment as the initial symptom and recurrent cerebral infarction in the course of the disease. Brain structural imaging results suggested decreased intracranial volume, dramatically reduced in cerebral cortex and cerebellum regions. Multimodal molecular imaging results suggested Tau protein deposition in the corresponding brain regions without Aβ pathology changes. These pathological changes may indicate a role of WFS1 in neuronal vulnerability to tau pathology associated with neurodegeneration and ischemia-induced damage.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Neurology, Tianjin Huanhu Hospital, Clinical College of Neurology, Neurosurgery, and Neurorehabilitation, Tianjin Medical University, Tianjin, China,Department of Neurology, Tianjin Huanhu Hospital affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Miao Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Clinical College of Neurology, Neurosurgery, and Neurorehabilitation, Tianjin Medical University, Tianjin, China,Department of Neurology, Tianjin Huanhu Hospital affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Clinical College of Neurology, Neurosurgery, and Neurorehabilitation, Tianjin Medical University, Tianjin, China,Department of Neurology, Tianjin Huanhu Hospital affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Pan Li
- Department of Neurology, Tianjin Huanhu Hospital, Clinical College of Neurology, Neurosurgery, and Neurorehabilitation, Tianjin Medical University, Tianjin, China,Department of Neurology, Tianjin Huanhu Hospital affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China,*Correspondence: Pan Li,
| |
Collapse
|
23
|
Beresewicz-Haller M. Hippocampal region-specific endogenous neuroprotection as an approach in the search for new neuroprotective strategies in ischemic stroke. Fiction or fact? Neurochem Int 2023; 162:105455. [PMID: 36410452 DOI: 10.1016/j.neuint.2022.105455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Ischemic stroke is the leading cause of death and long-term disability worldwide, and, while considerable progress has been made in understanding its pathophysiology, the lack of effective treatments remains a major concern. In that context, receiving more and more consideration as a promising therapeutic method is the activation of natural adaptive mechanisms (endogenous neuroprotection) - an approach that seeks to enhance and/or stimulate the endogenous processes of plasticity and protection of the neuronal system that trigger the brain's intrinsic capacity for self-defence. Ischemic preconditioning is a classic example of endogenous neuroprotection, being the process by which one or more brief, non-damaging episodes of ischemia-reperfusion (I/R) induce tissue resistance to subsequent prolonged, damaging ischemia. Another less-known example is resistance to an I/R episode mounted by the hippocampal region consisting of CA2, CA3, CA4 and the dentate gyrus (here abbreviated to CA2-4, DG). This can be contrasted with the ischemia-vulnerable CA1 region. There is not yet a good understanding of these different sensitivities of the hippocampal regions, and hence of the endogenous neuroprotection characteristic of CA2-4, DG. However, this region is widely reported to have properties distinct from CA1, and capable of generating resistance to an I/R episode. These include activation of neurotrophic and neuroprotective factors, greater activation of anti-excitotoxic and anti-oxidant mechanisms, increased plasticity potential, a greater energy reserve and improved mitochondrial function. This review seeks to summarize properties of CA2-4, DG in the context of endogenous neuroprotection, and then to assess the potential utility of these properties to therapeutic approaches. In so doing, it appears to represent the first such addressing of the issue of ischemia resistance attributable to CA2-4, DG.
Collapse
|
24
|
Is Nrf2 Behind Endogenous Neuroprotection of the Hippocampal CA2-4,DG Region? Mol Neurobiol 2023; 60:1645-1658. [PMID: 36547847 PMCID: PMC9899192 DOI: 10.1007/s12035-022-03166-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
The transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) is the master regulator of genes known to be involved in antioxidant, and anti-inflammatory processes, metabolic regulation, and other cellular functions. Here, we also hypothesize a core role for it in endogenous neuroprotection, i.e., the natural adaptive mechanisms protecting the brain from ischemia-reperfusion (I/R) episode. An example of endogenous neuroprotection is ischemia-resistance of the hippocampal regions comprising the CA2, CA3, CA4 and dentate gyrus subfields (here abbreviated to CA2-4,DG) which can be contrasted with the ischemia-vulnerable CA1 region. In the work detailed here, we used a gerbil model of transient cerebral ischemia to examined Nrf2 activation in CA1 and CA2-4,DG, in a control group, and post I/R episode. Data obtained indicate enhanced Nrf2 activity in CA2-4,DG as compared with CA1 in the control, with this difference seen to persist even after I/R. While I/R does indeed cause further activation of Nrf2 in CA2-4,DG, it is associated with slight and transient activation in CA1. Sub-regional differences in Nrf2 activity correlate with immunoreactivity of Keap1 (an Nrf2 suppressor) and Nrf2 target proteins, including heme oxygenase 1, the catalytic and modulatory sub-units of glutamate-cysteine ligase, and glutathione peroxidase 1. Pharmacological Nrf2 activation by sulforaphane results in protection of CA1 after I/R episode. Our results therefore suggest that high Nrf2 activity in CA2-4,DG may guarantee resistance of this region to I/R, potentially explaining the differential sensitivities of the hippocampal regions.
Collapse
|
25
|
Dobrigna M, Poëa-Guyon S, Rousseau V, Vincent A, Toutain A, Barnier JV. The molecular basis of p21-activated kinase-associated neurodevelopmental disorders: From genotype to phenotype. Front Neurosci 2023; 17:1123784. [PMID: 36937657 PMCID: PMC10017488 DOI: 10.3389/fnins.2023.1123784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Although the identification of numerous genes involved in neurodevelopmental disorders (NDDs) has reshaped our understanding of their etiology, there are still major obstacles in the way of developing therapeutic solutions for intellectual disability (ID) and other NDDs. These include extensive clinical and genetic heterogeneity, rarity of recurrent pathogenic variants, and comorbidity with other psychiatric traits. Moreover, a large intragenic mutational landscape is at play in some NDDs, leading to a broad range of clinical symptoms. Such diversity of symptoms is due to the different effects DNA variations have on protein functions and their impacts on downstream biological processes. The type of functional alterations, such as loss or gain of function, and interference with signaling pathways, has yet to be correlated with clinical symptoms for most genes. This review aims at discussing our current understanding of how the molecular changes of group I p21-activated kinases (PAK1, 2 and 3), which are essential actors of brain development and function; contribute to a broad clinical spectrum of NDDs. Identifying differences in PAK structure, regulation and spatio-temporal expression may help understanding the specific functions of each group I PAK. Deciphering how each variation type affects these parameters will help uncover the mechanisms underlying mutation pathogenicity. This is a prerequisite for the development of personalized therapeutic approaches.
Collapse
Affiliation(s)
- Manon Dobrigna
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Sandrine Poëa-Guyon
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Véronique Rousseau
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Aline Vincent
- Department of Genetics, EA7450 BioTARGen, University Hospital of Caen, Caen, France
| | - Annick Toutain
- Department of Genetics, University Hospital of Tours, UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
- *Correspondence: Jean-Vianney Barnier,
| |
Collapse
|
26
|
Han GJ, Min XZ, Ma SS, Ding C, Wang XQ. Xuesaitong Combined with Dexmedetomidine Improves Cerebral Ischemia-Reperfusion Injury in Rats by Activating Keap1/Nrf2 Signaling and Mitophagy in Hippocampal Tissue. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5126042. [PMID: 36531207 PMCID: PMC9750788 DOI: 10.1155/2022/5126042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 08/02/2024]
Abstract
Ischemic stroke is the most common type of cerebrovascular disease with high mortality and poor prognosis, and cerebral ischemia-reperfusion (CI/R) injury is the main murderer. Here, we attempted to explore the effects and mechanism of Xuesaitong (XST) combined with dexmedetomidine (Dex) on CI/R injury in rats. First, a rat model of CI/R injury was constructed via the middle cerebral artery occlusion (MCAO) method and treated with XST and Dex alone or in combination. Then, on the 5th and 10th days of treatment, the neurological impairment was assessed using the modified neurological severity scores (mNSS), the 8-arm radial maze test (8ARMT), novel object recognition test (NORT), and fear conditioning test (FCT). H&E staining was performed to observe the pathological changes of the hippocampus. ELISA and related kits were used to assess the monoamine neurotransmitters and antioxidant enzyme activities in the hippocampus. The ATP, mitochondrial membrane potential levels, and qRT-PCR of genes related to mitochondrial function were determined to assess mitochondrial functions in the hippocampus and western blot to determine Keap1/Nrf2 signaling pathway and mitophagy-related protein expression. The results showed that XST combined with Dex significantly reduced mNSS, improved spatial memory and learning deficits, and enhanced fear memory and cognitive memory ability in CI/R rats, which was superior to single-drug treatment. Moreover, XST combined with Dex treatment improved hippocampal histopathological damage; significantly increased the levels of monoamine neurotransmitters, neurotrophic factors, ATP, and mitochondrial membrane potential; and upregulated the activities of antioxidant enzymes and the expression of mitophagy-related proteins in the hippocampus of CI/R rats. XST combined with Dex treatment also activated the Keap1/Nrf2 signaling and upregulated the protein expression of downstream antioxidant enzymes HO-1 and NQ. Altogether, this study showed that a combination of XST and Dex could activate the Keap1/Nrf2 signaling and mitophagy to protect rats from CI/R-related neurological impairment.
