1
|
Niemczak C, Skoe E, Leigh S, Zhang L, Dotzenrod M, Kieley A, Stone S, Parsonnet J, Martin C, Ealer C, Clavier O, Gui J, Waszkiewicz A, Roth R, Buckey J. Altered auditory brainstem responses are post-acute sequela of SARS-CoV-2 (PASC). Sci Rep 2025; 15:9387. [PMID: 40102496 PMCID: PMC11920441 DOI: 10.1038/s41598-025-93664-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
The Post-acute Sequela of SARS-CoV-2 (PASC) syndrome, also known as Long-COVID, often presents with subjective symptoms such as brain fog and cognitive fatigue. Increased tinnitus, and decreased hearing in noise ability also occur with PASC, yet whether auditory manifestations of PASC are linked with the cognitive symptoms is not known. Electrophysiology, specifically the Auditory Brainstem Response (ABR), provides objective measures of auditory processing. We hypothesized that ABR findings would be linked to PASC and with subjective feelings of cognitive fatigue. Eighty-two individuals, 37 with PASC (mean age: 47.5, Female: 83%) and 45 healthy controls (mean age: 38.5, Female: 76%), were studied with an auditory test battery that included audiometry and ABR measures. Peripheral hearing thresholds did not differ between groups. The PASC group had a higher prevalence of tinnitus, anxiety, depression, and hearing handicap in addition to increased subjective cognitive fatigue. ABR latency findings showed a significantly greater increase in the wave V latency for PASC subjects when a fast (61.1 clicks/sec) compared to a slow click (21.1 clicks/sec) was used. The increase in latency correlated with cognitive fatigue scores and predicted PASC status. The ABR V/I amplitude ratio was examined as a measure of central gain. Although these ratios were not significantly elevated in the full PASC group, to minimize the cofounding effect of age, the cohort was median split on age. Elevated V/I amplitude ratios were significant predictors of both predicted PASC group classification and cognitive fatigue scores in the younger PASC subjects compared to age-matched controls providing evidence of elevated central gain in younger individuals with PASC. More frequent tinnitus also significantly predicted higher subjective cognitive fatigue scores. Our findings suggest that PASC may alter the central auditory pathway and lead to slower conduction and elevated auditory neurophysiology responses at the midbrain, a pattern associated with the typical aging process. This study marks a significant stride toward establishing an objective measure of subjective cognitive fatigue through assessment of the central auditory system.
Collapse
Affiliation(s)
- Christopher Niemczak
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, USA.
- Geisel School of Medicine at Dartmouth, Hanover, USA.
| | - Erika Skoe
- Department of Speech, Language, and Hearing Sciences, Storrs, USA
- Connecticut Institute for Brain and Cognitive Sciences, Storrs, USA
- University of Connecticut, Storrs, USA
| | | | - Linda Zhang
- Geisel School of Medicine at Dartmouth, Hanover, USA
| | - Megan Dotzenrod
- Department of Speech, Language, and Hearing Sciences, Storrs, USA
| | - Annalise Kieley
- Department of Speech, Language, and Hearing Sciences, Storrs, USA
| | - Simon Stone
- Research Data Services, Dartmouth College Libraries, Hanover, USA
| | - Jeffrey Parsonnet
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, USA
| | - Christina Martin
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, USA
| | | | | | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine, Lebanon, USA
| | - Angela Waszkiewicz
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, USA
| | - Robert Roth
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, USA
| | - Jay Buckey
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, USA
- Geisel School of Medicine at Dartmouth, Hanover, USA
| |
Collapse
|
2
|
Mao Y, Zhang M, Peng X, Liu Y, Liu Y, Xia Q, Luo B, Chen L, Zhang Z, Wang Y, Wang H. Cross-modal cortical circuit for sound sensitivity in neuropathic pain. Curr Biol 2025; 35:831-842.e5. [PMID: 39889698 DOI: 10.1016/j.cub.2024.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/26/2024] [Accepted: 12/18/2024] [Indexed: 02/03/2025]
Abstract
Hyperacusis, exaggerated sensitivity to sound, frequently accompanies chronic pain in humans, suggesting interactions between different sensory systems in the brain. However, the neural mechanisms underlying this comorbidity remain largely unexplored. In this study, behavioral tests measuring sound-evoked pupil dilation and reaction times to lick water following auditory stimuli showed hyperacusis-like behaviors in neuropathic pain model mice. Through viral tracing, fiber photometry, and multi-electrode recordings, we identified glutamatergic projections from primary somatosensory cortex (S1HLGlu) to the auditory cortex (ACx) that participate in amplifying sound-evoked neuronal activity following spared nerve injury in the hindlimb. Chemo- or optogenetic manipulation and electrophysiology recordings confirmed that the S1HLGlu → ACx pathway is essential for this heightened response to sound. Specifically, activating this pathway intensified glutamatergic neuronal activity in the ACx and induced hyperacusis-like behaviors, while chemogenetic suppression reversed these effects in neuropathic pain model mice. These findings illustrate the mechanism by which central gain increases in the ACx of neuropathic pain mice, improving our understanding of cross-modal sensory system interactions and suggesting circuit pathway targets for developing interventions to treat pain-associated hyperacusis in clinic.
Collapse
Affiliation(s)
- Yunfeng Mao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Mingjun Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoqi Peng
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230022, China; School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, China
| | - Yi Liu
- China High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, HFIPS, Hefei 230031, China
| | - Yehao Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, China
| | - Qianhui Xia
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, China
| | - Bin Luo
- Auditory Research Laboratory, Department of Neurobiology and Biophysics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Lin Chen
- Auditory Research Laboratory, Department of Neurobiology and Biophysics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, China; Center for Advance Interdisciplinary Science and Biomedicine of IHM, Hefei 230026, China.
| | - Yuanyin Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230022, China.
| | - Haitao Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230022, China.
| |
Collapse
|
3
|
Gauthier DW, James N, Auerbach BD. Altered auditory feature discrimination in a rat model of Fragile X Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638956. [PMID: 40027738 PMCID: PMC11870463 DOI: 10.1101/2025.02.18.638956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Atypical sensory processing, particularly in the auditory domain, is one of the most common and quality-of-life affecting symptoms seen in autism spectrum disorders (ASD). Fragile X Syndrome (FXS) is the leading inherited cause of ASD and a majority of FXS individuals present with auditory processing alterations. While auditory hypersensitivity is a common phenotype observed in FXS and Fmr1 KO rodent models, it is important to consider other auditory coding impairments that could contribute to sound processing difficulties and disrupted language comprehension in FXS. We have shown previously that a Fmr1 knockout (KO) rat model of FXS exhibits heightened sound sensitivity that coincided with abnormal perceptual integration of sound bandwidth, indicative of altered spectral processing. Frequency discrimination is a fundamental aspect of sound encoding that is important for a range of auditory processes, such as source segregation and speech comprehension, and disrupted frequency coding could thus contribute to a range of auditory issues in FXS and ASD. Here we explicitly characterized spectral processing deficits in male Fmr1 KO rats using an operant conditioning tone discrimination assay and in vivo electrophysiology recordings from the auditory cortex and inferior colliculus. We found that Fmr1 KO rats exhibited poorer frequency resolution, which corresponded with neuronal hyperactivity and broader frequency tuning in auditory cortical but not collicular neurons. Using an experimentally informed population model, we show that these cortical physiological differences can recapitulate the observed behavior discrimination deficits, with decoder performance being tightly linked to differences in cortical tuning width and signal-to-noise ratios. These findings suggest that cortical hyperexcitability may account for a range of auditory behavioral phenotypes in FXS, providing a potential locus for development of novel biomarkers and treatment strategies that could extend to other forms of ASD.
Collapse
Affiliation(s)
- D. Walker Gauthier
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois Urbana-Champaign Urbana, Illinois, United States
- Neuroscience Program, University of Illinois Urbana-Champaign Urbana, Illinois, United States
| | - Noelle James
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois Urbana-Champaign Urbana, Illinois, United States
| | - Benjamin D. Auerbach
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois Urbana-Champaign Urbana, Illinois, United States
- Neuroscience Program, University of Illinois Urbana-Champaign Urbana, Illinois, United States
| |
Collapse
|
4
|
Xu F, Chen G, Li L, Sun W. Long-Term Moderate-Level Noise Exposure Caused Hyperexcitability in the Central Auditory System. Neural Plast 2025; 2025:8842073. [PMID: 39949836 PMCID: PMC11824834 DOI: 10.1155/np/8842073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/06/2024] [Indexed: 02/16/2025] Open
Abstract
Noise exposure is one of the most common causes of hearing loss and hyperacusis. Studies have shown that noise exposure can induce a cortical gain to compensate for reduced input of the cochlea, which may contribute to the increased sound sensitivity. However, many people with hyperacusis have no measurable cochlear lesion after being exposed to loud sound. In this experiment, we studied the neurological alterations in the cortical and subcortical areas following a prolonged moderate level of noise exposure (84 dB SPL, 8 h/day for 4 weeks) in the laboratory mice. The cochlear function was monitored by auditory brainstem responses (ABRs). The behavioral auditory sensitivity and temporal processing were evaluated using the acoustic startle response (ASR) and gap-induced prepulse inhibition (gap-PPI). The central auditory functions were determined by electrophysiological recordings of the inferior colliculus (IC) and the auditory cortex (AC). Our results showed that although there was no significant difference in the ABR thresholds, the noise group showed enhanced ASR and gap-PPI compared to the control group. Increased neural activity in both the IC and the AC was recorded in the noise-exposed mice compared to the control group, suggesting a central gain in both the subcortical and cortical regions. The current source density (CSD) analysis of the AC response revealed an increased columnar excitation and reduced corticocortical projection in the noise group, different from the central gain model of noise-induced hearing loss. Our results suggest that chronic "nondestructive" noise can increase the gain of the central auditory system by altering the balance of auditory thalamocortical and intracortical inputs, which may contribute to the increased sound sensitivity in people with normal hearing.
Collapse
Affiliation(s)
- Fei Xu
- Department of Communicative Disorders and Sciences, State University of New York at Buffalo, Buffalo, New York, USA
- Department of Hearing and Speech Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guangdi Chen
- Department of Communicative Disorders and Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Li Li
- Department of Communicative Disorders and Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Wei Sun
- Department of Communicative Disorders and Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
5
|
McHaney JR, Hancock KE, Polley DB, Parthasarathy A. Sensory representations and pupil-indexed listening effort provide complementary contributions to multi-talker speech intelligibility. Sci Rep 2024; 14:30882. [PMID: 39730737 DOI: 10.1038/s41598-024-81673-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/28/2024] [Indexed: 12/29/2024] Open
Abstract
Multi-talker speech intelligibility requires successful separation of the target speech from background speech. Successful speech segregation relies on bottom-up neural coding fidelity of sensory information and top-down effortful listening. Here, we studied the interaction between temporal processing measured using Envelope Following Responses (EFRs) to amplitude modulated tones, and pupil-indexed listening effort, as it related to performance on the Quick Speech-in-Noise (QuickSIN) test in normal-hearing adults. Listening effort increased at the more difficult signal-to-noise ratios, but speech intelligibility only decreased at the hardest signal-to-noise ratio. Pupil-indexed listening effort and EFRs did not independently relate to QuickSIN performance. However, the combined effects of both EFRs and listening effort explained significant variance in QuickSIN performance. Our results suggest a synergistic interaction between sensory coding and listening effort as it relates to multi-talker speech intelligibility. These findings can inform the development of next-generation multi-dimensional approaches for testing speech intelligibility deficits in listeners with normal-hearing.
