1
|
Wahab A, Suhail M, Eggers T, Shehzad K, Akakuru OU, Ahmad Z, Sun Z, Iqbal MZ, Kong X. Innovative perspectives on metal free contrast agents for MRI: Enhancing imaging efficacy, and AI-driven future diagnostics. Acta Biomater 2025; 193:83-106. [PMID: 39793747 DOI: 10.1016/j.actbio.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The U.S. Food and Drug Administration (FDA) has issued a boxed warning and mandated additional safety measures for all gadolinium-based contrast agents (GBCAs) used in clinical magnetic resonance imaging (MRI) due to their prolonged retention in the body and associated adverse health effects. This review explores recent advancements in CAs for MRI, highlighting four innovative probes: ORCAs, CEST CAs, 19F CAs, and HP 13C MRI. ORCAs offer a metal-free alternative that enhances imaging through nitroxides. CEST MRI facilitates the direct detection of specific molecules via proton exchange, aiding in disease diagnosis and metabolic assessment. 19F MRI CAs identify subtle biological changes, enabling earlier detection and tailored treatment approaches. HP 13C MRI improves visualization of metabolic processes, demonstrating potential in cancer diagnosis and monitoring. Finally, this review concludes by addressing the challenges facing the field and outlining future research directions, with a particular focus on leveraging artificial intelligence to enhance diagnostic capabilities and optimize both the performance and safety profiles of these innovative CAs. STATEMENT OF SIGNIFICANCE: The review addresses the urgent need for safer MRI contrast agents in light of FDA warnings about GBCAs. It highlights the key factors influencing the stability and functionality of metal-free CAs and recent advancements in designing ORCAs, CEST CAs, 19F CAs, and HP 13C probes and functionalization that enhance MRI contrast. It also explores the potential of these agents for multimodal imaging and targeted diagnostics while outlining future research directions and the integration of artificial intelligence to optimize their clinical application and safety. This contribution is pivotal for driving innovation in MRI technology and improving patient outcomes in disease detection and monitoring.
Collapse
Affiliation(s)
- Abdul Wahab
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Muhammad Suhail
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Tatiana Eggers
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Khurram Shehzad
- Institute of Physics, Silesian University of Technology, Konarskiego 22B, Gliwice 44-100, Poland
| | - Ozioma Udochukwu Akakuru
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Alberta, Canada
| | - Zahoor Ahmad
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Zhichao Sun
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
2
|
Ma X, Sun C, Ding X, Xu J, Zhang Y, Deng T, Wang Y, Yang H, Ding R, Li H, Wang D, Zheng M. Mechanism analysis and targeted therapy of IDH gene mutation in glioma. Am J Cancer Res 2025; 15:248-270. [PMID: 39949933 PMCID: PMC11815359 DOI: 10.62347/nsxc2205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Isocitrate dehydrogenase (IDH) is a pivotal enzyme responsible for catalyzing the oxidative decarboxylation of isocitrate into α-ketoglutarate (α-KG). This enzyme serves as a crucial regulator in the tricarboxylic acid cycle (TCA cycle), acting as a rate-limiting step. Its role extends beyond mere metabolic function, influencing cellular homeostasis and overall cell function. In the past decade, prominent research in cancer genetics has revealed that genes responsible for encoding isocitrate dehydrogenase are commonly mutated across various human malignancies. Significant research in the field has shown that these mutations are commonly found in diseases like glioma, acute myeloid leukemia (AML), cholangiocarcinoma (CCA), chondrosarcoma, and thyroid cancer (TC). As research on IDH progresses, deeper insights into the biological effects of IDH mutations have been gained, unveiling their potential role in tumorigenesis. In addition, IDH mutants' unique activities creates new pathways in tumor metabolism, gene rearrangement, and therapeutic resistance. Currently, innovative molecular targeting strategies for genes bearing mutations in IDH have been devised to enhance the therapeutic efficacy against cancers harboring IDH mutations. These methods represent a promising avenue for improving treatment outcomes in IDH-mutated malignancies. This article mainly summarizes the related research on glioma caused by IDH mutation, and focuses on the biological characteristics and transformation of IDH.
Collapse
Affiliation(s)
- Xingyuan Ma
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| | - Chao Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical UniversityBeijing 100070, China
| | - Xiao Ding
- The Third Department of Surgery, Armed Police Hospital of TianjinTianjin 300163, China
| | - Jiaqi Xu
- Edinburgh Medical School, The University of EdinburghEdinburgh EH16 4SB, Scotland, UK
| | - Yuhang Zhang
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| | - Tingzhen Deng
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| | - Yatao Wang
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| | - Haijun Yang
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| | - Ruiwen Ding
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| | - Haotian Li
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| | - Dawen Wang
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| | - Maohua Zheng
- The First School of Clinical Medicine, Lanzhou UniversityLanzhou 730000, Gansu, China
- Department of Neurosurgery, The First Hospital of Lanzhou UniversityLanzhou 730000, Gansu, China
| |
Collapse
|
3
|
Choate KA, Pratt EPS, Jennings MJ, Winn RJ, Mann PB. IDH Mutations in Glioma: Molecular, Cellular, Diagnostic, and Clinical Implications. BIOLOGY 2024; 13:885. [PMID: 39596840 PMCID: PMC11592129 DOI: 10.3390/biology13110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
In 2021, the World Health Organization classified isocitrate dehydrogenase (IDH) mutant gliomas as a distinct subgroup of tumors with genetic changes sufficient to enable a complete diagnosis. Patients with an IDH mutant glioma have improved survival which has been further enhanced by the advent of targeted therapies. IDH enzymes contribute to cellular metabolism, and mutations to specific catalytic residues result in the neomorphic production of D-2-hydroxyglutarate (D-2-HG). The accumulation of D-2-HG results in epigenetic alterations, oncogenesis and impacts the tumor microenvironment via immunological modulations. Here, we summarize the molecular, cellular, and clinical implications of IDH mutations in gliomas as well as current diagnostic techniques.
Collapse
Affiliation(s)
- Kristian A. Choate
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
| | - Evan P. S. Pratt
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Chemistry, Northern Michigan University, Marquette, MI 49855, USA
| | - Matthew J. Jennings
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| | - Robert J. Winn
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Biology, Northern Michigan University, Marquette, MI 49855, USA
| | - Paul B. Mann
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| |
Collapse
|
4
|
Joergensen SH, Hansen ESS, Bøgh N, Bertelsen LB, Tougaard RS, Staehr PB, Laustsen C, Wiggers H. Hyperpolarized [1- 13C]pyruvate cardiovascular magnetic resonance imaging identifies metabolic phenotypes in patients with heart failure. J Cardiovasc Magn Reson 2024; 26:101095. [PMID: 39270801 PMCID: PMC11635003 DOI: 10.1016/j.jocmr.2024.101095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Hyperpolarized [1-13C]pyruvate cardiovascular magnetic resonance imaging (HP [1-13C]pyruvate CMR) visualizes key steps in myocardial metabolism. The present study aimed to examine patients with heart failure (HF) using HP [1-13C]pyruvate CMR. METHODS A cross-sectional study of patients with HF and healthy controls using HP [1-13C]pyruvate CMR. Metabolic imaging was obtained using a cardiac-gated spectral-spatial excitation with spiral read-out acquisition. The metabolite signal was analyzed for lactate, bicarbonate, and the alanine signal. Metabolite signal was normalized to the total carbon signal (TC). At the 1-year follow-up, echocardiography was performed in all patients and HP [1-13C]pyruvate MRI in two patients. RESULTS We included six patients with ischemic heart disease (IHD), six with dilated cardiomyopathy, and six healthy controls. In patients, left ventricular ejection fraction (LVEF) correlated with lactate/bicarbonate (r = -0.6, p = 0.03) and lactate/TC (r = -0.7, p = 0.01). In patients with LVEF <30%, lactate/TC was increased (p = 0.01) and bicarbonate/TC reduced (p = 0.03). Circumferential strain correlated with metabolite ratios: lactate/bicarbonate, r = 0.87 (p = 0.0002); lactate/TC, r = 0.85 (p = 0.0005); bicarbonate/TC, r = -0.82 (p = 0.001). In patients with IHD, a strong correlation was found between baseline metabolite ratios and the change in LVEF at follow-up: lactate/bicarbonate (p = 0.001), lactate/TC (p = 0.011), and bicarbonate/TC (p = 0.012). CONCLUSIONS This study highlighted the ability of HP [1-13C]pyruvate CMR to detect changes in metabolism in HF. HP [1-13C]pyruvate CMR has the potential for metabolic phenotyping of patients with HF and for predicting treatment response. TRIAL REGISTRATION EUDRACT, 2018-003533-15. Registered December 4, 2018, https://www.clinicaltrialsregister.eu/ctr-search/search?query=2018-003533-15.
Collapse
Affiliation(s)
- Steen Hylgaard Joergensen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Esben Soevsoe S Hansen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nikolaj Bøgh
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rasmus Stilling Tougaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Christoffer Laustsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Henrik Wiggers
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Larson PEZ, Bernard JML, Bankson JA, Bøgh N, Bok RA, Chen AP, Cunningham CH, Gordon J, Hövener JB, Laustsen C, Mayer D, McLean MA, Schilling F, Slater J, Vanderheyden JL, von Morze C, Vigneron DB, Xu D, HP 13C MRI Consensus Group. Current methods for hyperpolarized [1- 13C]pyruvate MRI human studies. Magn Reson Med 2024; 91:2204-2228. [PMID: 38441968 PMCID: PMC10997462 DOI: 10.1002/mrm.29875] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/12/2023] [Accepted: 09/06/2023] [Indexed: 03/07/2024]
Abstract
MRI with hyperpolarized (HP) 13C agents, also known as HP 13C MRI, can measure processes such as localized metabolism that is altered in numerous cancers, liver, heart, kidney diseases, and more. It has been translated into human studies during the past 10 years, with recent rapid growth in studies largely based on increasing availability of HP agent preparation methods suitable for use in humans. This paper aims to capture the current successful practices for HP MRI human studies with [1-13C]pyruvate-by far the most commonly used agent, which sits at a key metabolic junction in glycolysis. The paper is divided into four major topic areas: (1) HP 13C-pyruvate preparation; (2) MRI system setup and calibrations; (3) data acquisition and image reconstruction; and (4) data analysis and quantification. In each area, we identified the key components for a successful study, summarized both published studies and current practices, and discuss evidence gaps, strengths, and limitations. This paper is the output of the "HP 13C MRI Consensus Group" as well as the ISMRM Hyperpolarized Media MR and Hyperpolarized Methods and Equipment study groups. It further aims to provide a comprehensive reference for future consensus, building as the field continues to advance human studies with this metabolic imaging modality.
Collapse
Affiliation(s)
- Peder EZ Larson
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering,
University of California, San Francisco and University of California, Berkeley, CA
94143, USA
| | - Jenna ML Bernard
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
| | - James A Bankson
- Department of Imaging Physics, MD Anderson Medical Center,
Houston, TX, USA
| | - Nikolaj Bøgh
- The MR Research Center, Department of Clinical Medicine,
Aarhus University, Aarhus, Denmark
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
| | | | - Charles H Cunningham
- Physical Sciences, Sunnybrook Research Institute, Toronto,
Ontario, Canada
- Department of Medical Biophysics, University of Toronto,
Toronto, Ontario, Canada
| | - Jeremy Gordon
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North
Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University
Medical Center Schleswig-Holstein (UKSH), Kiel University, Am Botanischen Garten 14,
24118, Kiel, Germany
| | - Christoffer Laustsen
- The MR Research Center, Department of Clinical Medicine,
Aarhus University, Aarhus, Denmark
| | - Dirk Mayer
- Department of Diagnostic Radiology and Nuclear Medicine,
University of Maryland School of Medicine, Baltimore, MD, USA
- Greenebaum Cancer Center, University of Maryland School
of Medicine, Baltimore, MD, USA
| | - Mary A McLean
- Department of Radiology, University of Cambridge,
Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of
Cambridge, Li Ka Shing Center, Cambridge, United Kingdom
| | - Franz Schilling
- Department of Nuclear Medicine, School of Medicine,
Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich,
Germany
| | - James Slater
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
| | | | | | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering,
University of California, San Francisco and University of California, Berkeley, CA
94143, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering,
University of California, San Francisco and University of California, Berkeley, CA
94143, USA
| | | |
Collapse
|
6
|
Kishk A, Pires Pacheco M, Heurtaux T, Sauter T. Metabolic models predict fotemustine and the combination of eflornithine/rifamycin and adapalene/cannabidiol for the treatment of gliomas. Brief Bioinform 2024; 25:bbae199. [PMID: 38701414 PMCID: PMC11066901 DOI: 10.1093/bib/bbae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Gliomas are the most common type of malignant brain tumors, with glioblastoma multiforme (GBM) having a median survival of 15 months due to drug resistance and relapse. The treatment of gliomas relies on surgery, radiotherapy and chemotherapy. Only 12 anti-brain tumor chemotherapies (AntiBCs), mostly alkylating agents, have been approved so far. Glioma subtype-specific metabolic models were reconstructed to simulate metabolite exchanges, in silico knockouts and the prediction of drug and drug combinations for all three subtypes. The simulations were confronted with literature, high-throughput screenings (HTSs), xenograft and clinical trial data to validate the workflow and further prioritize the drug candidates. The three subtype models accurately displayed different degrees of dependencies toward glutamine and glutamate. Furthermore, 33 single drugs, mainly antimetabolites and TXNRD1-inhibitors, as well as 17 drug combinations were predicted as potential candidates for gliomas. Half of these drug candidates have been previously tested in HTSs. Half of the tested drug candidates reduce proliferation in cell lines and two-thirds in xenografts. Most combinations were predicted to be efficient for all three glioma types. However, eflornithine/rifamycin and cannabidiol/adapalene were predicted specifically for GBM and low-grade glioma, respectively. Most drug candidates had comparable efficiency in preclinical tests, cerebrospinal fluid bioavailability and mode-of-action to AntiBCs. However, fotemustine and valganciclovir alone and eflornithine and celecoxib in combination with AntiBCs improved the survival compared to AntiBCs in two-arms, phase I/II and higher glioma clinical trials. Our work highlights the potential of metabolic modeling in advancing glioma drug discovery, which accurately predicted metabolic vulnerabilities, repurposable drugs and combinations for the glioma subtypes.