Collapse
Affiliation(s)
- Guo-Jie Han
- Department of Anesthesiology, Shandong Cancer Hospital and Institute Affiliated to Shandong First Medical University (Shandong Academy of Medical Science), Jinan, 250117 Shandong, China
| | - Xiang-Zhen Min
- Department of Anesthesiology, Shandong Cancer Hospital and Institute Affiliated to Shandong First Medical University (Shandong Academy of Medical Science), Jinan, 250117 Shandong, China
| | - Shuang-Shuang Ma
- Department of Anesthesiology, Shandong Cancer Hospital and Institute Affiliated to Shandong First Medical University (Shandong Academy of Medical Science), Jinan, 250117 Shandong, China
| | - Chuan Ding
- Department of Anesthesiology, Shandong Cancer Hospital and Institute Affiliated to Shandong First Medical University (Shandong Academy of Medical Science), Jinan, 250117 Shandong, China
| | - Xiu-Qin Wang
- Department of Anesthesiology, Shandong Cancer Hospital and Institute Affiliated to Shandong First Medical University (Shandong Academy of Medical Science), Jinan, 250117 Shandong, China
| |
Collapse
|
27
|
Yilmazer-Hanke D, Ouali Alami N, Fang L, Klotz S, Kovacs GG, Pankratz H, Weis J, Katona I, Scheuerle A, Streit WJ, Del Tredici K. Differential Glial Chitotriosidase 1 and Chitinase 3-like Protein 1 Expression in the Human Primary Visual Cortex and Cerebellum after Global Hypoxia-Ischemia. Neuroscience 2022; 506:91-113. [PMID: 36332693 DOI: 10.1016/j.neuroscience.2022.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Here, we studied the neuroinflammation- and ischemia-related glial markers chitotriosidase 1 (CHIT1) and chitinase-3-like protein 1 (CHI3L1, alias YKL-40) in the human striate cortex and cerebellum at different time points after global hypoxic-ischemic brain injury (HIBI). Both regions differ considerably in their glial cell population but are supplied by the posterior circulation. CHIT1 and CHI3L1 expression was compared to changes in microglial (IBA1, CD68), astrocytic (GFAP, S100β), and neuronal markers (H&E, neurofilament heavy chain, NfH; calretinin, CALR) using immunohistochemistry and multiple-label immunofluorescence. Initial striatal cortical and cerebellar Purkinje cell damage, detectable already 1/2 d after HIBI, led to delayed neuronal death, whereas loss of cerebellar NfH-positive stellate and CALR-positive granule cells was variable. During the first week post-HIBI, a transient reduction of IBA1-positive microglia was observed in both regions, and fragmented/clasmatodendritic cerebellar Bergmann glia appeared. In long-term survivors, both brain regions displayed high densities of activated IBA1-positive cells and CD68-positive macrophages, which showed CHIT1 co-localization in the striate cortex. Furthermore, enlarged GFAP- and S100β-positive astroglia emerged in both regions around 9-10 d post-HIBI, i.e., along with clearance of dead neurons from the neuropil, although GFAP-/S100β-positive gemistocytic astrocytes that co-expressed CHI3L1 were found only in the striate cortex. Thus, only GFAP-/S100β-positive astrocytes in the striate cortex, but not cerebellar Bergmann glia, differentiated into CHI3L1-positive gemistocytes. CHIT1 was co-expressed almost entirely in macrophages in the striate cortex and not cerebellum of long-term survivors, thereby indicating that CHIT1 and CHI3L1 could be valuable biomarkers for monitoring the outcome of global HIBI.
Collapse
Affiliation(s)
- Deniz Yilmazer-Hanke
- Clinical Neuroanatomy, Neurology, School of Medicine, Ulm University, Ulm, Germany.
| | - Najwa Ouali Alami
- Clinical Neuroanatomy, Neurology, School of Medicine, Ulm University, Ulm, Germany
| | - Lubin Fang
- Clinical Neuroanatomy, Neurology, School of Medicine, Ulm University, Ulm, Germany
| | - Sigried Klotz
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gabor G Kovacs
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Helmut Pankratz
- Institute of Forensic Medicine, Medical Faculty, Ludwig-Maximilian University Munich, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Istvan Katona
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Angelika Scheuerle
- Department of Pathology, Section Neuropathology, University Hospital, Ulm, Germany
| | - Wolfgang J Streit
- Department of Neuroscience, College of Medicine, University of Florida, FL, USA
| | - Kelly Del Tredici
- Clinical Neuroanatomy, Neurology, School of Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
28
|
Saito ER, Warren CE, Hanegan CM, Larsen JG, du Randt JD, Cannon M, Saito JY, Campbell RJ, Kemberling CM, Miller GS, Edwards JG, Bikman BT. A Novel Ketone-Supplemented Diet Improves Recognition Memory and Hippocampal Mitochondrial Efficiency in Healthy Adult Mice. Metabolites 2022; 12:1019. [PMID: 36355101 PMCID: PMC9693360 DOI: 10.3390/metabo12111019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 09/13/2023] Open
Abstract
Mitochondrial dysfunction and cognitive impairment are common symptoms in many neurologic and psychiatric disorders, as well as nonpathological aging. Ketones have been suggested as therapeutic for their efficacy in epilepsy and other brain pathologies such as Alzheimer's disease and major depressive disorder. However, their effects on cognitive function in healthy individuals is less established. Here, we explored the mitochondrial and performative outcomes of a novel eight-week ketone-supplemented ketogenic (KETO) diet in healthy adult male and female mice. In a novel object recognition test, KETO mice spent more time with the novel, compared to familiar, object, indicating an improvement in recognition memory. High-resolution respirometry on permeabilized hippocampal tissue returned significant reductions in mitochondrial O2 consumption. No changes in ATP production were observed, yielding a significantly higher ATP:O2 ratio, a measure of mitochondrial efficiency. Together, these findings demonstrate the KETO diet improves hippocampal mitochondrial efficiency. They add to a growing body of evidence that suggests ketones and ketogenic diets are neuroprotective and metabolically and cognitively relevant, even in healthy adults. They also suggest that ketogenic lifestyle changes may be effective strategies for protecting against cognitive decline associated with aging and disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Benjamin T. Bikman
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
29
|
Possible Involvement of DNA Methylation in TSC1 Gene Expression in Neuroprotection Induced by Hypoxic Preconditioning. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9306097. [PMID: 36120601 PMCID: PMC9481362 DOI: 10.1155/2022/9306097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/19/2022] [Accepted: 08/13/2022] [Indexed: 11/18/2022]
Abstract
Background. It has been reported that ischemia and ischemic preconditioning (IPC) have different effects on the expression of tuberous sclerosis complex 1 (TSC1), which may contribute to the tolerance to ischemia/hypoxia with the increase of autophagy. The mechanisms of TSC1 differential expression are still unclear under ischemia/IPC conditions in hippocampal Cornu Ammon 1 (CA1) and Cornu Ammon 3 (CA3) area neuronal cells. While we have shown that 5-Aza-CdR, a DNA methyltransferase inhibitor, can upregulate TSC1 and increase hypoxic tolerance by autophagy in vivo and in vitro, in this study, we examined whether DNA methylation was involved in the differential expression of TSC1 in the CA1 and CA3 regions induced by hypoxic preconditioning (HPC). Methods. Level of rapamycin (mTOR) autophagy, a downstream molecular pathway of TSC1/TSC2 complex, was detected in HPC mouse hippocampal CA1 and CA3 areas as well as in the HPC model of mouse hippocampal HT22 cells. DNA methylation level of TSC1 promoter (-720 bp~ -360 bp) was determined in CA1 and CA3 areas by bisulfite-modified DNA sequencing (BMDS). At the same time, autophagy was detected in HT22 cells transfected with GFP-LC3 plasmid. The role of TSC1 in neuroprotection was measured by cell viability and apoptosis, and the role of TSC1 in metabolism was checked by ATP assay and ROS assay in HT22 cells that overexpressed/knocked down TSC1. Results. HPC upregulated the expression of TSC1, downregulated the level of P-mTOR (Ser2448) and P-p70S6K (Thr389), and enhanced the activity of autophagy in both in vivo and in vitro. The increased expression of TSC1 in HPC may depend on its DNA hypomethylation in the promoter region in vivo. HPC also could reduce energy consumption in HT22 cells. Overexpression and knockdown of TSC1 can affect cell viability, cell apoptosis, and metabolism in HT22 cells exposed to hypoxia. Conclusion. TSC1 expression induced by HPC may relate to the downregulation of its DNA methylation level with the increase of autophagy and the decrease of energy demand.