Collapse
Affiliation(s)
- Jacie R McHaney
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, 60208, USA
| | - Kenneth E Hancock
- Deparment of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, 02115, USA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
| | - Daniel B Polley
- Deparment of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, 02115, USA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
| | - Aravindakshan Parthasarathy
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
6
|
Zink ME, Zhen L, McHaney JR, Klara J, Yurasits K, Cancel V, Flemm O, Mitchell C, Datta J, Chandrasekaran B, Parthasarathy A. Increased listening effort and cochlear neural degeneration underlie behavioral deficits in speech perception in noise in normal hearing middle-aged adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606213. [PMID: 39149285 PMCID: PMC11326149 DOI: 10.1101/2024.08.01.606213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Middle-age is a critical period of rapid changes in brain function that presents an opportunity for early diagnostics and intervention for neurodegenerative conditions later in life. Hearing loss is one such early indicator linked to many comorbidities later in life. However, current clinical tests fail to capture hearing difficulties for ∼10% of middle-aged adults seeking help at hearing clinics. Cochlear neural degeneration (CND) could play a role in these hearing deficits, but our current understanding is limited by the lack of objective diagnostics and uncertainty regarding its perceptual consequences. Here, using a cross-species approach, we measured envelope following responses (EFRs) - neural ensemble responses to sound originating from the peripheral auditory pathway - in young and middle-aged adults with normal audiometric thresholds, and compared these responses to young and middle-aged Mongolian gerbils, where CND was histologically confirmed. We observed near identical changes in EFRs across species that were associated with CND. Perceptual effects measured as behavioral readouts showed deficits in the most challenging listening conditions and were associated with CND. Additionally, pupil-indexed listening effort increased even at moderate task difficulties where behavioral outcomes were matched. Our results reveal perceptual deficits in middle-aged adults driven by CND and increases in listening effort, which may result in increased listening fatigue and conversational disengagement.
Collapse
|
7
|
Ono M, Ito T. Hearing loss-related altered neuronal activity in the inferior colliculus. Hear Res 2024; 449:109033. [PMID: 38797036 DOI: 10.1016/j.heares.2024.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Hearing loss is well known to cause plastic changes in the central auditory system and pathological changes such as tinnitus and hyperacusis. Impairment of inner ear functions is the main cause of hearing loss. In aged individuals, not only inner ear dysfunction but also senescence of the central nervous system is the cause of malfunction of the auditory system. In most cases of hearing loss, the activity of the auditory nerve is reduced, but that of the successive auditory centers is increased in a compensatory way. It has been reported that activity changes occur in the inferior colliculus (IC), a critical nexus of the auditory pathway. The IC integrates the inputs from the brainstem and drives the higher auditory centers. Since abnormal activity in the IC is likely to affect auditory perception, it is crucial to elucidate the neuronal mechanism to induce the activity changes of IC neurons with hearing loss. This review outlines recent findings on hearing-loss-induced plastic changes in the IC and brainstem auditory neuronal circuits and discusses what neuronal mechanisms underlie hearing-loss-induced changes in the activity of IC neurons. Considering the different causes of hearing loss, we discuss age-related hearing loss separately from other forms of hearing loss (non-age-related hearing loss). In general, the main plastic change of IC neurons caused by both age-related and non-age-related hearing loss is increased central gain. However, plastic changes in the IC caused by age-related hearing loss seem to be more complex than those caused by non-age-related hearing loss.
Collapse
Affiliation(s)
- Munenori Ono
- Department of Physiology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| | - Tetsufumi Ito
- Systems Function and Morphology, University of Toyama, Toyama 930-0194, Japan.
| |
Collapse
|
8
|
Makani P, Thioux M, Koops EA, Pyott SJ, van Dijk P. Hyperacusis in Tinnitus Individuals Is Associated with Smaller Gray Matter Volumes in the Supplementary Motor Area Regardless of Hearing Levels. Brain Sci 2024; 14:726. [PMID: 39061466 PMCID: PMC11275185 DOI: 10.3390/brainsci14070726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Recent evidence suggests a connection between hyperacusis and the motor system of the brain. For instance, our recent study reported that hyperacusis in participants with tinnitus and hearing loss is associated with smaller gray matter volumes in the supplementary motor area (SMA). Given that hearing loss can affect gray matter changes in tinnitus, this study aimed to determine if the changes reported in our previous findings of smaller SMA gray matter volumes in hyperacusis persist in the absence of hearing loss. Data for this study were gathered from four prior studies conducted between 2004 and 2019 at the University Medical Centre Groningen (UMCG). A total of 101 participants with tinnitus and either clinically normal hearing (normal hearing with tinnitus or NHT, n = 35) or bilateral sensorineural hearing loss (hearing loss with tinnitus or HLT, n = 66) were included across four studies. Hyperacusis was determined by a score of ≥22 on the Hyperacusis Questionnaire (HQ). In the NHT group, 22 (63%) participants scored ≥22 on the HQ (NHT with hyperacusis: mean age 44.1 years, 12 females), while in the HLT group, 25 (38%) participants scored ≥22 on the HQ (HLT with hyperacusis: mean age 59.5 years, 10 females). The 2 × 2 between-group ANOVAs revealed that hyperacusis is associated with smaller SMA gray matter volumes, regardless of hearing levels. Notably, the smaller SMA gray matter volumes in hyperacusis were primarily influenced by the attentional subscales of the HQ. The association between hyperacusis and the motor system may indicate a constant alertness to sounds and a readiness for motor action.
Collapse
Affiliation(s)
- Punitkumar Makani
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (P.M.); (E.A.K.); (S.J.P.); (P.v.D.)
- Graduate School of Medical Sciences (Research School of Behavioral and Cognitive Neurosciences), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Marc Thioux
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (P.M.); (E.A.K.); (S.J.P.); (P.v.D.)
- Graduate School of Medical Sciences (Research School of Behavioral and Cognitive Neurosciences), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Elouise A. Koops
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (P.M.); (E.A.K.); (S.J.P.); (P.v.D.)
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sonja J. Pyott
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (P.M.); (E.A.K.); (S.J.P.); (P.v.D.)
- Graduate School of Medical Sciences (Research School of Behavioral and Cognitive Neurosciences), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Pim van Dijk
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (P.M.); (E.A.K.); (S.J.P.); (P.v.D.)
- Graduate School of Medical Sciences (Research School of Behavioral and Cognitive Neurosciences), University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
9
|
Cherri D, Formby C, Secor CA, Eddins DA. Counseling Protocol for a Transitional Intervention for Debilitating Hyperacusis. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:1886-1902. [PMID: 38718266 PMCID: PMC11192559 DOI: 10.1044/2023_jslhr-23-00353] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/31/2023] [Accepted: 12/18/2023] [Indexed: 06/07/2024]
Abstract
INTRODUCTION This clinical focus article describes a structured counseling protocol for use with protected sound management and therapeutic sound in a transitional intervention for debilitating hyperacusis. The counseling protocol and its associated visual aids are crafted as a teaching tool to educate affected individuals about hyperacusis and encourage their acceptance of a transitional intervention. DESCRIPTION OF COUNSELING COMPONENTS The counseling protocol includes five components. First, the patient's audiometric results are reviewed with the patient, and the transitional intervention is introduced. An overview of peripheral auditory structures and central neural pathways and the concept of central gain are covered in the second and third components. Maladaptive hyper-gain processes within the auditory neural pathways, which underlie the hyperacusis condition, and associated connections with nonauditory processes responsible for negative reactions to hyperacusis are covered in the fourth component. Detrimental effects from misused hearing protection devices (HPDs) and the necessity to wean the patient from overuse of HPDs are also discussed. In the fifth component, the importance of therapeutic sound is introduced as a tool to downregulate hyper-gain activity within the auditory pathways; its implementation in uncontrolled and controlled sound environments is described. It is explained that, over the course of the transitional intervention, recalibration of the hyper-gain processes will be ongoing, leading to restoration of normal homeostasis within the auditory pathways. In turn, associated activation of reactive nonauditory processes, which contribute to hyperacusis-related distress, will be reduced or eliminated. As recalibration progresses, there will be less need for protected sound management and sound therapy. Sound tolerance will improve, hyperacusis will subside, and daily activities in typical healthy sound environments will again become routine. RESULTS AND CONCLUSION The combination of counseling with protected sound management and therapeutic sound is highlighted in companion reports, including a summary of the outcomes of a successful trial of the transitional intervention.
Collapse
Affiliation(s)
- Dana Cherri
- Auditory & Speech Sciences Laboratory, University of South Florida, Tampa
| | - Craig Formby
- Auditory & Speech Sciences Laboratory, University of South Florida, Tampa
- The University of Alabama, Tuscaloosa
| | - Carrie A. Secor
- Auditory & Speech Sciences Laboratory, University of South Florida, Tampa
| | - David A. Eddins
- Auditory & Speech Sciences Laboratory, University of South Florida, Tampa
- University of Central Florida, Orlando
| |
Collapse
|
10
|
Wake N, Shiramatsu TI, Takahashi H. Map plasticity following noise exposure in auditory cortex of rats: implications for disentangling neural correlates of tinnitus and hyperacusis. Front Neurosci 2024; 18:1385942. [PMID: 38881748 PMCID: PMC11176560 DOI: 10.3389/fnins.2024.1385942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Both tinnitus and hyperacusis, likely triggered by hearing loss, can be attributed to maladaptive plasticity in auditory perception. However, owing to their co-occurrence, disentangling their neural mechanisms proves difficult. We hypothesized that the neural correlates of tinnitus are associated with neural activities triggered by low-intensity tones, while hyperacusis is linked to responses to moderate- and high-intensity tones. Methods To test these hypotheses, we conducted behavioral and electrophysiological experiments in rats 2 to 8 days after traumatic tone exposure. Results In the behavioral experiments, prepulse and gap inhibition tended to exhibit different frequency characteristics (although not reaching sufficient statistical levels), suggesting that exposure to traumatic tones led to acute symptoms of hyperacusis and tinnitus at different frequency ranges. When examining the auditory cortex at the thalamocortical recipient layer, we observed that tinnitus symptoms correlated with a disorganized tonotopic map, typically characterized by responses to low-intensity tones. Neural correlates of hyperacusis were found in the cortical recruitment function at the multi-unit activity (MUA) level, but not at the local field potential (LFP) level, in response to moderate- and high-intensity tones. This shift from LFP to MUA was associated with a loss of monotonicity, suggesting a crucial role for inhibitory synapses. Discussion Thus, in acute symptoms of traumatic tone exposure, our experiments successfully disentangled the neural correlates of tinnitus and hyperacusis at the thalamocortical recipient layer of the auditory cortex. They also suggested that tinnitus is linked to central noise, whereas hyperacusis is associated with aberrant gain control. Further interactions between animal experiments and clinical studies will offer insights into neural mechanisms, diagnosis and treatments of tinnitus and hyperacusis, specifically in terms of long-term plasticity of chronic symptoms.
