1
|
Chauhan W, Setra Janardhana Shetty S, Ferdowsi S, Kafle S, Zennadi R. Rpl13a snoRNAs U34 and U35a: New Targets for Sickle Cell Disease Complications. Circ Res 2025. [PMID: 40371475 DOI: 10.1161/circresaha.124.325093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 04/17/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND In sickle cell disease (SCD), erythrocyte reactive oxygen species (ROS) production and oxidative stress play a critical role in vaso-occlusion, a hallmark of SCD. Small noncoding nucleolar RNAs (snoRNAs) of the Rpl13a locus have been described as regulators of ROS levels. However, whether Rpl13a snoRNAs are present in sickle red blood cells (RBCs) and regulate ROS levels and whether they contribute to SCD pathophysiology remain unknown. METHODS To determine whether sickle RBC ROS levels are associated with Rpl13a snoRNA levels and identify the mechanism by which they regulate ROS and snoRNAs' effects on SCD hemodynamics, we used human RBCs, Rpl13a snoRNA knockout sickle mice, K562 U32a, U33, U34, U35a, and the control U25 knockout mutants generated by CRISPR-Cas9-targeted genome editing, and genetic targeting with antisense oligonucleotides. RESULTS Excessive ROS production in sickle RBCs of patients with SCD is associated with high Rpl13a snoRNAs U32a, U33, U34, and U35a levels. U32a, U34, and U35a regulate ROS and hydrogen peroxide levels in sickle erythroid populations by modulating peroxidase activity. This was due to U32a- and U34-guided 2'-O-methylation on Prdx2 (peroxiredoxin 2) messenger RNA, a modification conveyed by fibrillarin during erythropoiesis, subsequently reducing Prdx2 expression and activity. The snoRNA U35a impaired Prdx2 expression/activity but independently of Prdx2 messenger RNA 2'-O-methylation. Excess sickle RBC ROS increased in turn Rpl13a snoRNAs levels. In vivo targeting combinations of U34+U35a and U32a+U34+U35a in sickle mice with antisense oligonucleotide blunted RBC ROS generation, improved erythropoiesis and anemia, alleviated leukocytosis and endothelial damage, diminished cell adhesion in inflamed vessels and vaso-occlusion, restored blood flow, and reduced animal mortality. CONCLUSIONS Rpl13a snoRNAs U34 and U35a specifically increase ROS levels, which, in turn, regulate snoRNA expression, in sickle erythroid cells, modulating Prdx2 expression/activity, subsequently impairing hemodynamics. Targeted U34+U35a with antisense oligonucleotide may represent a novel and safe therapy to ameliorate erythropoiesis and downstream events in SCD.
Collapse
Affiliation(s)
- Waseem Chauhan
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| | | | - Shirin Ferdowsi
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| | - Sweta Kafle
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| | - Rahima Zennadi
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| |
Collapse
|
2
|
Bernardo VS, Torres FF, Zucão ACA, Chaves NA, Santana ILR, da Silva DGH. Disrupted homeostasis in sickle cells: Expanding the comprehension of metabolism adaptation and related therapeutic strategies. Tissue Cell 2025; 93:102717. [PMID: 39805212 DOI: 10.1016/j.tice.2024.102717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/02/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025]
Abstract
Sickle cell disease (SCD) is a hereditary hemolytic anemia associated with the alteration of the membrane composition of the sickle erythrocytes, the loss of glycolysis, dysregulation of the pyruvate phosphatase pathway, and changes in nucleotide metabolism of the sickle red blood cell (RBC). This review provides a comprehensive overview of the impact of the presence of Hb S, which leads to the disruption of the normal RBC metabolism. The intricate interplay between the redox and energetic balance in erythrocytic cells, where the glycolysis, pentose phosphate pathway, and methemoglobin reductase pathways are all altered in sickle RBC, is a key focus. Moreover, this review summarizes the current knowledge about the disease-modifying agents and their action mechanisms based on the sickle RBC alterations previously mentioned (i.e., their association with beneficial effects on the sickle cells' membrane, to their RBCs' energy metabolism, and to their oxidative status). Therefore, providing a comprehensive understanding of how sickle cells cope with the disruption of metabolic homeostasis and the most promising therapeutic agents able to ameliorate the various consequences of abnormal sickle RBC alterations.
Collapse
Affiliation(s)
| | | | | | - Nayara Alves Chaves
- Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil
| | | | - Danilo Grünig Humberto da Silva
- Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil; Campus de Três Lagoas, Universidade Federal de Mato Grosso do Sul (CPTL/UFMS), Mato Grosso do Sul, Brazil.
| |
Collapse
|
3
|
Pavan AR, Terroni B, Dos Santos JL. Endothelial dysfunction in Sickle Cell Disease: Strategies for the treatment. Nitric Oxide 2024; 149:7-17. [PMID: 38806107 DOI: 10.1016/j.niox.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/15/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Sickle Cell Anemia (SCA), is an inherited hemoglobinopathy characterized by the presence of an abnormal hemoglobin (HbS), being the most prevalent sickle cell disease (SCD). SCA is characterized by vascular endothelial dysfunction, which contributes significantly to various clinical conditions, including but not limited to pulmonary hypertension, priapism, cutaneous leg ulceration, and stroke. The pathophysiology of endothelial dysfunction (ED) in SCA is a multifaceted process involving a chronic inflammatory and hypercoagulable state. Key factors include hemolysis-associated elements like reduced arginine and nitric oxide (NO) availability, elevated levels of vascular adhesion molecules, the uncoupling effect of NO synthase, heightened arginase activity, an environment characterized by oxidative stress with the production of reactive oxygen and nitrogen species, and occurrences of ischemia-reperfusion injury, along with apolipoprotein A-1 depletion. The urgency for novel interventions addressing ED is evident. Presently, there is a focus on investigating small molecules that disrupt the arginine-nitric oxide pathway, exhibiting anti-inflammatory and antioxidant properties while diminishing levels of cellular and vascular adhesion molecules. In this mini-review article, we delve into the progress made in strategies for treating ED in SCD with the aim of cultivating insights for drug design.
Collapse
Affiliation(s)
- Aline Renata Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil; São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil.
| | - Barbara Terroni
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | | |
Collapse
|
4
|
Zhang D, Zhang X, Yang L, Zhao Y, Hu X. Exploring the relationship between red blood cell levels and emotional regulation through the miR191-Riok3-Mxi1 pathway. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2024; 11:101-110. [DOI: 10.1016/j.jtcms.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
5
|
Esperti S, Nader E, Boisson C, Carin R, Horrand F, Piedrahita D, Renoux C, Joly P, Gauthier A, Poutrel S, Connes P. Mitochondria retention in mature RBCs from haemoglobin SC patients. Br J Haematol 2023; 202:e36-e38. [PMID: 37305963 DOI: 10.1111/bjh.18935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Affiliation(s)
- Sofia Esperti
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell » Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
- Erytech Pharma, Lyon, France
| | - Elie Nader
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell » Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Camille Boisson
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell » Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Romain Carin
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell » Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | | | | | - Céline Renoux
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell » Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
- Laboratoire de Biochimie et de Biologie Moléculaire, UF de Biochimie des Pathologies Erythrocytaires, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Philippe Joly
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell » Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
- Laboratoire de Biochimie et de Biologie Moléculaire, UF de Biochimie des Pathologies Erythrocytaires, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Alexandra Gauthier
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell » Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
- Institut d'Hématologique et d'Oncologique Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Solène Poutrel
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell » Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
- Service de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Philippe Connes
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell » Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| |
Collapse
|
6
|
Microfluidic Microcirculation Mimetic as a Tool for the Study of Rheological Characteristics of Red Blood Cells in Patients with Sickle Cell Anemia. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sickle cell disorder (SCD) is a multisystem disease with heterogeneous phenotypes. Although all patients have the mutated hemoglobin (Hb) in the SS phenotype, the severity and frequency of complications are variable. When exposed to low oxygen tension, the Hb molecule becomes dense and forms tactoids, which lead to the peculiar sickled shapes of the affected red blood cells, giving the disorder its name. This sickle cell morphology is responsible for the profound and widespread pathologies associated with this disorder, such as vaso-occlusive crisis (VOC). How much of the clinical manifestation is due to sickled erythrocytes and what is due to the relative contributions of other elements in the blood, especially in the microcapillary circulation, is usually not visualized and quantified for each patient during clinical management. Here, we used a microfluidic microcirculation mimetic (MMM), which has 187 capillary-like constrictions, to impose deformations on erythrocytes of 25 SCD patients, visualizing and characterizing the morpho-rheological properties of the cells in normoxic, hypoxic (using sodium meta-bisulfite) and treatment conditions (using hydroxyurea). The MMM enabled a patient-specific quantification of shape descriptors (circularity and roundness) and transit time through the capillary constrictions, which are readouts for morpho-rheological properties implicated in VOC. Transit times varied significantly (p < 0.001) between patients. Our results demonstrate the feasibility of microfluidics-based monitoring of individual patients for personalized care in the context of SCD complications such as VOC, even in resource-constrained settings.
