1
|
McCoy K, Reed F, Conn K, Foldi CJ. Separate or inseparable? Serotonin and dopamine system interactions may underlie the therapeutic potential of psilocybin for anorexia nervosa. Physiol Behav 2025; 298:114957. [PMID: 40403997 DOI: 10.1016/j.physbeh.2025.114957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/16/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
Psilocybin, a serotonergic psychedelic, has emerged as a promising treatment for a range of mental health conditions, including anorexia nervosa. Recent insights from animal models and human imaging studies suggest psilocybin enhances cognitive flexibility and modifies reward processing - two core processes disrupted in anorexia nervosa. Both cognitive flexibility and reward processing are highly dependent on interactions between serotonin (5-HT) and dopamine (DA) systems in key brain regions such as the prefrontal cortex and nucleus accumbens. Psilocybin's influence on neuroplasticity, particularly in promoting structural and functional changes in neural circuits, underpins its therapeutic potential. While its effects are predominantly attributed to activity of the 5-HT2A receptor subtype, recent evidence suggests a broader network of brain receptor interactions, particularly those with dopaminergic pathways, plays a crucial role. Investigations using rodent models reveal that psilocybin induces both rapid and enduring neuroplastic changes, improving cognitive flexibility through these complex neurochemical mechanisms. Advances in real-time in vivo neurochemical recording now allow simultaneous monitoring of 5-HT and DA signalling, which will provide essential insights into their distinct and coordinated actions during cognitive performance. This integrative framework highlights the need for further research into psilocybin's dual modulation of 5-HT and DA systems to optimize its therapeutic applications for anorexia nervosa, a life-threatening condition that is characterized by impairments in cognitive flexibility and reward processing.
Collapse
Affiliation(s)
- Kaspar McCoy
- Monash University, Department of Physiology, 26 Innovation Walk, 3800, Clayton, Australia; Biomedicine Discovery Institute, Monash University, 23 Innovation Walk, 3800, Clayton, Australia
| | - Felicia Reed
- Monash University, Department of Physiology, 26 Innovation Walk, 3800, Clayton, Australia; Biomedicine Discovery Institute, Monash University, 23 Innovation Walk, 3800, Clayton, Australia; Australian Eating Disorders Research & Translation Centre (AEDRTC), Sydney, NSW, Australia
| | - Kyna Conn
- Monash University, Department of Physiology, 26 Innovation Walk, 3800, Clayton, Australia; Biomedicine Discovery Institute, Monash University, 23 Innovation Walk, 3800, Clayton, Australia
| | - Claire J Foldi
- Monash University, Department of Physiology, 26 Innovation Walk, 3800, Clayton, Australia; Biomedicine Discovery Institute, Monash University, 23 Innovation Walk, 3800, Clayton, Australia.
| |
Collapse
|
2
|
Treadway MT, Betters SA, Cooper JA, Li CX, Zhang X, Michopoulos V. Medial prefrontal glutamate response to acute stress is associated with social subordination in female rhesus macaques. Transl Psychiatry 2025; 15:107. [PMID: 40157907 PMCID: PMC11954936 DOI: 10.1038/s41398-025-03334-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
Chronic psychosocial stress is associated with increased risk of psychiatric disorders. Magnetic resonance spectroscopy (MRS) in humans has been used to show that glutamate levels in medial prefrontal cortex (mPFC) following acute stress exposure adapt to recent chronic stress levels. Here, we sought to determine the presence of this glutamate stress response adaptation in rhesus macaques, whose societies are maintained by dominance relationships that are enforced by agonistic interactions and result in chronic stress phenotypes seen in humans. We tested the hypothesis that change in mPFC glutamate after an acute stressor would be moderated by behavioral factors related to social subordination in a manner similar to that previously observed in humans. Seventeen adult female rhesus monkeys (Macaca mulatta, 13-23 yrs.) were observed over ten weeks to collect behavioral data and then received two MRS scans. The first scan occurred after acute stress manipulation involving relocation and isolation. The second control scan occurred after acclimation to the new location. As expected, we found that a behavioral measure of social subordination predicted an adaptive glutamate response such that animals experiencing more submissive behavior asymmetry (a behavioral measure related to social subordination) exhibited an attenuated glutamate response to the acute stressor. These data establish the use of MRS to measure the adaptive glutamate stress in non-human primates and will help further our understanding of the neurobiology of stress adaptation.
Collapse
Affiliation(s)
- Michael T Treadway
- Department of Psychology, Emory University, Atlanta, GA, USA.
- Department of Psychiatry and Behavioral Sciences, Emory School of Medicine, Atlanta, GA, USA.
| | | | - Jessica A Cooper
- Department of Psychiatry and Behavioral Sciences, Emory School of Medicine, Atlanta, GA, USA
| | - Chun-Xia Li
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Xiaodong Zhang
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory School of Medicine, Atlanta, GA, USA.
- Emory National Primate Research Center, Atlanta, GA, USA.
| |
Collapse
|
3
|
Rye CS, Milton AL. Glutamate receptor expression in the PL-BLA circuit is associated with susceptibility to showing the PTSD-like phenotype. Neurobiol Learn Mem 2025; 219:108051. [PMID: 40157419 DOI: 10.1016/j.nlm.2025.108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/07/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
While many individuals experience traumatic events during their lifetimes, only some go on to develop post-traumatic stress disorder (PTSD). This susceptibility and resilience to developing PTSD can be modelled in rodents using the stress-enhanced fear learning (SEFL) procedure, in which rats are exposed to a session of massed, unpredictable footshocks and subsequently assessed on tasks of adaptive fear learning. It has previously been observed that subpopulations of rats are susceptible and resilient to showing the PTSD-like phenotype following SEFL, and that these rats show differences in glutamate receptor expression in the basolateral amygdala. However, it is currently unknown whether structural differences are observed in other brain regions implicated in stress responding and memory. Using the refined SEFL procedure, this study aimed to determine whether expression of GluN2B, GluA1 and GluA2 receptor subunits in the prelimbic and infralimbic cortices, and dorsal hippocampus could be correlated to the SEFL-phenotype or shock experience in male rats. Here we show that following SEFL, differences can be observed in receptor subunit expression in the infralimbic cortex and dorsal hippocampus as a function of shock experience, whilst differences in the prelimbic cortex are associated with susceptibility. Importantly, these structural changes can be observed in male rats that are group-housed and exposed to 13-shocks rather than 15-shocks, indicating that the refined SEFL procedure offers a robust animal analogue of the non-associative fear sensitisation that occurs in PTSD. Future studies using this procedure could pave the way to the eventual development of pharmacological treatments to alleviate or prevent stress-induced psychopathology in susceptible individuals.
Collapse
Affiliation(s)
- Charlotte S Rye
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom.
| | - Amy L Milton
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom
| |
Collapse
|
4
|
Chen HY, Chiang HY, Lee TH, Chan PYS, Yang CY, Lee HM, Liang SHY. Effects of chronic social defeat stress on social behavior and cognitive flexibility for early and late adolescent. Behav Brain Res 2025; 476:115251. [PMID: 39271022 DOI: 10.1016/j.bbr.2024.115251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
This study investigated the risk to social behavior and cognitive flexibility induced by chronic social defeat stress (CSDS) during early and late adolescence (EA and LA). Utilizing the "resident-intruder" stress paradigm, adolescent male Sprague-Dawley rats were exposed to CSDS during either EA (postnatal days 29-38) or LA (postnatal days 39-48) to explore how social defeat at different stages of adolescence affects behavioral and cognitive symptoms commonly associated with psychiatric disorders. After stress exposure, the rats were assessed for anxiety-like behavior in the elevated plus maze, social interaction, and cognitive flexibility through set-shifting and reversal-learning tasks under immediate and delayed reward conditions. The results showed that CSDS during EA, but not LA, led to impaired cognitive flexibility in adulthood, as evidenced by increased perseverative and regressive errors in the set-shifting and reversal-learning tasks, particularly under the delayed reward condition. This suggests that the timing of stress exposure during development has a significant impact on the long-term consequences for behavioral and cognitive function. The findings highlight the vulnerability of the prefrontal cortex, which undergoes critical maturation during early adolescence, to the effects of social stress. Overall, this study demonstrates that the timing of social stressors during adolescence can differentially shape the developmental trajectory of cognitive flexibility, with important implications for understanding the link between childhood/adolescent adversity and the emergence of psychiatric disorders.
Collapse
Affiliation(s)
- Hsin-Yung Chen
- Department of Occupational Therapy & Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Section of Department of Child and Adolescent Psychiatry, Department of Psychiatry, Chang Gung Memorial Hospital at Taoyuan, Taoyuan, Taiwan; Department of Occupational Therapy, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Hou-Yu Chiang
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ting-Hein Lee
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Pei-Ying Sarah Chan
- Department of Occupational Therapy & Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chia-Yen Yang
- Department of Biomedical Engineering, Ming-Chuan University, Taoyuan, Taiwan; Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Hsin-Min Lee
- Department of Physical Therapy, College of Medicine, I-Shou University, Kaohsiung, Taiwan.
| | - Sophie Hsin-Yi Liang
- Section of Department of Child and Adolescent Psychiatry, Department of Psychiatry, Chang Gung Memorial Hospital at Taoyuan and Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
5
|
Brouns EJ, Ekins TG, Ahmed OJ. Psychedelic enhancement of flexible learning weeks after a single dose. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.629035. [PMID: 40093150 PMCID: PMC11908162 DOI: 10.1101/2024.12.17.629035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Psychedelic drugs have shown therapeutic potential for the treatment of multiple neuropsychiatric disorders chiefly by promoting long-lasting plasticity in the prefrontal cortex (PFC). A critical function of the PFC is the ability to apply previously learned rules to novel scenarios, a skill known as cognitive flexibility. Here, we show that a single dose of 25CN-NBOH - a serotonin 2A receptor-preferring psychedelic - improves performance on a relatively complex flexible reversal learning task in mice, measured 2-3 weeks after the dose. This effect was seen in both male and female mice. This behavioral finding complements previous cellular results showing that a single psychedelic dose induces long-term structural changes in the PFC and uniquely demonstrates sustained improvements in cognitive flexibility in a novel behavioral paradigm weeks after the initial psychedelic dose in mice. This high throughput task also provides a rapid, automated way to assess other candidate psychedelics for their impact on cognitive flexibility in mice.
Collapse
Affiliation(s)
| | - Tyler G. Ekins
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
- Michigan Psychedelic Center, University of Michigan, Ann Arbor, MI 48109
| | - Omar J. Ahmed
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
- Michigan Psychedelic Center, University of Michigan, Ann Arbor, MI 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Center of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
6
|
Tillmon H, Soteros BM, Shen L, Cong Q, Wollet M, General J, Chin H, Lee JB, Carreno FR, Morilak DA, Kim JH, Sia GM. Complement and microglia activation mediate stress-induced synapse loss in layer 2/3 of the medial prefrontal cortex in male mice. Nat Commun 2024; 15:9803. [PMID: 39532876 PMCID: PMC11557709 DOI: 10.1038/s41467-024-54007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Spatially heterogeneous synapse loss is a characteristic of many psychiatric and neurological disorders, but the underlying mechanisms are unclear. Here, we show that spatially-restricted complement activation mediates stress-induced heterogeneous microglia activation and synapse loss localized to the upper layers of the medial prefrontal cortex (mPFC) in male mice. Single cell RNA sequencing also reveals a stress-associated microglia state marked by high expression of the apolipoprotein E gene (Apoehigh) localized to the upper layers of the mPFC. Mice lacking complement component C3 are protected from stress-induced layer-specific synapse loss, and the Apoehigh microglia population is markedly reduced in the mPFC of these mice. Furthermore, C3 knockout mice are also resilient to stress-induced anhedonia and working memory behavioral deficits. Our findings suggest that region-specific complement and microglia activation can contribute to the disease-specific spatially restricted patterns of synapse loss and clinical symptoms found in many brain diseases.
Collapse
Affiliation(s)
- Haven Tillmon
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Breeanne M Soteros
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Liang Shen
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Qifei Cong
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
- Clinical Research Center of Neurological Disease, Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mackenna Wollet
- Department of Cellular and Integrative Physiology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Julianne General
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Hanna Chin
- University of Rochester, Rochester, NY, 14627, USA
| | - John Beichen Lee
- Long School of Medicine, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Flavia R Carreno
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - David A Morilak
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
- South Texas Veteran's Health Care System, San Antonio, TX, 78229, USA
| | - Jun Hee Kim
- Department of Cellular and Integrative Physiology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gek Ming Sia
- Department of Cellular and Integrative Physiology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
7
|
Girotti M, Bulin SE, Carreno FR. Effects of chronic stress on cognitive function - From neurobiology to intervention. Neurobiol Stress 2024; 33:100670. [PMID: 39295772 PMCID: PMC11407068 DOI: 10.1016/j.ynstr.2024.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Exposure to chronic stress contributes considerably to the development of cognitive impairments in psychiatric disorders such as depression, generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), and addictive behavior. Unfortunately, unlike mood-related symptoms, cognitive impairments are not effectively treated by available therapies, a situation in part resulting from a still incomplete knowledge of the neurobiological substrates that underly cognitive domains and the difficulty in generating interventions that are both efficacious and safe. In this review, we will present an overview of the cognitive domains affected by stress with a specific focus on cognitive flexibility, behavioral inhibition, and working memory. We will then consider the effects of stress on neuronal correlates of cognitive function and the factors which may modulate the interaction of stress and cognition. Finally, we will discuss intervention strategies for treatment of stress-related disorders and gaps in knowledge with emerging new treatments under development. Understanding how cognitive impairment occurs during exposure to chronic stress is crucial to make progress towards the development of new and effective therapeutic approaches.