Collapse
Affiliation(s)
- Ali Kishk
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Maria Pires Pacheco
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Tony Heurtaux
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
- Luxembourg Centre of Neuropathology, L-3555 Dudelange, Luxembourg
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| |
Collapse
|
7
|
Trejo-Solis C, Silva-Adaya D, Serrano-García N, Magaña-Maldonado R, Jimenez-Farfan D, Ferreira-Guerrero E, Cruz-Salgado A, Castillo-Rodriguez RA. Role of Glycolytic and Glutamine Metabolism Reprogramming on the Proliferation, Invasion, and Apoptosis Resistance through Modulation of Signaling Pathways in Glioblastoma. Int J Mol Sci 2023; 24:17633. [PMID: 38139462 PMCID: PMC10744281 DOI: 10.3390/ijms242417633] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Glioma cells exhibit genetic and metabolic alterations that affect the deregulation of several cellular signal transduction pathways, including those related to glucose metabolism. Moreover, oncogenic signaling pathways induce the expression of metabolic genes, increasing the metabolic enzyme activities and thus the critical biosynthetic pathways to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates that are essential to accomplish the biosynthetic needs of glioma cells. In this review, we aim to explore how dysregulated metabolic enzymes and their metabolites from primary metabolism pathways in glioblastoma (GBM) such as glycolysis and glutaminolysis modulate anabolic and catabolic metabolic pathways as well as pro-oncogenic signaling and contribute to the formation, survival, growth, and malignancy of glioma cells. Also, we discuss promising therapeutic strategies by targeting the key players in metabolic regulation. Therefore, the knowledge of metabolic reprogramming is necessary to fully understand the biology of malignant gliomas to improve patient survival significantly.
Collapse
Affiliation(s)
- Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Elizabeth Ferreira-Guerrero
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | | |
Collapse
|
8
|
Guillevin R, Naudin M, Fayolle P, Giraud C, Le Guillou X, Thomas C, Herpe G, Miranville A, Fernandez-Maloigne C, Pellerin L, Guillevin C. Diagnostic and Therapeutic Issues in Glioma Using Imaging Data: The Challenge of Numerical Twinning. J Clin Med 2023; 12:7706. [PMID: 38137775 PMCID: PMC10744312 DOI: 10.3390/jcm12247706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Glial tumors represent the leading etiology of primary brain tumors. Their particularities lie in (i) their location in a highly functional organ that is difficult to access surgically, including for biopsy, and (ii) their rapid, anisotropic mode of extension, notably via the fiber bundles of the white matter, which further limits the possibilities of resection. The use of mathematical tools enables the development of numerical models representative of the oncotype, genotype, evolution, and therapeutic response of lesions. The significant development of digital technologies linked to high-resolution NMR exploration, coupled with the possibilities offered by AI, means that we can envisage the creation of digital twins of tumors and their host organs, thus reducing the use of physical sampling.
Collapse
Affiliation(s)
- Rémy Guillevin
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Mathieu Naudin
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Pierre Fayolle
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Clément Giraud
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Xavier Le Guillou
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
- Department of Genetic, University Hospital Center of Poitiers, 86000 Poitiers, France
| | - Clément Thomas
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Guillaume Herpe
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Alain Miranville
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | | | - Luc Pellerin
- IRMETIST Laboratory, INSERM U1313, University of Poitiers and University Hospital Center of Poitiers, 86000 Poitiers, France
| | - Carole Guillevin
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| |
Collapse
|
9
|
Larson PE, Bernard JM, Bankson JA, Bøgh N, Bok RA, Chen AP, Cunningham CH, Gordon J, Hövener JB, Laustsen C, Mayer D, McLean MA, Schilling F, Slater J, Vanderheyden JL, von Morze C, Vigneron DB, Xu D, Group THCMC. Current Methods for Hyperpolarized [1-13C]pyruvate MRI Human Studies. ARXIV 2023:arXiv:2309.04040v2. [PMID: 37731660 PMCID: PMC10508833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
MRI with hyperpolarized (HP) 13C agents, also known as HP 13C MRI, can measure processes such as localized metabolism that is altered in numerous cancers, liver, heart, kidney diseases, and more. It has been translated into human studies during the past 10 years, with recent rapid growth in studies largely based on increasing availability of hyperpolarized agent preparation methods suitable for use in humans. This paper aims to capture the current successful practices for HP MRI human studies with [1-13C]pyruvate - by far the most commonly used agent, which sits at a key metabolic junction in glycolysis. The paper is divided into four major topic areas: (1) HP 13C-pyruvate preparation, (2) MRI system setup and calibrations, (3) data acquisition and image reconstruction, and (4) data analysis and quantification. In each area, we identified the key components for a successful study, summarized both published studies and current practices, and discuss evidence gaps, strengths, and limitations. This paper is the output of the HP 13C MRI Consensus Group as well as the ISMRM Hyperpolarized Media MR and Hyperpolarized Methods & Equipment study groups. It further aims to provide a comprehensive reference for future consensus building as the field continues to advance human studies with this metabolic imaging modality.
Collapse
|
10
|
Zhang R, Wang C, Zheng X, Li S, Zhang W, Kang Z, Yin S, Chen J, Chen F, Li W. Warburg effect-related risk scoring model to assess clinical significance and immunity characteristics of glioblastoma. Cancer Med 2023; 12:20639-20654. [PMID: 37864422 PMCID: PMC10660605 DOI: 10.1002/cam4.6627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM), the most common primary malignant brain tumor, has a poor prognosis, with a median survival of only 14.6 months. The Warburg effect is an abnormal energy metabolism, which is the main cause of the acidic tumor microenvironment. This study explored the role of the Warburg effect in the prognosis and immune microenvironment of GBM. METHODS A prognostic risk score model of Warburg effect-related genes (Warburg effect signature) was constructed using GBM cohort data from The Cancer Genome Atlas. Cox analysis was performed to identify independent prognostic factors. Next, the nomogram was built to predict the prognosis for GBM patients. Finally, the drug sensitivity analysis was utilized to find the drugs that specifically target Warburg effect-related genes. RESULTS Age, radiotherapy, chemotherapy, and WRGs score were confirmed as independent prognostic factors for GBM by Cox analyses. The C-index (0.633 for the training set and 0.696 for the validation set) and area under curve (>0.7) indicated that the nomogram exhibited excellent performance. The calibration curve also indicates excellent consistency of the nomogram between predictions and actual observations. In addition, immune microenvironment analysis revealed that patients with high WRGs scores had high immunosuppressive scores, a high abundance of immunosuppressive cells, and a low response to immunotherapy. The Cell Counting Kit-8 assays showed that the drugs targeting Warburg effect-related genes could inhibit the GBM cells growth in vitro. CONCLUSION Our research showed that the Warburg effect is connected with the prognosis and immune microenvironment of GBM. Therefore, targeting Warburg effect-related genes may provide novel therapeutic options.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Neuro‐Oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Can Wang
- Department of Neuro‐Oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xiaohong Zheng
- Department of Neuro‐Oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Shenglan Li
- Department of Neuro‐Oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Weichunbai Zhang
- Department of Neuro‐Oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zhuang Kang
- Department of Neuro‐Oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Shuo Yin
- Department of Neuro‐Oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jinyi Chen
- Department of Neuro‐Oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Feng Chen
- Department of Neuro‐Oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Wenbin Li
- Department of Neuro‐Oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
11
|
Deen SS, Rooney C, Shinozaki A, McGing J, Grist JT, Tyler DJ, Serrão E, Gallagher FA. Hyperpolarized Carbon 13 MRI: Clinical Applications and Future Directions in Oncology. Radiol Imaging Cancer 2023; 5:e230005. [PMID: 37682052 PMCID: PMC10546364 DOI: 10.1148/rycan.230005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/16/2023] [Accepted: 08/02/2023] [Indexed: 09/09/2023]
Abstract
Hyperpolarized carbon 13 MRI (13C MRI) is a novel imaging approach that can noninvasively probe tissue metabolism in both normal and pathologic tissues. The process of hyperpolarization increases the signal acquired by several orders of magnitude, allowing injected 13C-labeled molecules and their downstream metabolites to be imaged in vivo, thus providing real-time information on kinetics. To date, the most important reaction studied with hyperpolarized 13C MRI is exchange of the hyperpolarized 13C signal from injected [1-13C]pyruvate with the resident tissue lactate pool. Recent preclinical and human studies have shown the role of several biologic factors such as the lactate dehydrogenase enzyme, pyruvate transporter expression, and tissue hypoxia in generating the MRI signal from this reaction. Potential clinical applications of hyperpolarized 13C MRI in oncology include using metabolism to stratify tumors by grade, selecting therapeutic pathways based on tumor metabolic profiles, and detecting early treatment response through the imaging of shifts in metabolism that precede tumor structural changes. This review summarizes the foundations of hyperpolarized 13C MRI, presents key findings from human cancer studies, and explores the future clinical directions of the technique in oncology. Keywords: Hyperpolarized Carbon 13 MRI, Molecular Imaging, Cancer, Tissue Metabolism © RSNA, 2023.
Collapse
Affiliation(s)
- Surrin S Deen
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - Catriona Rooney
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - Ayaka Shinozaki
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - Jordan McGing
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - James T Grist
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - Damian J Tyler
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - Eva Serrão
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - Ferdia A Gallagher
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| |
Collapse
|
12
|
Yin WJ. A bacterial enzyme may correct 2-HG accumulation in human cancers. Front Oncol 2023; 13:1235191. [PMID: 37546420 PMCID: PMC10399246 DOI: 10.3389/fonc.2023.1235191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
A significant proportion of lower-grade glioma as well as many other types of human cancers are associated with neomorphic mutations in IDH1/2 genes (mIDH1/2). These mutations lead to an aberrant accumulation of 2-hydroxyglutarate (2-HG). Interestingly, even cancers without mIDH1/2 can exhibit increased levels of 2-HG due to factors like hypoxia and extracellular acidity. Mounting evidence demonstrates that 2-HG competitively inhibits α-ketoglutarate dependent enzymes, such as JmjC-domain-containing histone demethylases (JHDMs), ten-eleven translocation enzymes (TETs), and various dioxygenases (e.g., RNA m6A demethylases and prolyl hydroxylases). Consequently, the hypermethylation of DNA, RNA, and histones, and the abnormal activities of hypoxia-inducible factors (HIFs) have profound impacts on the establishment of cancer metabolism and microenvironment, which promote tumor progression. This connection between the oncometabolite 2-HG and glioma holds crucial implications for treatments targeting this disease. Here, I hypothesize that an ectopic introduction of a bacterial 2-hydroxyglutarate synthase (2-HG synthase) enzyme into cancer cells with 2-HG accumulation could serve as a promising enzyme therapy for glioma and other types of cancers. While absent in human metabolism, 2-HG synthase in bacterial species catalyzes the conversion of 2-HG into propionyl-CoA and glyoxylate, two metabolites that potentially possess anti-tumor effects. For a broad spectrum of human cancers with 2-HG accumulation, 2-HG synthase-based enzyme therapy holds the potential to not only correct 2-HG induced cancer metabolism but also transform an oncometabolite into metabolic challenges within cancer cells.
Collapse
Affiliation(s)
- William J. Yin
- Oconee County High School, Watkinsville, GA, United States
- Bio-Imaging Research Center, The University of Georgia, Athens, GA, United States
| |
Collapse
|
13
|
Solomou G, Finch A, Asghar A, Bardella C. Mutant IDH in Gliomas: Role in Cancer and Treatment Options. Cancers (Basel) 2023; 15:cancers15112883. [PMID: 37296846 DOI: 10.3390/cancers15112883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Altered metabolism is a common feature of many cancers and, in some cases, is a consequence of mutation in metabolic genes, such as the ones involved in the TCA cycle. Isocitrate dehydrogenase (IDH) is mutated in many gliomas and other cancers. Physiologically, IDH converts isocitrate to α-ketoglutarate (α-KG), but when mutated, IDH reduces α-KG to D2-hydroxyglutarate (D2-HG). D2-HG accumulates at elevated levels in IDH mutant tumours, and in the last decade, a massive effort has been made to develop small inhibitors targeting mutant IDH. In this review, we summarise the current knowledge about the cellular and molecular consequences of IDH mutations and the therapeutic approaches developed to target IDH mutant tumours, focusing on gliomas.