Collapse
|
30
|
Neuroprotective and Regenerative Effects of Growth Hormone (GH) in the Embryonic Chicken Cerebral Pallium Exposed to Hypoxic-Ischemic (HI) Injury. Int J Mol Sci 2022; 23:ijms23169054. [PMID: 36012320 PMCID: PMC9409292 DOI: 10.3390/ijms23169054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023] Open
Abstract
Prenatal hypoxic−ischemic (HI) injury inflicts severe damage on the developing brain provoked by a pathophysiological response that leads to neural structural lesions, synaptic loss, and neuronal death, which may result in a high risk of permanent neurological deficits or even newborn decease. It is known that growth hormone (GH) can act as a neurotrophic factor inducing neuroprotection, neurite growth, and synaptogenesis after HI injury. In this study we used the chicken embryo to develop both in vitro and in vivo models of prenatal HI injury in the cerebral pallium, which is the equivalent of brain cortex in mammals, to examine whether GH exerts neuroprotective and regenerative effects in this tissue and the putative mechanisms involved in these actions. For the in vitro experiments, pallial cell cultures obtained from chick embryos were incubated under HI conditions (<5% O2, 1 g/L glucose) for 24 h and treated with 10 nM GH, and then collected for analysis. For the in vivo experiments, chicken embryos (ED14) were injected in ovo with GH (2.25 µg), exposed to hypoxia (12% O2) for 6 h, and later the pallial tissue was obtained to perform the studies. Results show that GH exerted a clear anti-apoptotic effect and promoted cell survival and proliferation in HI-injured pallial neurons, in both in vitro and in vivo models. Neuroprotective actions of GH were associated with the activation of ERK1/2 and Bcl-2 signaling pathways. Remarkably, GH protected mature neurons that were particularly harmed by HI injury, but was also capable of stimulating neural precursors. In addition, GH stimulated restorative processes such as the number and length of neurite outgrowth and branching in HI-injured pallial neurons, and these effects were blocked by a specific GH antibody, thus indicating a direct action of GH. Furthermore, it was found that the local expression of several synaptogenic markers (NRXN1, NRXN3, GAP-43, and NLG1) and neurotrophic factors (GH, BDNF, NT-3, IGF-1, and BMP4) were increased after GH treatment during HI damage. Together, these results provide novel evidence supporting that GH exerts protective and restorative effects in brain pallium during prenatal HI injury, and these actions could be the result of a joint effect between GH and endogenous neurotrophic factors. Also, they encourage further research on the potential role of GH as a therapeutic complement in HI encephalopathy treatments.
Collapse
|
31
|
McKenna M, Filteau JR, Butler B, Sluis K, Chungyoun M, Schimek N, Nance E. Organotypic whole hemisphere brain slice models to study the effects of donor age and oxygen-glucose-deprivation on the extracellular properties of cortical and striatal tissue. J Biol Eng 2022; 16:14. [PMID: 35698088 PMCID: PMC9195469 DOI: 10.1186/s13036-022-00293-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The brain extracellular environment is involved in many critical processes associated with neurodevelopment, neural function, and repair following injury. Organization of the extracellular matrix and properties of the extracellular space vary throughout development and across different brain regions, motivating the need for platforms that provide access to multiple brain regions at different stages of development. We demonstrate the utility of organotypic whole hemisphere brain slices as a platform to probe regional and developmental changes in the brain extracellular environment. We also leverage whole hemisphere brain slices to characterize the impact of cerebral ischemia on different regions of brain tissue. RESULTS Whole hemisphere brain slices taken from postnatal (P) day 10 and P17 rats retained viable, metabolically active cells through 14 days in vitro (DIV). Oxygen-glucose-deprivation (OGD), used to model a cerebral ischemic event in vivo, resulted in reduced slice metabolic activity and elevated cell death, regardless of slice age. Slices from P10 and P17 brains showed an oligodendrocyte and microglia-driven proliferative response after OGD exposure, higher than the proliferative response seen in DIV-matched normal control slices. Multiple particle tracking in oxygen-glucose-deprived brain slices revealed that oxygen-glucose-deprivation impacts the extracellular environment of brain tissue differently depending on brain age and brain region. In most instances, the extracellular space was most difficult to navigate immediately following insult, then gradually provided less hindrance to extracellular nanoparticle diffusion as time progressed. However, changes in diffusion were not universal across all brain regions and ages. CONCLUSIONS We demonstrate whole hemisphere brain slices from P10 and P17 rats can be cultured up to two weeks in vitro. These brain slices provide a viable platform for studying both normal physiological processes and injury associated mechanisms with control over brain age and region. Ex vivo OGD impacted cortical and striatal brain tissue differently, aligning with preexisting data generated in in vivo models. These data motivate the need to account for both brain region and age when investigating mechanisms of injury and designing potential therapies for cerebral ischemia.
Collapse
Affiliation(s)
- Michael McKenna
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Box 351750, Seattle, WA, 98195-1750, USA
| | - Jeremy R Filteau
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Box 351750, Seattle, WA, 98195-1750, USA
| | - Brendan Butler
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Box 351750, Seattle, WA, 98195-1750, USA
| | - Kenneth Sluis
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Box 351750, Seattle, WA, 98195-1750, USA
| | - Michael Chungyoun
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Box 351750, Seattle, WA, 98195-1750, USA
| | - Nels Schimek
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Box 351750, Seattle, WA, 98195-1750, USA. .,e-Science Institute, University of Washington, Seattle, WA, USA. .,Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
32
|
Sidtis JJ. Cerebral Blood Flow Is Not a Direct Surrogate of Behavior: Performance Models Suggest a Role for Functional Meta-Networks. Front Neurosci 2022; 16:771594. [PMID: 35242005 PMCID: PMC8885809 DOI: 10.3389/fnins.2022.771594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundFunctional brain imaging has become the dominant approach to the study of brain-behavior relationships. Unfortunately, the behavior half of the equation has been relegated to second-class status when it is not ignored completely. Different approaches to connectivity, based on temporally correlated physiological events across the brain, have ascended in place of behavior. A performance-based analysis has been developed as a simple, basic approach to incorporating specific performance measures obtained during imaging into the analysis of the imaging data identifying clinically relevant regions.MethodsThis paper contrasts performance-based lateralized regional cerebral blood flow (CBF) predictors of speech rate during Positron Emission Tomography with the values of these regions and their opposite hemisphere homologs in which a performance-based model was not applied. Five studies were examined: two that utilized normal speakers, one that utilized ataxic speakers, and two that examined Parkinsonian speakers.ResultsIn each study, the predictors were lateralized but the blood flow values that contributed to the performance-based analysis were bilateral. The speech-rate predictor regions were consistent with clinical studies on the effects of focal brain damage.ConclusionsThis approach has identified a basic, reproducible blood flow network that has predicted speech rate in multiple normal and neurologic groups. While the predictors are lateralized consistent with lesion data, the blood flow values of these regions are neither lateralized nor distinguished from their opposite hemisphere homologs in their magnitudes. The consistent differences between regional blood flow values and their corresponding regression coefficients in predicting performance suggests the presence of functional meta-networks that orchestrate the contributions of specific brain regions in support of mental and behavioral functions.