Collapse
Affiliation(s)
- Naoki Wake
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tomoyo I Shiramatsu
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hirokazu Takahashi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Clayton KK, McGill M, Awwad B, Stecyk KS, Kremer C, Skerleva D, Narayanan DP, Zhu J, Hancock KE, Kujawa SG, Kozin ED, Polley DB. Cortical determinants of loudness perception and auditory hypersensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596691. [PMID: 38853938 PMCID: PMC11160727 DOI: 10.1101/2024.05.30.596691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Parvalbumin-expressing inhibitory neurons (PVNs) stabilize cortical network activity, generate gamma rhythms, and regulate experience-dependent plasticity. Here, we observed that activation or inactivation of PVNs functioned like a volume knob in the mouse auditory cortex (ACtx), turning neural and behavioral classification of sound level up or down over a 20dB range. PVN loudness adjustments were "sticky", such that a single bout of 40Hz PVN stimulation sustainably suppressed ACtx sound responsiveness, potentiated feedforward inhibition, and behaviorally desensitized mice to loudness. Sensory sensitivity is a cardinal feature of autism, aging, and peripheral neuropathy, prompting us to ask whether PVN stimulation can persistently desensitize mice with ACtx hyperactivity, PVN hypofunction, and loudness hypersensitivity triggered by cochlear sensorineural damage. We found that a single 16-minute bout of 40Hz PVN stimulation session restored normal loudness perception for one week, showing that perceptual deficits triggered by irreversible peripheral injuries can be reversed through targeted cortical circuit interventions.
Collapse
Affiliation(s)
- Kameron K Clayton
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Matthew McGill
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Bshara Awwad
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Kamryn S Stecyk
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Caroline Kremer
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | | | - Divya P Narayanan
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Jennifer Zhu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Sharon G Kujawa
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Elliott D Kozin
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| |
Collapse
|
12
|
Mellott JG, Duncan S, Busby J, Almassri LS, Wawrzyniak A, Iafrate MC, Ohl AP, Slabinski EA, Beaver AM, Albaba D, Vega B, Mafi AM, Buerke M, Tokar NJ, Young JW. Age-related upregulation of dense core vesicles in the central inferior colliculus. Front Cell Neurosci 2024; 18:1396387. [PMID: 38774486 PMCID: PMC11107844 DOI: 10.3389/fncel.2024.1396387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/11/2024] [Indexed: 05/24/2024] Open
Abstract
Presbycusis is one of the most prevalent disabilities in aged populations of industrialized countries. As we age less excitation reaches the central auditory system from the periphery. To compensate, the central auditory system [e.g., the inferior colliculus (IC)], downregulates GABAergic inhibition to maintain homeostatic balance. However, the continued downregulation of GABA in the IC causes a disruption in temporal precision related to presbycusis. Many studies of age-related changes to neurotransmission in the IC have therefore focused on GABAergic systems. However, we have discovered that dense core vesicles (DCVs) are significantly upregulated with age in the IC. DCVs can carry neuropeptides, co-transmitters, neurotrophic factors, and proteins destined for the presynaptic zone to participate in synaptogenesis. We used immuno transmission electron microscopy across four age groups (3-month; 19-month; 24-month; and 28-month) of Fisher Brown Norway rats to examine the ultrastructure of DCVs in the IC. Tissue was stained post-embedding for GABA immunoreactivity. DCVs were characterized by diameter and by the neurochemical profile (GABAergic/non-GABAergic) of their location (bouton, axon, soma, and dendrite). Our data was collected across the dorsolateral to ventromedial axis of the central IC. After quantification, we had three primary findings. First, the age-related increase of DCVs occurred most robustly in non-GABAergic dendrites in the middle and low frequency regions of the central IC during middle age. Second, the likelihood of a bouton having more than one DCV increased with age. Lastly, although there was an age-related loss of terminals throughout the IC, the proportion of terminals that contained at least one DCV did not decline. We interpret this finding to mean that terminals carrying proteins packaged in DCVs are spared with age. Several recent studies have demonstrated a role for neuropeptides in the IC in defining cell types and regulating inhibitory and excitatory neurotransmission. Given the age-related increase of DCVs in the IC, it will be critical that future studies determine whether (1) specific neuropeptides are altered with age in the IC and (2) if these neuropeptides contribute to the loss of inhibition and/or increase of excitability that occurs during presbycusis and tinnitus.
Collapse
Affiliation(s)
- Jeffrey G. Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
- University Hospitals Hearing Research Center, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Syllissa Duncan
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Justine Busby
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Laila S. Almassri
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
- University Hospitals Hearing Research Center, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Alexa Wawrzyniak
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Milena C. Iafrate
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Andrew P. Ohl
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Elizabeth A. Slabinski
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Abigail M. Beaver
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Diana Albaba
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Brenda Vega
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Amir M. Mafi
- The Ohio State University College of Medicine, Columbus, OH, United States
| | - Morgan Buerke
- Department of Psychology, Louisiana State University, Baton Rouge, LA, United States
| | - Nick J. Tokar
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jesse W. Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
13
|
Jahn KN, Polley DB. Asymmetric hearing thresholds are associated with hyperacusis in a large clinical population. Hear Res 2023; 437:108854. [PMID: 37487430 PMCID: PMC11075140 DOI: 10.1016/j.heares.2023.108854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Hyperacusis is a debilitating auditory condition whose characterization is largely qualitative and is typically based on small participant cohorts. Here, we characterize the hearing and demographic profiles of adults who reported hyperacusis upon audiological evaluation at a large medical center. Audiometric data from 626 adults (age 18-80 years) with documented hyperacusis were retrospectively extracted from medical records and compared to an age- and sex-matched reference group of patients from the same clinic who did not report hyperacusis. Patients with hyperacusis had lower (i.e., better) high-frequency hearing thresholds (2000-8000 Hz), but significantly larger interaural threshold asymmetries (250-8000 Hz) relative to the reference group. The probability of reporting hyperacusis was highest for normal, asymmetric, and notched audiometric configurations. Many patients reported unilateral hyperacusis symptoms, a history of noise exposure, and co-morbid tinnitus. The high prevalence of both overt and subclinical hearing asymmetries in the hyperacusis population suggests a central compensatory mechanism that is dominated by input from an intact or minimally damaged ear, and which may lead to perceptual hypersensitivity by overshooting baseline neural activity levels.
Collapse
Affiliation(s)
- Kelly N Jahn
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 1966 Inwood Road, Dallas, TX 75235, USA; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA.
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| |
Collapse
|
14
|
McHaney JR, Hancock KE, Polley DB, Parthasarathy A. Sensory representations and pupil-indexed listening effort provide complementary contributions to multi-talker speech intelligibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553131. [PMID: 37645975 PMCID: PMC10462058 DOI: 10.1101/2023.08.13.553131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Optimal speech perception in noise requires successful separation of the target speech stream from multiple competing background speech streams. The ability to segregate these competing speech streams depends on the fidelity of bottom-up neural representations of sensory information in the auditory system and top-down influences of effortful listening. Here, we use objective neurophysiological measures of bottom-up temporal processing using envelope-following responses (EFRs) to amplitude modulated tones and investigate their interactions with pupil-indexed listening effort, as it relates to performance on the Quick speech in noise (QuickSIN) test in young adult listeners with clinically normal hearing thresholds. We developed an approach using ear-canal electrodes and adjusting electrode montages for modulation rate ranges, which extended the rage of reliable EFR measurements as high as 1024Hz. Pupillary responses revealed changes in listening effort at the two most difficult signal-to-noise ratios (SNR), but behavioral deficits at the hardest SNR only. Neither pupil-indexed listening effort nor the slope of the EFR decay function independently related to QuickSIN performance. However, a linear model using the combination of EFRs and pupil metrics significantly explained variance in QuickSIN performance. These results suggest a synergistic interaction between bottom-up sensory coding and top-down measures of listening effort as it relates to speech perception in noise. These findings can inform the development of next-generation tests for hearing deficits in listeners with normal-hearing thresholds that incorporates a multi-dimensional approach to understanding speech intelligibility deficits.
Collapse
Affiliation(s)
- Jacie R. McHaney
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA
| | - Kenneth E. Hancock
- Deparment of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA
| | - Daniel B. Polley
- Deparment of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA
| | - Aravindakshan Parthasarathy
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh PA
| |
Collapse
|
15
|
Yukhnovich EA, Alter K, Sedley W. Nuances in intensity deviant asymmetric responses as a biomarker for tinnitus. PLoS One 2023; 18:e0289062. [PMID: 37549154 PMCID: PMC10406247 DOI: 10.1371/journal.pone.0289062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023] Open
Abstract
We attempted to replicate a potential tinnitus biomarker in humans based on the Sensory Precision Integrative Model of Tinnitus called the Intensity Mismatch Asymmetry. A few advances on the design were also included, including tighter matching of participants for gender, and a control stimulus frequency of 1 kHz to investigate whether any differences between control and tinnitus groups are specific to the tinnitus frequency or domain-general. The expectation was that there would be asymmetry in the MMN responses between tinnitus and control groups at the tinnitus frequency, but not at the control frequency, where the tinnitus group would have larger, more negative responses to upward deviants than downward deviants, and the control group would have the opposite pattern or lack of a deviant direction effect. However, no significant group differences were found. There was a striking difference in response amplitude to control frequency stimuli compared to tinnitus frequency stimuli, which could be an intrinsic quality of responses to these frequencies or could reflect high frequency hearing loss in the sample. Additionally, the upward deviants elicited stronger MMN responses in both groups at tinnitus frequency, but not at the control frequency. Factors contributing to these discrepant results at the tinnitus frequency could include hyperacusis, attention, and wider contextual effects of other frequencies used in the experiment (i.e. the control frequency in other blocks).
Collapse
Affiliation(s)
- Ekaterina A. Yukhnovich
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kai Alter
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
- Faculty of Modern and Medieval Languages and Linguistics and the Languages Sciences Interdisciplinary Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
16
|
Makani P, Koops EA, Pyott SJ, van Dijk P, Thioux M. Hyperacusis is associated with smaller gray matter volumes in the supplementary motor area. Neuroimage Clin 2023; 38:103425. [PMID: 37137255 PMCID: PMC10176058 DOI: 10.1016/j.nicl.2023.103425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Hyperacusis is a disorder in loudness perception characterized by increased sensitivity to ordinary environmental sounds and associated with otologic conditions, including hearing loss and tinnitus (the phantom perception of sound) as well as neurologic and neuropsychiatric conditions. Hyperacusis is believed to arise centrally in the brain; however, the underlying causes are unknown. To gain insight into differences in brain morphology associated with hyperacusis, we undertook a retrospective case-control study comparing whole-brain gray matter morphology in participants with sensorineural hearing loss and tinnitus who either scored above or below the threshold for hyperacusis based on a standard questionnaire. We found that participants reporting hyperacusis had smaller gray matter volumes and cortical sheet thicknesses in the right supplementary motor area (SMA), independent of anxiety, depression, tinnitus burden, or sex. In fact, the right SMA volumes extracted from an independently defined volume of interest could accurately classify participants. Finally, in a subset of participants where functional data were also available, we found that individuals with hyperacusis showed increased sound-evoked responses in the right SMA compared to individuals without hyperacusis. Given the role of the SMA in initiating motion, these results suggest that in hyperacusis the SMA is involved in a motor response to sounds.