Collapse
|
7
|
Sales RR, Nogueira BL, Tosatti JAG, Gomes KB, Luizon MR. Do Genetic Polymorphisms Affect Fetal Hemoglobin (HbF) Levels in Patients With Sickle Cell Anemia Treated With Hydroxyurea? A Systematic Review and Pathway Analysis. Front Pharmacol 2022; 12:779497. [PMID: 35126118 PMCID: PMC8814522 DOI: 10.3389/fphar.2021.779497] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/31/2021] [Indexed: 01/23/2023] Open
Abstract
Hydroxyurea has long been used for the treatment of sickle cell anemia (SCA), and its clinical effectiveness is related to the induction of fetal hemoglobin (HbF), a major modifier of SCA phenotypes. However, there is substantial variability in response to hydroxyurea among patients with SCA. While some patients show an increase in HbF levels and an ameliorated clinical condition under low doses of hydroxyurea, other patients present a poor effect or even develop toxicity. However, the effects of genetic polymorphisms on increasing HbF levels in response to hydroxyurea in patients with SCA (Hb SS) have been less explored. Therefore, we performed a systematic review to assess whether single-nucleotide polymorphisms (SNPs) affect HbF levels in patients with SCA treated with hydroxyurea. Moreover, we performed pathway analysis using the set of genes with SNPs found to be associated with changes in HbF levels in response to hydroxyurea among the included studies. The systematic literature search was conducted on Medline/PubMed, EMBASE, Cochrane Central Register of Controlled Trials, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Scopus, and Web of Science. Seven cohort studies were included following our inclusion and exclusion criteria. From the 728 genetic polymorphisms examined in the included studies, 50 different SNPs of 17 genes were found to be associated with HbF changes in patients with SCA treated with hydroxyurea, which are known to affect baseline HbF but are not restricted to them. Enrichment analysis of this gene set revealed reactome pathways with the lowest adjusted p-values and highest combined scores related to VEGF ligand–receptor interactions (R-HSA-194313; R-HSA-195399) and the urea cycle (R-HSA-70635). Pharmacogenetic studies of response to hydroxyurea therapy in patients with SCA are still scarce and markedly heterogeneous regarding candidate genes and SNPs examined for association with HbF changes and outcomes, suggesting that further studies are needed. The reviewed findings highlighted that similar to baseline HbF, changes in HbF levels upon hydroxyurea therapy are likely to be regulated by multiple loci. There is evidence that SNPs in intron 2 of BCL11A affect HbF changes in response to hydroxyurea therapy, a potential application that might improve the clinical management of SCA. Systematic Review Registration: (https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=208790).
Collapse
Affiliation(s)
- Rahyssa Rodrigues Sales
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Rahyssa Rodrigues Sales, ; Marcelo Rizzatti Luizon,
| | - Bárbara Lisboa Nogueira
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jéssica Abdo Gonçalves Tosatti
- Department of Clinical and Toxicological Analyzes, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Karina Braga Gomes
- Department of Clinical and Toxicological Analyzes, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Rizzatti Luizon
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Rahyssa Rodrigues Sales, ; Marcelo Rizzatti Luizon,
| |
Collapse
|
8
|
Subotički T, Mitrović Ajtić O, Djikić D, Kovačić M, Santibanez JF, Tošić M, Čokić VP. Nitric Oxide Mediation in Hydroxyurea and Nitric Oxide Metabolites' Inhibition of Erythroid Progenitor Growth. Biomolecules 2021; 11:1562. [PMID: 34827560 PMCID: PMC8616001 DOI: 10.3390/biom11111562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
In several systems, hydroxyurea has been shown to trigger nitric oxide (NO) release or activation of NO synthase (NOS). To elucidate this duality in its pharmacological effects, during myelosuppression, we individually examined hydroxyurea's (NO releasing agent) and NO metabolites' (stable NO degradation products) effects on erythroid colony growth and NOS/NO levels in mice using NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). Hydroxyurea and nitrite/nitrate decreased the bone marrow cellularity that was blocked by PTIO only for the NO metabolites. Hydroxyurea inhibition of colony-forming unit-erythroid (CFU-E) formation and reticulocytes was reversed by PTIO. Moreover, hydroxyurea, through a negative feedback mechanism, reduced inducible NOS (iNOS) expressing cells in CFU-E, also prevented by PTIO. Nitrate inhibition of burst-forming units-erythroid (BFU-E) colony growth was blocked by PTIO, but not in mature CFU-E. The presented results reveal that NO release and/or production mediates the hydroxyurea inhibition of mature erythroid colony growth and the frequency of iNOS immunoreactive CFU-E.
Collapse
Affiliation(s)
- Tijana Subotički
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (T.S.); (O.M.A.); (D.D.); (M.K.); (J.F.S.); (M.T.)
| | - Olivera Mitrović Ajtić
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (T.S.); (O.M.A.); (D.D.); (M.K.); (J.F.S.); (M.T.)
| | - Dragoslava Djikić
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (T.S.); (O.M.A.); (D.D.); (M.K.); (J.F.S.); (M.T.)
| | - Marijana Kovačić
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (T.S.); (O.M.A.); (D.D.); (M.K.); (J.F.S.); (M.T.)
| | - Juan F. Santibanez
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (T.S.); (O.M.A.); (D.D.); (M.K.); (J.F.S.); (M.T.)
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| | - Milica Tošić
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (T.S.); (O.M.A.); (D.D.); (M.K.); (J.F.S.); (M.T.)
| | - Vladan P. Čokić
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (T.S.); (O.M.A.); (D.D.); (M.K.); (J.F.S.); (M.T.)
| |
Collapse
|
9
|
Wang Q, Zennadi R. The Role of RBC Oxidative Stress in Sickle Cell Disease: From the Molecular Basis to Pathologic Implications. Antioxidants (Basel) 2021; 10:antiox10101608. [PMID: 34679742 PMCID: PMC8533084 DOI: 10.3390/antiox10101608] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/14/2023] Open
Abstract
Sickle cell disease (SCD) is an inherited monogenic disorder and the most common severe hemoglobinopathy in the world. SCD is characterized by a point mutation in the β-globin gene, which results in hemoglobin (Hb) S production, leading to a variety of mechanistic and phenotypic changes within the sickle red blood cell (RBC). In SCD, the sickle RBCs are the root cause of the disease and they are a primary source of oxidative stress since sickle RBC redox state is compromised due to an imbalance between prooxidants and antioxidants. This imbalance in redox state is a result of a continuous production of reactive oxygen species (ROS) within the sickle RBC caused by the constant endogenous Hb autoxidation and NADPH oxidase activation, as well as by a deficiency in the antioxidant defense system. Accumulation of non-neutralized ROS within the sickle RBCs affects RBC membrane structure and function, leading to membrane integrity deficiency, low deformability, phosphatidylserine exposure, and release of micro-vesicles. These oxidative stress-associated RBC phenotypic modifications consequently evoke a myriad of physiological changes involved in multi-system manifestations. Thus, RBC oxidative stress in SCD can ultimately instigate major processes involved in organ damage. The critical role of the sickle RBC ROS production and its regulation in SCD pathophysiology are discussed here.
Collapse
|
10
|
Biochemical Evaluation of the Effects of Hydroxyurea in Vitro on Red Blood Cells. Antioxidants (Basel) 2021; 10:antiox10101599. [PMID: 34679734 PMCID: PMC8533185 DOI: 10.3390/antiox10101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Hydroxyurea (HU) is a low-cost, low-toxicity drug that is often used in diseases, such as sickle cell anemia and different types of cancer. Its effects on the red blood cells (RBC) are still not fully understood. The in vitro effects of HU were evaluated on the biochemical parameters of the RBC from healthy individuals that were treated with 0.6 mM or 0.8 mM HU for 30 min and 1 h. After 30 min, there was a significant increase in almost all of the parameters analyzed in the two concentrations of HU, except for the pyruvate kinase (PK) activity. A treatment with 0.8 mM HU for 1 h resulted in a reduction of the levels of lipid peroxidation, Fe3+, and in the activities of some of the enzymes, such as glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G6PD), and PK. After the incubation for 1 h, the levels of H2O2, lipid peroxidation, reduced glutathione (GSH), enzymatic activity (hexokinase, G6PD, and superoxide dismutase (SOD) were reduced with the treatment of 0.8 mM HU when compared with 0.6 mM. The results have suggested that a treatment with HU at a concentration of 0.8 mM seemed to be more efficient in protecting against the free radicals, as well as in treating diseases, such as sickle cell anemia. HU appears to preferentially stimulate the pentose pathway over the glycolytic pathway. Although this study was carried out with the RBC from healthy individuals, the changes described in this study may help to elucidate the mechanisms of action of HU when administered for therapeutic purposes.