Collapse
Affiliation(s)
- John J. Sidtis
- Brain and Behavior Laboratory, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Psychiatry, New York University Langone School of Medicine, New York, NY, United States
- *Correspondence: John J. Sidtis,
| |
Collapse
|
33
|
Lee JI, Lim JS, Hong JH, Kim S, Lee SW, Ji HD, Won KS, Song BI, Kim HW. Selective neurodegeneration of the hippocampus caused by chronic cerebral hypoperfusion: F-18 FDG PET study in rats. PLoS One 2022; 17:e0262224. [PMID: 35143502 PMCID: PMC8830734 DOI: 10.1371/journal.pone.0262224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/20/2021] [Indexed: 11/20/2022] Open
Abstract
Background Chronic cerebral hypoperfusion (CCH) is known to induce Alzheimer’s disease (AD) pathology, but its mechanism remains unclear. The purpose of this study was to identify the cerebral regions that are affected by CCH, and to evaluate the development of AD pathology in a rat model of CCH. Methods A rat model of CCH was established by bilaterally ligating the common carotid arteries in adult male rats (CCH group). The identical operations were performed on sham rats without arteries ligation (control group). Regional cerebral glucose metabolism was evaluated at 1 and 3 months after bilateral CCA ligation using positron emission tomography with F-18 fluorodeoxyglucose. The expression levels of amyloid β40 (Aβ40), amyloid β42 (Aβ42), and hyperphosphorylated tau were evaluated using western blots at 3 months after the ligation. Cognitive function was evaluated using the Y-maze test at 3 months after the ligation. Results At 1 month after the ligation, cerebral glucose metabolism in the entorhinal, frontal association, motor, and somatosensory cortices were significantly decreased in the CCH group compared with those in the control group. At 3 months after the ligation, cerebral glucose metabolism was normalized in all regions except for the anterodorsal hippocampus, which was significantly decreased compared with that of the control group. The expression of Aβ42 and the Aβ42/40 ratio were significantly higher in the CCH group than those in the control group. The phosphorylated-tau levels of the hippocampus in the CCH group were significantly lower than those in the control group. Cognitive function was more impaired in the CCH group than that in the control group. Conclusion Our findings suggest that CCH causes selective neurodegeneration of the anterodorsal hippocampus, which may be a trigger point for the development of AD pathology.
Collapse
Affiliation(s)
- Jung-In Lee
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Ji Sun Lim
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Jeong-Ho Hong
- Department of Neurology, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Shin Kim
- Department of Immunology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun Dong Ji
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoung Sook Won
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Bong-Il Song
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Hae Won Kim
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine & Institute for Medical Science, Keimyung University, Daegu, Korea
- * E-mail:
| |
Collapse
|
34
|
Zen R, Terashima T, Tsuji S, Katagi M, Ohashi N, Nobuta Y, Higuchi A, Kanai H, Murakami T, Kojima H. Ambient Temperature Is Correlated With the Severity of Neonatal Hypoxic-Ischemic Brain Injury via Microglial Accumulation in Mice. Front Pediatr 2022; 10:883556. [PMID: 35601427 PMCID: PMC9120824 DOI: 10.3389/fped.2022.883556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The pathophysiology of neonatal hypoxic-ischemic encephalopathy (HIE) has been studied in several rodent models to develop novel treatments. Although it is well known that high ambient temperature results in severe HIE, the effect of subtle changes in ambient temperature during a hypoxic-ischemic (HI) insult has not been studied. Therefore, in order to clarify the difference of pathophysiological change among the HIE models due to the influence of small changes in chamber temperature, three-step gradual change of 0.5°C each were prepared in ambient temperature during hypoxic exposure. METHODS Blood flow in the left common carotid artery (CCA) of neonatal mice was interrupted using bipolar electronic forceps under general and local anesthesia. The mice were subsequently subjected to 10% hypoxic exposure for 50 min at 36.0, 36.5, or 37.0°C. A control group was also included in the study. The size of the striatum and hippocampus and the volume reduction rate of the hemisphere in the section containing them on the ischemic side were evaluated using microtubule associated protein 2 (MAP2) immunostaining. The accumulation of Iba1-positive cells was investigated to assess inflammation. Additionally, rotarod and open-field tests were performed 2 weeks after HI insult to assess its effect on physiological conditions. RESULTS MAP2 staining revealed that the higher the temperature during hypoxia, the more severe the volume reduction rate in the hemisphere, striatum, and hippocampus. The number of Iba1-positive cells in the ipsilateral lesion gradually increased with increasing temperature, and there was a significant difference in motor function in the 36.5 and 37.0°C groups compared with the sham group. In the open-field tests, there was a significant decrease in performance in the 37.0°C groups compared with the 36.0°C and sham groups. CONCLUSIONS Even a small gradual change of 0.5°C produced a significant difference in pathological and behavioral changes and contributed to the accumulation of Iba1-positive cells. The arrangement of ambient temperature is useful for creating a rodent model with the appropriate severity of the targeted neuropsychological symptoms to establish a novel therapy for HIE.
Collapse
Affiliation(s)
- Rika Zen
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan.,Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Tomoya Terashima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Shunichiro Tsuji
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Miwako Katagi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Natsuko Ohashi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Yuri Nobuta
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Asuka Higuchi
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Hirohiko Kanai
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Takashi Murakami
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
35
|
Early Blood Glucose Level Post-Admission Correlates with the Outcomes and Oxidative Stress in Neonatal Hypoxic-Ischemic Encephalopathy. Antioxidants (Basel) 2021; 11:antiox11010039. [PMID: 35052543 PMCID: PMC8773159 DOI: 10.3390/antiox11010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 12/25/2022] Open
Abstract
The antioxidant defense system is involved in the pathogenesis of neonatal hypoxic-ischemic encephalopathy (HIE). To analyze the relationship between first serum blood glucose levels and outcomes in neonatal HIE, seventy-four patients were divided, based on the first glucose level, into group 1 (>0 mg/dL and <60 mg/dL, n =11), group 2 (≥60 mg/dL and <150 mg/dL, n = 49), and group 3 (≥150 mg/dL, n = 14). Abnormal glucose levels had poor outcomes among three groups in terms of the clinical stage (p = 0.001), brain parenchymal lesion (p = 0.004), and neurodevelopmental outcomes (p = 0.029). Hearing impairment was more common in group 3 than in group 1 (p = 0.062) and group 2 (p = 0.010). The MRI findings of group 3 exhibited more thalamus and basal ganglion lesions than those of group 1 (p = 0.012). The glucose level was significantly correlated with clinical staging (p< 0.001), parenchymal brain lesions (p = 0.044), hearing impairment (p = 0.003), and neurodevelopmental outcomes (p = 0.005) by Pearson’s test. The first blood glucose level in neonatal HIE is an important biomarker for clinical staging, MRI findings, as well as hearing and neurodevelopment outcomes. Hyperglycemic patients had a higher odds ratio for thalamus, basal ganglia, and brain stem lesions than hypoglycemic patients with white matter and focal ischemic injury. Hyperglycemia can be due to prolonged or intermittent hypoxia and can be associated with poor outcomes.