Collapse
Affiliation(s)
| | - Sarah E. Bulin
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Flavia R. Carreno
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| |
Collapse
|
8
|
Nist AN, Walsh SJ, Shahan TA. Ketamine produces no detectable long-term positive or negative effects on cognitive flexibility or reinforcement learning of male rats. Psychopharmacology (Berl) 2024; 241:849-863. [PMID: 38062167 DOI: 10.1007/s00213-023-06514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/25/2023] [Indexed: 03/13/2024]
Abstract
RATIONALE Patients with major depressive disorder (MDD) often experience abnormalities in behavioral adaptation following environmental changes (i.e., cognitive flexibility) and tend to undervalue positive outcomes but overvalue negative outcomes. The probabilistic reversal learning task (PRL) is used to study these deficits across species and to explore drugs that may have therapeutic value. Selective serotonin-reuptake inhibitors (SSRIs) have limited effectiveness in treating MDD and produce inconsistent effects in non-human versions of the PRL. As such, ketamine, a novel and potentially rapid-acting therapeutic, has begun to be examined using the PRL. Two previous studies examining the effects of ketamine in the PRL have shown conflicting results and only examined short-term effects of ketamine. OBJECTIVE This experiment examined PRL performance across a 2-week period following a single exposure to a ketamine dose that varied across groups. METHODS After five sessions of PRL training, groups of rats received an injection of either 0, 10, 20 or 30 mg/kg ketamine. One-hour post-injection, rats engaged in the PRL, and subsequently sessions continued daily for 2 weeks. Traditional behavioral and computational reinforcement learning-derived measures were examined. RESULTS Results showed that ketamine had acute effects 1-h post-injection, including a significant decrease in the value of the punishment learning rate. Beyond 1 h, ketamine produced no detectable improvements nor decrements in performance across 2 weeks. CONCLUSION Overall, the present results suggest that the range of ketamine doses examined do not have long-term positive or negative effects on cognitive flexibility or reward processing in healthy rats as measured by the PRL.
Collapse
Affiliation(s)
- Anthony N Nist
- Department of Psychology, Utah State University, Logan, USA.
| | - Stephen J Walsh
- Department of Mathematics and Statistics, Utah State University, Logan, USA
| | | |
Collapse
|
9
|
Li HQ, Jiang W, Ling L, Pratelli M, Chen C, Gupta V, Godavarthi SK, Spitzer NC. Generalized fear after acute stress is caused by change in neuronal cotransmitter identity. Science 2024; 383:1252-1259. [PMID: 38484078 PMCID: PMC11830151 DOI: 10.1126/science.adj5996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/22/2024] [Indexed: 03/19/2024]
Abstract
Overgeneralization of fear to harmless situations is a core feature of anxiety disorders resulting from acute stress, yet the mechanisms by which fear becomes generalized are poorly understood. In this study, we show that generalized fear in mice results from a transmitter switch from glutamate to γ-aminobutyric acid (GABA) in serotonergic neurons of the lateral wings of the dorsal raphe. Similar change in transmitter identity was found in the postmortem brains of individuals with posttraumatic stress disorder (PTSD). Overriding the transmitter switch in mice prevented the acquisition of generalized fear. Corticosterone release and activation of glucocorticoid receptors mediated the switch, and prompt antidepressant treatment blocked the cotransmitter switch and generalized fear. Our results provide important insight into the mechanisms involved in fear generalization.
Collapse
Affiliation(s)
- Hui-quan Li
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego; La Jolla, California 92093
- Kavli Institute for Brain and Mind, University of California San Diego; La Jolla, California 92093
| | - Wuji Jiang
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego; La Jolla, California 92093
- Kavli Institute for Brain and Mind, University of California San Diego; La Jolla, California 92093
| | - Li Ling
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego; La Jolla, California 92093
- Kavli Institute for Brain and Mind, University of California San Diego; La Jolla, California 92093
| | - Marta Pratelli
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego; La Jolla, California 92093
- Kavli Institute for Brain and Mind, University of California San Diego; La Jolla, California 92093
| | - Cong Chen
- Department of Cellular and Molecular Medicine, University of California San Diego; La Jolla, California 92093
| | - Vaidehi Gupta
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego; La Jolla, California 92093
- Kavli Institute for Brain and Mind, University of California San Diego; La Jolla, California 92093
| | - Swetha K. Godavarthi
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego; La Jolla, California 92093
- Kavli Institute for Brain and Mind, University of California San Diego; La Jolla, California 92093
| | - Nicholas C. Spitzer
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego; La Jolla, California 92093
- Kavli Institute for Brain and Mind, University of California San Diego; La Jolla, California 92093
| |
Collapse
|
10
|
Gonsalves MA, White TL, Barredo J, DeMayo MM, DeLuca E, Harris AD, Carpenter LL. Cortical glutamate, Glx, and total N-acetylaspartate: potential biomarkers of repetitive transcranial magnetic stimulation treatment response and outcomes in major depression. Transl Psychiatry 2024; 14:5. [PMID: 38184652 PMCID: PMC10771455 DOI: 10.1038/s41398-023-02715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/08/2024] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for individuals with major depressive disorder (MDD) who have not improved with standard therapies. However, only 30-45% of patients respond to rTMS. Predicting response to rTMS will benefit both patients and providers in terms of prescribing and targeting treatment for maximum efficacy and directing resources, as individuals with lower likelihood of response could be redirected to more suitable treatment alternatives. In this exploratory study, our goal was to use proton magnetic resonance spectroscopy to examine how glutamate (Glu), Glx, and total N-acetylaspartate (tNAA) predict post-rTMS changes in overall MDD severity and symptoms, and treatment response. Metabolites were measured in a right dorsal anterior cingulate cortex voxel prior to a standard course of 10 Hz rTMS to the left DLPFC in 25 individuals with MDD. MDD severity and symptoms were evaluated via the Inventory of Depression Symptomatology Self-Report (IDS-SR). rTMS response was defined as ≥50% change in full-scale IDS-SR scores post treatment. Percent change in IDS-SR symptom domains were evaluated using principal component analysis and established subscales. Generalized linear and logistic regression models were used to evaluate the relationship between baseline Glu, Glx, and tNAA and outcomes while controlling for age and sex. Participants with baseline Glu and Glx levels in the lower range had greater percent change in full scale IDS-SR scores post-treatment (p < 0.001), as did tNAA (p = 0.007). Low glutamatergic metabolite levels also predicted greater percent change in mood/cognition symptoms (p ≤ 0.001). Low-range Glu, Glx, and tNAA were associated with greater improvement on the immuno-metabolic subscale (p ≤ 0.003). Baseline Glu predicted rTMS responder status (p = 0.025) and had an area under the receiving operating characteristic curve of 0.81 (p = 0.009), demonstrating excellent discriminative ability. Baseline Glu, Glx, and tNAA significantly predicted MDD improvement after rTMS; preliminary evidence also demonstrates metabolite association with symptom subdomain improvement post-rTMS. This work provides feasibility for a personalized medicine approach to rTMS treatment selection, with individuals with Glu levels in the lower range potentially being the best candidates.
Collapse
Affiliation(s)
- Meghan A Gonsalves
- Neuroscience Graduate Program, Brown University, Providence, RI, USA.
- Butler Hospital Neuromodulation Research Facility, Providence, RI, USA.
- Center of Biomedical Research Excellence (COBRE) for Neuromodulation, Butler Hospital, Providence, RI, USA.
| | - Tara L White
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA
- Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| | - Jennifer Barredo
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
- Providence VA Medical Center, Providence, RI, USA
- Clinical Neuroimaging Research Core, Brown University, Providence, RI, USA
| | - Marilena M DeMayo
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Emily DeLuca
- Clinical Neuroimaging Research Core, Brown University, Providence, RI, USA
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Linda L Carpenter
- Butler Hospital Neuromodulation Research Facility, Providence, RI, USA
- Center of Biomedical Research Excellence (COBRE) for Neuromodulation, Butler Hospital, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
11
|
Vaiana AM, Asher AM, Tapia K, Morilak DA. Vortioxetine Reverses Impairment of Visuospatial Memory and Cognitive Flexibility Induced by Degarelix as a Model of Androgen Deprivation Therapy in Rats. Neuroendocrinology 2023; 114:279-290. [PMID: 38104552 PMCID: PMC10911168 DOI: 10.1159/000535365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Androgen deprivation therapy (ADT) is a mainstay treatment for prostate cancer, but many patients experience cognitive impairment in domains mediated by the medial prefrontal cortex (mPFC) and hippocampus. Prostate cancer typically occurs in older patients (>65 years). As age is often accompanied by cognitive decline, it may impact the efficacy of any treatment aimed at restoring cognitive impairment induced by ADT. Vortioxetine, a multimodal antidepressant that improves cognition in depression, has been shown to be efficacious in elderly patients. Therefore, vortioxetine may improve cognition in older patients who experience cognitive decline after ADT. METHODS Young (3 months) and middle-aged (13 months) rats were used to investigate the influence of age on treating ADT-induced cognitive decline. As our previous studies used surgical castration, we tested if vortioxetine would reverse cognitive deficits associated with more translationally relevant chemical castration using degarelix. Vortioxetine was given in the diet for 21 days. Animals underwent behavioral testing to assess visuospatial memory mediated by the hippocampus and cognitive flexibility mediated by the mPFC. We also investigated changes in afferent-evoked responses in these regions in middle-aged rats. RESULTS Degarelix induced impairments in both visuospatial memory and cognitive flexibility that were reversed by vortioxetine. Vortioxetine also rescued afferent-evoked responses in the mPFC and hippocampus. However, modest age-related reductions in baseline visuospatial memory limited our ability to detect further decreases induced by degarelix in middle-aged rats due to a floor effect. CONCLUSION These results suggest that vortioxetine may be a treatment option for older prostate cancer patients who experience cognitive decline after ADT.
Collapse
Affiliation(s)
- Alexandra M. Vaiana
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Amber M. Asher
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Karla Tapia
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, USA
| | - David A. Morilak
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
- South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
12
|
Ayala-Rodríguez JD, García-Colunga J. Maternal separation modifies spontaneous synaptic activity in the infralimbic cortex of stress-resilient male rats. PLoS One 2023; 18:e0294151. [PMID: 37943747 PMCID: PMC10635473 DOI: 10.1371/journal.pone.0294151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Glutamate and GABA signaling systems are necessary to maintain proper function of the central nervous system through excitation/inhibition (E/I) balance. Alteration of this balance in the medial prefrontal cortex (mPFC), as an effect of early-life stress, may lead to the development of anxiety and depressive disorders. Few studies exist in the infralimbic division of the mPFC to understand the effect of early-life stress at different ages, which is the purpose of the present work. Newborn Sprague Dawley male rats were subjected to maternal separation (MS) for two weeks. First, tests measuring anxiety- and depression-like behaviors were performed on adolescent and adult rats subjected to MS (MS-rats). Then, to establish a relationship with behavioral results, electrophysiological recordings were performed in neurons of the infralimbic cortex in acute brain slices of infant, adolescent, and adult rats. In the behavioral tests, there were no significant differences in MS-rats compared to control rats at any age. Moreover, MS had no effect on the passive membrane properties nor neuronal excitability in the infralimbic cortex, whereas spontaneous synaptic activity in infralimbic neurons was altered. The frequency of spontaneous glutamatergic synaptic events increased in infant MS-rats, whereas in adolescent MS-rats both the frequency and the amplitude of spontaneous GABAergic events increased without any effect on glutamatergic synaptic responses. In adult MS-rats, these two parameters decreased in spontaneous GABAergic synaptic events, whereas only the frequency of glutamatergic events decreased. These data suggest that rats subjected to MS did not exhibit behavioral changes and presented an age-dependent E/I imbalance in the infralimbic cortex, possibly due to differential changes in neurotransmitter release and/or receptor expression.
Collapse
Affiliation(s)
- Jesús David Ayala-Rodríguez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| |
Collapse
|
13
|
Zhang X, Wang H, Kilpatrick LA, Dong TS, Gee GC, Labus JS, Osadchiy V, Beltran-Sanchez H, Wang MC, Vaughan A, Gupta A. Discrimination exposure impacts unhealthy processing of food cues: crosstalk between the brain and gut. NATURE MENTAL HEALTH 2023; 1:841-852. [PMID: 38094040 PMCID: PMC10718506 DOI: 10.1038/s44220-023-00134-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/28/2023] [Indexed: 12/17/2023]
Abstract
Experiences of discrimination are associated with adverse health outcomes, including obesity. However, the mechanisms by which discrimination leads to obesity remain unclear. Utilizing multi-omics analyses of neuroimaging and fecal metabolites, we investigated the impact of discrimination exposure on brain reactivity to food images and associated dysregulations in the brain-gut-microbiome system. We show that discrimination is associated with increased food-cue reactivity in frontal-striatal regions involved in reward, motivation and executive control; altered glutamate-pathway metabolites involved in oxidative stress and inflammation as well as preference for unhealthy foods. Associations between discrimination-related brain and gut signatures were skewed towards unhealthy sweet foods after adjusting for age, diet, body mass index, race and socioeconomic status. Discrimination, as a stressor, may contribute to enhanced food-cue reactivity and brain-gut-microbiome disruptions that can promote unhealthy eating behaviors, leading to increased risk for obesity. Treatments that normalize these alterations may benefit individuals who experience discrimination-related stress.