Collapse
Affiliation(s)
- Punitkumar Makani
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Groningen, University Medical Centre Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands; Graduate School of Medical Sciences (Research School of Behavioural and Cognitive Neurosciences), University of Groningen, FA30, P.O. Box 196, 9700 AD Groningen, the Netherlands.
| | - Elouise A Koops
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Groningen, University Medical Centre Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands; Department of Radiology, Massachusetts General Hospital-Harvard Medical School, Boston, USA
| | - Sonja J Pyott
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Groningen, University Medical Centre Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands; Graduate School of Medical Sciences (Research School of Behavioural and Cognitive Neurosciences), University of Groningen, FA30, P.O. Box 196, 9700 AD Groningen, the Netherlands
| | - Pim van Dijk
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Groningen, University Medical Centre Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands; Graduate School of Medical Sciences (Research School of Behavioural and Cognitive Neurosciences), University of Groningen, FA30, P.O. Box 196, 9700 AD Groningen, the Netherlands
| | - Marc Thioux
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Groningen, University Medical Centre Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands; Graduate School of Medical Sciences (Research School of Behavioural and Cognitive Neurosciences), University of Groningen, FA30, P.O. Box 196, 9700 AD Groningen, the Netherlands
| |
Collapse
|
17
|
Koehler CC, Almassri LS, Tokar N, Mafi AM, O’Hara MJ, Young JW, Mellott JG. Age-related Changes of GAD1 mRNA Expression in the Central Inferior Colliculus. TRANSLATIONAL MEDICINE OF AGING 2023; 7:20-32. [PMID: 38111912 PMCID: PMC10727507 DOI: 10.1016/j.tma.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
Encoding sounds with a high degree of temporal precision is an essential task for the inferior colliculus (IC) to perform and maintain the accurate processing of sounds and speech. However, the age-related reduction of GABAergic neurotransmission in the IC interrupts temporal precision and likely contributes to presbycusis. As presbycusis often manifests at high or low frequencies specifically, we sought to determine if the expression of mRNA for glutamic decarboxylase 1 (GAD1) is downregulated non-uniformly across the tonotopic axis or cell size range in the aging IC. Using single molecule in situ fluorescent hybridization across young, middle age and old Fisher Brown Norway rats (an aging model that acquires low frequency presbycusis) we quantified individual GAD1 mRNA in small, medium and large GABAergic cells. Our results demonstrate that small GABAergic cells in low frequency regions had ~58% less GAD1 in middle age and continued to decline into old age. In contrast, the amount of GAD1 mRNA in large cells in low frequency regions significantly increased with age. As several studies have shown that downregulation of GAD1 decreases the release of GABA, we interpret our results in two ways. First, the onset of presbycusis may be driven by small GABAergic cells downregulating GAD1. Second, as previous studies demonstrate that GAD67 expression is broadly downregulated in the old IC, perhaps the translation of GAD1 to GAD67 is interrupted in large GABAergic IC cells during aging. These results point to a potential genetic mechanism explaining reduced temporal precision in the aging IC, and in turn, presbycusis.
Collapse
Affiliation(s)
- Christina C. Koehler
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown, OH USA
| | - Laila S. Almassri
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown, OH USA
| | - Nick Tokar
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown, OH USA
| | - Amir M. Mafi
- The Ohio State College of Medicine The Ohio State Columbus, OH USA
| | - Mitchell J. O’Hara
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown, OH USA
| | - Jesse W. Young
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown, OH USA
| | - Jeffrey G. Mellott
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown, OH USA
| |
Collapse
|
18
|
Manohar S, Chen GD, Li L, Liu X, Salvi R. Chronic stress induced loudness hyperacusis, sound avoidance and auditory cortex hyperactivity. Hear Res 2023; 431:108726. [PMID: 36905854 DOI: 10.1016/j.heares.2023.108726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Hyperacusis, a debilitating loudness intolerance disorder, has been linked to chronic stress and adrenal insufficiency. To investigate the role of chronic stress, rats were chronically treated with corticosterone (CORT) stress hormone. Chronic CORT produced behavioral evidence of loudness hyperacusis, sound avoidance hyperacusis, and abnormal temporal integration of loudness. CORT treatment did not disrupt cochlear or brainstem function as reflected by normal distortion product otoacoustic emissions, compound action potentials, acoustic startle reflexex, and auditory brainstem responses. In contrast, the evoked response from the auditory cortex was enhanced up to three fold after CORT treatment. This hyperactivity was associated with a significant increase in glucocorticoid receptors in auditory cortex layers II/III and VI. Basal serum CORT levels remained normal after chronic CORT stress whereas reactive serum CORT levels evoked by acute restraint stress were blunted (reduced) after chronic CORT stress; similar changes were observed after chronic, intense noise stress. Taken together, our results show for the first time that chronic stress can induce hyperacusis and sound avoidance. A model is proposed in which chronic stress creates a subclinical state of adrenal insufficiency that establishes the necessary conditions for inducing hyperacusis.
Collapse
Affiliation(s)
- Senthilvelan Manohar
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA
| | - Li Li
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA
| | - Xiaopeng Liu
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
19
|
Demoen S, Michiels S, Gilles A, Vermeersch H, Joossen I, Vanderveken OM, Lammers MJW, Timmermans A, Van Rompaey V, Baguley D, Jacquemin L. Pilot study on the role of somatic modulation in hyperacusis. Eur Arch Otorhinolaryngol 2023; 280:1425-1435. [PMID: 36224398 DOI: 10.1007/s00405-022-07695-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/06/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hyperacusis is a reduced tolerance to sounds that often co-occurs with tinnitus. Both symptoms have convergent as well as divergent characteristics. Somatic modulation, changes in pitch or loudness during certain movements, is common in patients with a primary complaint of tinnitus. However, thus far, this is not documented in patients with hyperacusis. OBJECTIVES This study aimed to examine the influence of somatic manoeuvres on the perception of external sounds in patients with a primary complaint of hyperacusis. METHODOLOGY In this prospective cross-sectional pilot study, 18 patients with a primary complaint of hyperacusis were recruited at the Tinnitus Treatment and Research Center Antwerp (TINTRA). While patients listened to a 1 kHz broadband noise of 30 dB sensation level, six neck manoeuvres (flexion, extension, lateroflexion left/right, traction and compression), three jaw manoeuvres (protrusion, laterotrusion left/right) and one placebo manoeuvre (hand on head) were performed. The primary outcome measure was the change in the perception of the presented sound in terms of loudness and intrusiveness between baseline and each modulation measured by a visual analogue scale (VAS). RESULTS No overall significant changes were found; however, individual results indicated that five patients presented a clinically relevant change of more than three points out of ten on VAS in terms of hyperacusis after at least one of the executed somatic manoeuvres. CONCLUSIONS This pilot study did not demonstrate an overall significant change in hyperacusis after somatic manoeuvres but does not rule out the possibility of somatic modulation in some hyperacusis patients. TRIAL REGISTRATION The protocol of this prospective cross-sectional pilot study was registered on clinicaltrials.gov with registration number NCT04693819.
Collapse
Affiliation(s)
- Sara Demoen
- Rehabilitation Research Center, REVAL, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt University Campus Diepenbeek, Agoralaan, 3500, Hasselt, Belgium.
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, 2650, Edegem, Belgium.
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University Antwerp, 2610, Antwerp, Belgium.
| | - Sarah Michiels
- Rehabilitation Research Center, REVAL, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt University Campus Diepenbeek, Agoralaan, 3500, Hasselt, Belgium
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, 2650, Edegem, Belgium
| | - Annick Gilles
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, 2650, Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University Antwerp, 2610, Antwerp, Belgium
- Department of Education, Health and Social Work, University College Ghent, 9000, Ghent, Belgium
| | - Hanne Vermeersch
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, 2650, Edegem, Belgium
| | - Iris Joossen
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, 2650, Edegem, Belgium
| | - Olivier M Vanderveken
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, 2650, Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University Antwerp, 2610, Antwerp, Belgium
| | - Marc J W Lammers
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, 2650, Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University Antwerp, 2610, Antwerp, Belgium
| | - Annick Timmermans
- Rehabilitation Research Center, REVAL, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt University Campus Diepenbeek, Agoralaan, 3500, Hasselt, Belgium
| | - Vincent Van Rompaey
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, 2650, Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University Antwerp, 2610, Antwerp, Belgium
| | - David Baguley
- Hearing Sciences, Division of Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, 0115, UK
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, 0115, UK
- Nottingham Audiology Services, Nottingham University Hospitals NHS Trust, Nottingham, 0115, UK
| | - Laure Jacquemin
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, 2650, Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University Antwerp, 2610, Antwerp, Belgium
| |
Collapse
|
20
|
McGill M, Hight AE, Watanabe YL, Parthasarathy A, Cai D, Clayton K, Hancock KE, Takesian A, Kujawa SG, Polley DB. Neural signatures of auditory hypersensitivity following acoustic trauma. eLife 2022; 11:e80015. [PMID: 36111669 PMCID: PMC9555866 DOI: 10.7554/elife.80015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Neurons in sensory cortex exhibit a remarkable capacity to maintain stable firing rates despite large fluctuations in afferent activity levels. However, sudden peripheral deafferentation in adulthood can trigger an excessive, non-homeostatic cortical compensatory response that may underlie perceptual disorders including sensory hypersensitivity, phantom limb pain, and tinnitus. Here, we show that mice with noise-induced damage of the high-frequency cochlear base were behaviorally hypersensitive to spared mid-frequency tones and to direct optogenetic stimulation of auditory thalamocortical neurons. Chronic two-photon calcium imaging from ACtx pyramidal neurons (PyrNs) revealed an initial stage of spatially diffuse hyperactivity, hyper-correlation, and auditory hyperresponsivity that consolidated around deafferented map regions three or more days after acoustic trauma. Deafferented PyrN ensembles also displayed hypersensitive decoding of spared mid-frequency tones that mirrored behavioral hypersensitivity, suggesting that non-homeostatic regulation of cortical sound intensity coding following sensorineural loss may be an underlying source of auditory hypersensitivity. Excess cortical response gain after acoustic trauma was expressed heterogeneously among individual PyrNs, yet 40% of this variability could be accounted for by each cell's baseline response properties prior to acoustic trauma. PyrNs with initially high spontaneous activity and gradual monotonic intensity growth functions were more likely to exhibit non-homeostatic excess gain after acoustic trauma. This suggests that while cortical gain changes are triggered by reduced bottom-up afferent input, their subsequent stabilization is also shaped by their local circuit milieu, where indicators of reduced inhibition can presage pathological hyperactivity following sensorineural hearing loss.
Collapse
Affiliation(s)
- Matthew McGill
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Division of Medical Sciences, Harvard Medical SchoolBostonUnited States
| | - Ariel E Hight
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Division of Medical Sciences, Harvard Medical SchoolBostonUnited States
| | - Yurika L Watanabe
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
| | - Aravindakshan Parthasarathy
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Dongqin Cai
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Kameron Clayton
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Anne Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Sharon G Kujawa
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
21
|
Owoc MS, Rubio ME, Brockway B, Sadagopan S, Kandler K. Embryonic medial ganglionic eminence cells survive and integrate into the inferior colliculus of adult mice. Hear Res 2022; 420:108520. [PMID: 35617926 PMCID: PMC11697826 DOI: 10.1016/j.heares.2022.108520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 05/14/2022] [Indexed: 11/20/2022]
Abstract
Acoustic overexposure can lead to decreased inhibition in auditory centers, including the inferior colliculus (IC), and has been implicated in the development of central auditory pathologies. While systemic drugs that increase GABAergic transmission have been shown to provide symptomatic relief, their side effect profiles impose an upper-limit on the dose and duration of use. A treatment that locally increases inhibition in auditory nuclei could mitigate these side effects. One such approach could be transplantation of inhibitory precursor neurons derived from the medial ganglionic eminence (MGE). The present study investigated whether transplanted MGE cells can survive and integrate into the IC of non-noise exposed and noise exposed mice. MGE cells were harvested on embryonic days 12-14 and injected bilaterally into the IC of adult mice, with or without previous noise exposure. At one-week post transplantation, MGE cells possessed small, elongated soma and bipolar processes, characteristic of migrating cells. By 5 weeks, MGE cells exhibited a more mature morphology, with multiple branching processes and axons with boutons that stain positive for the vesicular GABA transporter (VGAT). The MGE survival rate after 14 weeks post transplantation was 1.7% in non-noise exposed subjects. MGE survival rate was not significantly affected by noise exposure (1.2%). In both groups the vast majority of transplanted MGE cells (>97%) expressed the vesicular GABA transporter. Furthermore, electronmicroscopic analysis indicated that transplanted MGE cells formed synapses with and received synaptic endings from host IC neurons. Acoustic stimulation lead to a significant increase in the percentage of endogenous inhibitory cells that express c-fos but had no effect on the percentage of c-fos expressing transplanted MGE cells. MGE cells were observed in the IC up to 22 weeks post transplantation, the longest time point investigated, suggesting long term survival and integration. These data provide the first evidence that transplantation of MGE cells is viable in the IC and provides a new strategy to explore treatment options for central hearing dysfunction following noise exposure.