Collapse
|
11
|
Signaling Pathway in the Osmotic Resistance Induced by Angiotensin II AT2 Receptor Activation in Human Erythrocytes. Rep Biochem Mol Biol 2021; 10:314-326. [PMID: 34604421 DOI: 10.52547/rbmb.10.2.314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022]
Abstract
Background Angiotensin II regulates blood volume via AT1 (AT1R) and AT2 (AT2R) receptors. As cell integrity is an important feature of mature erythrocyte, we sought to evaluate, in vitro, whether angiotensin II modulates resistance to hemolysis and the signaling pathway involved. Methods Human blood samples were collected and hemolysis assay and angiotensin II signaling pathway profiling in erythrocytes were done. Results Hemolysis assay created a hemolysis curve in presence of Ang II in several concentrations (10-6 M, 10-8 M, 10-10 M, 10-12 M). Angiotensin II demonstrated protective effect, both in osmotic stressed and physiological situations, by reducing hemolysis in NaCl 0.4% and 0.9%. By adding receptors antagonists (losartan, AT1R antagonist and PD 123319, AT2R antagonist) and/or signaling modulators for AMPK, Akt/PI3K, p38 and PKC we showed the protective effect was enhanced with losartan and abolished with PD 123319. Also, we showed activation of p38 as well as PI3K/Akt pathways in this system. Conclusion Ang II protects human erythrocytes from hypo-osmotic conditions-induced hemolysis by activating AT2 receptors and triggering intracellular pathways.
Collapse
|
12
|
Annarapu GK, Nolfi-Donegan D, Reynolds M, Wang Y, Shiva S. Mitochondrial reactive oxygen species scavenging attenuates thrombus formation in a murine model of sickle cell disease. J Thromb Haemost 2021; 19:2256-2262. [PMID: 33724688 DOI: 10.1111/jth.15298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Sickle cell disease (SCD) is characterized by hemolysis-associated platelet dysfunction that leads to increased risk of thrombosis and plays a role in the high morbidity and mortality of the disease. The mechanisms by which hemolysis induces platelet activation remain unclear. We recently demonstrated that patients with SCD showed increased platelet mitochondrial reactive oxygen species (mtROS) production that correlates with markers of hemolysis and platelet activation. Experiments in isolated platelets demonstrated that mtROS stimulated platelet activation. However, the role of hemolysis-induced mtROS in thrombus formation in vivo remains unclear. OBJECTIVES Here, we hypothesize that scavenging of mtROS attenuates the propensity for thrombosis in mouse models of hemolysis. METHODS We used models of hemolysate infusion into wildtype mice as well as the Berkley transgenic mouse model of SCD, a chronic mode of hemolysis, to test the effect of hemolysis on platelet mtROS production and thrombosis. RESULTS We show that infusion of hemolysate in wildtype mice induces platelet mtROS production and decreases time to vessel occlusion in a model of ferric chloride-induced carotid artery thrombosis. Increased mtROS and propensity for thrombosis was also observed in the Berkley transgenic mouse model of SCD. Notably, treatment with mtROS scavengers decreased platelet mtROS levels and attenuated the propensity for thrombus formation in both models. CONCLUSIONS These data demonstrate that mtROS significantly contribute to the mechanism of hemolysis-induced thrombosis in vivo and suggest a potential role for mitochondrially targeted antioxidant therapy in hemolysis and SCD-related thrombosis.
Collapse
Affiliation(s)
- Gowtham K Annarapu
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Deirdre Nolfi-Donegan
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael Reynolds
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yinna Wang
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sruti Shiva
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Pavan AR, Dos Santos JL. Advances in Sickle Cell Disease Treatments. Curr Med Chem 2021; 28:2008-2032. [PMID: 32520675 DOI: 10.2174/0929867327666200610175400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/23/2020] [Accepted: 05/07/2020] [Indexed: 11/22/2022]
Abstract
Sickle Cell Disease (SCD) is an inherited disorder of red blood cells that is caused by a single mutation in the β -globin gene. The disease, which afflicts millions of patients worldwide mainly in low income countries, is characterized by high morbidity, mortality and low life expectancy. The new pharmacological and non-pharmacological strategies for SCD is urgent in order to promote treatments able to reduce patient's suffering and improve their quality of life. Since the FDA approval of HU in 1998, there have been few advances in discovering new drugs; however, in the last three years voxelotor, crizanlizumab, and glutamine have been approved as new therapeutic alternatives. In addition, new promising compounds have been described to treat the main SCD symptoms. Herein, focusing on drug discovery, we discuss new strategies to treat SCD that have been carried out in the last ten years to discover new, safe, and effective treatments. Moreover, non-pharmacological approaches, including red blood cell exchange, gene therapy and hematopoietic stem cell transplantation will be presented.
Collapse
Affiliation(s)
- Aline Renata Pavan
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Jean Leandro Dos Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
14
|
Hydroxyurea affects in vitro porcine oocyte maturation through increased apoptosis and oxidative stress. Biosci Rep 2021; 41:228272. [PMID: 33844009 PMCID: PMC8062957 DOI: 10.1042/bsr20203091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Hydroxyurea (HU) is an FDA-approved drug used to treat a variety of diseases, especially malignancies, but is harmful to fertility. We used porcine oocytes as an experimental model to study the effect of HU during oocyte maturation. Exposure of cumulus–oocyte complexes (COCs) to 20 µM (P<0.01) and 50 µM (P<0.001) HU reduced oocyte maturation. Exposure to 20 µM HU induced approximately 1.5- and 2-fold increases in Caspase-3 (P<0.001) and P53 (P<0.01) gene expression levels in cumulus cells, respectively, increased Caspase-3 (P<0.01) and P53 (P<0.001) protein expression levels in metaphase II (MII) oocytes and increased the percentage of apoptotic cumulus cells (P<0.001). In addition, HU decreased the mitochondrial membrane potential (Δφm) (P<0.01 and P<0.001) and glutathione (GSH) levels (P<0.01 and P<0.001) of both cumulus cells and MII oocytes, while increasing their reactive oxygen species (ROS) levels (P<0.001). Following parthenogenetic activation of embryos derived from MII oocytes, exposure to 20 µM HU significantly reduced total blastocyst cell numbers (P<0.001) and increased apoptosis of blastocyst cells (P<0.001). Moreover, HU exposure reduced the rate of development of two-celled, four- to eight-celled, blastocyst, and hatching stages after parthenogenetic activation (P<0.05). Our findings indicate that exposure to 20 µM HU caused significant oxidative stress and apoptosis of MII oocytes during maturation, which affected their developmental ability. These results provide valuable information for safety assessments of HU.
Collapse
|
15
|
Nader E, Conran N, Romana M, Connes P. Vasculopathy in Sickle Cell Disease: From Red Blood Cell Sickling to Vascular Dysfunction. Compr Physiol 2021; 11:1785-1803. [PMID: 33792905 DOI: 10.1002/cphy.c200024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sickle cell disease (SCD) is a hereditary disorder that leads to the production of an abnormal hemoglobin, hemoglobin S (HbS). HbS polymerizes in deoxygenated conditions, which can prompt red blood cell (RBC) sickling and leaves the RBCs more rigid, fragile, and prone to hemolysis. SCD patients suffer from a plethora of complications, ranging from acute complications, such as characteristic, frequent, and debilitating vaso-occlusive episodes to chronic organ damage. While RBC sickling is the primary event at the origin of vaso-occlusive processes, other factors that can further increase RBC transit times in the microcirculation may also be required to precipitate vaso-occlusive processes. The adhesion of RBC and leukocytes to activated endothelium and the formation of heterocellular aggregates, as well as increased blood viscosity, are among the mechanisms involved in slowing the progress of RBCs in deoxygenated vascular areas, favoring RBC sickling and promoting vascular occlusion. Chronic inflammatory processes and oxidative stress, which are perpetuated by hemolytic events and ischemia-reperfusion injury, result in this pan cellular activation and some acute events, such as stroke and acute chest syndrome, as well as chronic end-organ damage. Furthermore, impaired vasodilation and vasomotor hyperresponsiveness in SCD also contribute to vaso-occlusive processes. Treating SCD as a vascular disease in addition to its hematological perspective, the present article looks at the interplay between abnormal RBC physiology/integrity, vascular dysfunction and clinical severity in SCD, and discusses existing therapies and novel drugs in development that may ameliorate vascular complications in the disease. © 2021 American Physiological Society. Compr Physiol 11:1785-1803, 2021.