Collapse
Affiliation(s)
- Xiaobei Zhang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Hao Wang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou, China
| | - Lisa A. Kilpatrick
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Tien S. Dong
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Goodman–Luskin Microbiome Center, UCLA, Los Angeles, CA, USA
| | - Gilbert C. Gee
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Community Health Sciences Fielding School of Public Health, UCLA, Los Angeles, CA, USA
- California Center for Population Research, UCLA, Los Angeles, CA, USA
| | - Jennifer S. Labus
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Goodman–Luskin Microbiome Center, UCLA, Los Angeles, CA, USA
| | - Vadim Osadchiy
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Urology, UCLA, Los Angeles, CA, USA
| | - Hiram Beltran-Sanchez
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Community Health Sciences Fielding School of Public Health, UCLA, Los Angeles, CA, USA
- California Center for Population Research, UCLA, Los Angeles, CA, USA
| | - May C. Wang
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Community Health Sciences Fielding School of Public Health, UCLA, Los Angeles, CA, USA
| | - Allison Vaughan
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Arpana Gupta
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Goodman–Luskin Microbiome Center, UCLA, Los Angeles, CA, USA
| |
Collapse
|
14
|
Vaiana AM, Chen Y, Gelfond J, Johnson-Pais TL, Leach RJ, Ramamurthy C, Thompson IM, Morilak DA. Effects of vortioxetine on hippocampal-related cognitive impairment induced in rats by androgen deprivation as a model of prostate cancer treatment. Transl Psychiatry 2023; 13:307. [PMID: 37788996 PMCID: PMC10547695 DOI: 10.1038/s41398-023-02600-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
Advances in prostate cancer treatment have significantly improved survival, but quality of life for survivors remains an under-studied area of research. Androgen deprivation therapy (ADT) is a foundational treatment for advanced prostate cancer and is used as an adjuvant for prolonged periods in many high-risk, localized tumors. More than half of patients treated with ADT experience debilitating cognitive impairments in domains such as spatial learning and working memory. In this study, we investigated the effects of androgen deprivation on hippocampal-mediated cognition in rats. Vortioxetine, a multimodal antidepressant, has been shown to improve cognition in depressed patients. Thus, we also tested the potential efficacy of vortioxetine in restoring impaired cognition after ADT. We further investigated mechanisms that might contribute to these effects, measuring changes in the circuitry and gene expression within the dorsal hippocampus. ADT via surgical castration induced impairments in visuospatial cognition on the novel object location test and attenuated afferent-evoked local field potentials recorded in the CA1 region of the dorsal hippocampus. Chronic dietary administration of vortioxetine effectively reversed these deficits. Castration significantly altered gene expression in the hippocampus, whereas vortioxetine had little effect. Pathway analysis revealed that androgen depletion altered pathways related to synaptic plasticity. These results suggest that the hippocampus may be vulnerable to ADT, contributing to cognitive impairment in prostate cancer patients. Further, vortioxetine may be a candidate to improve cognition in patients who experience cognitive decline after androgen deprivation therapy for prostate cancer and may do so by restoring molecular and circuit-level plasticity-related mechanisms compromised by ADT.
Collapse
Affiliation(s)
- Alexandra M Vaiana
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Jonathan Gelfond
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Teresa L Johnson-Pais
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Robin J Leach
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Cell Systems & Anatomy, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Chethan Ramamurthy
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Ian M Thompson
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - David A Morilak
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
15
|
Seib DR, Tobiansky DJ, Meitzen J, Floresco SB, Soma KK. Neurosteroids and the mesocorticolimbic system. Neurosci Biobehav Rev 2023; 153:105356. [PMID: 37567491 PMCID: PMC11915106 DOI: 10.1016/j.neubiorev.2023.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The mesocorticolimbic system coordinates executive functions, such as working memory and behavioral flexibility. This circuit includes dopaminergic projections from the ventral tegmental area to the nucleus accumbens and medial prefrontal cortex. In this review, we summarize evidence that cells in multiple nodes of the mesocorticolimbic system produce neurosteroids (steroids synthesized in the nervous system) and express steroid receptors. Here, we focus on neuroandrogens (androgens synthesized in the nervous system), neuroestrogens (estrogens synthesized in the nervous system), and androgen and estrogen receptors. We also summarize how (neuro)androgens and (neuro)estrogens affect dopamine signaling in the mesocorticolimbic system and regulate executive functions. Taken together, the data suggest that steroids produced in the gonads and locally in the brain modulate higher-order cognition and executive functions.
Collapse
Affiliation(s)
- Désirée R Seib
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Daniel J Tobiansky
- Department of Biology and Neuroscience Program, St. Mary's College of Maryland, St. Mary's City, MD, USA
| | - John Meitzen
- Department of Biological Sciences and Center for Human Health and the Environment, NC State University, Raleigh, NC, USA
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Corrone M, Nanev A, Amato I, Bicknell R, Piantella S, Maruff P, van den Buuse M, Wright BJ. The brain-derived neurotrophic factor Val66met polymorphism is associated with better attention and working memory performance and resilience to mild chronic stress. Eur J Neurosci 2023; 58:3903-3916. [PMID: 37740693 DOI: 10.1111/ejn.16153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/25/2023]
Abstract
The val66met polymorphism of the brain-derived neurotrophic factor (BDNF) gene has been identified as a potential moderator for the relationship between chronic stress and executive functioning. However, whether the presence of the met allele increases cognitive vulnerability or resilience to stress has yet to be determined. Given the established effects of autonomic activity and psychological arousal on executive functioning, in the present study, 56 healthy university students completed self-report measures of chronic stress, positive arousal (vigour) and negative arousal (anxiety) and measured heart-rate variability to quantify autonomic activity. Participants then completed a cognitive test battery that measured attention, decision-making, visual learning and working memory. Regression analyses demonstrated that Val/met participants performed better on attention and working memory tasks than Val/val participants, but no differences were seen in decision-making and visual learning. Further, Val/met participants were protected from stress-related differences in attention seen in Val/val participants. Val66met was not associated with physiological or psychological arousal. This study demonstrates that val66met plays an important but selective role in cognitive performance.
Collapse
Affiliation(s)
- Michelle Corrone
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Aleshia Nanev
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Isabella Amato
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Rowena Bicknell
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Stefan Piantella
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Paul Maruff
- Cogstate Ltd, Melbourne, Victoria, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Bradley J Wright
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Soteros BM, Tillmon H, Wollet M, General J, Chin H, Lee JB, Carreno FR, Morilak DA, Kim JH, Sia GM. Heterogeneous complement and microglia activation mediates stress-induced synapse loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546889. [PMID: 37425856 PMCID: PMC10327081 DOI: 10.1101/2023.06.28.546889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Spatially heterogeneous synapse loss is a characteristic of many psychiatric and neurological disorders, but the underlying mechanisms are unclear. Here, we show that spatially-restricted complement activation mediates stress-induced heterogeneous microglia activation and synapse loss localized to the upper layers of the mouse medial prefrontal cortex (mPFC). Single cell RNA sequencing also reveals a stress-associated microglia state marked by high expression of the apolipoprotein E gene (ApoE high ) localized to the upper layers of the mPFC. Mice lacking complement component C3 are protected from stress-induced layer-specific synapse loss, and the ApoE high microglia population is markedly reduced in the mPFC of these mice. Furthermore, C3 knockout mice are also resilient to stress-induced anhedonia and working memory behavioral deficits. Our findings suggest that region-specific complement and microglia activation can contribute to the disease-specific spatially restricted patterns of synapse loss and clinical symptoms found in many brain diseases.
Collapse
|
18
|
Asraf K, Zaidan H, Natoor B, Gaisler-Salomon I. Synergistic, long-term effects of glutamate dehydrogenase 1 deficiency and mild stress on cognitive function and mPFC gene and miRNA expression. Transl Psychiatry 2023; 13:248. [PMID: 37419882 DOI: 10.1038/s41398-023-02534-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Glutamate abnormalities in the medial prefrontal cortex (mPFC) are associated with cognitive deficits. We previously showed that homozygous deletion of CNS glutamate dehydrogenase 1 (Glud1), a metabolic enzyme critical for glutamate metabolism, leads to schizophrenia-like behavioral abnormalities and increased mPFC glutamate; mice heterozygous for CNS Glud1 deletion (C-Glud1+/- mice) showed no cognitive or molecular abnormalities. Here, we examined the protracted behavioral and molecular effects of mild injection stress on C-Glud1+/- mice. We found spatial and reversal learning deficits, as well as large-scale mPFC transcriptional changes in pathways associated with glutamate and GABA signaling, in stress-exposed C-Glud1+/- mice, but not in their stress-naïve or C-Glud1+/+ littermates. These effects were observed several weeks following stress exposure, and the expression levels of specific glutamatergic and GABAergic genes differentiated between high and low reversal learning performance. An increase in miR203-5p expression immediately following stress may provide a translational regulatory mechanism to account for the delayed effect of stress exposure on cognitive function. Our findings show that chronic glutamate abnormalities interact with acute stress to induce cognitive deficits, and resonate with gene x environment theories of schizophrenia. Stress-exposed C-Glud1+/- mice may model a schizophrenia high-risk population, which is uniquely sensitive to stress-related 'trigger' events.
Collapse
Affiliation(s)
- Kfir Asraf
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa, 3498838, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Hiba Zaidan
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa, 3498838, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Baylasan Natoor
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa, 3498838, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Inna Gaisler-Salomon
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa, 3498838, Israel.
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
19
|
Yegla B, Rani A, Kumar A. Viral vector-mediated upregulation of serine racemase expression in medial prefrontal cortex improves learning and synaptic function in middle age rats. Aging (Albany NY) 2023; 15:2433-2449. [PMID: 37052995 PMCID: PMC10120901 DOI: 10.18632/aging.204652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
An age-associated decrease in N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic function contributes to impaired synaptic plasticity and is associated with cognitive impairments. Levels of serine racemase (SR), an enzyme that synthesizes D-serine, an NMDAR co-agonist, decline with age. Thus, enhancing NMDAR function via increased SR expression in middle age, when subtle declines in cognition emerge, was predicted to enhance performance on a prefrontal cortex-mediated task sensitive to aging. Middle-aged (~12 mo) male Fischer-344 rats were injected bilaterally in the medial prefrontal cortex (mPFC) with viral vector (LV), SR (LV-SR) or control (LV-GFP). Rats were trained on the operant attentional set-shift task (AST) to examine cognitive flexibility and attentional function. LV-SR rats exhibited a faster rate of learning compared to controls during visual discrimination of the AST. Extradimensional set shifting and reversal were not impacted. Immunohistochemical analyses demonstrated that LV-SR significantly increased SR expression in the mPFC. Electrophysiological characterization of synaptic transmission in the mPFC slices obtained from LV-GFP and LV-SR animals indicated a significant increase in isolated NMDAR-mediated synaptic responses in LV-SR slices. Thus, results of the current study demonstrated that prefrontal SR upregulation in middle age rats can improve learning of task contingencies for visual discrimination and increase glutamatergic synaptic transmission, including NMDAR activity.
Collapse
Affiliation(s)
- Brittney Yegla
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
20
|
Calis D, Hess M, Marchetta P, Singer W, Modro J, Nelissen E, Prickaerts J, Sandner P, Lukowski R, Ruth P, Knipper M, Rüttiger L. Acute deletion of the central MR/GR steroid receptor correlates with changes in LTP, auditory neural gain, and GC-A cGMP signaling. Front Mol Neurosci 2023; 16:1017761. [PMID: 36873102 PMCID: PMC9983609 DOI: 10.3389/fnmol.2023.1017761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/18/2023] [Indexed: 02/19/2023] Open
Abstract
The complex mechanism by which stress can affect sensory processes such as hearing is still poorly understood. In a previous study, the mineralocorticoid (MR) and/or glucocorticoid receptor (GR) were deleted in frontal brain regions but not cochlear regions using a CaMKIIα-based tamoxifen-inducible Cre ERT2/loxP approach. These mice exhibit either a diminished (MRTMXcKO) or disinhibited (GRTMXcKO) auditory nerve activity. In the present study, we observed that mice differentially were (MRTMXcKO) or were not (GRTMXcKO) able to compensate for altered auditory nerve activity in the central auditory pathway. As previous findings demonstrated a link between central auditory compensation and memory-dependent adaptation processes, we analyzed hippocampal paired-pulse facilitation (PPF) and long-term potentiation (LTP). To determine which molecular mechanisms may impact differences in synaptic plasticity, we analyzed Arc/Arg3.1, known to control AMPA receptor trafficking, as well as regulators of tissue perfusion and energy consumption (NO-GC and GC-A). We observed that the changes in PPF of MRTMXcKOs mirrored the changes in their auditory nerve activity, whereas changes in the LTP of MRTMXcKOs and GRTMXcKOs mirrored instead the changes in their central compensation capacity. Enhanced GR expression levels in MRTMXcKOs suggest that MRs typically suppress GR expression. We observed that hippocampal LTP, GC-A mRNA expression levels, and ABR wave IV/I ratio were all enhanced in animals with elevated GR (MRTMXcKOs) but were all lower or not mobilized in animals with impaired GR expression levels (GRTMXcKOs and MRGRTMXcKOs). This suggests that GC-A may link LTP and auditory neural gain through GR-dependent processes. In addition, enhanced NO-GC expression levels in MR, GR, and MRGRTMXcKOs suggest that both receptors suppress NO-GC; on the other hand, elevated Arc/Arg3.1 levels in MRTMXcKOs and MRGRTMXcKOs but not GRTMXcKOs suggest that MR suppresses Arc/Arg3.1 expression levels. Conclusively, MR through GR inhibition may define the threshold for hemodynamic responses for LTP and auditory neural gain associated with GC-A.