Collapse
Affiliation(s)
- Maryanna S Owoc
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Medical Scientist Training Program, University of Pittsburgh - Carnegie Mellon University, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States.
| | - María E Rubio
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brian Brockway
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Srivatsun Sadagopan
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Medical Scientist Training Program, University of Pittsburgh - Carnegie Mellon University, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, United States
| | - Karl Kandler
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Medical Scientist Training Program, University of Pittsburgh - Carnegie Mellon University, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
22
|
Jahn KN, Hancock KE, Maison SF, Polley DB. Estimated cochlear neural degeneration is associated with loudness hypersensitivity in individuals with normal audiograms. JASA EXPRESS LETTERS 2022; 2:064403. [PMID: 35719240 PMCID: PMC9199082 DOI: 10.1121/10.0011694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/25/2022] [Indexed: 05/27/2023]
Abstract
In animal models, cochlear neural degeneration (CND) is associated with excess central gain and hyperacusis, but a compelling link between reduced cochlear neural inputs and heightened loudness perception in humans remains elusive. The present study examined whether greater estimated cochlear neural degeneration (eCND) in human participants with normal hearing thresholds is associated with heightened loudness perception and sound aversion. Results demonstrated that loudness perception was heightened in ears with greater eCND and in subjects who self-report loudness aversion via a hyperacusis questionnaire. These findings suggest that CND may be a potential trigger for loudness hypersensitivity.
Collapse
Affiliation(s)
- Kelly N Jahn
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114, USA , , ,
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114, USA , , ,
| | - Stéphane F Maison
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114, USA , , ,
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114, USA , , ,
| |
Collapse
|
23
|
Vidal JL, Park JM, Han JS, Alshaikh H, Park SN. Measurement of Loudness Discomfort Levels as a Test for Hyperacusis: Test-Retest Reliability and Its Clinical Value. Clin Exp Otorhinolaryngol 2022; 15:84-90. [PMID: 35144329 PMCID: PMC8901946 DOI: 10.21053/ceo.2021.00318] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022] Open
Abstract
Objectives The aims of this study were to investigate the test-retest reliability of measurements of loudness discomfort levels (LDLs), to suggest cut-off values for diagnosing patients with hyperacusis, and to evaluate the clinical value of-LDL measurements as a test for monitoring hyperacusis. Methods For the test-retest reliability of LDL measurements (study 1), a total of 68 patients who sought consultations at our clinic were subcategorized into four groups: patients with tinnitus (group 1), tinnitus and hearing loss (group 2), hyperacusis (group 3), and normal controls (group 4). Inter-hour and inter-day test-retest reliability values using different stimuli were investigated. For study 2, the clinical value of LDL measurements using pure tone stimuli was analyzed by comparing changes after sound generator use in patients with hyperacusis. Results In study 1, the group 3 patients showed significantly lower LDLs than the other groups. High test-retest reliability of LDL tests was demonstrated, regardless of the type of stimulus used. The cut-off values for screening patients with hyperacusis were 90 dB HL using pure tone stimuli and 62 dB HL using white-band noise stimuli. In study 2, significantly increased LDLs were correlated with improved symptoms and improved scores on tinnitus questionnaires after sound generator use, indicating that LDL measurement is a reliable test for monitoring hyperacusis during an intervention. Conclusion LDL measurement is a reliable diagnostic tool to reflect the condition of hyperacusis, especially during the course of treatment.
Collapse
Affiliation(s)
- Jaclyn Leigh Vidal
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Dr. Paulino J. Garcia Memorial Research and Medical Center, Nueva Ecija, Philippines.,Department of Otorhinolaryngology-Head and Neck Surgery, St. Luke's Medical Center, Quezon City, Philippines
| | - Jung Mee Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jae Sang Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hamzah Alshaikh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Shi Nae Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
24
|
Auerbach BD, Gritton HJ. Hearing in Complex Environments: Auditory Gain Control, Attention, and Hearing Loss. Front Neurosci 2022; 16:799787. [PMID: 35221899 PMCID: PMC8866963 DOI: 10.3389/fnins.2022.799787] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Listening in noisy or complex sound environments is difficult for individuals with normal hearing and can be a debilitating impairment for those with hearing loss. Extracting meaningful information from a complex acoustic environment requires the ability to accurately encode specific sound features under highly variable listening conditions and segregate distinct sound streams from multiple overlapping sources. The auditory system employs a variety of mechanisms to achieve this auditory scene analysis. First, neurons across levels of the auditory system exhibit compensatory adaptations to their gain and dynamic range in response to prevailing sound stimulus statistics in the environment. These adaptations allow for robust representations of sound features that are to a large degree invariant to the level of background noise. Second, listeners can selectively attend to a desired sound target in an environment with multiple sound sources. This selective auditory attention is another form of sensory gain control, enhancing the representation of an attended sound source while suppressing responses to unattended sounds. This review will examine both “bottom-up” gain alterations in response to changes in environmental sound statistics as well as “top-down” mechanisms that allow for selective extraction of specific sound features in a complex auditory scene. Finally, we will discuss how hearing loss interacts with these gain control mechanisms, and the adaptive and/or maladaptive perceptual consequences of this plasticity.
Collapse
Affiliation(s)
- Benjamin D. Auerbach
- Department of Molecular and Integrative Physiology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Benjamin D. Auerbach,
| | - Howard J. Gritton
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
25
|
Knipper M, Singer W, Schwabe K, Hagberg GE, Li Hegner Y, Rüttiger L, Braun C, Land R. Disturbed Balance of Inhibitory Signaling Links Hearing Loss and Cognition. Front Neural Circuits 2022; 15:785603. [PMID: 35069123 PMCID: PMC8770933 DOI: 10.3389/fncir.2021.785603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Neuronal hyperexcitability in the central auditory pathway linked to reduced inhibitory activity is associated with numerous forms of hearing loss, including noise damage, age-dependent hearing loss, and deafness, as well as tinnitus or auditory processing deficits in autism spectrum disorder (ASD). In most cases, the reduced central inhibitory activity and the accompanying hyperexcitability are interpreted as an active compensatory response to the absence of synaptic activity, linked to increased central neural gain control (increased output activity relative to reduced input). We here suggest that hyperexcitability also could be related to an immaturity or impairment of tonic inhibitory strength that typically develops in an activity-dependent process in the ascending auditory pathway with auditory experience. In these cases, high-SR auditory nerve fibers, which are critical for the shortest latencies and lowest sound thresholds, may have either not matured (possibly in congenital deafness or autism) or are dysfunctional (possibly after sudden, stressful auditory trauma or age-dependent hearing loss linked with cognitive decline). Fast auditory processing deficits can occur despite maintained basal hearing. In that case, tonic inhibitory strength is reduced in ascending auditory nuclei, and fast inhibitory parvalbumin positive interneuron (PV-IN) dendrites are diminished in auditory and frontal brain regions. This leads to deficits in central neural gain control linked to hippocampal LTP/LTD deficiencies, cognitive deficits, and unbalanced extra-hypothalamic stress control. Under these conditions, a diminished inhibitory strength may weaken local neuronal coupling to homeostatic vascular responses required for the metabolic support of auditory adjustment processes. We emphasize the need to distinguish these two states of excitatory/inhibitory imbalance in hearing disorders: (i) Under conditions of preserved fast auditory processing and sustained tonic inhibitory strength, an excitatory/inhibitory imbalance following auditory deprivation can maintain precise hearing through a memory linked, transient disinhibition that leads to enhanced spiking fidelity (central neural gain⇑) (ii) Under conditions of critically diminished fast auditory processing and reduced tonic inhibitory strength, hyperexcitability can be part of an increased synchronization over a broader frequency range, linked to reduced spiking reliability (central neural gain⇓). This latter stage mutually reinforces diminished metabolic support for auditory adjustment processes, increasing the risks for canonical dementia syndromes.
Collapse
Affiliation(s)
- Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
- *Correspondence: Marlies Knipper,
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Kerstin Schwabe
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hanover, Germany
| | - Gisela E. Hagberg
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen (UKT), Tübingen, Germany
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Yiwen Li Hegner
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Christoph Braun
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Rüdiger Land
- Department of Experimental Otology, Institute for Audioneurotechnology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
26
|
Current topics in hearing research: Deafferentation and threshold independent hearing loss. Hear Res 2021; 419:108408. [PMID: 34955321 DOI: 10.1016/j.heares.2021.108408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022]
Abstract
Hearing research findings in recent years have begun to change how we think about hearing loss and how we consider the risk of auditory damage from noise exposure. These findings include evidence of noise-induced cochlear damage in the absence of corresponding permanent threshold elevation or evidence of hair cell loss. Animal studies in several species have shown that noise exposures that produce robust but only temporary threshold shifts can permanently damage inner hair cell synaptic ribbons. This type of synaptic degeneration has also been shown to occur as a result of aging in animals and humans. The emergence of these data has motivated a number of clinical studies aimed at identifying the perceptual correlates associated with synaptopathy. The deficits believed to arise from synaptopathy include poorer hearing in background noise, tinnitus and hyperacusis (loudness intolerance). However, the findings from human studies have been mixed. Key questions remain as to whether synaptopathy reliably produces suprathreshold perceptual deficits or whether it serves as an early indicator of auditory damage with suprathreshold deficits emerging later as a function of further cochlear damage. Here, we provide an overview of both human and animal studies that explore the relationship among inner hair cell damage, including loss of afferent synapses, auditory thresholds, and suprathreshold measures of hearing.