Collapse
Affiliation(s)
- Elie Nader
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Nicola Conran
- Hematology Center, University of Campinas - UNICAMP, Cidade Universitária, Campinas-SP, Brazil
| | - Marc Romana
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Université des Antilles, UMR_S1134, BIGR, Pointe-à-Pitre, France.,Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France
| | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| |
Collapse
|
16
|
Mohi SM, Saadon HL, Khalaf AA. Laser tweezers as a biophotonic tool to investigate the efficacy of living sickle red blood cells in response to optical deformation. Biophys Rev 2021; 13:173-184. [PMID: 33936317 PMCID: PMC8046874 DOI: 10.1007/s12551-021-00790-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/25/2021] [Indexed: 12/25/2022] Open
Abstract
A laser tweezer technique based on single and/or dual-laser beams is proposed as a biophotonic tool to trap single cells and investigate their biophysical and biomechanical characteristics. Optical deformability and changes in size and cellular morphology of living and nonliving cells can be measured using the proposed technique. Representative results of red blood cell (RBC) optical deformability of 20 homozygous patients with sickle cell disease, including follow-up patients after treating with hydroxyurea (HU) for at least 3 months and 20 healthy control groups, are presented and compared. Shape recovery of deformed RBCs and relaxation time are recorded for each RBC. Results showed that healthy blood and patients treated with HU demonstrate significantly higher optical deformability and degree of optical elongation with morphological change of RBCs than untreated patients. Moreover, the healthy control group and patients treated with HU exhibited faster relaxation time for RBCs than untreated patients. A trapping power that reaches 180 mW caused no observable photo-damage at a wavelength 1064 nm. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12551-021-00790-0.
Collapse
Affiliation(s)
- Shaimaa M. Mohi
- Department of Physics, Laser Applications Research Group (LARG), College of Science, University of Basrah, Basrah, Iraq
| | - H. L. Saadon
- Department of Physics, Laser Applications Research Group (LARG), College of Science, University of Basrah, Basrah, Iraq
| | - Asaad A. Khalaf
- Basrah Centre for Hereditary Blood Diseases, Basrah Health Directorate, Basrah, Iraq
| |
Collapse
|
17
|
Connes P, Möckesch B, Tudor Ngo Sock E, Hardy-Dessources MD, Reminy K, Skinner S, Billaud M, Nader E, Tressieres B, Etienne-Julan M, Guillot N, Lemonne N, Hue O, Romana M, Antoine-Jonville S. Oxidative stress, inflammation, blood rheology, and microcirculation in adults with sickle cell disease: Effects of hydroxyurea treatment and impact of sickle cell syndrome. Eur J Haematol 2021; 106:800-807. [PMID: 33629431 DOI: 10.1111/ejh.13607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022]
Abstract
Inflammation and oxidative stress play a key role in the pathophysiology of sickle cell disease (SCD). However, the potential influence of different sickle genotypes, or hydroxyurea (HU) treatment, on these factors remains poorly documented. The present study compared several plasma markers of inflammation and oxidative stress, as well as microvascular function, between patients with sickle SC disease (HbSC, n = 19) and patients with sickle cell anemia (HbSS) under hydroxyurea (HU) treatment (n = 16), or not (n = 13). Hemorheological parameters and levels of inflammatory (IL-6, IL-8, IFN-γ, MCP-1, MIP-1β, TNF-α) and oxidative stress (AOPP, MDA, MPO) markers were determined. Peripheral microcirculatory cutaneous blood flow and immediate microvascular response to local heat were evaluated using laser Doppler flowmetry. Oxidative stress and inflammation were lower in HbSC patients and HbSS patients under HU therapy compared to HbSS patients not treated with HU. Blood viscosity was higher in HbSC than in HbSS patients treated with or not with HU. Vasodilation response of the cutaneous microcirculation to heat stress was higher in HbSS patients receiving HU treatment. Our results clearly established that both sickle cell genotype and HU treatment modulate inflammation and oxidative stress.
Collapse
Affiliation(s)
- Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Université Lyon 1 (COMUE Lyon), Equipe "Biologie Vasculaire et du Globule Rouge", Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Berenike Möckesch
- EA "ACTES": Adaptation, Climat Tropical, Exercice et Santé, Université des Antilles, Pointe-à-Pitre, France
| | - Emilienne Tudor Ngo Sock
- EA "ACTES": Adaptation, Climat Tropical, Exercice et Santé, Université des Antilles, Pointe-à-Pitre, France
| | - Marie-Dominique Hardy-Dessources
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Université des Antilles, UMR_S1134, BIGR Inserm, Pointe-à-Pitre, France.,Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France
| | - Karen Reminy
- EA "ACTES": Adaptation, Climat Tropical, Exercice et Santé, Université des Antilles, Pointe-à-Pitre, France
| | - Sarah Skinner
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Université Lyon 1 (COMUE Lyon), Equipe "Biologie Vasculaire et du Globule Rouge", Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Marie Billaud
- Unité Transversale de la Drépanocytose, CHU de la Guadeloupe, Pointe-à-Pitre, France
| | - Elie Nader
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Université Lyon 1 (COMUE Lyon), Equipe "Biologie Vasculaire et du Globule Rouge", Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Benoit Tressieres
- Centre d'Investigation Clinique Antilles Guyane, Pointe-à-Pitre, France
| | - Maryse Etienne-Julan
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Université des Antilles, UMR_S1134, BIGR Inserm, Pointe-à-Pitre, France.,Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France.,Unité Transversale de la Drépanocytose, CHU de la Guadeloupe, Pointe-à-Pitre, France
| | - Nicolas Guillot
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Université Lyon 1 (COMUE Lyon), Equipe "Biologie Vasculaire et du Globule Rouge", Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Nathalie Lemonne
- Unité Transversale de la Drépanocytose, CHU de la Guadeloupe, Pointe-à-Pitre, France
| | - Olivier Hue
- EA "ACTES": Adaptation, Climat Tropical, Exercice et Santé, Université des Antilles, Pointe-à-Pitre, France
| | - Marc Romana
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Université des Antilles, UMR_S1134, BIGR Inserm, Pointe-à-Pitre, France.,Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France
| | - Sophie Antoine-Jonville
- EA "ACTES": Adaptation, Climat Tropical, Exercice et Santé, Université des Antilles, Pointe-à-Pitre, France.,Université d'Avignon, LAPEC EA4278, Avignon, France
| |
Collapse
|
18
|
Yasara N, Premawardhena A, Mettananda S. A comprehensive review of hydroxyurea for β-haemoglobinopathies: the role revisited during COVID-19 pandemic. Orphanet J Rare Dis 2021; 16:114. [PMID: 33648529 PMCID: PMC7919989 DOI: 10.1186/s13023-021-01757-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background Hydroxyurea is one of the earliest drugs that showed promise in the management of haemoglobinopathies that include β-thalassaemia and sickle cell disease. Despite this, many aspects of hydroxyurea are either unknown or understudied; specifically, its usefulness in β-thalassaemia major and haemoglobin E β-thalassaemia is unclear. However, during COVID-19 pandemic, it has become a valuable adjunct to transfusion therapy in patients with β-haemoglobinopathies. In this review, we aim to explore the available in vitro and in vivo mechanistic data and the clinical utility of hydroxyurea in β-haemoglobinopathies with a special emphasis on its usefulness during the COVID-19 pandemic. Main body Hydroxyurea is an S-phase-specific drug that reversibly inhibits ribonucleoside diphosphate reductase enzyme which catalyses an essential step in the DNA biosynthesis. In human erythroid cells, it induces the expression of γ-globin, a fetal globin gene that is suppressed after birth. Through several molecular pathways described in this review, hydroxyurea exerts many favourable effects on the haemoglobin content, red blood cell indices, ineffective erythropoiesis, and blood rheology in patients with β-haemoglobinopathies. Currently, it is recommended for sickle cell disease and non-transfusion dependent β-thalassaemia. A number of clinical trials are ongoing to evaluate its usefulness in transfusion dependent β-thalassaemia. During the COVID-19 pandemic, it was widely used as an adjunct to transfusion therapy due to limitations in the availability of blood and logistical disturbances. Thus, it has become clear that hydroxyurea could play a remarkable role in reducing transfusion requirements of patients with haemoglobinopathies, especially when donor blood is a limited resource. Conclusion Hydroxyurea is a well-tolerated oral drug which has been in use for many decades. Through its actions of reversible inhibition of ribonucleoside diphosphate reductase enzyme and fetal haemoglobin induction, it exerts many favourable effects on patients with β-haemoglobinopathies. It is currently approved for the treatment of sickle cell disease and non-transfusion dependent β-thalassaemia. Also, there are various observations to suggest that hydroxyurea is an important adjunct in the treatment of transfusion dependent β-thalassaemia which should be confirmed by randomised clinical trials.