Collapse
|
36
|
Effects of Ozone on Hippocampus BDNF and Fos Expressions in Rats with Chronic Compression of Dorsal Root Ganglia. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5572915. [PMID: 34869766 PMCID: PMC8642004 DOI: 10.1155/2021/5572915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022]
Abstract
The effects of ozone on hippocampal expression levels of brain-derived neurotrophic factor (BDNF) and c-fos protein (Fos) were evaluated in rats with chronic compression of dorsal root ganglia (CCD). Forty-eight adult female Sprague-Dawley rats were randomly divided into the following 4 groups (n = 12): sham operation (sham group), CCD group, CCD with 20 μg/ml of ozone (CCD + AO3 group), and CCD with 40 μg/ml of ozone (CCD + BO3 group). Except the sham group, unilateral L5 dorsal root ganglion (DRG) compression was performed on all other groups. On days 1, 2, and 4 after the operation, the CCD + AO3 and CCD + BO3 groups were injected with 100 μl of ozone with concentrations of 20 and 40 μg/ml, respectively. Thermal withdrawal latencies (TWLs) and mechanical withdrawal thresholds (MWTs) were measured at various time points before and after the operation. BDNF and Fos expressions were examined in the extracted hippocampi using immunohistochemistry. The TWLs and MWTs of CCD model rats that received ozone were lower with decreased BDNF and increased Fos expression levels, on day 21 after the operation, compared to those of the sham group (P < 0.05). The TWLs and MWTs of the CCD + AO3 and CCD + BO3 groups were higher with increased BDNF and decreased Fos expression levels, on day 21 after the operation, compared to those of the CCD group (P < 0.05). The TWLs were longer and the MWTs were higher in the CCD + BO3 group at each time point with increased BDNF and decreased Fos expression levels, on day 21 after the operation, compared to those of the CCD + AO3 group (P < 0.05). Our results revealed that ozone can relieve the neuropathic pain caused by the pathological neuralgia resulting from DRG compression in rats. The mechanism of action for ozone is likely associated with changes in BDNF and Fos expression levels in the hippocampus.
Collapse
|
37
|
Niu X, Li M, Gao Y, Xu G, Dong X, Chu B, Lv P. DL-3-n-butylphthalide suppressed autophagy and promoted angiogenesis in rats with vascular dementia by activating the Shh/Ptch1 signaling pathway. Neurosci Lett 2021; 765:136266. [PMID: 34571087 DOI: 10.1016/j.neulet.2021.136266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/06/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
DL-3-n-butylphthalide (NBP) has neuroprotective effect on chronic cerebral hypoperfusion animals. Here, we explored the role and underlying mechanism of NBP on autophagy and angiogenesis in rats with vascular dementia (VD). Adult male Sprague-Dawley (SD) rats were subjected to permanent bilateral occlusion of the common carotid arteries (2VO) to establish VD model. These rats were randomly divided into five groups: sham, model, NBP120 (120 mg/kg), Shh siRNA (50 nM), and NBP120 + Shh siRNA groups. Our results showed that NBP treatment attenuated memory damage in rats with VD, as demonstrated by Morris water maze tests. Immunofluorescence (IF) assay revealed that NBP induced neuronal process length and neuronal activity in hippocampus, which were reversed by Shh silencing. Furthermore, NBP treatment also reduced the expression of autophagy marker proteins B-cell lymphoma-2 interacting protein 1 (Beclin 1) and microtubule-associated protein 1 light chain 3 (LC3), which were further enhanced by Shh silencing. Meanwhile, NBP promoted the angiogenesis, which was accompanied by upregulated vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF)-1, and Angiopoietin (Ang) expression in the hippocampus. And Shh siRNA co-treatment blocked the angiogenesis induced by NBP. Altogether, our results established that NBP treatment suppressed autophagy and improved angiogenesis and neurobehavioral recovery in VD rats partly by activating the Shh/Ptch1 signaling pathway.
Collapse
Affiliation(s)
- Xiaoli Niu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Meixi Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Yaran Gao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China; Department of Neurology, Hebei Medical University, Shijiazhuang, China
| | - Guodong Xu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Xiaoli Dong
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Bao Chu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Peiyuan Lv
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China.
| |
Collapse
|
38
|
Different changes in pre- and postsynaptic components in the hippocampal CA1 subfield after transient global cerebral ischemia. Brain Struct Funct 2021; 227:345-360. [PMID: 34626230 DOI: 10.1007/s00429-021-02404-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
To date, ischemia-induced damage to dendritic spines has attracted considerable attention, while the possible effects of ischemia on presynaptic components has received relatively less attention. To further examine ischemia-induced changes in pre- and postsynaptic specializations in the hippocampal CA1 subfield, we modeled global cerebral ischemia with two-stage 4-vessel-occlusion in rats, and found that three postsynaptic markers, microtubule-associated protein 2 (MAP2), postsynaptic density protein 95 (PSD95), and filamentous F-actin (F-actin), were all substantially decreased in the CA1 subfield after ischemia/reperfusion (I/R). Although no significant change was detected in synapsin I, a presynaptic marker, in the CA1 subfield at the protein level, confocal microscopy revealed that the number and size of synapsin I puncta were significantly changed in the CA1 stratum radiatum after I/R. The size of synapsin I puncta became slightly, but significantly reduced on Day 1.5 after I/R. From Days 2 to 7 after I/R, the number of synapsin I puncta became moderately decreased, while the size of synapsin I puncta was significantly increased. Interestingly, some enlarged puncta of synapsin I were observed in close proximity to the dendritic shafts of CA1 pyramidal cells. Due to the more substantial decrease in the number of F-actin puncta, the ratio of synapsin I/F-actin puncta was significantly increased after I/R. The decrease in synapsin I puncta size in the early stage of I/R may be the result of excessive neurotransmitter release due to I/R-induced hyperexcitability in CA3 pyramidal cells, while the increase in synapsin I puncta in the later stage of I/R may reflect a disability of synaptic vesicle release due to the loss of postsynaptic contacts.
Collapse
|
39
|
Engels M, Kalia M, Rahmati S, Petersilie L, Kovermann P, van Putten MJAM, Rose CR, Meijer HGE, Gensch T, Fahlke C. Glial Chloride Homeostasis Under Transient Ischemic Stress. Front Cell Neurosci 2021; 15:735300. [PMID: 34602981 PMCID: PMC8481871 DOI: 10.3389/fncel.2021.735300] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
High water permeabilities permit rapid adjustments of glial volume upon changes in external and internal osmolarity, and pathologically altered intracellular chloride concentrations ([Cl–]int) and glial cell swelling are often assumed to represent early events in ischemia, infections, or traumatic brain injury. Experimental data for glial [Cl–]int are lacking for most brain regions, under normal as well as under pathological conditions. We measured [Cl–]int in hippocampal and neocortical astrocytes and in hippocampal radial glia-like (RGL) cells in acute murine brain slices using fluorescence lifetime imaging microscopy with the chloride-sensitive dye MQAE at room temperature. We observed substantial heterogeneity in baseline [Cl–]int, ranging from 14.0 ± 2.0 mM in neocortical astrocytes to 28.4 ± 3.0 mM in dentate gyrus astrocytes. Chloride accumulation by the Na+-K+-2Cl– cotransporter (NKCC1) and chloride outward transport (efflux) through K+-Cl– cotransporters (KCC1 and KCC3) or excitatory amino acid transporter (EAAT) anion channels control [Cl–]int to variable extent in distinct brain regions. In hippocampal astrocytes, blocking NKCC1 decreased [Cl–]int, whereas KCC or EAAT anion channel inhibition had little effect. In contrast, neocortical astrocytic or RGL [Cl–]int was very sensitive to block of chloride outward transport, but not to NKCC1 inhibition. Mathematical modeling demonstrated that higher numbers of NKCC1 and KCC transporters can account for lower [Cl–]int in neocortical than in hippocampal astrocytes. Energy depletion mimicking ischemia for up to 10 min did not result in pronounced changes in [Cl–]int in any of the tested glial cell types. However, [Cl–]int changes occurred under ischemic conditions after blocking selected anion transporters. We conclude that stimulated chloride accumulation and chloride efflux compensate for each other and prevent glial swelling under transient energy deprivation.