Collapse
|
27
|
Auerbach BD, Manohar S, Radziwon K, Salvi R. Auditory hypersensitivity and processing deficits in a rat model of fragile X syndrome. Neurobiol Dis 2021; 161:105541. [PMID: 34751141 DOI: 10.1016/j.nbd.2021.105541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022] Open
Abstract
Fragile X (FX) syndrome is one of the leading inherited causes of autism spectrum disorder (ASD). A majority of FX and ASD patients exhibit sensory hypersensitivity, including auditory hypersensitivity or hyperacusis, a condition in which everyday sounds are perceived as much louder than normal. Auditory processing deficits in FX and ASD also afford the opportunity to develop objective and quantifiable outcome measures that are likely to translate between humans and animal models due to the well-conserved nature of the auditory system and well-developed behavioral read-outs of sound perception. Therefore, in this study we characterized auditory hypersensitivity in a Fmr1 knockout (KO) transgenic rat model of FX using an operant conditioning task to assess sound detection thresholds and suprathreshold auditory reaction time-intensity (RT-I) functions, a reliable psychoacoustic measure of loudness growth, at a variety of stimulus frequencies, bandwidths, and durations. Male Fmr1 KO and littermate WT rats both learned the task at the same rate and exhibited normal hearing thresholds. However, Fmr1 KO rats had faster auditory RTs over a broad range of intensities and steeper RT-I slopes than WT controls, perceptual evidence of excessive loudness growth in Fmr1 KO rats. Furthermore, we found that Fmr1 KO animals exhibited abnormal perceptual integration of sound duration and bandwidth, with diminished temporal but enhanced spectral integration of sound intensity. Because temporal and spectral integration of sound stimuli were altered in opposite directions in Fmr1 KO rats, this suggests that abnormal RTs in these animals are evidence of aberrant auditory processing rather than generalized hyperactivity or altered motor responses. Together, these results are indicative of fundamental changes to low-level auditory processing in Fmr1 KO animals. Finally, we demonstrated that antagonism of metabotropic glutamate receptor 5 (mGlu5) selectively and dose-dependently restored normal loudness growth in Fmr1 KO rats, suggesting a pharmacologic approach for alleviating sensory hypersensitivity associated with FX. This study leverages the tractable nature of the auditory system and the unique behavioral advantages of rats to provide important insights into the nature of a centrally important yet understudied aspect of FX and ASD.
Collapse
Affiliation(s)
- Benjamin D Auerbach
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA; Department of Molecular & Integrative Physiology, Beckman Institute for Advanced Science & Technology, Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | - Kelly Radziwon
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
28
|
Rumschlag JA, Razak KA. Age-related changes in event related potentials, steady state responses and temporal processing in the auditory cortex of mice with severe or mild hearing loss. Hear Res 2021; 412:108380. [PMID: 34758398 DOI: 10.1016/j.heares.2021.108380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/19/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022]
Abstract
Age-related changes in auditory processing affect the quality of life of older adults with and without hearing loss. To distinguish between the effects of sensorineural hearing loss and aging on cortical processing, the main goal of the present study was to compare cortical responses using the same stimulus paradigms and recording conditions in two strains of mice (C57BL/6J and FVB) that differ in the degree of age-related hearing loss. Electroencephalogram (EEG) recordings were obtained from freely moving young and old mice using epidural screw electrodes. We measured event related potentials (ERP) and 40 Hz auditory steady-state responses (ASSR). We used a novel stimulus, termed the gap-ASSR stimulus, which elicits an ASSR by rapidly presenting short gaps in continuous noise. By varying the gap widths and modulation depths, we probed the limits of temporal processing in young and old mice. Temporal fidelity of ASSR and gap-ASSR responses were measured as phase consistency across trials (inter-trial phase clustering; ITPC). The old C57 mice, which show severe hearing loss, produced larger ERP amplitudes compared to young mice. Despite robust ERPs, the old C57 mice showed significantly diminished ITPC in the ASSR and gap-ASSR responses, even with 100% modulation depth. The FVB mice, which show mild hearing loss with age, generated similar ERP amplitudes and ASSR ITPC across the age groups tested. However, the old FVB mice showed decreased gap-ASSR responses compared to young mice, particularly for modulation depths <100%. The C57 mice data suggest that severe presbycusis leads to increased gain in the auditory cortex, but with reduced temporal fidelity. The FVB mice data suggest that with mild hearing loss, age-related changes in temporal processing become apparent only when tested with more challenging sounds (shorter gaps and shallower modulation).
Collapse
Affiliation(s)
| | - Khaleel A Razak
- Graduate Neuroscience Program, Riverside, United States; Psychology Department, University of California, Riverside, United States.
| |
Collapse
|
29
|
Lefler SM, Duncan RK, Goodman SS, Guinan JJ, Lichtenhan JT. Measurements From Ears With Endolymphatic Hydrops and 2-Hydroxypropyl-Beta-Cyclodextrin Provide Evidence That Loudness Recruitment Can Have a Cochlear Origin. Front Surg 2021; 8:687490. [PMID: 34676239 PMCID: PMC8523923 DOI: 10.3389/fsurg.2021.687490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/02/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Loudness recruitment is commonly experienced by patients with putative endolymphatic hydrops. Loudness recruitment is abnormal loudness growth with high-level sounds being perceived as having normal loudness even though hearing thresholds are elevated. The traditional interpretation of recruitment is that cochlear amplification has been reduced. Since the cochlear amplifier acts primarily at low sound levels, an ear with elevated thresholds from reduced cochlear amplification can have normal processing at high sound levels. In humans, recruitment can be studied using perceptual loudness but in animals physiological measurements are used. Recruitment in animal auditory-nerve responses has never been unequivocally demonstrated because the animals used had damage to sensory and neural cells, not solely a reduction of cochlear amplification. Investigators have thus looked for, and found, evidence of recruitment in the auditory central nervous system (CNS). While studies on CNS recruitment are informative, they cannot rule out the traditional interpretation of recruitment originating in the cochlea. Design: We used techniques that could assess hearing function throughout entire frequency- and dynamic-range of hearing. Measurements were made from two animal models: guinea-pig ears with endolymphatic-sac-ablation surgery to produce endolymphatic hydrops, and naïve guinea-pig ears with cochlear perfusions of 13 mM 2-Hydroxypropyl-Beta-Cyclodextrin (HPBCD) in artificial perilymph. Endolymphatic sac ablation caused low-frequency loss. Animals treated with HPBCD had hearing loss at all frequencies. None of these animals had loss of hair cells or synapses on auditory nerve fibers. Results: In ears with endolymphatic hydrops and those perfused with HPBCD, auditory-nerve based measurements at low frequencies showed recruitment compared to controls. Recruitment was not found at high frequencies (> 4 kHz) where hearing thresholds were normal in ears with endolymphatic hydrops and elevated in ears treated with HPBCD. Conclusions: We found compelling evidence of recruitment in auditory-nerve data. Such clear evidence has never been shown before. Our findings suggest that, in patients suspected of having endolymphatic hydrops, loudness recruitment may be a good indication that the associated low-frequency hearing loss originates from a reduction of cochlear amplification, and that measurements of recruitment could be used in differential diagnosis and treatment monitoring of Ménière's disease.
Collapse
Affiliation(s)
- Shannon M Lefler
- Department of Otolaryngology, Washington University School of Medicine in St. Louis, Saint Louis, MO, United States
| | - Robert K Duncan
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, United States
| | - Shawn S Goodman
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, United States
| | - John J Guinan
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
| | - Jeffery T Lichtenhan
- Department of Otolaryngology, Washington University School of Medicine in St. Louis, Saint Louis, MO, United States
| |
Collapse
|
30
|
Resnik J, Polley DB. Cochlear neural degeneration disrupts hearing in background noise by increasing auditory cortex internal noise. Neuron 2021; 109:984-996.e4. [PMID: 33561398 PMCID: PMC7979519 DOI: 10.1016/j.neuron.2021.01.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/09/2020] [Accepted: 01/14/2021] [Indexed: 12/29/2022]
Abstract
Correlational evidence in humans suggests that selective difficulties hearing in noisy, social settings may reflect premature auditory nerve degeneration. Here, we induced primary cochlear neural degeneration (CND) in adult mice and found direct behavioral evidence for selective detection deficits in background noise. To identify central determinants for this perceptual disorder, we tracked daily changes in ensembles of layer 2/3 auditory cortex parvalbumin-expressing inhibitory neurons and excitatory pyramidal neurons with chronic two-photon calcium imaging. CND induced distinct forms of plasticity in cortical excitatory and inhibitory neurons that culminated in net hyperactivity, increased neural gain, and reduced adaptation to background noise. Ensemble activity measured while mice detected targets in noise could accurately decode whether individual behavioral trials were hits or misses. After CND, random surges of hypercorrelated cortical activity occurring just before target onset reliably predicted impending detection failures, revealing a source of internal cortical noise underlying perceptual difficulties in external noise.
Collapse
Affiliation(s)
- Jennifer Resnik
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
31
|
Lauer AM, Jimenez SV, Delano PH. Olivocochlear efferent effects on perception and behavior. Hear Res 2021; 419:108207. [PMID: 33674070 DOI: 10.1016/j.heares.2021.108207] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/18/2021] [Accepted: 02/12/2021] [Indexed: 01/13/2023]
Abstract
The role of the mammalian auditory olivocochlear efferent system in hearing has long been the subject of debate. Its ability to protect against damaging noise exposure is clear, but whether or not this is the primary function of a system that evolved in the absence of industrial noise remains controversial. Here we review the behavioral consequences of olivocochlear activation and diminished olivocochlear function. Attempts to demonstrate a role for hearing in noise have yielded conflicting results in both animal and human studies. A role in selective attention to sounds in the presence of distractors, or attention to visual stimuli in the presence of competing auditory stimuli, has been established in animal models, but again behavioral studies in humans remain equivocal. Auditory processing deficits occur in models of congenital olivocochlear dysfunction, but these deficits likely reflect abnormal central auditory development rather than direct effects of olivocochlear feedback. Additional proposed roles in age-related hearing loss, tinnitus, hyperacusis, and binaural or spatial hearing, are intriguing, but require additional study. These behavioral studies almost exclusively focus on medial olivocochlear effects, and many relied on lesioning techniques that can have unspecific effects. The consequences of lateral olivocochlear and of corticofugal pathway activation for perception remain unknown. As new tools for targeted manipulation of olivocochlear neurons emerge, there is potential for a transformation of our understanding of the role of the olivocochlear system in behavior across species.
Collapse
Affiliation(s)
- Amanda M Lauer
- David M. Rubenstein Center for Hearing Research and Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, 515 Traylor Building, 720 Rutland Ave, Baltimore, MD 21205, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States.
| | - Sergio Vicencio Jimenez
- David M. Rubenstein Center for Hearing Research and Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, 515 Traylor Building, 720 Rutland Ave, Baltimore, MD 21205, United States; Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paul H Delano
- Departments of Otolaryngology and Neuroscience, Faculty of Medicine, University of Chile, Santiago, Chile; Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Advanced Center for Electrical and Electronic Engineer, AC3E, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|
32
|
Williams ZJ, He JL, Cascio CJ, Woynaroski TG. A review of decreased sound tolerance in autism: Definitions, phenomenology, and potential mechanisms. Neurosci Biobehav Rev 2021; 121:1-17. [PMID: 33285160 PMCID: PMC7855558 DOI: 10.1016/j.neubiorev.2020.11.030] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/23/2022]
Abstract
Atypical behavioral responses to environmental sounds are common in autistic children and adults, with 50-70 % of this population exhibiting decreased sound tolerance (DST) at some point in their lives. This symptom is a source of significant distress and impairment across the lifespan, contributing to anxiety, challenging behaviors, reduced community participation, and school/workplace difficulties. However, relatively little is known about its phenomenology or neurocognitive underpinnings. The present article synthesizes a large body of literature on the phenomenology and pathophysiology of DST-related conditions to generate a comprehensive theoretical account of DST in autism. Notably, we argue against conceptualizing DST as a unified construct, suggesting that it be separated into three phenomenologically distinct conditions: hyperacusis (the perception of everyday sounds as excessively loud or painful), misophonia (an acquired aversive reaction to specific sounds), and phonophobia (a specific phobia of sound), each responsible for a portion of observed DST behaviors. We further elaborate our framework by proposing preliminary neurocognitive models of hyperacusis, misophonia, and phonophobia that incorporate neurophysiologic findings from studies of autism.