Collapse
Affiliation(s)
- Dila Calis
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Morgan Hess
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Philine Marchetta
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Julian Modro
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Ellis Nelissen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| | - Peter Sandner
- Bayer Health Care Pharmaceuticals, Global Drug Discovery Pharma Research Centre Wuppertal, Wuppertal, Germany
| | - Robert Lukowski
- Institute of Pharmacy, Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- Institute of Pharmacy, Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| |
Collapse
|
21
|
Sun J, Jia K, Sun M, Zhang X, Chen J, Zhu G, Li C, Lian B, Du Z, Sun H, Sun L. The GluA1-Related BDNF Pathway Is Involved in PTSD-Induced Cognitive Flexibility Deficit in Attentional Set-Shifting Tasks of Rats. J Clin Med 2022; 11:jcm11226824. [PMID: 36431303 PMCID: PMC9694369 DOI: 10.3390/jcm11226824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Post-Traumatic Stress Disorder (PTSD) is a severe psychological disorder characterized by intrusive thoughts, heightened arousal, avoidance, and flashbacks. Cognitive flexibility dysfunction has been linked with the emergence of PTSD, including response inhibition deficits and impaired attentional switching, which results in difficulties for PTSD patients when disengaging attention from trauma-related stimuli. However, the molecular mechanisms of cognitive flexibility deficits remain unclear. Methods: The animals were exposed to a single prolonged stress and electric foot shock (SPS&S) procedure to induce PTSD-like features. Once the model was established, the changes in cognitive flexibility were assessed using an attentional set-shifting task (ASST) in order to investigate the effects of traumatic stress on cognitive flexibility. Additionally, the molecular alterations of certain proteins (AMPA Receptor 1 (GluA1), brain-derived neurotrophic factor (BDNF), and Postsynaptic density protein 95 (PSD95) in the medial prefrontal cortex (mPFC) were measured using Western blot and immunofluorescence. Results: The SPS&S model exhibited PTSD-like behaviors and induced reversal learning and set-shifting ability deficit in the ASST. These behavioral changes are accompanied by decreased GluA1, BDNF, and PSD95 protein expression in the mPFC. Further analysis showed a correlative relationship between the behavioral and molecular alterations. Conclusions: The SPS&S model induced cognitive flexibility deficits, and the potential underlying mechanism could be mediated by GluA1-related BDNF signaling in the mPFC.
Collapse
Affiliation(s)
- Jiaming Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Keli Jia
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Mingtao Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Xianqiang Zhang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Jinhong Chen
- College of Extended Education, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Guohui Zhu
- Mental Health Centre of Weifang City, Weifang 261071, China
| | - Changjiang Li
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Bo Lian
- Department of Bioscience and Technology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Zhongde Du
- Cerebral Center, Sunshine Union Hospital, 9000# Yingqian Street, Weifang 261205, China
| | - Hongwei Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
- Correspondence: (H.S.); (L.S.)
| | - Lin Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
- Correspondence: (H.S.); (L.S.)
| |
Collapse
|
22
|
Reddy-Thootkur M, Kraguljac NV, Lahti AC. The role of glutamate and GABA in cognitive dysfunction in schizophrenia and mood disorders - A systematic review of magnetic resonance spectroscopy studies. Schizophr Res 2022; 249:74-84. [PMID: 32107102 PMCID: PMC7874516 DOI: 10.1016/j.schres.2020.02.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/14/2022]
Abstract
Epidemiologic, genetic, and neurobiological studies suggest considerable overlap between schizophrenia and mood disorders. Importantly, both disorders are associated with a broad range of cognitive deficits as well as altered glutamatergic and GABAergic neurometabolism. We conducted a systematic review of magnetic resonance spectroscopy (MRS) studies investigating the relationship between glutamatergic and GABAergic neurometabolites and cognition in schizophrenia spectrum disorders and mood disorders. A literature search in Pubmed of studies published before April 15, 2019 was conducted and 37 studies were deemed eligible for systematic review. We found that alterations in glutamatergic and GABAergic neurotransmission have been identified relatively consistently in both schizophrenia and mood disorders. However, because of the vast heterogeneity of published studies in terms of illness stage, medication exposure, MRS acquisition parameters and data post-processing strategies, we still do not understand the relationship between those neurotransmitters and cognitive dysfunction in mental illness, which is a critical initial step for rational drug development. Our findings emphasize the need for coordinated multi-center studies that characterize cognitive function and its biological substrates in large and well-defined clinical populations, using harmonized imaging sequences and analytical methods with the goal to elucidate the underlying pathophysiological mechanisms and to inform future clinical trials.
Collapse
Affiliation(s)
- Mounica Reddy-Thootkur
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Adrienne Carol Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
23
|
Henshall C, Randle H, Francis N, Freire R. Habit Formation and the Effect of Repeated Stress Exposures on Cognitive Flexibility Learning in Horses. Animals (Basel) 2022; 12:2818. [PMID: 36290204 PMCID: PMC9597801 DOI: 10.3390/ani12202818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 12/21/2024] Open
Abstract
Horse training exposes horses to an array of cognitive and ethological challenges. Horses are routinely required to perform behaviours that are not aligned to aspects of their ethology, which may delay learning. While horses readily form habits during training, not all of these responses are considered desirable, resulting in the horse being subject to retraining. This is a form of cognitive flexibility and is critical to the extinction of habits and the learning of new responses. It is underpinned by complex neural processes which can be impaired by chronic or repeated stress. Domestic horses may be repeatedly exposed to multiples stressors. The potential contribution of stress impairments of cognitive flexibility to apparent training failures is not well understood, however research from neuroscience can be used to understand horses' responses to training. We trained horses to acquire habit-like responses in one of two industry-style aversive instrumental learning scenarios (moving away from the stimulus-instinctual or moving towards the stimulus-non-instinctual) and evaluated the effect of repeated stress exposures on their cognitive flexibility in a reversal task. We measured heart rate as a proxy for noradrenaline release, salivary cortisol and serum Brain Derived Neurotrophic Factor (BDNF) to infer possible neural correlates of the learning outcomes. The instinctual task which aligned with innate equine escape responses to aversive stimuli was acquired significantly faster than the non-instinctual task during both learning phases, however contrary to expectations, the repeated stress exposure did not impair the reversal learning. We report a preliminary finding that serum BDNF and salivary cortisol concentrations in horses are positively correlated. The ethological salience of training tasks and cognitive flexibility learning can significantly affect learning in horses and trainers should adapt their practices where such tasks challenge innate equine behaviour.
Collapse
Affiliation(s)
- Cathrynne Henshall
- School of Environmental, Agricultural and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | | | | | | |
Collapse
|
24
|
Bauminger H, Gaisler-Salomon I. Beyond NMDA Receptors: Homeostasis at the Glutamate Tripartite Synapse and Its Contributions to Cognitive Dysfunction in Schizophrenia. Int J Mol Sci 2022; 23:8617. [PMID: 35955750 PMCID: PMC9368772 DOI: 10.3390/ijms23158617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cognitive deficits are core symptoms of schizophrenia but remain poorly addressed by dopamine-based antipsychotic medications. Glutamate abnormalities are implicated in schizophrenia-related cognitive deficits. While the role of the NMDA receptor has been extensively studied, less attention was given to other components that control glutamate homeostasis. Glutamate dynamics at the tripartite synapse include presynaptic and postsynaptic components and are tightly regulated by neuron-astrocyte crosstalk. Here, we delineate the role of glutamate homeostasis at the tripartite synapse in schizophrenia-related cognitive dysfunction. We focus on cognitive domains that can be readily measured in humans and rodents, i.e., working memory, recognition memory, cognitive flexibility, and response inhibition. We describe tasks used to measure cognitive function in these domains in humans and rodents, and the relevance of glutamate alterations in these domains. Next, we delve into glutamate tripartite synaptic components and summarize findings that implicate the relevance of these components to specific cognitive domains. These collective findings indicate that neuron-astrocyte crosstalk at the tripartite synapse is essential for cognition, and that pre- and postsynaptic components play a critical role in maintaining glutamate homeostasis and cognitive well-being. The contribution of these components to cognitive function should be considered in order to better understand the role played by glutamate signaling in cognition and develop efficient pharmacological treatment avenues for schizophrenia treatment-resistant symptoms.
Collapse
Affiliation(s)
- Hagar Bauminger
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Inna Gaisler-Salomon
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
25
|
Savitska D, Hess M, Calis D, Marchetta P, Harasztosi C, Fink S, Eckert P, Ruth P, Rüttiger L, Knipper M, Singer W. Stress Affects Central Compensation of Neural Responses to Cochlear Synaptopathy in a cGMP-Dependent Way. Front Neurosci 2022; 16:864706. [PMID: 35968392 PMCID: PMC9372611 DOI: 10.3389/fnins.2022.864706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
In light of the increasing evidence supporting a link between hearing loss and dementia, it is critical to gain a better understanding of the nature of this relationship. We have previously observed that following cochlear synaptopathy, the temporal auditory processing (e.g., auditory steady state responses, ASSRs), is sustained when reduced auditory input is centrally compensated. This central compensation process was linked to elevated hippocampal long-term potentiation (LTP). We further observed that, independently of age, central responsiveness to cochlear synaptopathy can differ, resulting in either a low or high capacity to compensate for the reduced auditory input. Lower central compensation resulted in poorer temporal auditory processing, reduced hippocampal LTP, and decreased recruitment of activity-dependent brain-derived neurotrophic factor (BDNF) expression in hippocampal regions (low compensators). Higher central compensation capacity resulted in better temporal auditory processing, higher LTP responses, and increased activity-dependent BDNF expression in hippocampal regions. Here, we aimed to identify modifying factors that are potentially responsible for these different central responses. Strikingly, a poorer central compensation capacity was linked to lower corticosterone levels in comparison to those of high compensators. High compensators responded to repeated placebo injections with elevated blood corticosterone levels, reduced auditory brainstem response (ABR) wave I amplitude, reduced inner hair cell (IHC) ribbon number, diminished temporal processing, reduced LTP responses, and decreased activity-dependent hippocampal BDNF expression. In contrast, the same stress exposure through injection did not elevate blood corticosterone levels in low compensators, nor did it reduce IHC ribbons, ABR wave I amplitude, ASSR, LTP, or BDNF expression as seen in high compensators. Interestingly, in high compensators, the stress-induced responses, such as a decline in ABR wave I amplitude, ASSR, LTP, and BDNF could be restored through the "memory-enhancing" drug phosphodiesterase 9A inhibitor (PDE9i). In contrast, the same treatment did not improve these aspects in low compensators. Thus, central compensation of age-dependent cochlear synaptopathy is a glucocorticoid and cyclic guanosine-monophosphate (cGMP)-dependent neuronal mechanism that fails upon a blunted stress response.
Collapse
Affiliation(s)
- Daria Savitska
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Morgan Hess
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Dila Calis
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Philine Marchetta
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Csaba Harasztosi
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Stefan Fink
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Philipp Eckert
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| |
Collapse
|
26
|
Dandi E, Spandou E, Tata DA. Investigating the role of environmental enrichment initiated in adolescence against the detrimental effects of chronic unpredictable stress in adulthood: Sex-specific differences in behavioral and neuroendocrinological findings. Behav Processes 2022; 200:104707. [PMID: 35842198 DOI: 10.1016/j.beproc.2022.104707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/10/2022] [Accepted: 07/11/2022] [Indexed: 11/19/2022]
Abstract
Environmental Enrichment (EE) improves cognitive function and enhances brain plasticity, while chronic stress increases emotionality, impairs learning and memory, and has adverse effects on brain anatomy and biochemistry. We explored the beneficial role of environmental enrichment initiated in adolescence against the negative outcomes of Chronic Unpredictable Stress (CUS) during adulthood on emotional behavior, cognitive function, as well as somatic and neuroendocrine markers in both sexes. Adolescent Wistar rats housed either in enriched or standard housing conditions for 10 weeks. On postnatal day 66, a subgroup from each housing condition was daily exposed to a 4-week stress protocol. Following stress, adult rats underwent behavioral testing to evaluate anxiety, exploration/locomotor activity, depressive-like behavior and spatial learning/memory. Upon completion of behavioral testing, animals were exposed to a 10-m stressful event to test the neuroendocrine response to acute stress. CUS decreased body weight gain and increased adrenal weight. Some stress-induced behavioral adverse effects were sex-specific since learning impairments were limited to males while depressive-like behavior to females. EE housing protected against CUS-related behavioral deficits and body weight loss. Exposure to CUS affected the neuroendocrine response of males to acute stress as revealed by the increased corticosterone levels. Our findings highlight the significant role of EE in adolescence as a protective factor against the negative effects of stress and underline the importance of inclusion of both sexes in animal studies.