Collapse
Affiliation(s)
- Miriam Engels
- Institute of Biological Information Processing, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Manu Kalia
- Applied Analysis, Department of Applied Mathematics, University of Twente, Enschede, Netherlands.,Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Rahmati
- Institute of Biological Information Processing, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Laura Petersilie
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Kovermann
- Institute of Biological Information Processing, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | | | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hil G E Meijer
- Applied Analysis, Department of Applied Mathematics, University of Twente, Enschede, Netherlands
| | - Thomas Gensch
- Institute of Biological Information Processing, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Christoph Fahlke
- Institute of Biological Information Processing, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
40
|
Transient Oxygen-Glucose Deprivation Causes Region- and Cell Type-Dependent Functional Deficits in the Mouse Hippocampus In Vitro. eNeuro 2021; 8:ENEURO.0221-21.2021. [PMID: 34475264 PMCID: PMC8482850 DOI: 10.1523/eneuro.0221-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/21/2021] [Accepted: 07/03/2021] [Indexed: 01/11/2023] Open
Abstract
Neurons are highly vulnerable to conditions of hypoxia-ischemia (HI) such as stroke or transient ischemic attacks. Recovery of cognitive and behavioral functions requires re-emergence of coordinated network activity, which, in turn, relies on the well-orchestrated interaction of pyramidal cells (PYRs) and interneurons. We therefore modelled HI in the mouse hippocampus, a particularly vulnerable region showing marked loss of PYR and fast-spiking interneurons (FSIs) after hypoxic-ischemic insults. Transient oxygen-glucose deprivation (OGD) in ex vivo hippocampal slices led to a rapid loss of neuronal activity and spontaneous network oscillations (sharp wave-ripple complexes; SPW-Rs), and to the occurrence of a spreading depolarization. Following reperfusion, both SPW-R and neuronal spiking resumed, but FSI activity remained strongly reduced compared with PYR. Whole-cell recordings in CA1 PYR revealed, however, a similar reduction of both EPSCs and IPSCs, leaving inhibition-excitation (I/E) balance unaltered. At the network level, SPW-R incidence was strongly reduced and the remaining network events showed region-specific changes including reduced ripple energy in CA3 and increased ripple frequency in CA1. Together, our data show that transient hippocampal energy depletion results in severe functional alterations at the cellular and network level. While I/E balance is maintained, synaptic activity, interneuron spiking and coordinated network patterns remain reduced. Such alterations may be network-level correlates of cognitive and functional deficits after cerebral HI.
Collapse
|
41
|
Gulyaeva NV. Does the inability of CA1 area to respond to ischemia with early rapid adenosine release contribute to hippocampal vulnerability?: An Editorial Highlight for "Spontaneous, transient adenosine release is not enhanced in the CA1 region of hippocampus during severe ischemia models". J Neurochem 2021; 159:800-803. [PMID: 34480345 DOI: 10.1111/jnc.15498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022]
Abstract
This Editorial highlights a remarkable study in the current issue of the Journal of Neurochemistry in which Ganesana & Venton (2021) report new data showing that brain ischemia does not elicit transient adenosine release in the CA1 hippocampal area. Using fast-scan cyclic voltammetry at a carbon-fiber microelectrode implanted in the CA1 subfield of the hippocampus, it was shown that none of three different ischemia/reperfusion models could increase spontaneous, transient adenosine release, and more severe models even suppressed this presumably neuroprotective release. Since the authors have previously shown that in the caudate putamen, ischemia increased the frequency of spontaneous adenosine release (Ganesana & Venton, 2018), the new data may disclose a mechanism underlying important regional differences in rapid neuroprotective adenosine signaling. The phenomenon of selective susceptibility of the hippocampus to ischemia/hypoxia is well-documented, and the reported failure of its CA1 area to respond to ischemia by rapid adenosine release may be indicative of an insufficiency of this neuroprotective mechanism contributing to hippocampal vulnerability.
Collapse
Affiliation(s)
- Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.,Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, Russia
| |
Collapse
|
42
|
Jacobs RA, Aboouf MA, Koester-Hegmann C, Muttathukunnel P, Laouafa S, Arias-Reyes C, Thiersch M, Soliz J, Gassmann M, Schneider Gasser EM. Erythropoietin promotes hippocampal mitochondrial function and enhances cognition in mice. Commun Biol 2021; 4:938. [PMID: 34354241 PMCID: PMC8342552 DOI: 10.1038/s42003-021-02465-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 07/19/2021] [Indexed: 11/22/2022] Open
Abstract
Erythropoietin (EPO) improves neuronal mitochondrial function and cognition in adults after brain injury and in those afflicted by psychiatric disorders. However, the influence of EPO on mitochondria and cognition during development remains unexplored. We previously observed that EPO stimulates hippocampal-specific neuronal maturation and synaptogenesis early in postnatal development in mice. Here we show that EPO promotes mitochondrial respiration in developing postnatal hippocampus by increasing mitochondrial content and enhancing cellular respiratory potential. Ultrastructurally, mitochondria profiles and total vesicle content were greater in presynaptic axon terminals, suggesting that EPO enhances oxidative metabolism and synaptic transmission capabilities. Behavioural tests of hippocampus-dependent memory at early adulthood, showed that EPO improves spatial and short-term memory. Collectively, we identify a role for EPO in the murine postnatal hippocampus by promoting mitochondrial function throughout early postnatal development, which corresponds to enhanced cognition by early adulthood. Robert Jacobs, Mostafa Aboouf, et al. examined the effect of erythropoietin (EPO) in hippocampal mitochondrial function and memory in two mouse models: one overexpressing EPO in the brain, and juvenile mice treated during three days with a high dose of intraperitoneal EPO. Their results suggest that erythropoietin in the neonatal brain may impact spatial memory by increasing mitochondrial content.
Collapse
Affiliation(s)
- Robert A Jacobs
- Institute of Veterinary Physiology, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland.,Department of Human Physiology & Nutrition, University of Colorado, Colorado Springs, CO, USA
| | - Mostafa A Aboouf
- Institute of Veterinary Physiology, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIPH), University of Zurich, Zurich, Switzerland.,Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Christina Koester-Hegmann
- Institute of Veterinary Physiology, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Paola Muttathukunnel
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Center for Neuroscience Zurich (ZNZ), Zurich, Switzerland
| | - Sofien Laouafa
- Faculty of Medicine, Centre Hospitalier Universitaire de Québec (CHUQ), Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Christian Arias-Reyes
- Faculty of Medicine, Centre Hospitalier Universitaire de Québec (CHUQ), Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Markus Thiersch
- Institute of Veterinary Physiology, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIPH), University of Zurich, Zurich, Switzerland
| | - Jorge Soliz
- Faculty of Medicine, Centre Hospitalier Universitaire de Québec (CHUQ), Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIPH), University of Zurich, Zurich, Switzerland
| | - Edith M Schneider Gasser
- Institute of Veterinary Physiology, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland. .,Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland. .,Center for Neuroscience Zurich (ZNZ), Zurich, Switzerland.
| |
Collapse
|
43
|
Intermittent Hypoxia and Effects on Early Learning/Memory: Exploring the Hippocampal Cellular Effects of Pediatric Obstructive Sleep Apnea. Anesth Analg 2021; 133:93-103. [PMID: 33234943 DOI: 10.1213/ane.0000000000005273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review provides an update on the neurocognitive phenotype of pediatric obstructive sleep apnea (OSA). Pediatric OSA is associated with neurocognitive deficits involving memory, learning, and executive functioning. Adenotonsillectomy (AT) is presently accepted as the first-line surgical treatment for pediatric OSA, but the executive function deficits do not resolve postsurgery, and the timeline for recovery remains unknown. This finding suggests that pediatric OSA potentially causes irreversible damage to multiple areas of the brain. The focus of this review is the hippocampus, 1 of the 2 major sites of postnatal neurogenesis, where new neurons are formed and integrated into existing circuitry and the mammalian center of learning/memory functions. Here, we review the clinical phenotype of pediatric OSA, and then discuss existing studies of OSA on different cell types in the hippocampus during critical periods of development. This will set the stage for future study using preclinical models to understand the pathogenesis of persistent neurocognitive dysfunction in pediatric OSA.