Collapse
Affiliation(s)
- Zachary J Williams
- Medical Scientist Training Program, Vanderbilt University School of Medicine, 221 Eskind Biomedical Library and Learning Center, 2209 Garland Ave., Nashville, TN, 37240, United States; Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1215 21st Avenue South, Medical Center East, Room 8310, Nashville, TN, 37232, United States; Vanderbilt Brain Institute, Vanderbilt University, 7203 Medical Research Building III, 465 21st Avenue South, Nashville, TN, 37232, United States; Frist Center for Autism and Innovation, Vanderbilt University, 2414 Highland Avenue, Suite 115, Nashville, TN, 37212, United States.
| | - Jason L He
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Strand Building, Strand Campus, Strand, London, WC2R 2LS, London, United Kingdom.
| | - Carissa J Cascio
- Vanderbilt Brain Institute, Vanderbilt University, 7203 Medical Research Building III, 465 21st Avenue South, Nashville, TN, 37232, United States; Frist Center for Autism and Innovation, Vanderbilt University, 2414 Highland Avenue, Suite 115, Nashville, TN, 37212, United States; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 2254 Village at Vanderbilt, 1500 21st Ave South, Nashville, TN, 37212, United States; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, 110 Magnolia Cir, Nashville, TN, 37203, United States.
| | - Tiffany G Woynaroski
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1215 21st Avenue South, Medical Center East, Room 8310, Nashville, TN, 37232, United States; Vanderbilt Brain Institute, Vanderbilt University, 7203 Medical Research Building III, 465 21st Avenue South, Nashville, TN, 37232, United States; Frist Center for Autism and Innovation, Vanderbilt University, 2414 Highland Avenue, Suite 115, Nashville, TN, 37212, United States; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, 110 Magnolia Cir, Nashville, TN, 37203, United States.
| |
Collapse
|
33
|
The Neural Bases of Tinnitus: Lessons from Deafness and Cochlear Implants. J Neurosci 2021; 40:7190-7202. [PMID: 32938634 DOI: 10.1523/jneurosci.1314-19.2020] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023] Open
Abstract
Subjective tinnitus is the conscious perception of sound in the absence of any acoustic source. The literature suggests various tinnitus mechanisms, most of which invoke changes in spontaneous firing rates of central auditory neurons resulting from modification of neural gain. Here, we present an alternative model based on evidence that tinnitus is: (1) rare in people who are congenitally deaf, (2) common in people with acquired deafness, and (3) potentially suppressed by active cochlear implants used for hearing restoration. We propose that tinnitus can only develop after fast auditory fiber activity has stimulated the synapse formation between fast-spiking parvalbumin positive (PV+) interneurons and projecting neurons in the ascending auditory path and coactivated frontostriatal networks after hearing onset. Thereafter, fast auditory fiber activity promotes feedforward and feedback inhibition mediated by PV+ interneuron activity in auditory-specific circuits. This inhibitory network enables enhanced stimulus resolution, attention-driven contrast improvement, and augmentation of auditory responses in central auditory pathways (neural gain) after damage of slow auditory fibers. When fast auditory fiber activity is lost, tonic PV+ interneuron activity is diminished, resulting in the prolonged response latencies, sudden hyperexcitability, enhanced cortical synchrony, elevated spontaneous γ oscillations, and impaired attention/stress-control that have been described in previous tinnitus models. Moreover, because fast processing is gained through sensory experience, tinnitus would not exist in congenital deafness. Electrical cochlear stimulation may have the potential to reestablish tonic inhibitory networks and thus suppress tinnitus. The proposed framework unites many ideas of tinnitus pathophysiology and may catalyze cooperative efforts to develop tinnitus therapies.
Collapse
|
34
|
McKay CM. Applications of Phenomenological Loudness Models to Cochlear Implants. Front Psychol 2021; 11:611517. [PMID: 33519626 PMCID: PMC7838155 DOI: 10.3389/fpsyg.2020.611517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/11/2020] [Indexed: 11/13/2022] Open
Abstract
Cochlear implants electrically stimulate surviving auditory neurons in the cochlea to provide severely or profoundly deaf people with access to hearing. Signal processing strategies derive frequency-specific information from the acoustic signal and code amplitude changes in frequency bands onto amplitude changes of current pulses emitted by the tonotopically arranged intracochlear electrodes. This article first describes how parameters of the electrical stimulation influence the loudness evoked and then summarizes two different phenomenological models developed by McKay and colleagues that have been used to explain psychophysical effects of stimulus parameters on loudness, detection, and modulation detection. The Temporal Model is applied to single-electrode stimuli and integrates cochlear neural excitation using a central temporal integration window analogous to that used in models of normal hearing. Perceptual decisions are made using decision criteria applied to the output of the integrator. By fitting the model parameters to a variety of psychophysical data, inferences can be made about how electrical stimulus parameters influence neural excitation in the cochlea. The Detailed Model is applied to multi-electrode stimuli, and includes effects of electrode interaction at a cochlear level and a transform between integrated excitation and specific loudness. The Practical Method of loudness estimation is a simplification of the Detailed Model and can be used to estimate the relative loudness of any multi-electrode pulsatile stimuli without the need to model excitation at the cochlear level. Clinical applications of these models to novel sound processing strategies are described.
Collapse
Affiliation(s)
- Colette M. McKay
- Bionics Institute, Melbourne, VIC, Australia
- Department of Medical Bionics, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
35
|
Hyperacusis in tinnitus patients relates to enlarged subcortical and cortical responses to sound except at the tinnitus frequency. Hear Res 2020; 401:108158. [PMID: 33421659 DOI: 10.1016/j.heares.2020.108158] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 01/10/2023]
Abstract
Hyperacusis, a hypersensitivity to sounds of mild to moderate intensity, has been related to increased neural gain along the auditory pathway. To date, there is still uncertainty on the neural correlates of hyperacusis. Since hyperacusis often co-occurs with hearing loss and tinnitus, the effects of the three conditions on cortical and subcortical structures are often hard to separate. In this fMRI study, two groups of hearing loss and tinnitus participants, with and without hyperacusis, were compared to specifically investigate the effect of the latter in a group that often reports hyperacusis. In 35 participants with hearing loss and tinnitus, with and without hyperacusis as indicated by a cut-off score of 22 on the Hyperacusis Questionnaire (HQ), subcortical and cortical responses to sound stimulation were investigated. In addition, the frequency tuning of cortical voxels was investigated in the primary auditory cortex. In cortical and subcortical auditory structures, sound-evoked activity was higher in the group with hyperacusis. This effect was not restricted to frequencies affected by hearing loss but extended to intact frequencies. The higher subcortical and cortical activity in response to sound thus appears to be a marker of hyperacusis. In contrast, the response to the tinnitus frequency was reduced in the group with hyperacusis. This increase in subcortical and cortical activity in hyperacusis can be related to an increase in neural gain along the auditory pathway, and the reduced response to the tinnitus frequency to differences in attentional resources allocated to the tinnitus sound.
Collapse
|
36
|
Radziwon K, Salvi R. Using auditory reaction time to measure loudness growth in rats. Hear Res 2020; 395:108026. [PMID: 32668383 DOI: 10.1016/j.heares.2020.108026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/28/2020] [Accepted: 06/23/2020] [Indexed: 10/23/2022]
Abstract
Previous studies have demonstrated that auditory reaction time (RT) is a reliable surrogate of loudness perception in humans. Reaction time-intensity (RT-I) functions faithfully recapitulate equal loudness contours in humans while being easier to obtain than equal loudness judgments, especially in animals. In humans, loudness estimation not only depends on sound intensity, but on a variety of other acoustic factors. Stimulus duration and bandwidth are known to impact loudness perception. In addition, the presence of background noise mimics loudness recruitment; loudness growth is rapid near threshold, but growth becomes normal at suprathreshold levels. Therefore, to evaluate whether RT-I functions are a reliable measure of loudness growth in rats, we obtained auditory RTs across a range of stimulus intensities, durations, and bandwidths, in both quiet and in the presence of background/masking noise. We found that reaction time patterns across stimulus parameters were repeatable over several months in rats and generally consistent with human loudness perceptual data. Our results provide important building blocks for future animal model studies of loudness perception and loudness perceptual disorders.
Collapse
Affiliation(s)
- Kelly Radziwon
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, NY, 14214, USA.
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
37
|
Hayes SH, Schormans AL, Sigel G, Beh K, Herrmann B, Allman BL. Uncovering the contribution of enhanced central gain and altered cortical oscillations to tinnitus generation. Prog Neurobiol 2020; 196:101893. [PMID: 32783988 DOI: 10.1016/j.pneurobio.2020.101893] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/20/2020] [Accepted: 08/02/2020] [Indexed: 12/22/2022]
Abstract
Various theories and their associated mechanisms have been proposed as the neural basis of phantom sound perception (tinnitus), including central gain enhancement and altered cortical oscillations. However, it remains unknown whether these cortical changes directly cause tinnitus, or simply coexist with the phantom percept. Using chronically-implanted electrodes and drug delivery cannulae in rats, we examined whether enhanced central gain and cortical oscillations are consistent across different tinnitus induction methods (noise exposure; salicylate), and if directly-inducing enhanced central gain or altered cortical oscillations via pharmacologic manipulation of inhibition along the auditory pathway would cause behavioral evidence of tinnitus. We show that, while there appeared to be no clear link between tinnitus and the presence of enhanced sound-evoked cortical activity or altered spontaneous cortical oscillations, pharmacologic impairment of GABAergic neurotransmission in the auditory cortex was sufficient to cause tinnitus; collective findings which further advance our understanding of the neural basis of tinnitus.
Collapse
Affiliation(s)
- Sarah H Hayes
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, N6A 3K7, Canada.
| | - Ashley L Schormans
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Gregory Sigel
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Krystal Beh
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Björn Herrmann
- Department of Psychology, Brain and Mind Institute, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Brian L Allman
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, N6A 3K7, Canada
| |
Collapse
|
38
|
McCullagh EA, Rotschafer SE, Auerbach BD, Klug A, Kaczmarek LK, Cramer KS, Kulesza RJ, Razak KA, Lovelace JW, Lu Y, Koch U, Wang Y. Mechanisms underlying auditory processing deficits in Fragile X syndrome. FASEB J 2020; 34:3501-3518. [PMID: 32039504 DOI: 10.1096/fj.201902435r] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/31/2019] [Accepted: 01/18/2020] [Indexed: 01/14/2023]
Abstract
Autism spectrum disorders (ASD) are strongly associated with auditory hypersensitivity or hyperacusis (difficulty tolerating sounds). Fragile X syndrome (FXS), the most common monogenetic cause of ASD, has emerged as a powerful gateway for exploring underlying mechanisms of hyperacusis and auditory dysfunction in ASD. This review discusses examples of disruption of the auditory pathways in FXS at molecular, synaptic, and circuit levels in animal models as well as in FXS individuals. These examples highlight the involvement of multiple mechanisms, from aberrant synaptic development and ion channel deregulation of auditory brainstem circuits, to impaired neuronal plasticity and network hyperexcitability in the auditory cortex. Though a relatively new area of research, recent discoveries have increased interest in auditory dysfunction and mechanisms underlying hyperacusis in this disorder. This rapidly growing body of data has yielded novel research directions addressing critical questions regarding the timing and possible outcomes of human therapies for auditory dysfunction in ASD.