Collapse
Affiliation(s)
- Evgenia Dandi
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Spandou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despina A Tata
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
27
|
Samant NP, Gupta GL. Gossypetin- based therapeutics for cognitive dysfunction in chronic unpredictable stress- exposed mice. Metab Brain Dis 2022; 37:1527-1539. [PMID: 35377087 DOI: 10.1007/s11011-022-00971-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/21/2022] [Indexed: 12/27/2022]
Abstract
Chronic unpredictable stress (CUS) is a promising model for induction of cognition impairment. Stress induced memory dysfunction is linked to the activation of kynurenine (KYN) pathway. This pathway indicates that, chronic stress primarily promotes the release of excessive cortisol from the adrenal gland, which tends to activate microglia and further increases kynurenine and its downstream pathway, resulting in excessive quinolinic acid (QA), which further impairs brain derived neurotrophic factor (BDNF) levels and leads to neurodegeneration. Prior studies already established anti-oxidant and anti-depressant activity of gossypetin. This research study was mainly conducted to elaborate neuroprotective activity of gossypetin against CUS-induced cognition impairment via acting on kynurenine pathway. In this study, Swiss albino mice were exposed to various stressors for five weeks and then administered with gossypetin (5, 10 and 20 mg/kg, i.p.) from the 4th to the 7th week (from day 22 to 49). Several behavioral tests were carried out between days 36 to 49 (6th and 7th week) and further corticosterone, neurotransmitters, oxidative stress, and brain-derived neurotrophic factor (BDNF) levels were measured. Results state that CUS exposed mice showed significant improvement in the behavioral pattern after gossypetin treatment. Corticosterone levels and oxidative stress was also found to be significantly decreased in gossypetin (10 and 20 mg/kg, i.p.) treated mice when compared with CUS exposed mice. Whereas, serotonin, norepinephrine and BDNF levels were also found to be increased after gossypetin treatment. Hence, gossypetin can be considered as a neuroprotective agent against cognition impairment caused by chronic unpredictable stress.
Collapse
Affiliation(s)
- Nikita Patil Samant
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, Maharashtra, India
| | - Girdhari Lal Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, Maharashtra, India.
- School of Pharmacy & Technology Management, SVKM'S NMIMS, Shirpur Campus, Shirpur, 425 405, Maharashtra, India.
- Department of Pharmacology, School of Pharmacy & Technology Management, SVKM'S NMIMS, Shirpur, 425 405, Maharashtra, India.
| |
Collapse
|
28
|
Nava-Gómez L, Calero-Vargas I, Higinio-Rodríguez F, Vázquez-Prieto B, Olivares-Moreno R, Ortiz-Retana J, Aranda P, Hernández-Chan N, Rojas-Piloni G, Alcauter S, López-Hidalgo M. AGING-ASSOCIATED COGNITIVE DECLINE IS REVERSED BY D-SERINE SUPPLEMENTATION. eNeuro 2022; 9:ENEURO.0176-22.2022. [PMID: 35584913 PMCID: PMC9186414 DOI: 10.1523/eneuro.0176-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/21/2022] Open
Abstract
Brain aging is a natural process that involves structural and functional changes that lead to cognitive decline, even in healthy subjects. This detriment has been associated with N-methyl-D-aspartate receptor (NMDAR) hypofunction due to a reduction in the brain levels of D-serine, the endogenous NMDAR co-agonist. However, it is not clear if D-serine supplementation could be used as an intervention to reduce or reverse age-related brain alterations. In the present work, we aimed to analyze the D-serine effect on aging-associated alterations in cellular and large-scale brain systems that could support cognitive flexibility in rats. We found that D-serine supplementation reverts the age-related decline in cognitive flexibility, frontal dendritic spine density, and partially restored large-scale functional connectivity without inducing nephrotoxicity; instead, D-serine restored the thickness of the renal epithelial cells that were affected by age. Our results suggest that D-serine could be used as a therapeutic target to reverse age-related brain alterations.SIGNIFICANT STATEMENTAge-related behavioral changes in cognitive performance occur as a physiological process of aging. Then, it is important to explore possible therapeutics to decrease, retard or reverse aging effects on the brain. NMDA receptor hypofunction contributes to the aging-associated cognitive decline. In the aged brain, there is a reduction in the brain levels of the NMDAR co-agonist, D-Serine. However, it is unclear if chronic D-serine supplementation could revert the age-detriment in brain functions. Our results show that D-serine supplementation reverts the age-associated decrease in cognitive flexibility, functional brain connectivity, and neuronal morphology. Our findings raise the possibility that restoring the brain levels of D-serine could be used as a therapeutic target to recover brain alterations associated with aging.
Collapse
Affiliation(s)
- L Nava-Gómez
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla. UNAM
- Facultad de Medicina. UAQ
| | - I Calero-Vargas
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla. UNAM
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - F Higinio-Rodríguez
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla. UNAM
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - B Vázquez-Prieto
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla. UNAM
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - R Olivares-Moreno
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - J Ortiz-Retana
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - P Aranda
- Facultad de Ciencias Naturales, UAQ
| | | | - G Rojas-Piloni
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - S Alcauter
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - M López-Hidalgo
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla. UNAM
| |
Collapse
|
29
|
Fu Y, Lorrai I, Zorman B, Mercatelli D, Shankula C, Marquez Gaytan J, Lefebvre C, de Guglielmo G, Kim HR, Sumazin P, Giorgi FM, Repunte-Canonigo V, Sanna PP. Escalated (Dependent) Oxycodone Self-Administration Is Associated with Cognitive Impairment and Transcriptional Evidence of Neurodegeneration in Human Immunodeficiency Virus (HIV) Transgenic Rats. Viruses 2022; 14:669. [PMID: 35458399 PMCID: PMC9030762 DOI: 10.3390/v14040669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
Substance use disorder is associated with accelerated disease progression in people with human immunodeficiency virus (HIV; PWH). Problem opioid use, including high-dose opioid therapy, prescription drug misuse, and opioid abuse, is high and increasing in the PWH population. Oxycodone is a broadly prescribed opioid in both the general population and PWH. Here, we allowed HIV transgenic (Tg) rats and wildtype (WT) littermates to intravenously self-administer oxycodone under short-access (ShA) conditions, which led to moderate, stable, "recreational"-like levels of drug intake, or under long-access (LgA) conditions, which led to escalated (dependent) drug intake. HIV Tg rats with histories of oxycodone self-administration under LgA conditions exhibited significant impairment in memory performance in the novel object recognition (NOR) paradigm. RNA-sequencing expression profiling of the medial prefrontal cortex (mPFC) in HIV Tg rats that self-administered oxycodone under ShA conditions exhibited greater transcriptional evidence of inflammation than WT rats that self-administered oxycodone under the same conditions. HIV Tg rats that self-administered oxycodone under LgA conditions exhibited transcriptional evidence of an increase in neuronal injury and neurodegeneration compared with WT rats under the same conditions. Gene expression analysis indicated that glucocorticoid-dependent adaptations contributed to the gene expression effects of oxycodone self-administration. Overall, the present results indicate that a history of opioid intake promotes neuroinflammation and glucocorticoid dysregulation, and excessive opioid intake is associated with neurotoxicity and cognitive impairment in HIV Tg rats.
Collapse
Affiliation(s)
- Yu Fu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
- European Bioinformatics Institute (EMBL-EBI), Hinxton CB10 1SD, UK
| | - Irene Lorrai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
| | - Barry Zorman
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (H.R.K.); (P.S.)
| | - Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (D.M.); (F.M.G.)
| | - Chase Shankula
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
| | - Jorge Marquez Gaytan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
| | - Celine Lefebvre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
- 92160 Antony, France
| | - Giordano de Guglielmo
- Department of Psychiatry, University of California, La Jolla, San Diego, CA 92093, USA;
| | - Hyunjae Ryan Kim
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (H.R.K.); (P.S.)
| | - Pavel Sumazin
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (H.R.K.); (P.S.)
| | - Federico M. Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (D.M.); (F.M.G.)
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
| | - Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
| |
Collapse
|
30
|
Wang X, Peng Y, Zhou H, Du W, Wang J, Wang J, Wu T, Tang X, Lv Y, Gong J. The Effects of Enriched Rehabilitation on Cognitive Function and Serum Glutamate Levels Post-stroke. Front Neurol 2022; 13:829090. [PMID: 35370905 PMCID: PMC8967952 DOI: 10.3389/fneur.2022.829090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/15/2022] [Indexed: 11/30/2022] Open
Abstract
Aim This study aimed to explore the effect of enriched rehabilitation (ER) on cognitive function and serum glutamate levels in patients with stroke. Methods Forty patients diagnosed with post-stroke cognitive impairment (PSCI), according to the inclusion criteria, and undergoing inpatient rehabilitation were enrolled in the study. Patients were randomly assigned to receive 8 weeks of ER treatment (ER group; n = 20) or conventional medical treatment (CM group; n = 20). In addition, 20 age-matched healthy subjects who were outpatients in our hospital during the same period formed the healthy control (HC) group. In- and between-group differences in cognitive function were assessed during pre-intervention and post-intervention based on the Montreal Cognitive Assessment (MoCA), the Symbol Digit Modalities Test (SDMT), and the Trail Making Test (TMT). The serum levels of glutamate, tumor necrosis factor (TNF), and malondialdehyde (MDA) levels were also detected pre-intervention and post-intervention. Results Pre-intervention cognitive function and the levels of all the serum parameters assessed significant difference between the HC group and the PSCI group (both ER and CM groups) (p < 0.05), but not between the two groups of patients with PSCI (p > 0.05). Significant improvements were observed in cognitive function in both the ER and the CM groups post-intervention compared with pre-intervention, as evidenced by the measured improvement in MoCA, SDMT, and TMT scores. Similar improvements were seen for serum glutamate, the degree of oxidative damage, and the level of inflammation in both the treatment groups (p < 0.05). More enhancements in cognitive function, including MoCA, SDMT, TMT scores, and the serum levels of glutamate, the degree of oxidative damage, and the level of inflammation were shown in the ER group compared with the CM group post-intervention (p < 0.05). Conclusions ER can improve cognitive function in patients with PSCI. The associated mechanism may be related to the negative regulatory effect of ER on serum glutamate, TNF, and MDA levels, which is likely to enhance synaptic plasticity and alleviate oxidative stress- and inflammation-related damage, at least to some extent.
Collapse
Affiliation(s)
- Xin Wang
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou, China
- Xin Wang
| | - Yuan Peng
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hongyu Zhou
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wanchun Du
- Medical College, Yangzhou University, Yangzhou, China
| | - Junya Wang
- Medical College, Yangzhou University, Yangzhou, China
| | - JiaJin Wang
- Department of Rehabilitation Medicine, Yangzhou Clinical Medical College of Dalian Medical University, Yangzhou, China
| | - Tong Wu
- Department of Rehabilitation Medicine, Yangzhou Clinical Medical College of Dalian Medical University, Yangzhou, China
| | - Xiaojia Tang
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yichen Lv
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
| | - Jianwei Gong
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
- *Correspondence: Jianwei Gong
| |
Collapse
|
31
|
Hua D, Luo A, Wu Z, Huang C, Li S, Xu X, Xu J, Yang C, Wang D, Liu C. Sulforaphane improves cognitive dysfunction after surgery and anesthesia in mice: the role of Keap1-Nrf2 signaling. Brain Res Bull 2022; 181:1-11. [PMID: 35041848 DOI: 10.1016/j.brainresbull.2022.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
Anesthesia and surgery are likely causing cognitive dysfunction in patients, especially the elderly. However, the underlying pathogenic mechanisms largely remain unclear. Accumulating evidence suggest that signaling between Kelch-like erythroid cell-derived protein with CNC homology (ECH)-associated protein 1 (Keap1) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) plays an important role in the pathogenesis and treatment of brain dysfunction, while sulforaphane (SFN), a natural compound acting as an Nrf2 agonist, can improve brain function. In the present study, we used 9-month-old mice to perform tibial fracture surgery under isoflurane general anesthesia. Hierarchical cluster analysis of Morris water maze test (MWMT) analysis was performed to classify mice into post-operative cognitive dysfunction (POCD) versus non-POCD phenotypes. Expression levels of Keap1 and Nrf2 were significantly decreased in the medial prefrontal cortex (mPFC), hippocampus and liver, but not in the nucleus accumbens, muscle and gut of POCD mice compared to control and non-POCD mice. Interestingly, both pretreatment and posttreatment with SFN significantly improved the abnormal behaviors of mice in the MWMT, in parallel with the up-regulated levels of Keap1-Nrf2 signaling in the mPFC, hippocampus and liver. In conclusion, these results suggest that decreased Keap1-Nrf2 signaling in the mPFC, hippocampus and liver may contribute to the onset of POCD, and that SFN exerts facilitating effects on POCD symptoms by increasing Keap1-Nrf2 signaling.
Collapse
Affiliation(s)
- Dongyu Hua
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zifeng Wu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chaoli Huang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolin Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Xu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Di Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Cunming Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
32
|
Paredes D, Knippenberg AR, Morilak DA. Infralimbic BDNF signaling is necessary for the beneficial effects of extinction on set shifting in stressed rats. Neuropsychopharmacology 2022; 47:507-515. [PMID: 34497360 PMCID: PMC8674269 DOI: 10.1038/s41386-021-01171-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 01/11/2023]
Abstract
Current pharmacotherapies for posttraumatic stress disorder (PTSD) and major depressive disorder (MDD) are ineffective for many patients, and often do not restore cognitive dysfunction associated with these disorders. Behavioral therapies, such as exposure therapy, can be effective for treatment-resistant patients. The mechanisms underlying exposure therapy are not well-understood. Fear extinction as an intervention after chronic stress can model the beneficial effects of exposure therapy in rats. Extinction requires neuronal activity and protein synthesis in the infralimbic (IL) cortex for its beneficial effects. We hypothesized that extinction requires Brain-Derived Neurotrophic Factor (BDNF) activity in the IL cortex to reverse stress-induced cognitive flexibility impairments. Extinction learning reversed set-shifting deficits induced by Chronic Unpredictable Stress (CUS), tested 24 h after extinction. Blocking BDNF signaling in the IL cortex during extinction by local administration of a neutralizing antibody prevented the beneficial effects of extinction on set shifting after stress. Extinction induced activation of the BDNF TrkB receptor, and signaling pathways associated with BDNF (Akt and Erk). Administration of exogenous BDNF into IL cortex in the absence of extinction was sufficient to reverse the effects of stress on set shifting. The effects of extinction were prevented by blocking either Erk or Akt signaling in the IL cortex, whereas the effects of exogenous BDNF were dependent on Erk, but not Akt, signaling. Our observations suggest that BDNF-Erk signaling induced by extinction underlies plastic changes that can reverse or counteract the effects of chronic stress in the IL cortex.