Collapse
Affiliation(s)
- Georgios Solomou
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Alina Finch
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Asim Asghar
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Chiara Bardella
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
14
|
Sharma G, Enriquez JS, Armijo R, Wang M, Bhattacharya P, Pudakalakatti S. Enhancing Cancer Diagnosis with Real-Time Feedback: Tumor Metabolism through Hyperpolarized 1- 13C Pyruvate MRSI. Metabolites 2023; 13:606. [PMID: 37233647 PMCID: PMC10224418 DOI: 10.3390/metabo13050606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
This review article discusses the potential of hyperpolarized (HP) 13C magnetic resonance spectroscopic imaging (MRSI) as a noninvasive technique for identifying altered metabolism in various cancer types. Hyperpolarization significantly improves the signal-to-noise ratio for the identification of 13C-labeled metabolites, enabling dynamic and real-time imaging of the conversion of [1-13C] pyruvate to [1-13C] lactate and/or [1-13C] alanine. The technique has shown promise in identifying upregulated glycolysis in most cancers, as compared to normal cells, and detecting successful treatment responses at an earlier stage than multiparametric MRI in breast and prostate cancer patients. The review provides a concise overview of the applications of HP [1-13C] pyruvate MRSI in various cancer systems, highlighting its potential for use in preclinical and clinical investigations, precision medicine, and long-term studies of therapeutic response. The article also discusses emerging frontiers in the field, such as combining multiple metabolic imaging techniques with HP MRSI for a more comprehensive view of cancer metabolism, and leveraging artificial intelligence to develop real-time, actionable biomarkers for early detection, assessing aggressiveness, and interrogating the early efficacy of therapies.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Cardiovascular & Thoracic Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA;
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - José S. Enriquez
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 75390, USA; (J.S.E.); (R.A.); (M.W.); (P.B.)
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 75390, USA
| | - Ryan Armijo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 75390, USA; (J.S.E.); (R.A.); (M.W.); (P.B.)
| | - Muxin Wang
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 75390, USA; (J.S.E.); (R.A.); (M.W.); (P.B.)
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 75390, USA; (J.S.E.); (R.A.); (M.W.); (P.B.)
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 75390, USA
| | - Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 75390, USA; (J.S.E.); (R.A.); (M.W.); (P.B.)
| |
Collapse
|
15
|
Grist JT, Bøgh N, Hansen ES, Schneider AM, Healicon R, Ball V, Miller JJJJ, Smart S, Couch Y, Buchan AM, Tyler DJ, Laustsen C. Developing a metabolic clearance rate framework as a translational analysis approach for hyperpolarized 13C magnetic resonance imaging. Sci Rep 2023; 13:1613. [PMID: 36709217 PMCID: PMC9884306 DOI: 10.1038/s41598-023-28643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/23/2023] [Indexed: 01/29/2023] Open
Abstract
Hyperpolarized carbon-13 magnetic resonance imaging is a promising technique for in vivo metabolic interrogation of alterations between health and disease. This study introduces a formalism for quantifying the metabolic information in hyperpolarized imaging. This study investigated a novel perfusion formalism and metabolic clearance rate (MCR) model in pre-clinical stroke and in the healthy human brain. Simulations showed that the proposed model was robust to perturbations in T1, transmit B1, and kPL. A significant difference in ipsilateral vs contralateral pyruvate derived cerebral blood flow (CBF) was detected in rats (140 ± 2 vs 89 ± 6 mL/100 g/min, p < 0.01, respectively) and pigs (139 ± 12 vs 95 ± 5 mL/100 g/min, p = 0.04, respectively), along with an increase in fractional metabolism (26 ± 5 vs 4 ± 2%, p < 0.01, respectively) in the rodent brain. In addition, a significant increase in ipsilateral vs contralateral MCR (0.034 ± 0.007 vs 0.017 ± 0.02/s, p = 0.03, respectively) and a decrease in mean transit time (31 ± 8 vs 60 ± 2 s, p = 0.04, respectively) was observed in the porcine brain. In conclusion, MCR mapping is a simple and robust approach to the post-processing of hyperpolarized magnetic resonance imaging.
Collapse
Affiliation(s)
- James T Grist
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Division of Cardiovascular Medicine, Oxford Centre for Clinical Magnetic Resonance Research, Oxford, UK
- Department of Radiology, Oxford University Hospitals Trust, Oxford, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Nikolaj Bøgh
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Esben Søvsø Hansen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Anna M Schneider
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Richard Healicon
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Vicky Ball
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Jack J J J Miller
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Division of Cardiovascular Medicine, Oxford Centre for Clinical Magnetic Resonance Research, Oxford, UK
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Sean Smart
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yvonne Couch
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Damian J Tyler
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Division of Cardiovascular Medicine, Oxford Centre for Clinical Magnetic Resonance Research, Oxford, UK
| | - Christoffer Laustsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark.
- Aarhus University Hospital, MR Center, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| |
Collapse
|
16
|
Friedenberg MD, Lita A, Gilbert MR, Larion M, Celiku O. Probabilistic model checking of cancer metabolism. Sci Rep 2022; 12:18870. [PMID: 36344581 PMCID: PMC9640632 DOI: 10.1038/s41598-022-21846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Cancer cell metabolism is often deregulated as a result of adaption to meeting energy and biosynthesis demands of rapid growth or direct mutation of key metabolic enzymes. Better understanding of such deregulation can provide new insights on targetable vulnerabilities, but is complicated by the difficulty in probing cell metabolism at different levels of resolution and under different experimental conditions. We construct computational models of glucose and glutamine metabolism with focus on the effect of IDH1/2-mutations in cancer using a combination of experimental metabolic flux data and patient-derived gene expression data. Our models demonstrate the potential of computational exploration to reveal biologic behavior: they show that an exogenously-mutated IDH1 experimental model utilizes glutamine as an alternative carbon source for lactate production under hypoxia, but does not fully-recapitulate the patient phenotype under normoxia. We also demonstrate the utility of using gene expression data as a proxy for relative differences in metabolic activity. We use the approach of probabilistic model checking and the freely-available Probabilistic Symbolic Model Checker to construct and reason about model behavior.
Collapse
Affiliation(s)
| | - Adrian Lita
- grid.48336.3a0000 0004 1936 8075National Cancer Institute, Bethesda, MD 20892 USA
| | - Mark R. Gilbert
- grid.48336.3a0000 0004 1936 8075National Cancer Institute, Bethesda, MD 20892 USA
| | - Mioara Larion
- grid.48336.3a0000 0004 1936 8075National Cancer Institute, Bethesda, MD 20892 USA
| | - Orieta Celiku
- grid.48336.3a0000 0004 1936 8075National Cancer Institute, Bethesda, MD 20892 USA
| |
Collapse
|
17
|
Minami N, Hong D, Stevers N, Barger CJ, Radoul M, Hong C, Chen L, Kim Y, Batsios G, Gillespie AM, Pieper RO, Costello JF, Viswanath P, Ronen SM. Imaging biomarkers of TERT or GABPB1 silencing in TERT-positive glioblastoma. Neuro Oncol 2022; 24:1898-1910. [PMID: 35460557 PMCID: PMC9629440 DOI: 10.1093/neuonc/noac112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND TERT promoter mutations are observed in 80% of wild-type IDH glioblastoma (GBM). Moreover, the upstream TERT transcription factor GABPB1 was recently identified as a cancer-specific therapeutic target for tumors harboring a TERT promoter mutation. In that context, noninvasive imaging biomarkers are needed for the detection of TERT modulation. METHODS Multiple GBM models were investigated as cells and in vivo tumors and the impact of TERT silencing, either directly or by targeting GABPB1, was determined using 1H and hyperpolarized 13C magnetic resonance spectroscopy (MRS). Changes in associated metabolic enzymes were also investigated. RESULTS 1H-MRS revealed that lactate and glutathione (GSH) were the most significantly altered metabolites when either TERT or GABPB1 was silenced, and lactate and GSH levels were correlated with cellular TERT expression. Consistent with the drop in lactate, 13C-MRS showed that hyperpolarized [1-13C]lactate production from [1-13C]pyruvate was also reduced when TERT was silenced. Mechanistically, the reduction in GSH was associated with a reduction in pentose phosphate pathway flux, reduced activity of glucose-6-phosphate dehydrogenase, and reduced NADPH. The drop in lactate and hyperpolarized lactate were associated with reductions in glycolytic flux, NADH, and expression/activity of GLUT1, monocarboxylate transporters, and lactate dehydrogenase A. CONCLUSIONS Our study indicates that MRS-detectable GSH, lactate, and lactate production could serve as metabolic biomarkers of response to emerging TERT-targeted therapies for GBM with activating TERT promoter mutations. Importantly these biomarkers are readily translatable to the clinic, and thus could ultimately improve GBM patient management.
Collapse
Affiliation(s)
- Noriaki Minami
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Donghyun Hong
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Nicholas Stevers
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Carter J Barger
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Marina Radoul
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Lee Chen
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Russel O Pieper
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| |
Collapse
|
18
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
19
|
Notarangelo G, Spinelli JB, Perez EM, Baker GJ, Kurmi K, Elia I, Stopka SA, Baquer G, Lin JR, Golby AJ, Joshi S, Baron HF, Drijvers JM, Georgiev P, Ringel AE, Zaganjor E, McBrayer SK, Sorger PK, Sharpe AH, Wucherpfennig KW, Santagata S, Agar NYR, Suvà ML, Haigis MC. Oncometabolite d-2HG alters T cell metabolism to impair CD8 + T cell function. Science 2022; 377:1519-1529. [PMID: 36173860 PMCID: PMC9629749 DOI: 10.1126/science.abj5104] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Gain-of-function mutations in isocitrate dehydrogenase (IDH) in human cancers result in the production of d-2-hydroxyglutarate (d-2HG), an oncometabolite that promotes tumorigenesis through epigenetic alterations. The cancer cell-intrinsic effects of d-2HG are well understood, but its tumor cell-nonautonomous roles remain poorly explored. We compared the oncometabolite d-2HG with its enantiomer, l-2HG, and found that tumor-derived d-2HG was taken up by CD8+ T cells and altered their metabolism and antitumor functions in an acute and reversible fashion. We identified the glycolytic enzyme lactate dehydrogenase (LDH) as a molecular target of d-2HG. d-2HG and inhibition of LDH drive a metabolic program and immune CD8+ T cell signature marked by decreased cytotoxicity and impaired interferon-γ signaling that was recapitulated in clinical samples from human patients with IDH1 mutant gliomas.
Collapse
Affiliation(s)
- Giulia Notarangelo
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jessica B. Spinelli
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Elizabeth M. Perez
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.,Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Gregory J. Baker
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.,Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Kiran Kurmi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Ilaria Elia
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Sylwia A. Stopka
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Gerard Baquer
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA.,Department of Electronic Engineering, Rovira i Virgili University, Tarragona, Spain
| | - Jia-Ren Lin
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Alexandra J. Golby
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Shakchhi Joshi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Heide F. Baron
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Departments of Psychiatry and Neurology, Harvard Medical School, Boston, MA, USA
| | - Jefte M. Drijvers
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Peter Georgiev
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Alison E. Ringel
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Elma Zaganjor
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Samuel K. McBrayer
- Children’s Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peter K. Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Arlene H. Sharpe
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Kai W. Wucherpfennig
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sandro Santagata
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.,Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nathalie Y. R. Agar
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mario L. Suvà
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Marcia C. Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Corresponding author.
| |
Collapse
|
20
|
Bøgh N, Grist JT, Rasmussen CW, Bertelsen LB, Hansen ESS, Blicher JU, Tyler DJ, Laustsen C. Lactate saturation limits bicarbonate detection in hyperpolarized 13 C-pyruvate MRI of the brain. Magn Reson Med 2022; 88:1170-1179. [PMID: 35533254 PMCID: PMC9322338 DOI: 10.1002/mrm.29290] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/22/2022] [Accepted: 04/15/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE To investigate the potential effects of [1-13 C]lactate RF saturation pulses on [13 C]bicarbonate detection in hyperpolarized [1-13 C]pyruvate MRI of the brain. METHODS Thirteen healthy rats underwent MRI with hyperpolarized [1-13 C]pyruvate of either the brain (n = 8) or the kidneys, heart, and liver (n = 5). Dynamic, metabolite-selective imaging was used in a cross-over experiment in which [1-13 C]lactate was excited with either 0° or 90° flip angles. The [13 C]bicarbonate SNR and apparent [1-13 C]pyruvate-to-[13 C]bicarbonate conversion (kPB ) were determined. Furthermore, simulations were performed to identify the SNR optimal flip-angle scheme for detection of [1-13 C]lactate and [13 C]bicarbonate. RESULTS In the brain, the [13 C]bicarbonate SNR was 64% higher when [1-13 C]lactate was not excited (5.8 ± 1.5 vs 3.6 ± 1.3; 1.2 to 3.3-point increase; p = 0.0027). The apparent kPB decreased 25% with [1-13 C]lactate saturation (0.0047 ± 0.0008 s-1 vs 0.0034 ± 0.0006 s-1 ; 95% confidence interval, 0.0006-0.0019 s-1 increase; p = 0.0049). These effects were not present in the kidneys, heart, or liver. Simulations suggest that the optimal [13 C]bicarbonate SNR with a TR of 1 s in the brain is obtained with [13 C]bicarbonate, [1-13 C]lactate, and [1-13 C]pyruvate flip angles of 60°, 15°, and 10°, respectively. CONCLUSIONS Radiofrequency saturation pulses on [1-13 C]lactate limit [13 C]bicarbonate detection in the brain specifically, which could be due to shuttling of lactate from astrocytes to neurons. Our results have important implications for experimental design in studies in which [13 C]bicarbonate detection is warranted.