Collapse
|
44
|
Song C, Zhang Y, Cheng L, Shi M, Li X, Zhang L, Zhao H. Tea polyphenols ameliorates memory decline in aging model rats by inhibiting brain TLR4/NF-κB inflammatory signaling pathway caused by intestinal flora dysbiosis. Exp Gerontol 2021; 153:111476. [PMID: 34265410 DOI: 10.1016/j.exger.2021.111476] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022]
Abstract
AIMS Tea is a rich source of pharmacologically active molecules that has been suggested to provide a variety of health benefits. However, its mechanism of action in aging-related intestinal flora dysbiosis mediated neuroinflammation is still unclear. This study aimed to explore whether tea polyphenols (TP) can improve memory by regulating intestinal flora mediated neuroinflammation in aging model rats. METHODS Ovariectomy (OVX) combined with D-galactose injection was used to establish aging rats related to menopause. The rats were divided into Sham control group, Aging model group, TP 75 mg/kg, 150 mg/kg, 300 mg/kg groups and VE group. After 12 weeks of intervention, the shuttle box test and Y maze test were used to check the memory of rats. The composition of intestinal flora was assessed by 16S rRNA sequencing technology. HE staining and ELISA were used to detect intestinal epithelial morphology and permeability, respectively. TLR4/NF-κB inflammation pathway related indicators were investigated by western blot, and the microglia activation in rat hippocampal tissue was checked by immunofluorescence. RESULTS In the shuttle box test and the Y maze test, compared with the Sham control group, the memory of Aging model rats was significantly declined. It was observed that the intestinal flora of Aging model rats was dysbiosis, the permeability of the intestinal epithelium was increased. Further experimental results showed that the expression of TLR4/NF-κB inflammatory pathway related proteins in the hippocampus were increased, and the excessive activation of microglia was observed. The beneficial effects of TP intervention have been found to prevent memory decline and significantly improve brain inflammation induced by intestinal flora dysbiosis, and TP 300 mg/kg showed a more obvious advantage than TP 75 mg/kg. TP 300 mg/kg can significantly improve the behavior of rats, improve the composition and diversity of the intestinal flora, and the shape and function of the intestinal epithelium. By reversing the increased expression levels of TLR4, IRAK, p-IκBα and nuclear NF-κB p65 proteins in the hippocampus of Aging model rats, the activation of microglia in the CA1, CA3 and Dentate gyrus (DG) sub-regions of the hippocampus can be inhibited. CONCLUSION TP inhibits the brain TLR4/NF-κB inflammatory signal pathway caused by the dysbiosis of intestinal flora, which may be one of the mechanisms to improve the memory decline in aging model rats.
Collapse
Affiliation(s)
- Chenmeng Song
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Yusen Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Le Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Mengqian Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Xuemin Li
- Center for Disease Control and Prevention in Shanxi Province, Taiyuan, Shanxi 030012, PR China
| | - Luping Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Haifeng Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China.
| |
Collapse
|
45
|
Barranco R, Bonsignore A, Ventura F. Immunohistochemistry in postmortem diagnosis of acute cerebral hypoxia and ischemia: A systematic review. Medicine (Baltimore) 2021; 100:e26486. [PMID: 34160462 PMCID: PMC8238305 DOI: 10.1097/md.0000000000026486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 05/28/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND : Discovery of evidence of acute brain ischemia or hypoxia and its differentiation from agonal hypoxia represents a task of interest but extremely difficult in forensic neuropathology. Generally, more than 50% of forensic autopsies indicate evidence of brain induced functional arrest of the organ system, which can be the result of a hypoxic/ischemic brain event. Even if the brain is the target organ of hypoxic/ischemic damage, at present, there are no specific neuropathological (macroscopic and histological) findings of hypoxic damage (such as in drowning, hanging, intoxication with carbon monoxide) or acute ischemia. In fact, the first histological signs appear after at least 4 to 6 hours. Numerous authors have pointed out how an immunohistochemical analysis could help diagnose acute cerebral hypoxia/ischemia.Data sources: This review was based on articles published in PubMed and Scopus databases in the past 25 years, with the following keywords "immunohistochemical markers," "acute cerebral ischemia," "ischemic or hypoxic brain damage," and "acute cerebral hypoxia". OBJECTIVES : Original articles and reviews on this topic were selected. The purpose of this review is to analyze and summarize the markers studied so far and to consider the limits of immunohistochemistry that exist to date in this specific field of forensic pathology. RESULTS : We identified 13 markers that had been examined (in previous studies) for this purpose. In our opinion, it is difficult to identify reliable and confirmed biomarkers from multiple studies in order to support a postmortem diagnosis of acute cerebral hypoxia/ischemia. Microtubule-associated protein 2 (MAP2) is the most researched marker in the literature and the results obtained have proven to be quite useful. CONCLUSION Immunohistochemistry has provided interesting and promising results, but further studies are needed in order to confirm and apply them in standard forensic practice.
Collapse
|
46
|
Kalia M, Meijer HGE, van Gils SA, van Putten MJAM, Rose CR. Ion dynamics at the energy-deprived tripartite synapse. PLoS Comput Biol 2021; 17:e1009019. [PMID: 34143772 PMCID: PMC8244923 DOI: 10.1371/journal.pcbi.1009019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 06/30/2021] [Accepted: 04/28/2021] [Indexed: 01/09/2023] Open
Abstract
The anatomical and functional organization of neurons and astrocytes at 'tripartite synapses' is essential for reliable neurotransmission, which critically depends on ATP. In low energy conditions, synaptic transmission fails, accompanied by a breakdown of ion gradients, changes in membrane potentials and cell swelling. The resulting cellular damage and cell death are causal to the often devastating consequences of an ischemic stroke. The severity of ischemic damage depends on the age and the brain region in which a stroke occurs, but the reasons for this differential vulnerability are far from understood. In the present study, we address this question by developing a comprehensive biophysical model of a glutamatergic synapse to identify key determinants of synaptic failure during energy deprivation. Our model is based on fundamental biophysical principles, includes dynamics of the most relevant ions, i.e., Na+, K+, Ca2+, Cl- and glutamate, and is calibrated with experimental data. It confirms the critical role of the Na+/K+-ATPase in maintaining ion gradients, membrane potentials and cell volumes. Our simulations demonstrate that the system exhibits two stable states, one physiological and one pathological. During energy deprivation, the physiological state may disappear, forcing a transit to the pathological state, which can be reverted when blocking voltage-gated Na+ and K+ channels. Our model predicts that the transition to the pathological state is favoured if the extracellular space fraction is small. A reduction in the extracellular space volume fraction, as, e.g. observed with ageing, will thus promote the brain's susceptibility to ischemic damage. Our work provides new insights into the brain's ability to recover from energy deprivation, with translational relevance for diagnosis and treatment of ischemic strokes.
Collapse
Affiliation(s)
- Manu Kalia
- Applied Analysis, Department of Applied Mathematics, University of Twente, Enschede, The Netherlands
- * E-mail:
| | - Hil G. E. Meijer
- Applied Analysis, Department of Applied Mathematics, University of Twente, Enschede, The Netherlands
| | - Stephan A. van Gils
- Applied Analysis, Department of Applied Mathematics, University of Twente, Enschede, The Netherlands
| | | | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
47
|
Brait VH, Wright DK, Nategh M, Oman A, Syeda WT, Ermine CM, O'Brien KR, Werden E, Churilov L, Johnston LA, Thompson LH, Nithianantharajah J, Jackman KA, Brodtmann A. Longitudinal hippocampal volumetric changes in mice following brain infarction. Sci Rep 2021; 11:10269. [PMID: 33986303 PMCID: PMC8119705 DOI: 10.1038/s41598-021-88284-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/05/2021] [Indexed: 01/14/2023] Open
Abstract
Hippocampal atrophy is increasingly described in many neurodegenerative syndromes in humans, including stroke and vascular cognitive impairment. However, the progression of brain volume changes after stroke in rodent models is poorly characterized. We aimed to monitor hippocampal atrophy occurring in mice up to 48-weeks post-stroke. Male C57BL/6J mice were subjected to an intraluminal filament-induced middle cerebral artery occlusion (MCAO). At baseline, 3-days, and 1-, 4-, 12-, 24-, 36- and 48-weeks post-surgery, we measured sensorimotor behavior and hippocampal volumes from T2-weighted MRI scans. Hippocampal volume-both ipsilateral and contralateral-increased over the life-span of sham-operated mice. In MCAO-subjected mice, different trajectories of ipsilateral hippocampal volume change were observed dependent on whether the hippocampus contained direct infarction, with a decrease in directly infarcted tissue and an increase in non-infarcted tissue. To further investigate these volume changes, neuronal and glial cell densities were assessed in histological brain sections from the subset of MCAO mice lacking hippocampal infarction. Our findings demonstrate previously uncharacterized changes in hippocampal volume and potentially brain parenchymal cell density up to 48-weeks in both sham- and MCAO-operated mice.