Collapse
Affiliation(s)
- Nirmani Yasara
- Department of Paediatrics, Faculty of Medicine, University of Kelaniya, Thalagolla Road, Ragama, 11010, Sri Lanka
| | - Anuja Premawardhena
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka.,Colombo North Teaching Hospital, Ragama, Sri Lanka
| | - Sachith Mettananda
- Department of Paediatrics, Faculty of Medicine, University of Kelaniya, Thalagolla Road, Ragama, 11010, Sri Lanka. .,Colombo North Teaching Hospital, Ragama, Sri Lanka.
| |
Collapse
|
19
|
Shear Stress and RBC-NOS Serine1177 Phosphorylation in Humans: A Dose Response. Life (Basel) 2021; 11:life11010036. [PMID: 33429979 PMCID: PMC7828091 DOI: 10.3390/life11010036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 01/01/2023] Open
Abstract
Red blood cells (RBC) express a nitric oxide synthase isoform (RBC-NOS) that appears dependent on shear stress for Serine1177 phosphorylation. Whether this protein is equally activated by varied shears in the physiological range is less described. Here, we explored RBC-NOS Serine1177 phosphorylation in response to shear stress levels reflective of in vivo conditions. Whole blood samples were exposed to specific magnitudes of shear stress (0.5, 1.5, 4.5, 13.5 Pa) for discrete exposure times (1, 10, 30 min). Thereafter, RBC-NOS Serine1177 phosphorylation was measured utilising immunofluorescence labelling. Shear stress exposure at 0.5, 1.5, and 13.5 Pa significantly increased RBC-NOS Serine1177 phosphorylation following 1 min (p < 0.0001); exposure to 4.5 Pa had no effect after 1 min. RBC-NOS Serine1177 phosphorylation was significantly increased following 10 min at each magnitude of shear stress (0.5, 1.5, 13.5 Pa, p < 0.0001; 4.5 Pa, p = 0.0042). Shear stress exposure for 30 min significantly increased RBC-NOS Serine1177 phosphorylation at 0.5 Pa and 13.5 Pa (p < 0.0001). We found that RBC-NOS phosphorylation via shear stress is non-linear and differs for a given magnitude and duration of exposure. This study provides a new understanding of the discrete relation between RBC-NOS and shear stress.
Collapse
|
20
|
Skinner S, Ryan ED, Stafford HC, McMurray RG, Key NS, Mooberry MJ. An exploratory study of the effects of strenuous exercise on markers of coagulation activation, circulating microparticles, and inflammation in sickle cell trait. ACTA ACUST UNITED AC 2020; 1:251-254. [PMID: 33225322 PMCID: PMC7664995 DOI: 10.1002/jha2.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/03/2022]
Abstract
This exploratory study evaluated the effect of intense exercise on biomarkers of inflammation and coagulation activation in subjects with and without sickle cell trait (SCT). Fifteen healthy African American men (18‐35 years, 5 SCT, 10 control) completed a strenuous exercise protocol. Microparticle‐associated prothrombinase and tissue factor activities, as well as soluble VCAM, total white cell and monocyte count increased transiently in all subjects following exercise. In the SCT group, exercise resulted in increased d‐dimer, erythrocyte phosphatidylserine exposure, as well as increased circulating erythrocyte‐ and endothelial‐derived microparticle numbers. These alterations could contribute to exercise‐related complications in people with SCT.
Collapse
Affiliation(s)
- Sarah Skinner
- Hematology/Oncology Division and UNC Blood Research Center University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Eric D Ryan
- Department of Exercise and Sport Science University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Harry C Stafford
- Departments of Family Medicine and Orthopaedics University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Robert G McMurray
- Department of Exercise and Sport Science University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Nigel S Key
- Hematology/Oncology Division and UNC Blood Research Center University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Micah J Mooberry
- Hematology/Oncology Division and UNC Blood Research Center University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| |
Collapse
|
21
|
Vinhaes CL, Teixeira RS, Monteiro-Júnior JAS, Tibúrcio R, Cubillos-Angulo JM, Arriaga MB, Sabarin AG, de Souza AJ, Silva JJ, Lyra IM, Ladeia AM, Andrade BB. Hydroxyurea treatment is associated with reduced degree of oxidative perturbation in children and adolescents with sickle cell anemia. Sci Rep 2020; 10:18982. [PMID: 33149225 PMCID: PMC7642412 DOI: 10.1038/s41598-020-76075-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/16/2020] [Indexed: 01/16/2023] Open
Abstract
Sickle cell anemia (SCA) is the most common inherited hemolytic anemia worldwide. Here, we performed an exploratory study to investigate the systemic oxidative stress in children and adolescents with SCA. Additionally, we evaluated the potential impact of hydroxyurea therapy on the status of oxidative stress in a case–control study from Brazil. To do so, a panel containing 9 oxidative stress markers was measured in plasma samples from a cohort of 47 SCA cases and 40 healthy children and adolescents. Among the SCA patients, 42.5% were undertaking hydroxyurea. Multidimensional analysis was employed to describe disease phenotypes. Our results demonstrated that SCA is associated with increased levels of oxidative stress markers, suggesting the existence of an unbalanced inflammatory response in peripheral blood. Subsequent analyses revealed that hydroxyurea therapy was associated with diminished oxidative imbalance in SCA patients. Our findings reinforce the idea that SCA is associated with a substantial dysregulation of oxidative responses which may be dampened by treatment with hydroxyurea. If validated by larger prospective studies, our observations argue that reduction of oxidative stress may be a main mechanism through which hydroxyurea therapy attenuates the tissue damage and can contribute to improved clinical outcomes in SCA.
Collapse
Affiliation(s)
- Caian L Vinhaes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, 40296-710, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, 41810-710, Brazil.,School of Medicine, Faculdade de Tecnologia E Ciências (UniFTC), Salvador, 41741-590, Brazil
| | - Rozana S Teixeira
- Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador, 40290-000, Brazil.,School of Medicine, Federal University of Bahia, Salvador, 40110-100, Brazil
| | - Jay A S Monteiro-Júnior
- Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador, 40290-000, Brazil
| | - Rafael Tibúrcio
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, 40296-710, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, 41810-710, Brazil.,School of Medicine, Federal University of Bahia, Salvador, 40110-100, Brazil
| | - Juan M Cubillos-Angulo
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, 40296-710, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, 41810-710, Brazil.,School of Medicine, Federal University of Bahia, Salvador, 40110-100, Brazil
| | - María B Arriaga
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, 40296-710, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, 41810-710, Brazil.,School of Medicine, Federal University of Bahia, Salvador, 40110-100, Brazil
| | - Adrielle G Sabarin
- Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador, 40290-000, Brazil
| | - Amâncio J de Souza
- Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador, 40290-000, Brazil
| | - Jacqueline J Silva
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, 40296-710, Brazil.,Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador, 40290-000, Brazil
| | - Isa M Lyra
- University Salvador (UNIFACS), Laureate International Universities, Salvador, 41720-200, Brazil
| | - Ana Marice Ladeia
- Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador, 40290-000, Brazil.,Catholic University of Salvador, Salvador, 41740-090, Brazil
| | - Bruno B Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, 40296-710, Brazil. .,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, 41810-710, Brazil. .,School of Medicine, Faculdade de Tecnologia E Ciências (UniFTC), Salvador, 41741-590, Brazil. .,Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador, 40290-000, Brazil. .,School of Medicine, Federal University of Bahia, Salvador, 40110-100, Brazil. .,University Salvador (UNIFACS), Laureate International Universities, Salvador, 41720-200, Brazil.
| |
Collapse
|
22
|
Nader E, Romana M, Guillot N, Fort R, Stauffer E, Lemonne N, Garnier Y, Skinner SC, Etienne-Julan M, Robert M, Gauthier A, Cannas G, Antoine-Jonville S, Tressières B, Hardy-Dessources MD, Bertrand Y, Martin C, Renoux C, Joly P, Grau M, Connes P. Association Between Nitric Oxide, Oxidative Stress, Eryptosis, Red Blood Cell Microparticles, and Vascular Function in Sickle Cell Anemia. Front Immunol 2020; 11:551441. [PMID: 33250889 PMCID: PMC7672038 DOI: 10.3389/fimmu.2020.551441] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022] Open
Abstract
Chronic hemolysis, enhanced oxidative stress, and decreased nitric oxide (NO) bioavailability promote vasculopathy in sickle cell anemia (SCA). Oxidative stress and NO are known to modulate eryptosis in healthy red blood cells (RBCs); however, their role in SCA eryptosis and their impact on the genesis of RBC-derived microparticles (RBC-MPs) remains poorly described. RBC-MPs could play a role in vascular dysfunction in SCA. The aims of this study were to evaluate the roles of oxidative stress and NO in eryptosis and RBC-MPs release, and to determine whether RBC-MPs could be involved in vascular dysfunction in SCA. Markers of eryptosis and oxidative stress, plasma RBC-MPs concentration and arterial stiffness were compared between SCA and healthy (AA) individuals. In-vitro experiments were performed to test: 1) the effects of oxidative stress (antioxidant: n-acetylcysteine (NAC); pro-oxidant: cumene hydroperoxide) and NO (NO donor: sodium nitroprusside (SNP); NO-synthase inhibitor (L-NIO)) on eryptosis, RBC deformability and RBC-MP genesis; 2) the effects of SCA/AA-RBC-MPs on human aortic endothelial cell (HAEC) inflammatory phenotype and TLR4 pathway. Eryptosis, RBC-MPs, oxidative stress and arterial stiffness were increased in SCA. NAC increased RBC deformability and decreased eryptosis and RBC-MPs release, while cumene did the opposite. SNP increased RBC deformability and limited eryptosis, but had no effect on RBC-MPs. L-NIO did not affect these parameters. Arterial stiffness was correlated with RBC-MPs concentration in SCA. RBC-MPs isolated directly from SCA blood increased adhesion molecules expression and the production of cytokines by HAEC compared to those isolated from AA blood. TLR4 inhibition alleviated these effects. Our data show that oxidative stress could promote eryptosis and the release of RBC-MPs that are potentially involved in macrovascular dysfunction in SCA.