Collapse
Affiliation(s)
- Elizabeth A McCullagh
- Department of Physiology and Biophysics, University of Colorado Anschutz, Aurora, CO, USA.,Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Sarah E Rotschafer
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.,Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Benjamin D Auerbach
- Center for Hearing and Deafness, Department of Communicative Disorders & Sciences, SUNY at Buffalo, Buffalo, NY, USA
| | - Achim Klug
- Department of Physiology and Biophysics, University of Colorado Anschutz, Aurora, CO, USA
| | - Leonard K Kaczmarek
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Randy J Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Khaleel A Razak
- Department of Psychology, University of California, Riverside, CA, USA
| | | | - Yong Lu
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Ursula Koch
- Institute of Biology, Neurophysiology, Freie Universität Berlin, Berlin, Germany
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
39
|
Wong E, Radziwon K, Chen GD, Liu X, Manno FA, Manno SH, Auerbach B, Wu EX, Salvi R, Lau C. Functional magnetic resonance imaging of enhanced central auditory gain and electrophysiological correlates in a behavioral model of hyperacusis. Hear Res 2020; 389:107908. [PMID: 32062293 DOI: 10.1016/j.heares.2020.107908] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/02/2019] [Accepted: 02/02/2020] [Indexed: 01/24/2023]
Abstract
Hyperacusis is a debilitating hearing condition in which normal everyday sounds are perceived as exceedingly loud, annoying, aversive or even painful. The prevalence of hyperacusis approaches 10%, making it an important, but understudied medical condition. To noninvasively identify the neural correlates of hyperacusis in an animal model, we used sound-evoked functional magnetic resonance imaging (fMRI) to locate regions of abnormal activity in the central nervous system of rats with behavioral evidence of hyperacusis induced with an ototoxic drug (sodium salicylate, 250 mg/kg, i.p.). Reaction time-intensity measures of loudness-growth revealed behavioral evidence of salicylate-induced hyperacusis at high intensities. fMRI revealed significantly enhanced sound-evoked responses in the auditory cortex (AC) to 80 dB SPL tone bursts presented at 8 and 16 kHz. Sound-evoked responses in the inferior colliculus (IC) were also enhanced, but to a lesser extent. To confirm the main results, electrophysiological recordings of spike discharges from multi-unit clusters were obtained from the central auditory pathway. Salicylate significantly enhanced tone-evoked spike-discharges from multi-unit clusters in the AC from 4 to 30 kHz at intensities ≥60 dB SPL; less enhancement occurred in the medial geniculate body (MGB), and even less in the IC. Our results demonstrate for the first time that non-invasive sound-evoked fMRI can be used to identify regions of neural hyperactivity throughout the brain in an animal model of hyperacusis.
Collapse
Affiliation(s)
- Eddie Wong
- Department of Physics, City University of Hong Kong, Hong Kong, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China; Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, China
| | - Kelly Radziwon
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, SUNY at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Guang-Di Chen
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, SUNY at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Xiaopeng Liu
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, SUNY at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Francis Am Manno
- Department of Physics, City University of Hong Kong, Hong Kong, China; School of Biomedical Engineering, University of Sydney, Sydney, New South Wales, Australia
| | - Sinai Hc Manno
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Benjamin Auerbach
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, SUNY at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Ed X Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China; Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, China
| | - Richard Salvi
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, SUNY at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA; Department of Audiology and Speech-Language Pathology, Asia University, Taichung, Taiwan, ROC.
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
40
|
Parthasarathy A, Hancock KE, Bennett K, DeGruttola V, Polley DB. Bottom-up and top-down neural signatures of disordered multi-talker speech perception in adults with normal hearing. eLife 2020; 9:e51419. [PMID: 31961322 PMCID: PMC6974362 DOI: 10.7554/elife.51419] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/15/2019] [Indexed: 12/16/2022] Open
Abstract
In social settings, speech waveforms from nearby speakers mix together in our ear canals. Normally, the brain unmixes the attended speech stream from the chorus of background speakers using a combination of fast temporal processing and cognitive active listening mechanisms. Of >100,000 patient records,~10% of adults visited our clinic because of reduced hearing, only to learn that their hearing was clinically normal and should not cause communication difficulties. We found that multi-talker speech intelligibility thresholds varied widely in normal hearing adults, but could be predicted from neural phase-locking to frequency modulation (FM) cues measured with ear canal EEG recordings. Combining neural temporal fine structure processing, pupil-indexed listening effort, and behavioral FM thresholds accounted for 78% of the variability in multi-talker speech intelligibility. The disordered bottom-up and top-down markers of poor multi-talker speech perception identified here could inform the design of next-generation clinical tests for hidden hearing disorders.
Collapse
Affiliation(s)
- Aravindakshan Parthasarathy
- Eaton-Peabody LaboratoriesMassachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology – Head and Neck SurgeryHarvard Medical SchoolBostonUnited States
| | - Kenneth E Hancock
- Eaton-Peabody LaboratoriesMassachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology – Head and Neck SurgeryHarvard Medical SchoolBostonUnited States
| | - Kara Bennett
- Bennett Statistical Consulting IncBallstonUnited States
| | - Victor DeGruttola
- Department of BiostatisticsHarvard TH Chan School of Public HealthBostonUnited States
| | - Daniel B Polley
- Eaton-Peabody LaboratoriesMassachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology – Head and Neck SurgeryHarvard Medical SchoolBostonUnited States
| |
Collapse
|
41
|
Hong T, Ralli M, Stocking C, Sheppard A. Acoustic analysis of hearing aid sound therapy programs. HEARING, BALANCE AND COMMUNICATION 2020. [DOI: 10.1080/21695717.2019.1692592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Tiffany Hong
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, USA
| | - Massimo Ralli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Christina Stocking
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, USA
| | - Adam Sheppard
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
42
|
Sense and Sensibility: A Review of the Behavioral Neuroscience of Tinnitus Sound Therapy and a New Typology. Curr Top Behav Neurosci 2020; 51:213-247. [PMID: 33547596 DOI: 10.1007/7854_2020_183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tinnitus Sound Therapy is not a single strategy. It consists of many different sound types, targeting many different mechanisms. Therapies that use sound to cover, reduce attention to, or facilitate habituation of tinnitus are among the most common tinnitus treatment paradigms. Recent history has seen a proliferation of sound therapies, but they have each been criticized for having limited empirical support. In this review, Sound Therapy's modern history will be described, and a typology will be introduced and discussed in light of current behavioral neuroscience research. It will be argued that contributing factors to the limited evidence for the efficacy of Sound Therapy are its diversity, plural modes of action, and absence of a clear typology. Despite gaps in understanding the efficacy of sound's effects on tinnitus, there is compelling evidence for its multiple, but related, neurophysiological mechanisms. Evidence suggests that sound may reduce tinnitus through its presence, context, reaction, and potentially adaptation. This review provides insights into the neurocognitive basis of these tinnitus Sound Therapy modes. It concludes that a unifying classification is needed to secure and advance arguments in favor of Sound Therapy.
Collapse
|
43
|
Radziwon K, Auerbach BD, Ding D, Liu X, Chen GD, Salvi R. Noise-Induced loudness recruitment and hyperacusis: Insufficient central gain in auditory cortex and amygdala. Neuroscience 2019; 422:212-227. [PMID: 31669363 PMCID: PMC6994858 DOI: 10.1016/j.neuroscience.2019.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
Noise-induced hearing loss generally induces loudness recruitment, but sometimes gives rise to hyperacusis, a debilitating condition in which moderate intensity sounds are perceived abnormally loud. In an attempt to develop an animal model of loudness hyperacusis, we exposed rats to a 16-20 kHz noise at 104 dB SPL for 12 weeks. Behavioral reaction time-intensity functions were used to assess loudness growth functions before, during and 2-months post-exposure. During the exposure, loudness recruitment (R) was present in the region of hearing loss, but subtle evidence of hyperacusis (H) started to emerge at the border of the hearing loss. Unexpectedly, robust evidence of hyperacusis appeared below and near the edge of the hearing loss 2-months post-exposure. To identify the neural correlates of hyperacusis and test the central gain model of hyperacusis, we recorded population neural responses from the cochlea, auditory cortex and lateral amygdala 2-months post-exposure. Compared to controls, the neural output of the cochlea was greatly reduced in the noise group. Consistent with central gain models, the gross neural responses from the auditory cortex and amygdala were proportionately much larger than those from the cochlea. However, despite central amplification, the population responses in the auditory cortex and amygdala were still below the level needed to fully account for hyperacusis and/or recruitment. Having developed procedures that can consistently induce hyperacusis in rats, our results set the stage for future studies that seek to identify the neurobiological events that give rise to hyperacusis and to develop new therapies to treat this debilitating condition.
Collapse
Affiliation(s)
- Kelly Radziwon
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA
| | | | - Dalian Ding
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA
| | - Xiaopeng Liu
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA.
| | - Richard Salvi
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
44
|
Rybalko N, Mitrovic D, Šuta D, Bureš Z, Popelář J, Syka J. Behavioral evaluation of auditory function abnormalities in adult rats with normal hearing thresholds that were exposed to noise during early development. Physiol Behav 2019; 210:112620. [DOI: 10.1016/j.physbeh.2019.112620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 06/07/2019] [Accepted: 07/15/2019] [Indexed: 11/25/2022]
|
45
|
|
46
|
Vianney-Rodrigues P, Auerbach BD, Salvi R. Aberrant thalamocortical coherence in an animal model of tinnitus. J Neurophysiol 2019; 121:893-907. [PMID: 30625004 PMCID: PMC6520628 DOI: 10.1152/jn.00053.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 12/14/2018] [Accepted: 01/07/2019] [Indexed: 11/22/2022] Open
Abstract
Electrophysiological and imaging studies from humans suggest that the phantom sound of tinnitus is associated with abnormal thalamocortical neural oscillations (dysrhythmia) and enhanced gamma band activity in the auditory cortex. However, these models have seldom been tested in animal models where it is possible to simultaneously assess the neural oscillatory activity within and between the thalamus and auditory cortex. To explore this issue, we used multichannel electrodes to examine the oscillatory behavior of local field potentials recorded in the rat medial geniculate body (MBG) and primary auditory cortex (A1) before and after administering a dose of sodium salicylate (SS) that reliably induces tinnitus. In the MGB, SS reduced theta, alpha, and beta oscillations and decreased coherence (synchrony) between electrode pairs in theta, alpha, and beta bands but increased coherence in the gamma band. Within A1, SS significantly increased gamma oscillations, decreased theta power, and decreased coherence between electrode pairs in theta and alpha bands but increased coherence in the gamma band. When coherence was measured between one electrode in the MGB and another in A1, SS decreased coherence in beta, alpha, and theta bands but increased coherence in the gamma band. SS also increased cross-frequency coupling between the phase of theta oscillations in the MGB and amplitude of gamma oscillations in A1. Altogether, our results suggest that SS treatment fundamentally alters the manner in which thalamocortical circuits communicate, leading to excessive cortical gamma power and synchronization, neurophysiological changes implicated in tinnitus. Our data provide support for elements of both the thalamocortical dysrhythmia (TD) and synchronization by loss of inhibition (SLIM) models of tinnitus, demonstrating that increased cortical gamma band activity is associated with both enhanced theta-gamma coupling as well as decreases alpha power/coherence between the MGB and A1. NEW & NOTEWORTHY There are no effective drugs to alleviate the phantom sound of tinnitus because the physiological mechanisms leading to its generation are poorly understood. Neural models of tinnitus suggest that it arises from abnormal thalamocortical oscillations, but these models have not been extensively tested. This article identifies abnormal thalamocortical oscillations in a drug-induced tinnitus model. Our findings open up new avenues of research to investigate whether cellular mechanisms underlying thalamocortical oscillations are causally linked to tinnitus.
Collapse
Affiliation(s)
| | | | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo , Buffalo, New York
| |
Collapse
|