Collapse
Affiliation(s)
- Vanessa H Brait
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - David K Wright
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,The Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Mohsen Nategh
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Alexander Oman
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Warda T Syeda
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Charlotte M Ermine
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Katrina R O'Brien
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Emilio Werden
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Leonid Churilov
- Melbourne Medical School, University of Melbourne, Parkville, VIC, Australia
| | - Leigh A Johnston
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia.,Melbourne Brain Centre Imaging Unit, University of Melbourne, Parkville, VIC, Australia
| | - Lachlan H Thompson
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Jess Nithianantharajah
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Katherine A Jackman
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Amy Brodtmann
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
48
|
Bonato JM, Meyer E, de Mendonça PSB, Milani H, Prickaerts J, Weffort de Oliveira RM. Roflumilast protects against spatial memory impairments and exerts anti-inflammatory effects after transient global cerebral ischemia. Eur J Neurosci 2021; 53:1171-1188. [PMID: 33340424 DOI: 10.1111/ejn.15089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Phosphodiesterase 4 (PDE4) inhibitors have been shown to present beneficial effects in cerebral ischemic injury because of their ability to improve cognition and target different phases and mechanisms of cerebral ischemia, including apoptosis, neurogenesis, angiogenesis, and inflammation. The present study investigated whether repeated treatment with the PDE4 inhibitor roflumilast rescued memory loss and attenuated neuroinflammation in rats following transient global cerebral ischemia (TGCI). TGCI caused memory impairments, neuronal loss (reflected by Neuronal nuclei (NeuN) immunoreactivity), and compensatory neurogenesis (reflected by doublecortin (DCX) immunoreactivity) in the hippocampus. Also, increases in the protein expression of the phosphorylated response element-binding protein (pCREB) and inflammatory markers such as the glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule 1 (Iba-1), were detected in the hippocampus in TGCI rats. Repeated treatment with roflumilast (0.003 and 0.01 mg/kg) prevented spatial memory deficits without promoting hippocampal protection in ischemic animals. Roflumilast increased the levels of pCREB, arginase-1, interleukin (IL) 4, and IL-10 in the hippocampus 21 days after TGCI. These data suggest a protective effect of roflumilast against functional sequelae of cerebral ischemia, which might be related to its anti-inflammatory properties.
Collapse
Affiliation(s)
- Jéssica M Bonato
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | | | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
49
|
Zhang P, Wang Y, Wang H, Cao J. Sesamol alleviates chronic intermittent hypoxia-induced cognitive deficits via inhibiting oxidative stress and inflammation in rats. Neuroreport 2021; 32:105-111. [PMID: 33323839 DOI: 10.1097/wnr.0000000000001564] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chronic intermittent hypoxia (CIH) is a major pathophysiological feature of obstructive sleep apnea (OSA), which can cause oxidative stress and inflammation which can further impair the nervous system. Cognitive impairment is a common complication of the nervous system in OSA. Sesamol, a natural extract from Sesamum plants, is believed to have strong antioxidant and anti-inflammation capacity, which has a powerful neuroprotective function. But whether sesamol can improve CIH-induced cognitive impairment is unclear. This study aimed to explore whether sesamol can improve CIH-induced cognitive impairment and its relative mechanism in the model rats with OSA. Rats were exposed to CIH for 8 h a day for 2, 4, 6, and 8 weeks separately and concurrently were treated with sesamol (20 mg/kg/day, intraperitoneal). The Morris water maze (MWM) test was used to evaluate their learning and memory function. The activity of the superoxide dismutase (SOD) and the level of malondialdehyde were measured to evaluate the oxidative stress in the hippocampus of the rats. The levels of tumour necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) in the hippocampus were quantified to analyse neuroinflammation by ELISA. The MWM test showed that sesamol improved learning and memory impairment in CIH-exposed rats. We also found that the sesamol-treated CIH-exposed rats had significantly increased the activity of SOD, as well as reduced the level of malondialdehyde in the hippocampus. In addition, sesamol also reduced the levels of TNF-α and IL-1β in the hippocampus. These data show that sesamol is able to alleviate cognitive impairments in CIH-exposed rats, with its neuroprotective effects likely inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Respiratory and Critical Medicine, Tianjin Medical University General Hospital
- Department of Respiratory and Critical Medicine, North China University of Science and Technology Affiliated Hospital
| | - Yanhui Wang
- Department of Clinical Medicine, Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Hongyang Wang
- Department of Respiratory and Critical Medicine, North China University of Science and Technology Affiliated Hospital
| | - Jie Cao
- Department of Respiratory and Critical Medicine, Tianjin Medical University General Hospital
| |
Collapse
|
50
|
Butt UJ, Steixner-Kumar AA, Depp C, Sun T, Hassouna I, Wüstefeld L, Arinrad S, Zillmann MR, Schopf N, Fernandez Garcia-Agudo L, Mohrmann L, Bode U, Ronnenberg A, Hindermann M, Goebbels S, Bonn S, Katschinski DM, Miskowiak KW, Nave KA, Ehrenreich H. Hippocampal neurons respond to brain activity with functional hypoxia. Mol Psychiatry 2021; 26:1790-1807. [PMID: 33564132 PMCID: PMC8440186 DOI: 10.1038/s41380-020-00988-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
Physical activity and cognitive challenge are established non-invasive methods to induce comprehensive brain activation and thereby improve global brain function including mood and emotional well-being in healthy subjects and in patients. However, the mechanisms underlying this experimental and clinical observation and broadly exploited therapeutic tool are still widely obscure. Here we show in the behaving brain that physiological (endogenous) hypoxia is likely a respective lead mechanism, regulating hippocampal plasticity via adaptive gene expression. A refined transgenic approach in mice, utilizing the oxygen-dependent degradation (ODD) domain of HIF-1α fused to CreERT2 recombinase, allows us to demonstrate hypoxic cells in the performing brain under normoxia and motor-cognitive challenge, and spatially map them by light-sheet microscopy, all in comparison to inspiratory hypoxia as strong positive control. We report that a complex motor-cognitive challenge causes hypoxia across essentially all brain areas, with hypoxic neurons particularly abundant in the hippocampus. These data suggest an intriguing model of neuroplasticity, in which a specific task-associated neuronal activity triggers mild hypoxia as a local neuron-specific as well as a brain-wide response, comprising indirectly activated neurons and non-neuronal cells.
Collapse
Affiliation(s)
- Umer Javed Butt
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Agnes A. Steixner-Kumar
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Constanze Depp
- grid.419522.90000 0001 0668 6902Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ting Sun
- grid.419522.90000 0001 0668 6902Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany ,grid.13648.380000 0001 2180 3484Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Imam Hassouna
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Liane Wüstefeld
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sahab Arinrad
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Matthias R. Zillmann
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Nadine Schopf
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Laura Fernandez Garcia-Agudo
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Leonie Mohrmann
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ulli Bode
- grid.419522.90000 0001 0668 6902Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Anja Ronnenberg
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Martin Hindermann
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sandra Goebbels
- grid.419522.90000 0001 0668 6902Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Stefan Bonn
- grid.13648.380000 0001 2180 3484Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Dörthe M. Katschinski
- grid.7450.60000 0001 2364 4210Institute for Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Kamilla W. Miskowiak
- grid.475435.4Psychiatric Centre Copenhagen, University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| |
Collapse
|