Collapse
Affiliation(s)
- Nikolaj Bøgh
- MR Research Center, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - James T. Grist
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
- Oxford Center for Clinical Magnetic Resonance ResearchUniversity of OxfordOxfordUK
- Department of RadiologyOxford University HospitalsOxfordUK
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Camilla W. Rasmussen
- MR Research Center, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Lotte B. Bertelsen
- MR Research Center, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Esben S. S. Hansen
- MR Research Center, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Jakob U. Blicher
- Center for Functionally Integrative NeuroscienceAarhus UniversityAarhusDenmark
- Department of NeurologyAalborg University HospitalAalborgDenmark
| | - Damian J. Tyler
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
- Oxford Center for Clinical Magnetic Resonance ResearchUniversity of OxfordOxfordUK
| | - Christoffer Laustsen
- MR Research Center, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
21
|
Healicon R, Rooney CHE, Ball V, Shinozaki A, Miller JJ, Smart S, Radford‐Smith D, Anthony D, Tyler DJ, Grist JT. Assessing the effect of anesthetic gas mixtures on hyperpolarized 13 C pyruvate metabolism in the rat brain. Magn Reson Med 2022; 88:1324-1332. [PMID: 35468245 PMCID: PMC9325476 DOI: 10.1002/mrm.29274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/11/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To determine the effect of altering anesthetic oxygen protocols on measurements of cerebral perfusion and metabolism in the rodent brain. METHODS Seven rats were anesthetized and underwent serial MRI scans with hyperpolarized [1-13 C]pyruvate and perfusion weighted imaging. The anesthetic carrier gas protocol used varied from 100:0% to 90:10% to 60:40% O2 :N2 O. Spectra were quantified with AMARES and perfusion imaging was processed using model-free deconvolution. A 1-way ANOVA was used to compare results across groups, with pairwise t tests performed with correction for multiple comparisons. Spearman's correlation analysis was performed between O2 % and MR measurements. RESULTS There was a significant increase in bicarbonate:total 13 C carbon and bicarbonate:13 C pyruvate when moving between 100:0 to 90:10 and 100:0 to 60:40 O2 :N2 O % (0.02 ± 0.01 vs. 0.019 ± 0.005 and 0.02 ± 0.01 vs. 0.05 ± 0.02, respectively) and (0.04 ± 0.01 vs. 0.03 ± 0.01 and 0.04 ± 0.01 vs. 0.08 ± 0.02, respectively). There was a significant difference in 13 C pyruvate time to peak when moving between 100:0 to 90:10 and 100:0 to 60:40 O2 :N2 O % (13 ± 2 vs. 10 ± 1 and 13 ± 2 vs. 7.5 ± 0.5 s, respectively) as well as significant differences in cerebral blood flow (CBF) between gas protocols. Significant correlations between bicarbonate:13 C pyruvate and gas protocol (ρ = -0.47), mean transit time and gas protocol (ρ = 0.41) and 13 C pyruvate time-to-peak and cerebral blood flow (ρ = -0.54) were also observed. CONCLUSIONS These results demonstrate that the detection and quantification of cerebral metabolism and perfusion is dependent on the oxygen protocol used in the anesthetized rodent brain.
Collapse
Affiliation(s)
- Richard Healicon
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Catriona H. E. Rooney
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Vicky Ball
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Ayaka Shinozaki
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUnited Kingdom
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Jack J. Miller
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUnited Kingdom
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUnited Kingdom
- Clarendon Laboratory, Department of PhysicsUniversity of OxfordOxfordUnited Kingdom
- The PET Centre and The MR Centre, Clinical MedicineAarhus University and Aarhus University HospitalAarhusDenmark
| | - Sean Smart
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | | | - Daniel Anthony
- Department of PharmacologyUniversity of OxfordOxfordUnited Kingdom
| | - Damian J. Tyler
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUnited Kingdom
- The PET Centre and The MR Centre, Clinical MedicineAarhus University and Aarhus University HospitalAarhusDenmark
| | - James T. Grist
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUnited Kingdom
- The PET Centre and The MR Centre, Clinical MedicineAarhus University and Aarhus University HospitalAarhusDenmark
- Department of RadiologyOxford University HospitalsOxfordUnited Kingdom
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUnited Kingdom
| |
Collapse
|
22
|
Hvinden IC, Cadoux-Hudson T, Schofield CJ, McCullagh JS. Metabolic adaptations in cancers expressing isocitrate dehydrogenase mutations. Cell Rep Med 2021; 2:100469. [PMID: 35028610 PMCID: PMC8714851 DOI: 10.1016/j.xcrm.2021.100469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The most frequently mutated metabolic genes in human cancer are those encoding the enzymes isocitrate dehydrogenase 1 (IDH1) and IDH2; these mutations have so far been identified in more than 20 tumor types. Since IDH mutations were first reported in glioma over a decade ago, extensive research has revealed their association with altered cellular processes. Mutations in IDH lead to a change in enzyme function, enabling efficient conversion of 2-oxoglutarate to R-2-hydroxyglutarate (R-2-HG). It is proposed that elevated cellular R-2-HG inhibits enzymes that regulate transcription and metabolism, subsequently affecting nuclear, cytoplasmic, and mitochondrial biochemistry. The significance of these biochemical changes for tumorigenesis and potential for therapeutic exploitation remains unclear. Here we comprehensively review reported direct and indirect metabolic changes linked to IDH mutations and discuss their clinical significance. We also review the metabolic effects of first-generation mutant IDH inhibitors and highlight the potential for combination treatment strategies and new metabolic targets.
Collapse
Affiliation(s)
- Ingvild Comfort Hvinden
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Tom Cadoux-Hudson
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
- Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - James S.O. McCullagh
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| |
Collapse
|
23
|
Salzillo TC, Mawoneke V, Weygand J, Shetty A, Gumin J, Zacharias NM, Gammon ST, Piwnica-Worms D, Fuller GN, Logothetis CJ, Lang FF, Bhattacharya PK. Measuring the Metabolic Evolution of Glioblastoma throughout Tumor Development, Regression, and Recurrence with Hyperpolarized Magnetic Resonance. Cells 2021; 10:cells10102621. [PMID: 34685601 PMCID: PMC8534002 DOI: 10.3390/cells10102621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
Rapid diagnosis and therapeutic monitoring of aggressive diseases such as glioblastoma can improve patient survival by providing physicians the time to optimally deliver treatment. This research tested whether metabolic imaging with hyperpolarized MRI could detect changes in tumor progression faster than conventional anatomic MRI in patient-derived glioblastoma murine models. To capture the dynamic nature of cancer metabolism, hyperpolarized MRI, NMR spectroscopy, and immunohistochemistry were performed at several time-points during tumor development, regression, and recurrence. Hyperpolarized MRI detected significant changes of metabolism throughout tumor progression whereas conventional MRI was less sensitive. This was accompanied by aberrations in amino acid and phospholipid lipid metabolism and MCT1 expression. Hyperpolarized MRI can help address clinical challenges such as identifying malignant disease prior to aggressive growth, differentiating pseudoprogression from true progression, and predicting relapse. The individual evolution of these metabolic assays as well as their correlations with one another provides context for further academic research.
Collapse
Affiliation(s)
- Travis C. Salzillo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.C.S.); (V.M.); (A.S.); (S.T.G.); (D.P.-W.)
| | - Vimbai Mawoneke
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.C.S.); (V.M.); (A.S.); (S.T.G.); (D.P.-W.)
| | - Joseph Weygand
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Akaanksh Shetty
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.C.S.); (V.M.); (A.S.); (S.T.G.); (D.P.-W.)
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (J.G.); (F.F.L.)
| | - Niki M. Zacharias
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
| | - Seth T. Gammon
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.C.S.); (V.M.); (A.S.); (S.T.G.); (D.P.-W.)
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.C.S.); (V.M.); (A.S.); (S.T.G.); (D.P.-W.)
| | - Gregory N. Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
| | - Frederick F. Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (J.G.); (F.F.L.)
| | - Pratip K. Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.C.S.); (V.M.); (A.S.); (S.T.G.); (D.P.-W.)
- Correspondence: ; Tel.: +1-713-454-9887
| |
Collapse
|
24
|
Characterization of Distinctive In Vivo Metabolism between Enhancing and Non-Enhancing Gliomas Using Hyperpolarized Carbon-13 MRI. Metabolites 2021; 11:metabo11080504. [PMID: 34436445 PMCID: PMC8398100 DOI: 10.3390/metabo11080504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
The development of hyperpolarized carbon-13 (13C) metabolic MRI has enabled the sensitive and noninvasive assessment of real-time in vivo metabolism in tumors. Although several studies have explored the feasibility of using hyperpolarized 13C metabolic imaging for neuro-oncology applications, most of these studies utilized high-grade enhancing tumors, and little is known about hyperpolarized 13C metabolic features of a non-enhancing tumor. In this study, 13C MR spectroscopic imaging with hyperpolarized [1-13C]pyruvate was applied for the differential characterization of metabolic profiles between enhancing and non-enhancing gliomas using rodent models of glioblastoma and a diffuse midline glioma. Distinct metabolic profiles were found between the enhancing and non-enhancing tumors, as well as their contralateral normal-appearing brain tissues. The preliminary results from this study suggest that the characterization of metabolic patterns from hyperpolarized 13C imaging between non-enhancing and enhancing tumors may be beneficial not only for understanding distinct metabolic features between the two lesions, but also for providing a basis for understanding 13C metabolic processes in ongoing clinical trials with neuro-oncology patients using this technology.
Collapse
|
25
|
Mohan AA, Tomaszewski WH, Haskell-Mendoza AP, Hotchkiss KM, Singh K, Reedy JL, Fecci PE, Sampson JH, Khasraw M. Targeting Immunometabolism in Glioblastoma. Front Oncol 2021; 11:696402. [PMID: 34222022 PMCID: PMC8242259 DOI: 10.3389/fonc.2021.696402] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
We have only recently begun to understand how cancer metabolism affects antitumor responses and immunotherapy outcomes. Certain immunometabolic targets have been actively pursued in other tumor types, however, glioblastoma research has been slow to exploit the therapeutic vulnerabilities of immunometabolism. In this review, we highlight the pathways that are most relevant to glioblastoma and focus on how these immunometabolic pathways influence tumor growth and immune suppression. We discuss hypoxia, glycolysis, tryptophan metabolism, arginine metabolism, 2-Hydroxyglutarate (2HG) metabolism, adenosine metabolism, and altered phospholipid metabolism, in order to provide an analysis and overview of the field of glioblastoma immunometabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mustafa Khasraw
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
26
|
Association of Circadian Clock Gene Expression with Glioma Tumor Microenvironment and Patient Survival. Cancers (Basel) 2021; 13:cancers13112756. [PMID: 34199348 PMCID: PMC8199552 DOI: 10.3390/cancers13112756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 05/29/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Gliomas are the most common type of malignant primary brain tumors and are classified according to the cell of origin and genetic features, which can help predict the prognosis and treatment sensitivity. Improving the prognosis remains a challenge; however, chronobiology is a promising field for future works, as circadian clock genes are linked to the tumor biology and outcomes in multiple cancers, including glioma. Here, we examined the relationship of circadian clock genes, IDH mutational status, and prognosis in glioma patients by using unsupervised clustering of the expression of 13 clock genes. We further explored the expression of the clock genes across the tumor regions and cell subpopulations, highlighting the importance of the tumor microenvironment in researching circadian rhythms in cancer. Our research is important for understanding how best to target circadian rhythms to improve patient outcomes in neuro-oncology. Abstract Circadian clock genes have been linked to clinical outcomes in cancer, including gliomas. However, these studies have not accounted for established markers that predict the prognosis, including mutations in Isocitrate Dehydrogenase (IDH), which characterize the majority of lower-grade gliomas and secondary high-grade gliomas. To demonstrate the connection between circadian clock genes and glioma outcomes while accounting for the IDH mutational status, we analyzed multiple publicly available gene expression datasets. The unsupervised clustering of 13 clock gene transcriptomic signatures from The Cancer Genome Atlas showed distinct molecular subtypes representing different disease states and showed the differential prognosis of these groups by a Kaplan–Meier analysis. Further analyses of these groups showed that a low period (PER) gene expression was associated with the negative prognosis and enrichment of the immune signaling pathways. These findings prompted the exploration of the relationship between the microenvironment and clock genes in additional datasets. Circadian clock gene expression was found to be differentially expressed across the anatomical tumor location and cell type. Thus, the circadian clock expression is a potential predictive biomarker in glioma, and further mechanistic studies to elucidate the connections between the circadian clock and microenvironment are warranted.