Collapse
Affiliation(s)
- Elie Nader
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Marc Romana
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Université des Antilles, Pointe-à-Pitre, France.,Université de Paris, Paris, France
| | - Nicolas Guillot
- Laboratoire Carmen Inserm, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France
| | - Romain Fort
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Département de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Emeric Stauffer
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Centre de Médecine du Sommeil et des Maladies Respiratoires, Hospices Civils de Lyon, Hôpital de la Croix Rousse, Lyon, France
| | - Nathalie Lemonne
- Unité Transversale de la Drépanocytose, Hôpital de Pointe-á-Pitre, Hôpital Ricou, Guadeloupe, France
| | - Yohann Garnier
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Université des Antilles, Pointe-à-Pitre, France.,Université de Paris, Paris, France
| | - Sarah Chambers Skinner
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Maryse Etienne-Julan
- Unité Transversale de la Drépanocytose, Hôpital de Pointe-á-Pitre, Hôpital Ricou, Guadeloupe, France
| | | | - Alexandra Gauthier
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Giovanna Cannas
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Département de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | | | - Benoît Tressières
- Centre Investigation Clinique Antilles Guyane, 1424 Inserm, Academic Hospital of Pointe-á-Pitre, Pointe-á-Pitre, Guadeloupe, France
| | - Marie-Dominique Hardy-Dessources
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Université des Antilles, Pointe-à-Pitre, France.,Université de Paris, Paris, France
| | - Yves Bertrand
- Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Cyril Martin
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Céline Renoux
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Laboratoire de Biochimie et de Biologie Moléculaire, UF de Biochimie des Pathologies érythrocytaires, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Philippe Joly
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Laboratoire de Biochimie et de Biologie Moléculaire, UF de Biochimie des Pathologies érythrocytaires, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Marijke Grau
- Molecular and Cellular Sport Medicine, Deutsche Sporthochschule Köln, Köln, Germany
| | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
23
|
Gueye Tall F, Martin C, Ndour EHM, Faes C, Déme Ly I, Pialoux V, Connes P, Gueye PM, Ndiaye Diallo R, Renoux C, Diagne I, Diop PA, Cissé A, Sall PL, Joly P. Influence of Oxidative Stress Biomarkers and Genetic Polymorphisms on the Clinical Severity of Hydroxyurea-Free Senegalese Children with Sickle Cell Anemia. Antioxidants (Basel) 2020; 9:antiox9090863. [PMID: 32937882 PMCID: PMC7555380 DOI: 10.3390/antiox9090863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress would play a role in the pathophysiology of sickle cell anemia (SCA). We tested the impact of common SCA genetic modifiers (alpha-thalassemia, G6PD deficiency, HbF quantitative trait loci; QTL) and pro/antioxidant genes polymorphisms (SOD2 rs4880, XO rs207454, MPO rs233322) on oxidative stress biomarkers (AOPP, MDA, MPO, XO, MnSOD, CAT, GPx) and clinical severity in 301 Senegalese SCA hydroxyurea-free children at steady-state (median age 9.1 years, sex ratio H/F = 1.3). Plasma oxidative stress biomarkers were compared with those of a control group (AA). CAT activity, AOPP, and MDA levels were higher in SCA than in AA individuals while XO, GPX, and MnSOD activities were lower. The presence of alpha-thalassemia decreased MDA level and MPO activity but no effect of the HbF QTL or G6PD deficiency was observed. SCA children who experienced their first hospitalized complication before 3 years old had higher MnSOD and CAT activities than the other children while those with no hospitalized VOC in the previous 2 years presented higher GPX activity. Age of the first hospitalized complication and AOPP levels were affected by the MPO rs2333227 SNP. Our results suggest that alpha-thalassemia modulates oxidative stress in SCA, presumably because of a reduction in the MPO activity.
Collapse
Affiliation(s)
- Fatou Gueye Tall
- Laboratoire de Biochimie Pharmaceutique-FMPO, Universite Cheikh Anta Diop, Dakar BP 5005, Senegal; (F.G.T.); (E.h.M.N.); (P.M.G.); (R.N.D.); (P.A.D.); (A.C.); (P.L.S.)
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe Biologie Vasculaire et du Globule Rouge, Universite Claude Bernard Lyon 1, COMUE Lyon, 69100 Villeurbanne, France; (C.F.); (V.P.); (P.C.); (C.R.)
- Centre Hospitalier National d’Enfants Albert Royer-Dakar, Dakar BP 5005, Senegal; (C.M.); (I.D.L.)
| | - Cyril Martin
- Centre Hospitalier National d’Enfants Albert Royer-Dakar, Dakar BP 5005, Senegal; (C.M.); (I.D.L.)
- Laboratoire d’Excellence sur le Globule Rouge (Labex GR-Ex), 75000 Paris, France
| | - El hadji Malick Ndour
- Laboratoire de Biochimie Pharmaceutique-FMPO, Universite Cheikh Anta Diop, Dakar BP 5005, Senegal; (F.G.T.); (E.h.M.N.); (P.M.G.); (R.N.D.); (P.A.D.); (A.C.); (P.L.S.)
- Centre Hospitalier National d’Enfants Albert Royer-Dakar, Dakar BP 5005, Senegal; (C.M.); (I.D.L.)
| | - Camille Faes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe Biologie Vasculaire et du Globule Rouge, Universite Claude Bernard Lyon 1, COMUE Lyon, 69100 Villeurbanne, France; (C.F.); (V.P.); (P.C.); (C.R.)
| | - Indou Déme Ly
- Centre Hospitalier National d’Enfants Albert Royer-Dakar, Dakar BP 5005, Senegal; (C.M.); (I.D.L.)
- Service Universitaire de Pédiatrie-FMPO, Universite Cheikh Anta Diop, Dakar BP 5005, Senegal;
| | - Vincent Pialoux
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe Biologie Vasculaire et du Globule Rouge, Universite Claude Bernard Lyon 1, COMUE Lyon, 69100 Villeurbanne, France; (C.F.); (V.P.); (P.C.); (C.R.)
| | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe Biologie Vasculaire et du Globule Rouge, Universite Claude Bernard Lyon 1, COMUE Lyon, 69100 Villeurbanne, France; (C.F.); (V.P.); (P.C.); (C.R.)
- Laboratoire d’Excellence sur le Globule Rouge (Labex GR-Ex), 75000 Paris, France
| | - Papa Madieye Gueye
- Laboratoire de Biochimie Pharmaceutique-FMPO, Universite Cheikh Anta Diop, Dakar BP 5005, Senegal; (F.G.T.); (E.h.M.N.); (P.M.G.); (R.N.D.); (P.A.D.); (A.C.); (P.L.S.)
| | - Rokhaya Ndiaye Diallo
- Laboratoire de Biochimie Pharmaceutique-FMPO, Universite Cheikh Anta Diop, Dakar BP 5005, Senegal; (F.G.T.); (E.h.M.N.); (P.M.G.); (R.N.D.); (P.A.D.); (A.C.); (P.L.S.)
| | - Céline Renoux
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe Biologie Vasculaire et du Globule Rouge, Universite Claude Bernard Lyon 1, COMUE Lyon, 69100 Villeurbanne, France; (C.F.); (V.P.); (P.C.); (C.R.)
- UF Biochimie des Pathologies Erythrocytaires, Laboratoire de Biochimie et Biologie Moleculaire Grand-Est, Groupement Hospitalier Est, Hospices Civils de Lyon, 69500 Bron, France
| | - Ibrahima Diagne
- Service Universitaire de Pédiatrie-FMPO, Universite Cheikh Anta Diop, Dakar BP 5005, Senegal;
- UFR des Sciences de la Santé–Universite Gaston Berger, Saint-Louis 32002, Senegal
| | - Pape Amadou Diop
- Laboratoire de Biochimie Pharmaceutique-FMPO, Universite Cheikh Anta Diop, Dakar BP 5005, Senegal; (F.G.T.); (E.h.M.N.); (P.M.G.); (R.N.D.); (P.A.D.); (A.C.); (P.L.S.)
| | - Aynina Cissé
- Laboratoire de Biochimie Pharmaceutique-FMPO, Universite Cheikh Anta Diop, Dakar BP 5005, Senegal; (F.G.T.); (E.h.M.N.); (P.M.G.); (R.N.D.); (P.A.D.); (A.C.); (P.L.S.)
| | - Philomène Lopez Sall
- Laboratoire de Biochimie Pharmaceutique-FMPO, Universite Cheikh Anta Diop, Dakar BP 5005, Senegal; (F.G.T.); (E.h.M.N.); (P.M.G.); (R.N.D.); (P.A.D.); (A.C.); (P.L.S.)