Collapse
Affiliation(s)
- Denisse Paredes
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Anna R Knippenberg
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David A Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
33
|
Kania BF, Wrońska D, Szpręgiel I, Bracha U. Glutamate as a Stressoric Factor for the Ex Vivo Release of Catecholamines from the Rabbit Medial Prefrontal Cortex (mPFC). Life (Basel) 2021; 11:1386. [PMID: 34947917 PMCID: PMC8703736 DOI: 10.3390/life11121386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
One of the major roles of glutamic acid (Glu) is to serve as an excitatory neurotransmitter within the central nervous system (CNS). This amino acid influences the activity of several brain areas, including the thalamus, brainstem, spinal cord, basal ganglia, and pons. Catecholamines (CAs) are synthesized in the brain and adrenal medulla and by some sympathetic nerve fibers. CAs, including dopamine (DA), norepinephrine (NE), and epinephrine (E), are the principal neurotransmitters that mediate a variety of CNS functions, such as motor control, cognition, emotion, memory processing, pain, stress, and endocrine modulation. This study aims to investigate the effects of the application of various Glu concentrates (5, 50, and 200 µM) on CAs release from rabbit medial prefrontal cortex (mPFC) slices and compare any resulting correlations with CAs released from the hypothalamus during 90 min of incubation. Medial prefrontal cortex samples were dissected from decapitated, twelve-week-old female rabbits. The results demonstrated that Glu differentially influences the direct release of CAs from the mPFC and the indirect release of CAs from the hypothalamus. When under stress, the hypothalamus, a central brain structure of the HPA axis, induces and adapts such processes. Generally, there was an inhibitory effect of Glu on CAs release from mPFC slices. Our findings show that the effect arises from Glu's action on higher-order motivational structures, which may indicate its contribution to the stress response by modulating the amount of CAs released.
Collapse
Affiliation(s)
- Bogdan Feliks Kania
- Veterinary Institute, University Center for Veterinary Medicine Jagiellonian University & Agriculture University, Hugon Kollataj Agricultural University in Cracow, 30-059 Krakow, Poland
| | - Danuta Wrońska
- Department of Physiology and Endocrinology of Animals, Faculty of Animal Sciences, Hugon Kollataj Agricultural University in Cracow, 30-059 Krakow, Poland; (D.W.); (I.S.)
| | - Izabela Szpręgiel
- Department of Physiology and Endocrinology of Animals, Faculty of Animal Sciences, Hugon Kollataj Agricultural University in Cracow, 30-059 Krakow, Poland; (D.W.); (I.S.)
| | - Urszula Bracha
- Center of Experimental and Innovative Medicine, Hugon Kollataj Agricultural University in Cracow, 30-248 Krakow, Poland;
| |
Collapse
|
34
|
Poleksic J, Aksic M, Kapor S, Aleksic D, Stojkovic T, Radovic M, Djulejic V, Markovic B, Stamatakis A. Effects of Maternal Deprivation on the Prefrontal Cortex of Male Rats: Cellular, Neurochemical, and Behavioral Outcomes. Front Behav Neurosci 2021; 15:666547. [PMID: 34819843 PMCID: PMC8606589 DOI: 10.3389/fnbeh.2021.666547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/08/2021] [Indexed: 01/13/2023] Open
Abstract
Stressful events experienced during early life are associated with increased vulnerability of developing psychopathology in adulthood. In the present study, we exposed 9-day-old Wistar rats to 24 h maternal deprivation (MD) with the aim to investigate the impact of early life stress (ELS) on morphological, biochemical, and functional aspects of the prefrontal cortex (PFC), a brain region particularly sensitive to stress. We found that in the superficial medial orbital cortex (MO), young adult male rats had reduced density of GAD67 and CCK immunopositive cells, while the rostral part of the ventral lateral orbital cortex (roVLO) showed a decrease in the density of GAD67 immunopositive cells in both superficial and deep layers. In addition, the superficial rostral part of area 1 of the cingulate cortex (roCg1) and deep prelimbic cortex (PrL) was also affected by MD indicated by the reduction in PV immunopositive cellular density. Furthermore, MD induced upregulation of brain-derived neurotrophic factor (BDNF), while it did not affect the overall expression of Iba1 in neonatal or young adult PFC as measured by Western blot, however, microglial activation in young adult MD rats was detected immunohistochemically in deep layers of MO and infralimbic cortex (IL). Interestingly, when young adult male rats were subjected to a behavioral flexibility test in a T-maze, MD rats showed a subtle impairment in T-maze reversal learning indicating a mildly affected PFC function. Taken together, our findings demonstrated that MD reduced the density of interneurons and induced microglial activation, in particular, PFC areas at young adulthood, and could alter synaptic plasticity accompanied by PFC dysfunction.
Collapse
Affiliation(s)
- Joko Poleksic
- Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milan Aksic
- Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Slobodan Kapor
- Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dubravka Aleksic
- Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tihomir Stojkovic
- Institute of Clinical and Medical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marina Radovic
- Institute of Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Vuk Djulejic
- Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Branka Markovic
- Faculty of Sport and Physical Education, University of Belgrade, Belgrade, Serbia
| | - Antonios Stamatakis
- Biology-Biochemistry Lab, School of Health Sciences, Faculty of Nursing, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
35
|
Lee EH, Park JY, Kwon HJ, Han PL. Repeated exposure with short-term behavioral stress resolves pre-existing stress-induced depressive-like behavior in mice. Nat Commun 2021; 12:6682. [PMID: 34795225 PMCID: PMC8602389 DOI: 10.1038/s41467-021-26968-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic stress induces adaptive changes in the brain via the cumulative action of glucocorticoids, which is associated with mood disorders. Here we show that repeated daily five-minute restraint resolves pre-existing stress-induced depressive-like behavior in mice. Repeated injection of glucocorticoids in low doses mimics the anti-depressive effects of short-term stress. Repeated exposure to short-term stress and injection of glucocorticoids activate neurons in largely overlapping regions of the brain, as shown by c-Fos staining, and reverse distinct stress-induced gene expression profiles. Chemogenetic inhibition of neurons in the prelimbic cortex projecting to the nucleus accumbens, basolateral amygdala, or bed nucleus of the stria terminalis results in anti-depressive effects similarly to short-term stress exposure, while only inhibition of neurons in the prelimbic cortex projecting to the bed nucleus of the stria terminalis rescues defective glucocorticoid release. In summary, we show that short-term stress can reverse adaptively altered stress gains and resolve stress-induced depressive-like behavior.
Collapse
Affiliation(s)
- Eun-Hwa Lee
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jin-Young Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hye-Jin Kwon
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea.
- Department of Chemistry and Nano Science, College of Natural Science, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
36
|
Kraiwattanapirom N, Komlao P, Harnpramukkul A, Promyo K, Ngampramuan S, Chetsawang B. The neuroprotective role of melatonin against methamphetamine toxicity-induced neurotransmission dysregulation and cognitive deficits in rats. Food Chem Toxicol 2021; 157:112610. [PMID: 34653556 DOI: 10.1016/j.fct.2021.112610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
Methamphetamine (MA) is a psychostimulant and addictive substance. Long-term uses and toxic high doses of MA can induce neurotoxicity. The present study aimed to investigate the protective role of melatonin against MA toxicity-induced dysregulation of the neurotransmission related to cognitive function in rats. The adult male Sprague Dawley rats were intraperitoneally injected with 5 mg/kg MA for 7 consecutive days with or without subcutaneously injected with 10 mg/kg melatonin before MA injection. Some rats were injected with saline solution (control) or 10 mg/kg melatonin. MA administration induced reduction in total weight gain, neurotoxic features of stereotyped behaviors, deficits in cognitive flexibility, and significantly increased lipid peroxidation in the brain which diminished in melatonin pretreatment. The neurotoxic effect of MA on glutamate, dopamine and GABA transmitters was represented by the alteration of the GluR1, DARPP-32 and parvalbumin (PV) levels, respectively. A significant decrease in the GluR1 was observed in the prefrontal cortex of MA administration in rats. MA administration significantly increased the DARPP-32 but decreased PV in the striatum. Pretreatment of melatonin can abolish the neurotoxic effect of MA on neurotransmission dysregulation. These findings might reveal the antioxidative role of melatonin to restore neurotransmission dysregulation related to cognitive deficits in MA-induced neurotoxicity.
Collapse
Affiliation(s)
- Natcharee Kraiwattanapirom
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand
| | - Pongphat Komlao
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD, Maastricht, the Netherlands
| | | | - Kitipong Promyo
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sukonthar Ngampramuan
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand.
| |
Collapse
|
37
|
Robinson S, Mogul AS, Taylor-Yeremeeva EM, Khan A, Tirabassi AD, Wang HY. Stress Diminishes BDNF-stimulated TrkB Signaling, TrkB-NMDA Receptor Linkage and Neuronal Activity in the Rat Brain. Neuroscience 2021; 473:142-158. [PMID: 34298123 PMCID: PMC8455453 DOI: 10.1016/j.neuroscience.2021.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022]
Abstract
Exposure to intense or repeated stressors can lead to depression or post-traumatic stress disorder (PTSD). Neurological changes induced by stress include impaired neurotrophin signaling, which is known to influence synaptic integrity and plasticity. The present study used an ex vivo approach to examine the impact of acute or repeated stress on BDNF-stimulated TrkB signaling in hippocampus (HIPPO) and prefrontal cortex (PFC). Rats in an acute multiple stressor group experienced five stressors in one day whereas rats in a repeated unpredictable stressor group experienced 20 stressors across 10 days. After stress exposure, slices were incubated with vehicle or BDNF, followed by immunoprecipitation and immunoblot assays to assess protein levels, activation states and protein-protein linkage associated with BDNF-TrkB signaling. Three key findings are (1) exposure to stressors significantly diminished BDNF-stimulated TrkB signaling in HIPPO and PFC such that reductions in TrkB activation, diminished recruitment of adaptor proteins to TrkB, reduced activation of downstream signaling molecules, disruption of TrkB-NMDAr linkage, and changes in basal and BDNF-stimulated Arc expression were observed. (2) After stress, BDNF stimulation enhanced TrkB-NMDAr linkage in PFC, suggestive of compensatory mechanisms in this region. (3) We discovered an uncoupling between TrkB signaling, TrkB-NMDAr linkage and Arc expression in PFC and HIPPO. In addition, a robust surge in pro-inflammatory cytokines was observed in both regions after repeated exposure to stressors. Collectively, these data provide therapeutic targets for future studies that investigate how to reverse stress-induced downregulation of BDNF-TrkB signaling and underscore the need for functional studies that examine stress-related TrkB-NMDAr activities in PFC.
Collapse
Affiliation(s)
- Siobhan Robinson
- Department of Psychology and Program in Neuroscience, Hamilton College, Clinton, NY, USA.
| | - Allison S Mogul
- Department of Psychology and Program in Neuroscience, Hamilton College, Clinton, NY, USA
| | | | - Amber Khan
- Department of Molecular, Cellular & Biomedical Sciences, The City University of New York School of Medicine, New York, NY, USA; Department of Biology, Neuroscience Program, Graduate School of the City University of New York, New York, NY, USA
| | - Anthony D Tirabassi
- Department of Psychology and Program in Neuroscience, Hamilton College, Clinton, NY, USA
| | - Hoau-Yan Wang
- Department of Molecular, Cellular & Biomedical Sciences, The City University of New York School of Medicine, New York, NY, USA; Department of Biology, Neuroscience Program, Graduate School of the City University of New York, New York, NY, USA
| |
Collapse
|
38
|
Neurocognitive Effects of Ketamine and Esketamine for Treatment-Resistant Major Depressive Disorder: A Systematic Review. Harv Rev Psychiatry 2021; 29:340-350. [PMID: 34366408 DOI: 10.1097/hrp.0000000000000312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
LEARNING OBJECTIVE After participating in this activity, learners should be better able to:• Analyze the effects of ketamine and esketamine on individuals with treatment-resistant depression. INTRODUCTION Cognitive impairment is commonly present in individuals with treatment-resistant depression, especially in attention, memory, and executive functions. These deficits are related to symptom severity, remission rates, and functional impairments during and after the acute phase of the disorder. Ketamine, an N-methyl-D-aspartate antagonist previously used as an anesthetic, brings promising antidepressant results. This study systematically reviews the neurocognitive effects of ketamine and esketamine in patients with treatment-resistant major depressive disorder. METHODS Systematic searches were conducted at Embase, PubMed, and PsycINFO using the terms depression, ketamine, and cognition. Title, abstract, and full-text reading were conducted independently by two of the authors (BSM and CSL). Risk of bias, study design, neuropsychological outcomes, and neuroimaging data were recorded. RESULTS From a total of 997 hits, 14 articles were included. One study reported cognitive impairment after ketamine treatment for processing speed and verbal memory. Five studies reported improvements in processing speed, verbal memory, visual memory, working memory, or cognitive flexibility. The esketamine study suggested no changes to performance. Lower attention, slower processing speed, and higher working memory are reported as predictors of antidepressant response. Brain areas for emotional and reward processing, including the amygdala, insula, and orbitofrontal cortex, show a normalizing tendency after ketamine. CONCLUSIONS Ketamine and esketamine do not seem to exert significant deleterious neurocognitive effects in the short or long term in individuals with treatment-resistant depression. Results suggest neuropsychological functions and brain areas commonly impaired in treatment-resistant depression may especially benefit from subanesthetic ketamine infusions. Key questions that remain unanswered are discussed.