Collapse
|
27
|
The Acidic Brain-Glycolytic Switch in the Microenvironment of Malignant Glioma. Int J Mol Sci 2021; 22:ijms22115518. [PMID: 34073734 PMCID: PMC8197239 DOI: 10.3390/ijms22115518] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Malignant glioma represents a fatal disease with a poor prognosis and development of resistance mechanisms against conventional therapeutic approaches. The distinct tumor zones of this heterogeneous neoplasm develop their own microenvironment, in which subpopulations of cancer cells communicate. Adaptation to hypoxia in the center of the expanding tumor mass leads to the glycolytic and angiogenic switch, accompanied by upregulation of different glycolytic enzymes, transporters, and other metabolites. These processes render the tumor microenvironment more acidic, remodel the extracellular matrix, and create energy gradients for the metabolic communication between different cancer cells in distinct tumor zones. Escape mechanisms from hypoxia-induced cell death and energy deprivation are the result. The functional consequences are more aggressive and malignant behavior with enhanced proliferation and survival, migration and invasiveness, and the induction of angiogenesis. In this review, we go from the biochemical principles of aerobic and anaerobic glycolysis over the glycolytic switch, regulated by the key transcription factor hypoxia-inducible factor (HIF)-1α, to other important metabolic players like the monocarboxylate transporters (MCTs)1 and 4. We discuss the metabolic symbiosis model via lactate shuttling in the acidic tumor microenvironment and highlight the functional consequences of the glycolytic switch on glioma malignancy. Furthermore, we illustrate regulation by micro ribonucleic acids (miRNAs) and the connection between isocitrate dehydrogenase (IDH) mutation status and glycolytic metabolism. Finally, we give an outlook about the diagnostic and therapeutic implications of the glycolytic switch and the relation to tumor immunity in malignant glioma.
Collapse
|
28
|
Ruiz-Rodado V, Malta TM, Seki T, Lita A, Dowdy T, Celiku O, Cavazos-Saldana A, Li A, Liu Y, Han S, Zhang W, Song H, Davis D, Lee S, Trepel JB, Sabedot TS, Munasinghe J, Yang C, Herold-Mende C, Gilbert MR, Cherukuri MK, Noushmehr H, Larion M. Metabolic reprogramming associated with aggressiveness occurs in the G-CIMP-high molecular subtypes of IDH1mut lower grade gliomas. Neuro Oncol 2021; 22:480-492. [PMID: 31665443 DOI: 10.1093/neuonc/noz207] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Early detection of increased aggressiveness of brain tumors is a major challenge in the field of neuro-oncology because of the inability of traditional imaging to uncover it. Isocitrate dehydrogenase (IDH)-mutant gliomas represent an ideal model system to study the molecular mechanisms associated with tumorigenicity because they appear indolent and non-glycolytic initially, but eventually a subset progresses toward secondary glioblastoma with a Warburg-like phenotype. The mechanisms and molecular features associated with this transformation are poorly understood. METHODS We employed model systems for IDH1 mutant (IDH1mut) gliomas with different growth and proliferation rates in vivo and in vitro. We described the metabolome, transcriptome, and epigenome of these models in order to understand the link between their metabolism and the tumor biology. To verify whether this metabolic reprogramming occurs in the clinic, we analyzed data from The Cancer Genome Atlas. RESULTS We reveal that the aggressive glioma models have lost DNA methylation in the promoters of glycolytic enzymes, especially lactate dehydrogenase A (LDHA), and have increased mRNA and metabolite levels compared with the indolent model. We find that the acquisition of the high glycolytic phenotype occurs at the glioma cytosine-phosphate-guanine island methylator phenotype (G-CIMP)-high molecular subtype in patients and is associated with the worst outcome. CONCLUSION We propose very early monitoring of lactate levels as a biomarker of metabolic reprogramming and tumor aggressiveness.
Collapse
Affiliation(s)
- Victor Ruiz-Rodado
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Tomohiro Seki
- Radiation Biology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Adrian Lita
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Tyrone Dowdy
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Orieta Celiku
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Aiguo Li
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Yang Liu
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Sue Han
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Wei Zhang
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Hua Song
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Dionne Davis
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Sunmin Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Jeeva Munasinghe
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Chunzhang Yang
- Division of Neurosurgical Research, Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Murali Krishna Cherukuri
- Radiation Biology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Mishkovsky M, Gusyatiner O, Lanz B, Cudalbu C, Vassallo I, Hamou MF, Bloch J, Comment A, Gruetter R, Hegi ME. Hyperpolarized 13C-glucose magnetic resonance highlights reduced aerobic glycolysis in vivo in infiltrative glioblastoma. Sci Rep 2021; 11:5771. [PMID: 33707647 PMCID: PMC7952603 DOI: 10.1038/s41598-021-85339-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/28/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor type in adults. GBM is heterogeneous, with a compact core lesion surrounded by an invasive tumor front. This front is highly relevant for tumor recurrence but is generally non-detectable using standard imaging techniques. Recent studies demonstrated distinct metabolic profiles of the invasive phenotype in GBM. Magnetic resonance (MR) of hyperpolarized 13C-labeled probes is a rapidly advancing field that provides real-time metabolic information. Here, we applied hyperpolarized 13C-glucose MR to mouse GBM models. Compared to controls, the amount of lactate produced from hyperpolarized glucose was higher in the compact GBM model, consistent with the accepted "Warburg effect". However, the opposite response was observed in models reflecting the invasive zone, with less lactate produced than in controls, implying a reduction in aerobic glycolysis. These striking differences could be used to map the metabolic heterogeneity in GBM and to visualize the infiltrative front of GBM.
Collapse
Affiliation(s)
- Mor Mishkovsky
- Laboratory of Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Olga Gusyatiner
- Neuroscience Research Center, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Service of Neurosurgery Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Bernard Lanz
- Laboratory of Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cristina Cudalbu
- Center for Biomedical Imaging (CIBM), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Irene Vassallo
- Neuroscience Research Center, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Service of Neurosurgery Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Marie-France Hamou
- Neuroscience Research Center, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Service of Neurosurgery Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jocelyne Bloch
- Neuroscience Research Center, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Service of Neurosurgery Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Arnaud Comment
- General Electric Healthcare, Chalfont St Giles, Buckinghamshire, HP8 4SP, UK
| | - Rolf Gruetter
- Laboratory of Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Radiology, University of Geneva (UNIGE), Geneva, Switzerland
- Department of Radiology, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Monika E Hegi
- Neuroscience Research Center, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- Service of Neurosurgery Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
30
|
Hayes C, Donohoe CL, Davern M, Donlon NE. The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment. Cancer Lett 2021; 500:75-86. [PMID: 33347908 DOI: 10.1016/j.canlet.2020.12.021] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
The tumour microenvironment is of critical importance in cancer development and progression and includes the surrounding stromal and immune cells, extracellular matrix, and the milieu of metabolites and signalling molecules in the intercellular space. To support sustained mitotic activity cancer cells must reconfigure their metabolic phenotype. Lactate is the major by-product of such metabolic alterations and consequently, accumulates in the tumour. Lactate actively contributes to immune evasion, a hallmark of cancer, by directly inhibiting immune cell cytotoxicity and proliferation. Furthermore, lactate can recruit and induce immunosuppressive cell types, such as regulatory T cells, tumour-associated macrophages, and myeloid-derived suppressor cells which further suppress anti-tumour immune responses. Given its roles in oncogenesis, measuring intratumoural and systemic lactate levels has shown promise as a both predictive and prognostic biomarker in several cancer types. The efficacies of many anti-cancer therapies are limited by an immunosuppressive TME in which lactate is a major contributor, therefore, targeting lactate metabolism is a priority. Developing inhibitors of key proteins in lactate metabolism such as GLUT1, hexokinase, LDH, MCT and HIF have shown promise in preclinical studies, however there is a corresponding lack of success in human trials so far. This may be explained by a weakness of preclinical models that fail to reproduce the complexities of metabolic interactions in natura. The future of these therapies may be as an adjunct to more conventional treatments.
Collapse
Affiliation(s)
- Conall Hayes
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St James' Cancer Institute, St James's Hospital Dublin, Ireland
| | - Claire L Donohoe
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St James' Cancer Institute, St James's Hospital Dublin, Ireland
| | - Maria Davern
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St James' Cancer Institute, St James's Hospital Dublin, Ireland
| | - Noel E Donlon
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St James' Cancer Institute, St James's Hospital Dublin, Ireland.
| |
Collapse
|
31
|
Ruiz-Rodado V, Brender JR, Cherukuri MK, Gilbert MR, Larion M. Magnetic resonance spectroscopy for the study of cns malignancies. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 122:23-41. [PMID: 33632416 PMCID: PMC7910526 DOI: 10.1016/j.pnmrs.2020.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 05/04/2023]
Abstract
Despite intensive research, brain tumors are amongst the malignancies with the worst prognosis; therefore, a prompt diagnosis and thoughtful assessment of the disease is required. The resistance of brain tumors to most forms of conventional therapy has led researchers to explore the underlying biology in search of new vulnerabilities and biomarkers. The unique metabolism of brain tumors represents one potential vulnerability and the basis for a system of classification. Profiling this aberrant metabolism requires a method to accurately measure and report differences in metabolite concentrations. Magnetic resonance-based techniques provide a framework for examining tumor tissue and the evolution of disease. Nuclear Magnetic Resonance (NMR) analysis of biofluids collected from patients suffering from brain cancer can provide biological information about disease status. In particular, urine and plasma can serve to monitor the evolution of disease through the changes observed in the metabolic profiles. Moreover, cerebrospinal fluid can be utilized as a direct reporter of cerebral activity since it carries the chemicals exchanged with the brain tissue and the tumor mass. Metabolic reprogramming has recently been included as one of the hallmarks of cancer. Accordingly, the metabolic rewiring experienced by these tumors to sustain rapid growth and proliferation can also serve as a potential therapeutic target. The combination of 13C tracing approaches with the utilization of different NMR spectral modalities has allowed investigations of the upregulation of glycolysis in the aggressive forms of brain tumors, including glioblastomas, and the discovery of the utilization of acetate as an alternative cellular fuel in brain metastasis and gliomas. One of the major contributions of magnetic resonance to the assessment of brain tumors has been the non-invasive determination of 2-hydroxyglutarate (2HG) in tumors harboring a mutation in isocitrate dehydrogenase 1 (IDH1). The mutational status of this enzyme already serves as a key feature in the clinical classification of brain neoplasia in routine clinical practice and pilot studies have established the use of in vivo magnetic resonance spectroscopy (MRS) for monitoring disease progression and treatment response in IDH mutant gliomas. However, the development of bespoke methods for 2HG detection by MRS has been required, and this has prevented the wider implementation of MRS methodology into the clinic. One of the main challenges for improving the management of the disease is to obtain an accurate insight into the response to treatment, so that the patient can be promptly diverted into a new therapy if resistant or maintained on the original therapy if responsive. The implementation of 13C hyperpolarized magnetic resonance spectroscopic imaging (MRSI) has allowed detection of changes in tumor metabolism associated with a treatment, and as such has been revealed as a remarkable tool for monitoring response to therapeutic strategies. In summary, the application of magnetic resonance-based methodologies to the diagnosis and management of brain tumor patients, in addition to its utilization in the investigation of its tumor-associated metabolic rewiring, is helping to unravel the biological basis of malignancies of the central nervous system.
Collapse
Affiliation(s)
- Victor Ruiz-Rodado
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, United States.
| | - Jeffery R Brender
- Radiation Biology Branch, Center for Cancer Research, National Institute of Health, Bethesda, United States
| | - Murali K Cherukuri
- Radiation Biology Branch, Center for Cancer Research, National Institute of Health, Bethesda, United States
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, United States
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, United States.
| |
Collapse
|
32
|
Viswanath P, Batsios G, Mukherjee J, Gillespie AM, Larson PEZ, Luchman HA, Phillips JJ, Costello JF, Pieper RO, Ronen SM. Non-invasive assessment of telomere maintenance mechanisms in brain tumors. Nat Commun 2021; 12:92. [PMID: 33397920 PMCID: PMC7782549 DOI: 10.1038/s41467-020-20312-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/27/2020] [Indexed: 01/29/2023] Open
Abstract
Telomere maintenance is a universal hallmark of cancer. Most tumors including low-grade oligodendrogliomas use telomerase reverse transcriptase (TERT) expression for telomere maintenance while astrocytomas use the alternative lengthening of telomeres (ALT) pathway. Although TERT and ALT are hallmarks of tumor proliferation and attractive therapeutic targets, translational methods of imaging TERT and ALT are lacking. Here we show that TERT and ALT are associated with unique 1H-magnetic resonance spectroscopy (MRS)-detectable metabolic signatures in genetically-engineered and patient-derived glioma models and patient biopsies. Importantly, we have leveraged this information to mechanistically validate hyperpolarized [1-13C]-alanine flux to pyruvate as an imaging biomarker of ALT status and hyperpolarized [1-13C]-alanine flux to lactate as an imaging biomarker of TERT status in low-grade gliomas. Collectively, we have identified metabolic biomarkers of TERT and ALT status that provide a way of integrating critical oncogenic information into non-invasive imaging modalities that can improve tumor diagnosis and treatment response monitoring.