- Centre Hospitalier National d’Enfants Albert Royer-Dakar, Dakar BP 5005, Senegal; (C.M.); (I.D.L.)
| | - Philippe Joly
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe Biologie Vasculaire et du Globule Rouge, Universite Claude Bernard Lyon 1, COMUE Lyon, 69100 Villeurbanne, France; (C.F.); (V.P.); (P.C.); (C.R.)
- Laboratoire d’Excellence sur le Globule Rouge (Labex GR-Ex), 75000 Paris, France
- UF Biochimie des Pathologies Erythrocytaires, Laboratoire de Biochimie et Biologie Moleculaire Grand-Est, Groupement Hospitalier Est, Hospices Civils de Lyon, 69500 Bron, France
- Correspondence:
| |
Collapse
|
24
|
Decoding the role of SOD2 in sickle cell disease. Blood Adv 2020; 3:2679-2687. [PMID: 31506286 DOI: 10.1182/bloodadvances.2019000527] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022] Open
Abstract
Sickle cell disease (SCD) is an inherited hemoglobinopathy caused by a single point mutation in the β-globin gene. As a consequence, deoxygenated hemoglobin polymerizes triggering red blood cell sickling and hemolysis, vaso-occlusion, and ischemia/reperfusion. Allied to these pathologies is the overproduction of reactive oxygen species driven by hemoglobin Fenton chemistry and peroxidase reactions as well as by secondary activation of vascular oxidases, including NAD(P)H oxidase and xanthine oxidase. In addition, hypoxia, produced by sickle red blood cell occlusion, disrupts mitochondrial metabolism and generates excess superoxide through electron leak from the mitochondrial respiratory chain. Superoxide dismutase 2 (SOD2) is a mitochondrial-specific antioxidant enzyme that dismutates superoxide to hydrogen peroxide, which is then converted to water by catalase and glutathione peroxidase. In SCD, the antioxidant defense system is significantly diminished through decreased expression and activity levels of antioxidant enzymes, including superoxide dismutase, catalase, and glutathione peroxidase. From a translational perspective, genetic variants including a missense variant in SOD2 (valine to alanine at position 16) are present in 45% of people with African ancestry and are associated with increased sickle complications. While it is known that there is an imbalance between oxidative species and antioxidant defenses in SCD, much more investigation is warranted. This review summarizes our current understanding of antioxidant defense systems in SCD, particularly focused on SOD2, and provides insight into challenges and opportunities as the field moves forward.
Collapse
|
25
|
Man Y, Kucukal E, An R, Watson QD, Bosch J, Zimmerman PA, Little JA, Gurkan UA. Microfluidic assessment of red blood cell mediated microvascular occlusion. LAB ON A CHIP 2020; 20:2086-2099. [PMID: 32427268 PMCID: PMC7473457 DOI: 10.1039/d0lc00112k] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Abnormal red blood cell (RBC) deformability contributes to hemolysis, thrombophilia, inflammation, and microvascular occlusion in various circulatory diseases. A quantitative and objective assessment of microvascular occlusion mediated by RBCs with abnormal deformability would provide valuable insights into disease pathogenesis and therapeutic strategies. To that end, we present a new functional microfluidic assay, OcclusionChip, which mimics two key architectural features of the capillary bed in the circulatory system. First, the embedded micropillar arrays within the microchannel form gradient microcapillaries, from 20 μm down to 4 μm, which mimic microcapillary networks. These precisely engineered microcapillaries retain RBCs with impaired deformability, such that stiffer RBCs occlude the wider upstream microcapillaries, while less stiff RBCs occlude the finer downstream microcapillaries. Second, the micropillar arrays are coupled with two side passageways, which mimic the arteriovenous anastomoses that act as shunts in the capillary bed. These side microfluidic anastomoses prevent microchannel blockage, and enable versatility and testing of clinical blood samples at near-physiologic hematocrit levels. Further, we define a new generalizable parameter, Occlusion Index (OI), which is an indicative index of RBC deformability and the associated microcapillary occlusion. We demonstrate the promise of OcclusionChip in diverse pathophysiological scenarios that result in impaired RBC deformability, including mercury toxin, storage lesion, end-stage renal disease, malaria, and sickle cell disease (SCD). Hydroxyurea therapy improves RBC deformability and increases fetal hemoglobin (HbF%) in some, but not all, treated patients with SCD. HbF% greater than 8.6% has been shown to improve clinical outcomes in SCD. We show that OI associates with HbF% in 16 subjects with SCD. Subjects with higher HbF levels (HbF > 8.6%) displayed significantly lower OI (0.88% ± 0.10%, N = 6) compared with those with lower HbF levels (HbF ≤ 8.6%) who displayed greater OI (3.18% ± 0.34%, N = 10, p < 0.001). Moreover, hypoxic OcclusionChip assay revealed a significant correlation between hypoxic OI and subject-specific sickle hemoglobin (HbS) level in SCD. OcclusionChip enables versatile in vitro assessment of microvascular occlusion mediated by RBCs in a wide range of clinical conditions. OI may serve as a new parameter to evaluate the efficacy of treatments improving RBC deformability, including hemoglobin modifying drugs, anti-sickling agents, and genetic therapies.
Collapse
Affiliation(s)
- Yuncheng Man
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
dos Santos AT, Silva IS, Ivo ML, Rodrigues CT, Parisotto EB, Ramalho RT, Monteiro GM. Effects of oxidative stress on liver, brain and spinal cord of rats using L-NAME and treated with hydroxyurea. A model of sickle cell complication. Acta Cir Bras 2020; 35:e202000301. [PMID: 32401830 PMCID: PMC7217595 DOI: 10.1590/s0102-865020200030000001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/13/2020] [Accepted: 02/10/2020] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To analyze the serum levels of nitric oxide and correlate them with the levels of thiobarbituric acid reactive substances (TBARS) in liver, brain and spinal cord of animals using L-NAME and treated with hydroxyurea. METHODS Eighteen male albino Wistar rats were divided into three groups. NG-nitro-L-arginine methyl ester (L-NAME) was intraperitoneally administered to induce oxidative stress. TBARS and plasma nitric oxide levels were analyzed in all groups. Histopathology of the liver and vascular tissue was performed. RESULTS Statistically significant differences were seen in liver, brain and spinal cord TBARS levels. CONCLUSIONS Following the use of L-NAME, hepatic tissue increased the number of Kupffer cells as oxidative stress and inflammatory response increased. The use of L-NAME caused an increase in lipid peroxidation products and, consequently, in oxidative stress in animals. Hydroxyurea doses of 35 mg / kg / day reduced TBARS values in liver, brain and spinal cord.
Collapse
Affiliation(s)
- Abilio Torres dos Santos
- Fellow Master degree, Postgraduate Program in Health and Development in the Midwest Region, Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande-MS, Brazil. Conception and design of the study; technical procedures; acquisition, interpretation and analysis of data; manuscript writing
| | - Iandara Schettert Silva
- PhD, Associate Professor, Postgraduate Program in Health and Development in the Midwest Region, Laboratory of Experimental Carcinogenicity, UFMS, Campo Grande-MS, Brazil. Conception and design of the study, interpretation of data, manuscript writing, critical revision, final approval
| | - Maria Lucia Ivo
- Full Professor, Postgraduate Program in Health and Development in the Midwest Region, Coordinator of the Epidemiological Studies Laboratory, UFMS, Campo Grande-MS, Brazil. Conception and design of the study, interpretation of data, manuscript writing, critical revision, final approval
| | - Camila Tozaki Rodrigues
- Specialist Nurse in Obstetrics, School of Nursing, Universidade de São Paulo (USP), Brazil. Design of the study, technical procedures
| | - Eduardo Benedetti Parisotto
- PhD, Assistant Professor, Faculty of Pharmaceutical Sciences, Food and Nutrition, UFMS, Campo Grande-MS, Brazil. Interpretation of data, manuscript writing, critical revision, final approval
| | - Rondon Tosta Ramalho
- PhD, Full Professor, Postgraduate Program in Health and Development in the Midwest Region, Laboratory of Experimental Carcinogenicity, UFMS, Campo Grande-MS, Brazil. Interpretation of data, manuscript writing, critical revision, final approval
| | - Geanlucas Mendes Monteiro
- Fellow Master degree, Postgraduate Program in Health and Development in the Midwest Region, UFMS, Campo Grande-MS, Brazil. Conception and design of the study, technical procedure
| |
Collapse
|
27
|
Nader E, Romana M, Connes P. The Red Blood Cell-Inflammation Vicious Circle in Sickle Cell Disease. Front Immunol 2020; 11:454. [PMID: 32231672 PMCID: PMC7082402 DOI: 10.3389/fimmu.2020.00454] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/27/2020] [Indexed: 12/31/2022] Open
Abstract
Sickle cell disease (SCD) is a genetic disease caused by a single mutation in the β-globin gene, leading to the production of an abnormal hemoglobin called hemoglobin S (HbS), which polymerizes under deoxygenation, and induces the sickling of red blood cells (RBCs). Sickled RBCs are very fragile and rigid, and patients consequently become anemic and develop frequent and recurrent vaso-occlusive crises. However, it is now evident that SCD is not only a RBC rheological disease. Accumulating evidence shows that SCD is also characterized by the presence of chronic inflammation and oxidative stress, participating in the development of chronic vasculopathy and several chronic complications. The accumulation of hemoglobin and heme in the plasma, as a consequence of enhanced intravascular hemolysis, decreases nitric oxide bioavailability and enhances the production of reactive oxygen species (ROS). Heme and hemoglobin also represent erythrocytic danger-associated molecular pattern molecules (eDAMPs), which may activate endothelial inflammation through TLR-4 signaling and promote the development of complications, such as acute chest syndrome. It is also suspected that heme may activate the innate immune complement system and stimulate neutrophils to release neutrophil extracellular traps. A large amount of microparticles (MPs) from various cellular origins (platelets, RBCs, white blood cells, endothelial cells) is also released into the plasma of SCD patients and participate in the inflammation and oxidative stress in SCD. In turn, this pro-inflammatory and oxidative stress environment further alters the RBC properties. Increased pro-inflammatory cytokine concentrations promote the activation of RBC NADPH oxidase and, thus, raise the production of intra-erythrocyte ROS. Such enhanced oxidative stress causes deleterious damage to the RBC membrane and further alters the deformability of the cells, modifying their aggregation properties. These RBC rheological alterations have been shown to be associated to specific SCD complications, such as leg ulcers, priapism, and glomerulopathy. Moreover, RBCs positive for the Duffy antigen receptor for chemokines may be very sensitive to various inflammatory molecules that promote RBC dehydration and increase RBC adhesiveness to the vascular wall. In summary, SCD is characterized by a vicious circle between abnormal RBC rheology and inflammation, which modulates the clinical severity of patients.