Collapse
|
39
|
Dalmaz C, Barth B, Pokhvisneva I, Wang Z, Patel S, Quillfeldt JA, Mendonça Filho EJ, de Lima RMS, Arcego DM, Sassi RB, Hall GBC, Kobor MS, Meaney MJ, Silveira PP. Prefrontal cortex VAMP1 gene network moderates the effect of the early environment on cognitive flexibility in children. Neurobiol Learn Mem 2021; 185:107509. [PMID: 34454100 DOI: 10.1016/j.nlm.2021.107509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 01/07/2023]
Abstract
During development, genetic and environmental factors interact to modify specific phenotypes. Both in humans and in animal models, early adversities influence cognitive flexibility, an important brain function related to behavioral adaptation to variations in the environment. Abnormalities in cognitive functions are related to changes in synaptic connectivity in the prefrontal cortex (PFC), and altered levels of synaptic proteins. We investigated if individual variations in the expression of a network of genes co-expressed with the synaptic protein VAMP1 in the prefrontal cortex moderate the effect of early environmental quality on the performance of children in cognitive flexibility tasks. Genes overexpressed in early childhood and co-expressed with the VAMP1 gene in the PFC were selected for study. SNPs from these genes (post-clumping) were compiled in an expression-based polygenic score (PFC-ePRS-VAMP1). We evaluated cognitive performance of the 4 years-old children in two cohorts using similar cognitive flexibility tasks. In the first cohort (MAVAN) we utilized two CANTAB tasks: (a) the Intra-/Extra-dimensional Set Shift (IED) task, and (b) the Spatial Working Memory (SWM) task. In the second cohort, GUSTO, we used the Dimensional Change Card Sort (DCCS) task. The results show that in 4 years-old children, the PFC-ePRS-VAMP1 network moderates responsiveness to the effects of early adversities on the performance in attentional flexibility tests. The same result was observed for a spatial working memory task. Compared to attentional flexibility, reversal learning showed opposite effects of the environment, as moderated by the ePRS. A parallel ICA analysis was performed to identify relationships between whole-brain voxel based gray matter density and SNPs that comprise the PFC-ePRS-VAMP1. The early environment predicts differences in gray matter content in regions such as prefrontal and temporal cortices, significantly associated with a genetic component related to Wnt signaling pathways. Our data suggest that a network of genes co-expressed with VAMP1 in the PFC moderates the influence of early environment on cognitive function in children.
Collapse
Affiliation(s)
- Carla Dalmaz
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Depto Bioquimica e PPG CB Bioquimica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; PPG Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Barbara Barth
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Zihan Wang
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Sachin Patel
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Jorge A Quillfeldt
- PPG Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Depto Biofisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Euclides J Mendonça Filho
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Randriely Merscher Sobreira de Lima
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; PPG Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Danusa M Arcego
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Roberto Britto Sassi
- Mood Disorders Program, Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Geoffrey B C Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, 938 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Michael J Meaney
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Patrícia P Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; PPG Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
40
|
McQuail JA, Beas BS, Kelly KB, Hernandez CM, Bizon JL, Frazier CJ. Attenuated NMDAR signaling on fast-spiking interneurons in prefrontal cortex contributes to age-related decline of cognitive flexibility. Neuropharmacology 2021; 197:108720. [PMID: 34273386 DOI: 10.1016/j.neuropharm.2021.108720] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 02/01/2023]
Abstract
Ionotropic glutamate receptors of the NMDA and AMPA subtypes transduce excitatory signaling on neurons in the prefrontal cortex (PFC) in support of cognitive flexibility. Cognitive flexibility is reliably observed to decline at advanced ages, coinciding with changes in PFC glutamate receptor expression and neuronal physiology. However, the relationship between age-related impairment of cognitive flexibility and changes to excitatory signaling on distinct classes of PFC neurons is not known. In this study, one cohort of young adult (4 months) and aged (20 months) male F344 rats were characterized for cognitive flexibility on an operant set-shifting task. Expression of the essential NMDAR subunit, NR1, was correlated with individual differences in set-shifting abilities such that lower NR1 in the aged PFC was associated with worse set-shifting. In contrast, lower expression of two AMPAR subunits, GluR1 and GluR2, was not associated with set-shift abilities in aging. As NMDARs are expressed by both pyramidal cells and fast-spiking interneurons (FSI) in PFC, whole-cell patch clamp recordings were performed in a second cohort of age-matched rats to compare age-associated changes on these neuronal subtypes. Evoked excitatory postsynaptic currents were generated using a bipolar stimulator while AMPAR vs. NMDAR-mediated components were isolated using pharmacological tools. The results revealed a clear increase in AMPA/NMDA ratio in FSIs that was not present in pyramidal neurons. Together, these data indicate that loss of NMDARs on interneurons in PFC contributes to age-related impairment of cognitive flexibility.
Collapse
Affiliation(s)
- Joseph A McQuail
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, USA.
| | - B Sofia Beas
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, 32610, USA; Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, 20892, USA
| | - Kyle B Kelly
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, FL, 32610, USA
| | - Caesar M Hernandez
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, 32610, USA; Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Charles J Frazier
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, 32610, USA; Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, FL, 32610, USA.
| |
Collapse
|
41
|
Kaukas L, Krieg J, Collins-Praino L, Corrigan F. Effects of Remote Immune Activation on Performance in the 5-Choice Serial Reaction Time Task Following Mild Traumatic Brain Injury in Adolescence. Front Behav Neurosci 2021; 15:659679. [PMID: 33867953 PMCID: PMC8046921 DOI: 10.3389/fnbeh.2021.659679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
In adult pre-clinical models, traumatic brain injury (TBI) has been shown to prime microglia, exaggerating the central inflammatory response to an acute immune challenge, worsening depressive-like behavior, and enhancing cognitive deficits. Whether this phenomenon exists following mTBI during adolescence has yet to be explored, with age at injury potentially altering the inflammatory response. Furthermore, to date, studies have predominantly examined hippocampal-dependent learning domains, although pre-frontal cortex-driven functions, including attention, motivation, and impulsivity, are significantly affected by both adolescent TBI and acute inflammatory stimuli. As such, the current study examined the effects of a single acute peripheral dose of LPS (0.33 mg/kg) given in adulthood following mTBI in mid-adolescence in male Sprague–Dawley rats on performance in the 5-choice serial reaction time task (5-CSRTT). Only previously injured animals given LPS showed an increase in omissions and reward collection latency on the 5-CSRTT, with no effect noted in sham animals given LPS. This is suggestive of impaired motivation and a prolonged central inflammatory response to LPS administration in these animals. Indeed, morphological analysis of myeloid cells within the pre-frontal cortex, via IBA1 immunohistochemistry, found that injured animals administered LPS had an increase in complexity in IBA1+ve cells, an effect that was seen to a lesser extent in sham animals. These findings suggest that there may be ongoing alterations in the effects of acute inflammatory stimuli that are driven, in part by increased reactivity of microglial cells.
Collapse
Affiliation(s)
- Lola Kaukas
- Head Injury Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Justin Krieg
- Head Injury Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Lyndsey Collins-Praino
- Head Injury Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Frances Corrigan
- Head Injury Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
42
|
Simmons JM, Winsky L, Zehr JL, Gordon JA. Priorities in stress research: a view from the U.S. National Institute of Mental Health. Stress 2021; 24:123-129. [PMID: 32608314 DOI: 10.1080/10253890.2020.1781084] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mission of the National Institute of Mental Health is to transform the understanding and treatment of mental illnesses through basic and clinical research, paving the way for prevention, recovery, and cure. In consultation with a broad range of experts, the NIMH has identified a set of priorities for stress biology research aimed squarely at creating the basic and clinical knowledge bases for reducing and alleviating mental health burden across the lifespan. Here, we discuss these priority areas in stress biology research, which include: understanding the heterogeneity of stressors and outcomes; refining and expanding the experimental systems used to study stress and its effects; embracing and exploiting the complexity of the stress response; and prioritizing translational studies that seek to test mechanistic hypotheses in human beings. We emphasize the challenge of establishing mechanistic links across levels of analysis to explain how and when specific and diverse stressors lead to enduring changes in neural systems and produce lasting functional deficits in mental health relevant behaviors. An improved understanding of mechanisms underlying stress responses and the functional consequences of stress can and will speed translation from basic research to predictive markers of risk and to improved, personalized interventions for mental illness.
Collapse
Affiliation(s)
| | - Lois Winsky
- National Institute of Mental Health, Bethesda, MD, USA
| | - Julia L Zehr
- National Institute of Mental Health, Bethesda, MD, USA
| | | |
Collapse
|
43
|
Na KS, Kim YK. Increased use of ketamine for the treatment of depression: Benefits and concerns. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110060. [PMID: 32777326 DOI: 10.1016/j.pnpbp.2020.110060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/20/2020] [Accepted: 08/03/2020] [Indexed: 01/19/2023]
Abstract
Ketamine was initially used as an anesthetic which could induce cognitive impairment and psychomimetic effects. In initial randomized controlled trials (RCTs) that mostly included a small sample size and were investigator-initiated, ketamine reportedly exerted antidepressant effects 1 to 2 h after a single intravenous infusion in patients with major depressive episodes, particularly treatment-resistant depression (TRD). Interest in ketamine was reported in systematic reviews and meta-analyses, however, many were primarily focused on the rapid onset of ketamine effects without equal attention to its safety and tolerability. Furthermore, several meta-analyses were based on many duplicated RCTs. The initial trends emphasized the clinical utility of ketamine as an antidepressant. The development of esketamine nasal spray by a pharmaceutical company led to an RCT with a large sample size and segmented therapeutic strategy, which provided results applicable to patients with TRD in the real-world clinical environment. However, possible effects of ketamine on cognitive function have not yet been investigated in RCTs. In numerous studies, chronic, recreational use of ketamine reportedly substantially impaired cognitive function in most domains. Although results of several human and animal studies indicated the therapeutic use of ketamine for treatment of depression did not induce cognitive impairment, this issue should be further investigated. Based on the current knowledge about ketamine, future antidepressants are expected to be glutamatergic drugs without ketamine-like adverse events (e.g., psychomimetic symptoms and cognitive impairment), but having only ketamine-like therapeutic properties (e.g., rapid antidepressants effects without time lag).
Collapse
Affiliation(s)
- Kyoung-Sae Na
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
44
|
De Berardis D, Tomasetti C, Pompili M, Serafini G, Vellante F, Fornaro M, Valchera A, Perna G, Volpe U, Martinotti G, Fraticelli S, Di Giannantonio M, Kim YK, Orsolini L. An Update on Glutamatergic System in Suicidal Depression and on the Role of Esketamine. Curr Top Med Chem 2021; 20:554-584. [PMID: 32003691 DOI: 10.2174/1568026620666200131100316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/15/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND A research on mood disorder pathophysiology has hypothesized abnormalities in glutamatergic neurotransmission, by suggesting further investigation on glutamatergic N-methyl-Daspartate (NMDA) receptor modulators in treating Major Depressive Disorder (MDD). Esketamine (ESK), an NMDA receptor antagonist able to modulate glutamatergic neurotransmission has been recently developed as an intranasal formulation for treatment-resistant depression (TRD) and for rapid reduction of depressive symptomatology, including suicidal ideation in MDD patients at imminent risk for suicide. OBJECTIVE The present study aims at investigating recent clinical findings on research on the role of the glutamatergic system and ESK in treating suicidal depression in MDD and TRD. METHODS A systematic review was here carried out on PubMed/Medline, Scopus and the database on U.S. N.I.H. Clinical Trials (https://clinicaltrials.gov) and the European Medical Agency (EMA) (https://clinicaltrialsregister.eu) from inception until October 2019. RESULTS Intravenous infusion of ESK is reported to elicit rapid-acting and sustained antidepressant activity in refractory patients with MDD and TRD. In phase II studies, intranasal ESK demonstrated a rapid onset and a persistent efficacy in patients with TRD as well as in MDD patients at imminent risk for suicide. However, some data discrepancies have emerged in phase III studies. CONCLUSION The U.S. Food and Drug Administration (FDA) granted fast track and Breakthrough Therapy Designation to Janssen Pharmaceuticals®, Inc. for intranasal ESK in 2013 for treatment-resistant depression (TRD) and in 2016 for the treatment of MDD with an imminent risk of suicide. However, further studies should be implemented to investigate the long-term efficacy and safety of intranasal ESK.