Collapse
Affiliation(s)
- Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Joydeep Mukherjee
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - H Artee Luchman
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Joanna J Phillips
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Joseph F Costello
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Russell O Pieper
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
33
|
Subramani E, Radoul M, Najac C, Batsios G, Molloy AR, Hong D, Gillespie AM, Santos RD, Viswanath P, Costello JF, Pieper RO, Ronen SM. Glutamate Is a Noninvasive Metabolic Biomarker of IDH1-Mutant Glioma Response to Temozolomide Treatment. Cancer Res 2020; 80:5098-5108. [PMID: 32958546 PMCID: PMC7669718 DOI: 10.1158/0008-5472.can-20-1314] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/11/2020] [Accepted: 09/16/2020] [Indexed: 02/04/2023]
Abstract
Although lower grade gliomas are driven by mutations in the isocitrate dehydrogenase 1 (IDH1) gene and are less aggressive than primary glioblastoma, they nonetheless generally recur. IDH1-mutant patients are increasingly being treated with temozolomide, but early detection of response remains a challenge and there is a need for complementary imaging methods to assess response to therapy prior to tumor shrinkage. The goal of this study was to determine the value of magnetic resonance spectroscopy (MRS)-based metabolic changes for detection of response to temozolomide in both genetically engineered and patient-derived mutant IDH1 models. Using 1H MRS in combination with chemometrics identified several metabolic alterations in temozolomide-treated cells, including a significant increase in steady-state glutamate levels. This was confirmed in vivo, where the observed 1H MRS increase in glutamate/glutamine occurred prior to tumor shrinkage. Cells labeled with [1-13C]glucose and [3-13C]glutamine, the principal sources of cellular glutamate, showed that flux to glutamate both from glucose via the tricarboxylic acid cycle and from glutamine were increased following temozolomide treatment. In line with these results, hyperpolarized [5-13C]glutamate produced from [2-13C]pyruvate and hyperpolarized [1-13C]glutamate produced from [1-13C]α-ketoglutarate were significantly higher in temozolomide-treated cells compared with controls. Collectively, our findings identify 1H MRS-detectable elevation of glutamate and hyperpolarized 13C MRS-detectable glutamate production from either pyruvate or α-ketoglutarate as potential translatable metabolic biomarkers of response to temozolomide treatment in mutant IDH1 glioma. SIGNIFICANCE: These findings show that glutamate can be used as a noninvasive, imageable metabolic marker for early assessment of tumor response to temozolomide, with the potential to improve treatment strategies for mutant IDH1 patients.
Collapse
Affiliation(s)
- Elavarasan Subramani
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Marina Radoul
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Chloe Najac
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Abigail R Molloy
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Donghyun Hong
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Joseph F Costello
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Russell O Pieper
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Brain Tumor Research Center, University of California San Francisco, San Francisco, California
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.
- Brain Tumor Research Center, University of California San Francisco, San Francisco, California
| |
Collapse
|
34
|
Azam Z, TO ST, Tannous BA. Mesenchymal Transformation: The Rosetta Stone of Glioblastoma Pathogenesis and Therapy Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002015. [PMID: 33240762 PMCID: PMC7675056 DOI: 10.1002/advs.202002015] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/23/2020] [Indexed: 05/06/2023]
Abstract
Despite decades of research, glioblastoma (GBM) remains invariably fatal among all forms of cancers. The high level of inter- and intratumoral heterogeneity along with its biological location, the brain, are major barriers against effective treatment. Molecular and single cell analysis identifies different molecular subtypes with varying prognosis, while multiple subtypes can reside in the same tumor. Cellular plasticity among different subtypes in response to therapies or during recurrence adds another hurdle in the treatment of GBM. This phenotypic shift is induced and sustained by activation of several pathways within the tumor itself, or microenvironmental factors. In this review, the dynamic nature of cellular shifts in GBM and how the tumor (immune) microenvironment shapes this process leading to therapeutic resistance, while highlighting emerging tools and approaches to study this dynamic double-edged sword are discussed.
Collapse
Affiliation(s)
- Zulfikar Azam
- Experimental Therapeutics and Molecular Imaging UnitDepartment of NeurologyNeuro‐Oncology DivisionMassachusetts General Hospital and Harvard Medical SchoolBostonMA02129USA
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Shing‐Shun Tony TO
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Bakhos A. Tannous
- Experimental Therapeutics and Molecular Imaging UnitDepartment of NeurologyNeuro‐Oncology DivisionMassachusetts General Hospital and Harvard Medical SchoolBostonMA02129USA
| |
Collapse
|
35
|
(2 R,3 S)-Dihydroxybutanoic Acid Synthesis as a Novel Metabolic Function of Mutant Isocitrate Dehydrogenase 1 and 2 in Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12102842. [PMID: 33019704 PMCID: PMC7600928 DOI: 10.3390/cancers12102842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is one of several cancers where cancer proliferation occurs under the influence of an aberrant metabolite known as an oncometabolite produced by a mutated enzyme in the cancer cell. In AML, mutant isocitrate dehydrogenases produce the oncometabolite 2-hydroxyglutarate. We screened AML patients with and without mutant isocitrate dehydrogenases by using a technique known as metabolomics, which measures many different metabolites in patient plasma. It was observed that another metabolite, 2,3-dihydroxybutyrate, was produced in larger amounts in patients with mutated isocitrate dehydrogenase and correlated strongly with 2-hydroxyglutarate levels. Moreover, 2,3-dihydroxybutyrate was a better indicator of the presence of mutated isocitrate dehydrogenase in the cancer than the known oncometabolite 2-hydroxyglutarate. These findings may lead to the characterization of 2,3-dihydroxybutyrate as a novel oncometabolite in AML, which would bring a fuller understanding of the etiology of this disease and offer opportunities for the development of novel therapeutic agents. Abstract Acute myeloid leukemia (AML) frequently harbors mutations in isocitrate 1 (IDH1) and 2 (IDH2) genes, leading to the formation of the oncometabolite (2R)-hydroxyglutaric acid (2R-HG) with epigenetic consequences for AML proliferation and differentiation. To investigate if broad metabolic aberrations may result from IDH1 and IDH2 mutations in AML, plasma metabolomics was conducted by gas chromatography–mass spectrometry (GC–MS) on 51 AML patients, 29 IDH1/2 wild-type (WT), 9 with IDH1R132, 12 with IDH2R140 and one with IDH2R172 mutations. Distinct metabolic differences were observed between IDH1/2 WT, IDH1R132 and IDH2R140 patients that comprised 22 plasma metabolites that were mainly amino acids. Only two plasma metabolites were statistically significantly different (p < 0.0001) between both IDH1R132 and WT IDH1/2 and IDH2R140 and WT IDH1/2, specifically (2R)-hydroxyglutaric acid (2R-HG) and the threonine metabolite (2R,3S)-dihydroxybutanoic acid (2,3-DHBA). Moreover, 2R-HG correlated strongly (p < 0.0001) with 2,3-DHBA in plasma. One WT patient was discovered to have a D-2-hydroxyglutarate dehydrogenase (D2HGDH) A426T inactivating mutation but this had little influence on 2R-HG and 2,3-DHBA plasma concentrations. Expression of transporter genes SLC16A1 and SLC16A3 displayed a weak correlation with 2R-HG but not 2,3-DHBA plasma concentrations. Receiver operating characteristic (ROC) analysis demonstrated that 2,3-DHBA was a better biomarker for IDH mutation than 2R-HG (Area under the curve (AUC) 0.861; p < 0.0001; 80% specificity; 87.3% sensitivity). It was concluded that 2,3-DHBA and 2R-HG are both formed by mutant IDH1R132, IDH2R140 and IDH2R172, suggesting a potential role of 2,3-DHBA in AML pathogenesis.
Collapse
|
36
|
Reichardt W, von Elverfeldt D. Preclinical Applications of Magnetic Resonance Imaging in Oncology. Recent Results Cancer Res 2020; 216:405-437. [PMID: 32594394 DOI: 10.1007/978-3-030-42618-7_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The evolving possibilities of molecular imaging (MI) are fundamentally changing the way we look at cancer, with imaging paradigms now shifting away from basic morphological measures toward the longitudinal assessment of functional, metabolic, cellular, and molecular information in vivo. Recent developments of imaging methodology and probe molecules utilizing the vast number of novel animal models of human cancers have enhanced our ability to non-invasively characterize neoplastic tissue and follow anticancer treatments. While preclinical molecular imaging offers a whole palette of excellent methodology to choose from, we will focus on magnetic resonance imaging (MRI) techniques, since they provide excellent molecular imaging capabilities and bear high potential for clinical translation. Prerequisites and consequences of using animal models as surrogates of human cancers in preclinical molecular imaging are outlined. We present physical principles, values, and limitations of MRI as molecular imaging modality and comment on its high potential to non-invasively assess information on metabolism, hypoxia, angiogenesis, and cell trafficking in preclinical cancer research.
Collapse
Affiliation(s)
- Wilfried Reichardt
- Medical Physics, Department of Radiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Dominik von Elverfeldt
- Medical Physics, Department of Radiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
37
|
Crispo F, Pietrafesa M, Condelli V, Maddalena F, Bruno G, Piscazzi A, Sgambato A, Esposito F, Landriscina M. IDH1 Targeting as a New Potential Option for Intrahepatic Cholangiocarcinoma Treatment-Current State and Future Perspectives. Molecules 2020; 25:molecules25163754. [PMID: 32824685 PMCID: PMC7464324 DOI: 10.3390/molecules25163754] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma is a primary malignancy of the biliary tract characterized by late and unspecific symptoms, unfavorable prognosis, and few treatment options. The advent of next-generation sequencing has revealed potential targetable or actionable molecular alterations in biliary tumors. Among several identified genetic alterations, the IDH1 mutation is arousing interest due to its role in epigenetic and metabolic remodeling. Indeed, some IDH1 point mutations induce widespread epigenetic alterations by means of a gain-of-function of the enzyme, which becomes able to produce the oncometabolite 2-hydroxyglutarate, with inhibitory activity on α-ketoglutarate-dependent enzymes, such as DNA and histone demethylases. Thus, its accumulation produces changes in the expression of several key genes involved in cell differentiation and survival. At present, small-molecule inhibitors of IDH1 mutated enzyme are under investigation in preclinical and clinical phases as promising innovative treatments for IDH1-mutated intrahepatic cholangiocarcinomas. This review examines the molecular rationale and the results of preclinical and early-phase studies on novel pharmacological agents targeting mutant IDH1 in cholangiocarcinoma patients. Contextually, it will offer a starting point for discussion on combined therapies with metabolic and epigenetic drugs, to provide molecular support to target the interplay between metabolism and epigenetics, two hallmarks of cancer onset and progression.
Collapse
Affiliation(s)
- Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (PZ), Italy; (F.C.); (M.P.); (V.C.); (F.M.); (A.S.)
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (PZ), Italy; (F.C.); (M.P.); (V.C.); (F.M.); (A.S.)
| | - Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (PZ), Italy; (F.C.); (M.P.); (V.C.); (F.M.); (A.S.)
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (PZ), Italy; (F.C.); (M.P.); (V.C.); (F.M.); (A.S.)
| | - Giuseppina Bruno
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (G.B.); (A.P.)
| | - Annamaria Piscazzi
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (G.B.); (A.P.)
| | - Alessandro Sgambato
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (PZ), Italy; (F.C.); (M.P.); (V.C.); (F.M.); (A.S.)
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- Correspondence: (F.E.); (M.L.); Tel.: +39-081-746-3145 (F.E.); +39-088-173-6426 (M.L.)
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (PZ), Italy; (F.C.); (M.P.); (V.C.); (F.M.); (A.S.)
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (G.B.); (A.P.)
- Correspondence: (F.E.); (M.L.); Tel.: +39-081-746-3145 (F.E.); +39-088-173-6426 (M.L.)
| |
Collapse
|
38
|
Wenger KJ, Steinbach JP, Bähr O, Pilatus U, Hattingen E. Lower Lactate Levels and Lower Intracellular pH in Patients with IDH-Mutant versus Wild-Type Gliomas. AJNR Am J Neuroradiol 2020; 41:1414-1422. [PMID: 32646946 DOI: 10.3174/ajnr.a6633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/03/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Preclinical evidence points toward a metabolic reprogramming in isocitrate dehydrogenase (IDH) mutated tumor cells with down-regulation of the expression of genes that encode for glycolytic metabolism. We noninvasively investigated lactate and Cr concentrations, as well as intracellular pH using 1H/phosphorus 31 (31P) MR spectroscopy in a cohort of patients with gliomas. MATERIALS AND METHODS Thirty prospectively enrolled, mostly untreated patients with gliomas met the spectral quality criteria (World Health Organization II [n = 7], III [n = 16], IV [n = 7]; IDH-mutant [n = 23]; IDH wild-type [n = 7]; 1p/19q codeletion [n = 9]). MR imaging protocol included 3D 31P chemical shift imaging and 1H single-voxel spectroscopy (point-resolved spectroscopy sequence at TE = 30 ms and TE = 97 ms with optimized echo spacing for detection of 2-hydroxyglutarate) from the tumor area. Values for absolute metabolite concentrations were calculated (phantom replacement method). Intracellular pH was determined from 31P chemical shift imaging. RESULTS At TE = 97 ms, lactate peaks can be fitted with little impact of lipid/macromolecule contamination. We found a significant difference in lactate concentrations, lactate/Cr ratios, and intracellular pH when comparing tumor voxels of patients with IDH-mutant with those of patients with IDH wild-type gliomas, with reduced lactate levels and near-normal intracellular pH in patients with IDH-mutant gliomas. We additionally found evidence for codependent effects of 1p/19q codeletion and IDH mutations with regard to lactate concentrations for World Health Organization tumor grades II and III, with lower lactate levels in patients exhibiting the codeletion. There was no statistical significance when comparing lactate concentrations between IDH-mutant World Health Organization II and III gliomas. CONCLUSIONS We found indirect evidence for metabolic reprogramming in IDH-mutant tumors with significantly lower lactate concentrations compared with IDH wild-type tumors and a near-normal intracellular pH.
Collapse
Affiliation(s)
- K J Wenger
- From the Departments of Neuroradiology (K.J.W., U.P., E.H.) .,German Cancer Consortium Partner Site (K.J.W., J.P.S., O.B., U.P., E.H.), Frankfurt am Main/Mainz, Germany.,German Cancer Research Center (K.J.W., J.P.S., O.B., U.P., E.H.), Heidelberg, Germany
| | - J P Steinbach
- Neurooncology (J.P.S., O.B.), University Hospital Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium Partner Site (K.J.W., J.P.S., O.B., U.P., E.H.), Frankfurt am Main/Mainz, Germany.,German Cancer Research Center (K.J.W., J.P.S., O.B., U.P., E.H.), Heidelberg, Germany
| | - O Bähr
- Neurooncology (J.P.S., O.B.), University Hospital Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium Partner Site (K.J.W., J.P.S., O.B., U.P., E.H.), Frankfurt am Main/Mainz, Germany.,German Cancer Research Center (K.J.W., J.P.S., O.B., U.P., E.H.), Heidelberg, Germany
| | - U Pilatus
- From the Departments of Neuroradiology (K.J.W., U.P., E.H.).,German Cancer Consortium Partner Site (K.J.W., J.P.S., O.B., U.P., E.H.), Frankfurt am Main/Mainz, Germany.,German Cancer Research Center (K.J.W., J.P.S., O.B., U.P., E.H.), Heidelberg, Germany
| | - E Hattingen
- From the Departments of Neuroradiology (K.J.W., U.P., E.H.).,German Cancer Consortium Partner Site (K.J.W., J.P.S., O.B., U.P., E.H.), Frankfurt am Main/Mainz, Germany.,German Cancer Research Center (K.J.W., J.P.S., O.B., U.P., E.H.), Heidelberg, Germany
| |
Collapse
|
39
|
IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. Br J Cancer 2020; 122:1580-1589. [PMID: 32291392 PMCID: PMC7250901 DOI: 10.1038/s41416-020-0814-x] [Citation(s) in RCA: 396] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/24/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Isocitrate dehydrogenase (IDH) enzymes catalyse the oxidative decarboxylation of isocitrate and therefore play key roles in the Krebs cycle and cellular homoeostasis. Major advances in cancer genetics over the past decade have revealed that the genes encoding IDHs are frequently mutated in a variety of human malignancies, including gliomas, acute myeloid leukaemia, cholangiocarcinoma, chondrosarcoma and thyroid carcinoma. A series of seminal studies further elucidated the biological impact of the IDH mutation and uncovered the potential role of IDH mutants in oncogenesis. Notably, the neomorphic activity of the IDH mutants establishes distinctive patterns in cancer metabolism, epigenetic shift and therapy resistance. Novel molecular targeting approaches have been developed to improve the efficacy of therapeutics against IDH-mutated cancers. Here we provide an overview of the latest findings in IDH-mutated human malignancies, with a focus on glioma, discussing unique biological signatures and proceedings in translational research.
Collapse
|
40
|
In vivo detection of γ-glutamyl-transferase up-regulation in glioma using hyperpolarized γ-glutamyl-[1- 13C]glycine. Sci Rep 2020; 10:6244. [PMID: 32277103 PMCID: PMC7148357 DOI: 10.1038/s41598-020-63160-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/24/2020] [Indexed: 01/12/2023] Open
Abstract
Glutathione (GSH) is often upregulated in cancer, where it serves to mitigate oxidative stress. γ-glutamyl-transferase (GGT) is a key enzyme in GSH homeostasis, and compared to normal brain its expression is elevated in tumors, including in primary glioblastoma. GGT is therefore an attractive imaging target for detection of glioblastoma. The goal of our study was to assess the value of hyperpolarized (HP) γ-glutamyl-[1-13C]glycine for non-invasive imaging of glioblastoma. Nude rats bearing orthotopic U87 glioblastoma and healthy controls were investigated. Imaging was performed by injecting HP γ-glutamyl-[1-13C]glycine and acquiring dynamic 13C data on a preclinical 3T MR scanner. The signal-to-noise (SNR) ratios of γ-glutamyl-[1-13C]glycine and its product [1-13C]glycine were evaluated. Comparison of control and tumor-bearing rats showed no difference in γ-glutamyl-[1-13C]glycine SNR, pointing to similar delivery to tumor and normal brain. In contrast, [1-13C]glycine SNR was significantly higher in tumor-bearing rats compared to controls, and in tumor regions compared to normal-appearing brain. Importantly, higher [1-13C]glycine was associated with higher GGT expression and higher GSH levels in tumor tissue compared to normal brain. Collectively, this study demonstrates, to our knowledge for the first time, the feasibility of using HP γ-glutamyl-[1-13C]glycine to monitor GGT expression in the brain and thus to detect glioblastoma.
Collapse
|
41
|
Julià-Sapé M, Candiota AP, Arús C. Cancer metabolism in a snapshot: MRS(I). NMR IN BIOMEDICINE 2019; 32:e4054. [PMID: 30633389 DOI: 10.1002/nbm.4054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
The contribution of MRS(I) to the in vivo evaluation of cancer-metabolism-derived metrics, mostly since 2016, is reviewed here. Increased carbon consumption by tumour cells, which are highly glycolytic, is now being sampled by 13 C magnetic resonance spectroscopic imaging (MRSI) following the injection of hyperpolarized [1-13 C] pyruvate (Pyr). Hot-spots of, mostly, increased lactate dehydrogenase activity or flow between Pyr and lactate (Lac) have been seen with cancer progression in prostate (preclinical and in humans), brain and pancreas (both preclinical) tumours. Therapy response is usually signalled by decreased Lac/Pyr 13 C-labelled ratio with respect to untreated or non-responding tumour. For therapeutic agents inducing tumour hypoxia, the 13 C-labelled Lac/bicarbonate ratio may be a better metric than the Lac/Pyr ratio. 31 P MRSI may sample intracellular pH changes from brain tumours (acidification upon antiangiogenic treatment, basification at fast proliferation and relapse). The steady state tumour metabolome pattern is still in use for cancer evaluation. Metrics used for this range from quantification of single oncometabolites (such as 2-hydroxyglutarate in mutant IDH1 glial brain tumours) to selected metabolite ratios (such as total choline to N-acetylaspartate (plain ratio or CNI index)) or the whole 1 H MRSI(I) pattern through pattern recognition analysis. These approaches have been applied to address different questions such as tumour subtype definition, following/predicting the response to therapy or defining better resection or radiosurgery limits.
Collapse
Affiliation(s)
- Margarida Julià-Sapé
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Carles Arús
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| |
Collapse
|
42
|
Huang Y, Huang Y, He J, Wang H, Luo Y, Li Y, Liu J, Zhong L, Zhao Y. PEGylated immunoliposome-loaded endoglin single-chain antibody enhances anti-tumor capacity of porcine α1,3GT gene. Biomaterials 2019; 217:119231. [PMID: 31254933 DOI: 10.1016/j.biomaterials.2019.119231] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 12/31/2022]
Abstract
Tumor could not be completely removed due to the absence of immune storm against tumor. The porcine α1,3 galactosyltransferase (α1,3 GT) induce the hyperacute rejection by synthesizing Galα1-3Galβ1-(3)4GlcNAc-R (αGal) on the surface of graft endothelial cells (ECs) during xeno-transplantation. This study aimed to develop anti-endoglin single-chain Fv fragments (ENG-scFv) conjugated PEGylated immunoliposomes (iLPs) to induce immune storm against tumor. Immune fluorescence was performed to detect the binding of ENG-scFv to human ENG, the endosomal/lysosomal escape of ENG-scFv-iLPs/α1,3 GT, and αGal expression in hENG-HEK293 cells. In vitro MTT assay was performed to measure ENG-scFv-iLPs/α1,3 GT cytotoxicity. NOD/SCID mouse born A549 tumor model was used to evaluate the therapeutic potency of ENG-scFv-iLPs/α1,3 GT. ENG-scFv-iLPs enabled efficient targeting delivery of α1,3 GT plasmid to ENG + tumors neovascular endothelial cells (TnECs), promoted endosomal/lysosomal escape due to the pH-sensitive ability, then synthesized carbohydrate epitope αGal on the surface of these cells to achieve the purpose of destroying the tumor. The mechanism of uptake for nanoparticles was energy driven, the clathrin-mediated endocytosis was the main endocytic pathway of the ENG-mAb-iLPs/α1,3 GT and lipid-raft-mediated of the ENG-scFv-iLPs/α1,3 GT, and macropinocytosis was also involved in intracellular entry. The inhibition of tumor angiogenesis and proliferation by ENG-scFv-iLPs/α1,3 GT was closely related to down-regulation of VEGF. Our findings establish an alternative therapeutic paradigm for scFv-conjugated nanoparticles to induce tumor cell apoptosis and inhibit tumor growth early. Such iLPs nanocarrier could efficiently release α1,3 GT to their distinct sites of action, where the endoglin + tumor neovascular endothelial cells (ENG + TnECs) exist, in a site-specific manner. Therefore, we believe that these scFv-targeted core-shell immunocomplexes are an important potential α1,3 GT delivery system for various solid tumor-targeted therapy.
Collapse
Affiliation(s)
- Yingying Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yong Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jian He
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Huiling Wang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yiqun Luo
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yanmei Li
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Junjie Liu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
43
|
Feuerecker B, Michalik M, Hundshammer C, Schwaiger M, Bruchertseifer F, Morgenstern A, Seidl C. Assessment of 213Bi-anti-EGFR MAb treatment efficacy in malignant cancer cells with [1- 13C]pyruvate and [ 18F]FDG. Sci Rep 2019; 9:8294. [PMID: 31165773 PMCID: PMC6549183 DOI: 10.1038/s41598-019-44484-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 05/13/2019] [Indexed: 12/02/2022] Open
Abstract
Evaluation of response to therapy is among the key objectives of oncology. A new method to evaluate this response includes magnetic resonance spectroscopy (MRS) with hyperpolarized 13C-labelled metabolites, which holds promise to provide new insights in terms of both therapeutic efficacy and tumor cell metabolism. Human EJ28Luc urothelial carcinoma and LN18 glioma cells were treated with lethal activity concentrations of a 213Bi-anti-EGFR immunoconjugate. Treatment efficacy was controlled via analysis of DNA double-strand breaks (immunofluorescence γH2AX staining) and clonogenic survival of cells. To investigate changes in metabolism of treated cells vs controls we analyzed conversion of hyperpolarized [1-13C]pyruvate to [1-13C]lactate via MRS as well as viability of cells, lactate formation and lactate dehydrogenase activity in the cellular supernatants and [18F]FDG uptake in treated cells vs controls, respectively. Treatment of malignant cancer cells with 213Bi-anti-EGFR-MAb induced intense DNA double-strand breaks, resulting in cell death as monitored via clonogenic survival. Moreover, treatment of EJ28Luc bladder cancer cells resulted in decreased cell viability, [18F]FDG-uptake and an increased lactate export. In both EJ28Luc and LN18 carcinoma cells treatment with 213Bi-anti-EGFR-MAb triggered a significant increase in lactate/pyruvate ratios, as measured with hyperpolarized [1-13C]pyruvate. Treatment with 213Bi-anti-EGFR-MAb resulted in an effective induction of cell death in EJ28Luc and LN18 cells. Lactate/pyruvate ratios of hyperpolarized [1-13C]pyruvate proved to detect early treatment response effects, holding promise for future clinical applications in early therapy monitoring.