Collapse
Affiliation(s)
- Domenico De Berardis
- Department of Neuroscience, Imaging and Clinical Science, University of "G. D'Annunzio", Chieti, Italy.,National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital "G. Mazzini", ASL 4 Teramo, Italy.,Polyedra, Teramo, Italy
| | - Carmine Tomasetti
- Polyedra, Teramo, Italy.,Department of Psychiatry, Federico II University, Naples, Italy.,NHS, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital "SS. Annunziata", ASL 4 Giulianova, Italy
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, S. Andrea Hospital, Sapienza University, Rome, Italy
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Vellante
- Department of Neuroscience, Imaging and Clinical Science, University of "G. D'Annunzio", Chieti, Italy
| | - Michele Fornaro
- Polyedra, Teramo, Italy.,Department of Psychiatry, Federico II University, Naples, Italy
| | - Alessandro Valchera
- Polyedra, Teramo, Italy.,Villa S. Giuseppe Hospital, Hermanas Hospitalarias, Ascoli Piceno, Italy
| | - Giampaolo Perna
- Department of Clinical Neurosciences, Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, FoRiPsi, Albese con Cassano, Como, Italy.,Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Psychiatry and Behavioral Sciences, Leonard Miller School of Medicine, Miami University, Miami 786, United States
| | - Umberto Volpe
- Department of Clinical Neurosciences/DIMSC, School of Medicine, Section of Psychiatry, Polytechnic University of Marche, Ancona, Italy
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging and Clinical Science, University of "G. D'Annunzio", Chieti, Italy
| | - Silvia Fraticelli
- Department of Neuroscience, Imaging and Clinical Science, University of "G. D'Annunzio", Chieti, Italy
| | - Massimo Di Giannantonio
- Department of Neuroscience, Imaging and Clinical Science, University of "G. D'Annunzio", Chieti, Italy
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Korea
| | - Laura Orsolini
- Polyedra, Teramo, Italy.,Department of Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Herts, United Kingdom.,Neomesia Mental Health, Villa Jolanda Hospital, Maiolati Spontini, Italy
| |
Collapse
|
45
|
Cosi C, Martel JC, Auclair AL, Collo G, Cavalleri L, Heusler P, Leriche L, Gaudoux F, Sokoloff P, Moser PC, Gatti-McArthur S. Pharmacology profile of F17464, a dopamine D 3 receptor preferential antagonist. Eur J Pharmacol 2021; 890:173635. [PMID: 33065094 DOI: 10.1016/j.ejphar.2020.173635] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022]
Abstract
F17464 (N-(3-{4-[4-(8-Oxo-8H-[1,3]-dioxolo-[4,5-g]-chromen-7-yl)-butyl]-piperazin-1-yl}-phenyl)-methanesulfonamide, hydrochloride) is a new potential antipsychotic with a unique profile. The compound exhibits high affinity for the human dopamine receptor subtype 3 (hD3) (Ki = 0.17 nM) and the serotonin receptor subtype 1a (5-HT1a) (Ki = 0.16 nM) and a >50 fold lower affinity for the human dopamine receptor subtype 2 short and long form (hD2s/l) (Ki = 8.9 and 12.1 nM, respectively). [14C]F17464 dynamic studies show a slower dissociation rate from hD3 receptor (t1/2 = 110 min) than from hD2s receptor (t1/2 = 1.4 min) and functional studies demonstrate that F17464 is a D3 receptor antagonist, 5-HT1a receptor partial agonist. In human dopaminergic neurons F17464 blocks ketamine induced morphological changes, an effect D3 receptor mediated. In vivo F17464 target engagement of both D2 and 5-HT1a receptors is demonstrated in displacement studies in the mouse brain. F17464 increases dopamine release in the rat prefrontal cortex and mouse lateral forebrain - dorsal striatum and seems to reduce the effect of MK801 on % c-fos mRNA medium expressing neurons in cortical and subcortical regions. F17464 also rescues valproate induced impairment in a rat social interaction model of autism. All the neurochemistry and behavioural effects of F17464 are observed in the dose range 0.32-2.5 mg/kg i.p. in both rats and mice. The in vitro - in vivo pharmacology profile of F17464 in preclinical models is discussed in support of a therapeutic use of the compound in schizophrenia and autism.
Collapse
Affiliation(s)
- Cristina Cosi
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Jean-Claude Martel
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Agnès L Auclair
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Ginetta Collo
- Dept of Molecular and Translational Medicine University of Brescia, Viale Europa 11, Brescia, Italy
| | - Laura Cavalleri
- Dept of Molecular and Translational Medicine University of Brescia, Viale Europa 11, Brescia, Italy
| | - Peter Heusler
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Ludovic Leriche
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Florence Gaudoux
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Pierre Sokoloff
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Paul C Moser
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Silvia Gatti-McArthur
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France.
| |
Collapse
|
46
|
Webb EK, Weis CN, Huggins AA, Parisi EA, Bennett KP, Miskovich T, Krukowski J, deRoon-Cassini TA, Larson CL. Neighborhood disadvantage is associated with stable deficits in neurocognitive functioning in traumatically-injured adults. Health Place 2021; 67:102493. [PMID: 33321457 PMCID: PMC7854519 DOI: 10.1016/j.healthplace.2020.102493] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND In trauma-exposed adults, the relationship between an individual's socioeconomic position (SEP) and post-traumatic stress disorder (PTSD) has been well demonstrated. One potential mechanism by which the stress associated with lower SEPs may impact trauma outcomes is through changes in neurocognition. In both healthy and clinical samples, area-level factors also appear to be independently related to neurocognition. Far less is known about how neighborhood socioeconomic disadvantage, may impact cognition in traumatically-injured adults. The current study employed hierarchical linear modeling to longitudinally investigate whether neighborhood disadvantage was associated with neurocognitive functioning in five domains: processing speed, sustained attention, controlled attention, cognitive flexibility, and response inhibition. METHODS One-hundred and ninety-five socioeconomically diverse traumatically-injured subjects (mean age = 32.8, 52.8% female) were recruited from an Emergency Department. Two-weeks, three-months, and six-months post-trauma, participants completed self-report measures and a computerized test battery to evaluate neurocognition. An Area Deprivation Index (ADI) score, a measure of a neighborhood's socioeconomic disadvantage, was derived from each participants' home address. RESULTS Greater neighborhood disadvantage was significantly related to lower scores in all domains. Results of hierarchical linear models revealed neighborhood disadvantage was significantly associated with processing speed, controlled attention, cognitive flexibility, and response inhibition across time, even after adjusting for individual annual household income, baseline PTSD symptoms, and previous adverse life experiences. This relationship was stable for all domains except sustained attention, which varied across time. CONCLUSION These findings indicate neighborhood disadvantage contributes uniquely to neurocognitive functioning and, for the majority of domains, these contributions are stable across time. The relationship between area-level variables and cognitive function may underlie individual vulnerability to developing psychiatric disorders. Future work should continue to examine the interaction between socioenvironmental stressors and PTSD symptoms longitudinally.
Collapse
Affiliation(s)
- E Kate Webb
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA.
| | - Carissa N Weis
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Ashley A Huggins
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Elizabeth A Parisi
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | | | - Tara Miskovich
- VA Northern California Healthcare System, Martinez, CA, USA
| | | | - Terri A deRoon-Cassini
- Medical College of Wisconsin, Department of Surgery, Division of Trauma & Acute Care Surgery, Milwaukee, WI, USA
| | - Christine L Larson
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| |
Collapse
|
47
|
Wallace NK, Pollard F, Savenkova M, Karatsoreos IN. Effect of Aging on Daily Rhythms of Lactate Metabolism in the Medial Prefrontal Cortex of Male Mice. Neuroscience 2020; 448:300-310. [PMID: 32717298 DOI: 10.1016/j.neuroscience.2020.07.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 07/11/2020] [Accepted: 07/18/2020] [Indexed: 01/24/2023]
Abstract
Aging is associated with reduced amplitude and earlier timing of circadian (daily) rhythms in sleep, brain function, and behavior. We examined whether age-related circadian dysfunction extends to the metabolic function of the brain, particularly in the prefrontal cortex (PFC). Using enzymatic amperometric biosensors, we recorded lactate concentration changes in the PFC in Young (7 mos) and Aged (19 mos) freely-behaving C57BL/6N male mice. Both Young and Aged mice displayed diurnal and circadian rhythms of lactate, with the Aged rhythm slightly phase advanced. Under constant conditions, the Aged rhythm showed a reduced amplitude not seen in the Young mice. We simultaneously observed a relationship between arousal state and PFC lactate rhythm via electroencephalography, which was modified by aging. Finally, using RT-qPCR, we found that aging affects the daily expression pattern of Glucose Transporter 1 (GLUT-1).
Collapse
Affiliation(s)
- Naomi K Wallace
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Felicity Pollard
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Marina Savenkova
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Ilia N Karatsoreos
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
48
|
Yoshino K, Oda Y, Kimura M, Kimura H, Nangaku M, Shirayama Y, Iyo M. The alterations of glutamate transporter 1 and glutamine synthetase in the rat brain of a learned helplessness model of depression. Psychopharmacology (Berl) 2020; 237:2547-2553. [PMID: 32445055 DOI: 10.1007/s00213-020-05555-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/11/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Although glutamate transmission via astrocytes has been proposed to contribute to the pathophysiology of depression, the precise mechanisms are unknown. Herein, we investigated the levels of glutamate transporter-1 (GLT-1) and glutamine synthetase (GS) of astrocytes in learned helplessness (LH) rats (an animal model of depression) and non-LH rats (an animal model of resilience). METHODS We administered inescapable mild electric shock to rats and then discriminated the LH and non-LH rats by a post-shock test. Almost 55% of the rats acquired LH. We then measured the expressions of GLT-1 and GS in several brain regions of LH and non-LH rats by Western blot analysis. RESULTS The levels of GLT-1 and GS in the CA-1, CA-3, dentate gyrus (DG), medial prefrontal cortex (mPF), and nucleus accumbens (NAc) of the LH group were significantly higher than those of the control group. The GS levels in the amygdala of the LH rats were significantly decreased compared to the controls. There were significant differences in GLT-1 and GS levels between the non-LH and LH rats in the CA-1 and CA-3. CONCLUSIONS These results suggest that the LH rats experienced up-regulations of GLT-1 and GS in the CA-1, CA-3, DG, mPF, and NAc and a down-regulation of GS in the amygdala. It is possible that the effects of the GLT-1 and GS levels on astrocytes in the CA-1 and CA-3 are critical for the differentiation of resilience from vulnerability.
Collapse
Affiliation(s)
- Kouhei Yoshino
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuou-ku, Chiba, Chiba, 260-8670, Japan
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuou-ku, Chiba, Chiba, 260-8670, Japan.
| | - Makoto Kimura
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuou-ku, Chiba, Chiba, 260-8670, Japan
| | - Hiroshi Kimura
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuou-ku, Chiba, Chiba, 260-8670, Japan
| | - Masahito Nangaku
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuou-ku, Chiba, Chiba, 260-8670, Japan
| | - Yukihiko Shirayama
- Department of Psychiatry, Teikyo University Chiba Medical Center, 3426-3 Anesaki, Ichihara, Chiba, 290-0111, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuou-ku, Chiba, Chiba, 260-8670, Japan
| |
Collapse
|
49
|
Begni V, Zampar S, Longo L, Riva MA. Sex Differences in the Enduring Effects of Social Deprivation during Adolescence in Rats: Implications for Psychiatric Disorders. Neuroscience 2020; 437:11-22. [PMID: 32334072 DOI: 10.1016/j.neuroscience.2020.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/14/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
The exposure to adverse environmental situations during sensitive periods of development may induce re-organizational effects on different systems and increase the vulnerability to develop psychiatric disorders later in life. The adolescent period has been demonstrated extremely susceptible to stressful events. However, most of the studies focused on the immediate effects of stress exposure and few of them investigated sex differences. This raised the question if these modulations might also be long-lasting and how the differential maturational events taking place during adolescence between males and females might have a role in the detrimental effects of stress. Given the importance of social play for the right maturation of behavior during adolescence, we used the preclinical model of social deprivation, based on the lack of all social contacts, for four weeks after weaning, followed by re-socialization until adulthood. We found that both male and female animals reared in isolation during adolescence developed an anhedonic phenotype at adulthood, without any impairments in the cognitive domain. At molecular level, these functional changes were associated with sex-specific impairments in the expression of neuroplastic markers as well as of hypothalamic-pituitary-adrenal axis-related genes. Lastly, we also reported anatomically-selective changes associated with the enduring effects of social isolation.
Collapse
Affiliation(s)
- Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan Italy.
| | - Silvia Zampar
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan Italy
| | - Linda Longo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan Italy.
| |
Collapse
|
50
|
Chronic Mild Stress Modified Epigenetic Mechanisms Leading to Accelerated Senescence and Impaired Cognitive Performance in Mice. Int J Mol Sci 2020; 21:ijms21031154. [PMID: 32050516 PMCID: PMC7037343 DOI: 10.3390/ijms21031154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
Cognitive and behavioural disturbances are a growing public healthcare issue for the modern society, as stressful lifestyle is becoming more and more common. Besides, several pieces of evidence state that environment is crucial in the development of several diseases as well as compromising healthy aging. Therefore, it is important to study the effects of stress on cognition and its relationship with aging. To address these queries, Chronic Mild Stress (CMS) paradigm was used in the senescence-accelerated mouse prone 8 (SAMP8) and resistant 1 (SAMR1). On one hand, we determined the changes produced in the three main epigenetic marks after 4 weeks of CMS treatment, such as a reduction in histone posttranslational modifications and DNA methylation, and up-regulation or down-regulation of several miRNA involved in different cellular processes in mice. In addition, CMS treatment induced reactive oxygen species (ROS) damage accumulation and loss of antioxidant defence mechanisms, as well as inflammatory signalling activation through NF-κB pathway and astrogliosis markers, like Gfap. Remarkably, CMS altered mTORC1 signalling in both strains, decreasing autophagy only in SAMR1 mice. We found a decrease in glycogen synthase kinase 3 β (GSK-3β) inactivation, hyperphosphorylation of Tau and an increase in sAPPβ protein levels in mice under CMS. Moreover, reduction in the non-amyloidogenic secretase ADAM10 protein levels was found in SAMR1 CMS group. Consequently, detrimental effects on behaviour and cognitive performance were detected in CMS treated mice, affecting mainly SAMR1 mice, promoting a turning to SAMP8 phenotype. In conclusion, CMS is a feasible intervention to understand the influence of stress on epigenetic mechanisms underlying cognition and accelerating senescence.
Collapse
|