Collapse
Affiliation(s)
- Benedikt Feuerecker
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Nuclear Medicine, Munich, Germany. .,German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Michael Michalik
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Nuclear Medicine, Munich, Germany
| | - Christian Hundshammer
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Nuclear Medicine, Munich, Germany.,Department of Chemistry, Technical University of Munich, Garching, Germany.,Munich School of Bioengineering, Technical University of Munich, Garching, Germany
| | - Markus Schwaiger
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Nuclear Medicine, Munich, Germany
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| | - Alfred Morgenstern
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| | - Christof Seidl
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Nuclear Medicine, Munich, Germany.,Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Obstetrics and Gynecology, Munich, Germany
| |
Collapse
|
44
|
Augelli R, Ciceri E, Ghimenton C, Zoccatelli G, Bucci A, Nicolato A, Beltramello A, Pinna G, Ricciardi GK. Magnetic resonance diffusion-tensor imaging metrics in High Grade Gliomas: Correlation with IDH1 gene status in WHO 2016 era. Eur J Radiol 2019; 116:174-179. [PMID: 31153561 DOI: 10.1016/j.ejrad.2019.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/08/2019] [Accepted: 04/29/2019] [Indexed: 02/08/2023]
Abstract
PURPOSE To evaluate any possible correlation between the presence of Isocitrate DeHydrogenase 1 mutation (IDH1m) and specific DTI (Diffusion Tensor Imaging) metrics, such as Fractional Anisotropy (FA), Mean Diffusivity (MD), Radial Diffusivity (RD) and Axial Diffusivity (AD). METHODS We retrospectively analyzed 47 patients who underwent an advanced-MR study with DTI followed by surgical intervention with a subsequent histologic diagnosis of High-Grade Glioma (HGG) and immunohistochemical evaluation of IDH1 (Isocitrate DeHydrogenase) mutation status. For each DTI metrics we measured the ratio between tumor and normal tissue and we evaluated the correlation with IDH1 mutation. RESULTS We observed a positive correlation with IDH1 status and RD and MD data. No correlation was demonstrated between IDH1 status and FA and AD. DISCUSSION Our results support the hypothesis that the number of residual axonal fibers, extracellular matrix composition and the presence of colliquated tissue, may together contribute to a global RD increase in HGG, with a relatively higher increase in IDH1m tumors. CONCLUSIONS Our data are in favor of a need for multimodal advance evaluation of HGG. DTI metrics help to analyze IDH1 mutation status, in order to better characterize the lesions and to tailor treatment and follow up.
Collapse
Affiliation(s)
- Raffaele Augelli
- Neuroradiology Departments, Azienda Ospedaliera Universitaria Integrata Verona, Ospedale Civile Maggiore, Borgo Trento, Verona, Italy.
| | - Elisa Ciceri
- Neuroradiology Departments, Azienda Ospedaliera Universitaria Integrata Verona, Ospedale Civile Maggiore, Borgo Trento, Verona, Italy
| | - Claudio Ghimenton
- Pathology Departments, Azienda Ospedaliera Universitaria Integrata Verona, Ospedale Civile Maggiore, Borgo Trento, Verona, Italy
| | - Giada Zoccatelli
- Neuroradiology Departments, Azienda Ospedaliera Universitaria Integrata Verona, Ospedale Civile Maggiore, Borgo Trento, Verona, Italy
| | - Alessandra Bucci
- Neuroradiology Departments, Azienda Ospedaliera Universitaria Integrata Verona, Ospedale Civile Maggiore, Borgo Trento, Verona, Italy
| | - Antonio Nicolato
- Neurosurgery Departments, Azienda Ospedaliera Universitaria Integrata Verona, Ospedale Civile Maggiore, Borgo Trento, Verona, Italy
| | - Alberto Beltramello
- Radiology Department, IRCCS "Sacro Cuore - Don Calabria" Hospital, Negrar, Verona, Italy
| | - Giampietro Pinna
- Neurosurgery Departments, Azienda Ospedaliera Universitaria Integrata Verona, Ospedale Civile Maggiore, Borgo Trento, Verona, Italy
| | - Giuseppe K Ricciardi
- Neuroradiology Departments, Azienda Ospedaliera Universitaria Integrata Verona, Ospedale Civile Maggiore, Borgo Trento, Verona, Italy
| |
Collapse
|
45
|
A RNA sequencing-based six-gene signature for survival prediction in patients with glioblastoma. Sci Rep 2019; 9:2615. [PMID: 30796273 PMCID: PMC6385312 DOI: 10.1038/s41598-019-39273-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/22/2019] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive tumor of the central nervous system that has poor prognosis despite extensive therapy. Therefore, it is essential to identify a gene expression-based signature for predicting GBM prognosis. The RNA sequencing data of GBM patients from the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases were employed in our study. The univariate and multivariate regression models were utilized to assess the relative contribution of each gene to survival prediction in both cohorts, and the common genes in two cohorts were identified as a final prognostic model. A prognostic risk score was calculated based on the prognostic gene signature. This prognostic signature stratified the patients into the low- and high-risk groups. Multivariate regression and stratification analyses were implemented to determine whether the gene signature was an independent prognostic factor. We identified a 6-gene signature through univariate and multivariate regression models. This prognostic signature stratified the patients into the low- and high-risk groups, implying improved and poor outcomes respectively. Multivariate regression and stratification analyses demonstrated that the predictive value of the 6-gene signature was independent of other clinical factors. This study highlights the significant implications of having a gene signature as a prognostic predictor in GBM, and its potential application in personalized therapy.
Collapse
|
46
|
Kurhanewicz J, Vigneron DB, Ardenkjaer-Larsen JH, Bankson JA, Brindle K, Cunningham CH, Gallagher FA, Keshari KR, Kjaer A, Laustsen C, Mankoff DA, Merritt ME, Nelson SJ, Pauly JM, Lee P, Ronen S, Tyler DJ, Rajan SS, Spielman DM, Wald L, Zhang X, Malloy CR, Rizi R. Hyperpolarized 13C MRI: Path to Clinical Translation in Oncology. Neoplasia 2019; 21:1-16. [PMID: 30472500 PMCID: PMC6260457 DOI: 10.1016/j.neo.2018.09.006] [Citation(s) in RCA: 314] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 12/22/2022]
Abstract
This white paper discusses prospects for advancing hyperpolarization technology to better understand cancer metabolism, identify current obstacles to HP (hyperpolarized) 13C magnetic resonance imaging's (MRI's) widespread clinical use, and provide recommendations for overcoming them. Since the publication of the first NIH white paper on hyperpolarized 13C MRI in 2011, preclinical studies involving [1-13C]pyruvate as well a number of other 13C labeled metabolic substrates have demonstrated this technology's capacity to provide unique metabolic information. A dose-ranging study of HP [1-13C]pyruvate in patients with prostate cancer established safety and feasibility of this technique. Additional studies are ongoing in prostate, brain, breast, liver, cervical, and ovarian cancer. Technology for generating and delivering hyperpolarized agents has evolved, and new MR data acquisition sequences and improved MRI hardware have been developed. It will be important to continue investigation and development of existing and new probes in animal models. Improved polarization technology, efficient radiofrequency coils, and reliable pulse sequences are all important objectives to enable exploration of the technology in healthy control subjects and patient populations. It will be critical to determine how HP 13C MRI might fill existing needs in current clinical research and practice, and complement existing metabolic imaging modalities. Financial sponsorship and integration of academia, industry, and government efforts will be important factors in translating the technology for clinical research in oncology. This white paper is intended to provide recommendations with this goal in mind.
Collapse
Affiliation(s)
- John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | | | - James A Bankson
- Department of Imaging Physics, MD Anderson Medical Center, Houston, TX, USA
| | - Kevin Brindle
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, NY, New York, USA
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Denmark
| | | | - David A Mankoff
- Department of Radiology, University of Pennsylvania, PA, USA
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | - John M Pauly
- Department of Electric Engineering, Stanford University, USA
| | - Philips Lee
- Functional Metabolism Group, Singapore Biomedical Consortium, Agency for Science, Technology and Research, Singapore
| | - Sabrina Ronen
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | - Damian J Tyler
- Department of Biomedical Science, University of Oxford, Oxford, UK
| | - Sunder S Rajan
- Center for Devices and Radiological Health (CDRH), FDA, White Oak, MD, USA
| | - Daniel M Spielman
- Departments of Radiology and Electric Engineering, Stanford University, USA
| | - Lawrence Wald
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rahim Rizi
- Department of Radiology, University of Pennsylvania, PA, USA
| |
Collapse
|
47
|
Elsakka AMA, Bary MA, Abdelzaher E, Elnaggar M, Kalamian M, Mukherjee P, Seyfried TN. Management of Glioblastoma Multiforme in a Patient Treated With Ketogenic Metabolic Therapy and Modified Standard of Care: A 24-Month Follow-Up. Front Nutr 2018; 5:20. [PMID: 29651419 PMCID: PMC5884883 DOI: 10.3389/fnut.2018.00020] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/15/2018] [Indexed: 01/01/2023] Open
Abstract
Few advances have been made in overall survival for glioblastoma multiforme (GBM) in more than 40 years. Here, we report the case of a 38-year-old man who presented with chronic headache, nausea, and vomiting accompanied by left partial motor seizures and upper left limb weakness. Enhanced brain magnetic resonance imaging revealed a solid cystic lesion in the right partial space suggesting GBM. Serum testing revealed vitamin D deficiency and elevated levels of insulin and triglycerides. Prior to subtotal tumor resection and standard of care (SOC), the patient conducted a 72-h water-only fast. Following the fast, the patient initiated a vitamin/mineral-supplemented ketogenic diet (KD) for 21 days that delivered 900 kcal/day. In addition to radiotherapy, temozolomide chemotherapy, and the KD (increased to 1,500 kcal/day at day 22), the patient received metformin (1,000 mg/day), methylfolate (1,000 mg/day), chloroquine phosphate (150 mg/day), epigallocatechin gallate (400 mg/day), and hyperbaric oxygen therapy (HBOT) (60 min/session, 5 sessions/week at 2.5 ATA). The patient also received levetiracetam (1,500 mg/day). No steroid medication was given at any time. Post-surgical histology confirmed the diagnosis of GBM. Reduced invasion of tumor cells and thick-walled hyalinized blood vessels were also seen suggesting a therapeutic benefit of pre-surgical metabolic therapy. After 9 months treatment with the modified SOC and complimentary ketogenic metabolic therapy (KMT), the patient’s body weight was reduced by about 19%. Seizures and left limb weakness resolved. Biomarkers showed reduced blood glucose and elevated levels of urinary ketones with evidence of reduced metabolic activity (choline/N-acetylaspartate ratio) and normalized levels of insulin, triglycerides, and vitamin D. This is the first report of confirmed GBM treated with a modified SOC together with KMT and HBOT, and other targeted metabolic therapies. As rapid regression of GBM is rare following subtotal resection and SOC alone, it is possible that the response observed in this case resulted in part from the modified SOC and other novel treatments. Additional studies are needed to validate the efficacy of KMT administered with alternative approaches that selectively increase oxidative stress in tumor cells while restricting their access to glucose and glutamine. The patient remains in excellent health (Karnofsky Score, 100%) with continued evidence of significant tumor regression.
Collapse
Affiliation(s)
- Ahmed M A Elsakka
- Neuro-Metabolism, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Mohamed Abdel Bary
- Neurosurgery, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Eman Abdelzaher
- Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Mostafa Elnaggar
- Cancer Management and Research Department, Faculty of Medicine, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | | | - Purna Mukherjee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Thomas N Seyfried
- Biology Department, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
48
|
Reliable diagnosis of IDH-mutant glioblastoma by 2-hydroxyglutarate detection: a study by 3-T magnetic resonance spectroscopy. Neurosurg Rev 2017; 41:641-647. [DOI: 10.1007/s10143-017-0908-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/25/2017] [Accepted: 09/15/2017] [Indexed: 12/18/2022]
|
49
|
Profiling of the metabolic transcriptome via single molecule molecular inversion probes. Sci Rep 2017; 7:11402. [PMID: 28900252 PMCID: PMC5595890 DOI: 10.1038/s41598-017-11035-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/18/2017] [Indexed: 12/20/2022] Open
Abstract
Cancer-specific metabolic alterations are of high interest as therapeutic targets. These alterations vary between tumor types, and to employ metabolic targeting to its fullest potential there is a need for robust methods that identify candidate targetable metabolic pathways in individual cancers. Currently, such methods include 13C-tracing studies and mass spectrometry/ magnetic resonance spectroscopic imaging. Due to high cost and complexity, such studies are restricted to a research setting. We here present the validation of a novel technique of metabolic profiling, based on multiplex targeted next generation sequencing of RNA with single molecule molecular inversion probes (smMIPs), designed to measure activity of and mutations in genes that encode metabolic enzymes. We here profiled an isogenic pair of cell lines, differing in expression of the Von Hippel Lindau protein, an important regulator of hypoxia-inducible genes. We show that smMIP-profiling provides relevant information on active metabolic pathways. Because smMIP-based targeted RNAseq is cost-effective and can be applied in a medium high-throughput setting (200 samples can be profiled simultaneously in one next generation sequencing run) it is a highly interesting approach for profiling of the activity of genes of interest, including those regulating metabolism, in a routine patient care setting.
Collapse
|
50
|
Interrogating IDH Mutation in Brain Tumor: Magnetic Resonance and Hyperpolarization. Top Magn Reson Imaging 2017; 26:27-32. [PMID: 28079713 DOI: 10.1097/rmr.0000000000000113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Magnetic resonance spectroscopy (MRS) offers the possibility to noninvasively quantify 2HG concentration in the brain in the clinic, thereby serving as a valuable tool for patient-stratification as well as targeted treatment monitoring. Recently, hyperpolarized magnetic resonance techniques have opened up new opportunities for metabolic imaging not possible with conventional MRS in the brain. With over 10,000-fold increase in signal-to-noise ratio (SNR), dynamic metabolic processes can be interrogated in vivo with very high specificity by hyperpolarized MRI. In the following article, we will review relevant clinical studies and practical considerations of MRS and hyperpolarized MRS, as well as discuss some promising preclinical hyperpolarization studies to interrogate real-time metabolism in IDH mutations in vivo.
Collapse
|