Collapse
Affiliation(s)
- Elie Nader
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Marc Romana
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Université des Antilles, UMR_S1134, BIGR, Pointe-à-Pitre, France.,Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France
| | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| |
Collapse
|
28
|
Brousse V, Pondarre C, Arnaud C, Kamden A, de Montalembert M, Boutonnat-Faucher B, Bourdeau H, Charlot K, Grévent D, Verlhac S, da Costa L, Connes P. One-Fifth of Children with Sickle Cell Anemia Show Exercise-Induced Hemoglobin Desaturation: Rate of Perceived Exertion and Role of Blood Rheology. J Clin Med 2020; 9:jcm9010133. [PMID: 31947773 PMCID: PMC7019952 DOI: 10.3390/jcm9010133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/18/2019] [Accepted: 12/28/2019] [Indexed: 01/08/2023] Open
Abstract
Perceived exertion is an important self-limiting factor influencing functional capacity in patients with sickle cell anemia (SCA). Exercise-related hemoglobin desaturation (EHD) may occur during a six-minute walking test (6MWT) and could influence the perceived rate of exertion. The aims of this study were (1) to compare the 6MWT responses (heart rate, perceived rate of exertion, and distance covered) between SCA children with and without EHD, and (2) to test the associations between EHD and several biological/physiological parameters. Nine of 51 SCA children (18%) at steady state (mean age 11.9 ± 3.8 years) exhibited EHD at the end of the 6MWT. The rate of perceived exertion increased with exercise in the two groups, but reached higher values in the EHD group. Heart rate and performance during the 6MWT did not differ between the two groups. The magnitude of change in SpO2 during the 6MWT was independently associated with the red blood cell (RBC) deformability and RBC aggregates strength. This study demonstrates that SCA children with EHD during a 6MWT have a higher rate of perceived exertion than non-EHD children despite a similar physiological demand, and that abnormal RBC rheology determinants appear to be significant contributors.
Collapse
Affiliation(s)
- Valentine Brousse
- Service de Pédiatrie Générale et Maladies infectieuses, Hôpital Necker Enfants Malades, AP-HP, 75015 Paris, France (B.B.-F.)
- LABEX GR-Ex, F-75015 Paris, France (P.C.)
- UMR_S1134, Inserm, Institut National de la transfusion sanguine, 75015 Paris, France
- Correspondence:
| | - Corinne Pondarre
- Service de Pédiatrie, Centre Intercommunal de Créteil, 94000 Créteil, France; (C.P.); (C.A.)
| | - Cecile Arnaud
- Service de Pédiatrie, Centre Intercommunal de Créteil, 94000 Créteil, France; (C.P.); (C.A.)
| | - Annie Kamden
- Service de Pédiatrie, Centre Intercommunal de Créteil, 94000 Créteil, France; (C.P.); (C.A.)
| | - Mariane de Montalembert
- Service de Pédiatrie Générale et Maladies infectieuses, Hôpital Necker Enfants Malades, AP-HP, 75015 Paris, France (B.B.-F.)
- LABEX GR-Ex, F-75015 Paris, France (P.C.)
| | - Benedicte Boutonnat-Faucher
- Service de Pédiatrie Générale et Maladies infectieuses, Hôpital Necker Enfants Malades, AP-HP, 75015 Paris, France (B.B.-F.)
| | - Hélène Bourdeau
- Service d’Hématologie Biologique, Hôpital Robert Debré, AP-HP, 75019 Paris, France;
| | - Keyne Charlot
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France;
| | - David Grévent
- Service d’Imagerie Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, F-75015 Paris, France;
| | - Suzanne Verlhac
- Service de Radiologie, Centre Intercommunal de Créteil, 94000 Créteil, France;
| | - Lydie da Costa
- LABEX GR-Ex, F-75015 Paris, France (P.C.)
- UMR_S1134, Inserm, Institut National de la transfusion sanguine, 75015 Paris, France
- Service d’Hématologie Biologique, Hôpital Robert Debré, AP-HP, 75019 Paris, France;
- Paris University, F-75010 Paris, France
| | - Philippe Connes
- LABEX GR-Ex, F-75015 Paris, France (P.C.)
- Equipe «Biologie Vasculaire et du Globule Rouge», Laboratoire LIBM EA7424, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Institut Universitaire de France, 75015 Paris, France
| |
Collapse
|
29
|
Öztaş Y, Boşgelmez İİ. Oxidative stress in sickle cell disease and emerging roles for antioxidants in treatment strategies. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Impact of A Six Week Training Program on Ventilatory Efficiency, Red Blood Cell Rheological Parameters and Red Blood Cell Nitric Oxide Signaling in Young Sickle Cell Anemia Patients: A Pilot Study. J Clin Med 2019; 8:jcm8122155. [PMID: 31817545 PMCID: PMC6947402 DOI: 10.3390/jcm8122155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/06/2023] Open
Abstract
Patients with sickle cell anemia (SCA) show impaired ventilatory efficiency, altered blood rheology, high levels of oxidative/nitrosative stress and enhanced hemolysis with large amounts of circulating free hemoglobin, which reduces nitric oxide (NO) bioavailability. The aim of the study was to investigate whether physical exercise could improve these physiological and biological markers described to contribute to SCA pathophysiology. Twelve SCA patients participated in a controlled six weeks training program with moderate volume (two sessions per week with 15–30 min duration per session) and intensity (70% of the first ventilatory threshold). Parameters were compared before (T0) and after (T1) training. Daily activities were examined by a questionnaire at T0 and one year after the end of T1. Results revealed improved ventilatory efficiency, reduced nitrosative stress, reduced plasma free hemoglobin concentration, increased plasma nitrite levels and altered rheology at T1 while no effect was observed for exercise performance parameters or hematological profile. Red blood cell (RBC) NO parameters indicate increased NO bioavailability which did not affect RBC deformability. Participants increased their daily life activity level. The data from this pilot study concludes that even low intensity activities are feasible and could be beneficial for the health of SCA patients.
Collapse
|
31
|
Almeida LEF, Kamimura S, de Souza Batista CM, Spornick N, Nettleton MY, Walek E, Smith ML, Finkel JC, Darbari DS, Wakim P, Quezado ZMN. Sickle cell disease subjects and mouse models have elevated nitrite and cGMP levels in blood compartments. Nitric Oxide 2019; 94:79-91. [PMID: 31689491 DOI: 10.1016/j.niox.2019.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/20/2019] [Accepted: 10/30/2019] [Indexed: 11/26/2022]
Abstract
The hypothesis of decreased nitric oxide (NO) bioavailability in sickle cell disease (SCD) proposes that multiple factors leading to decreased NO production and increased consumption contributes to vaso-occlusion, pulmonary hypertension, and pain. The anion nitrite is central to NO physiology as it is an end product of NO metabolism and serves as a reservoir for NO formation. However, there is little data on nitrite levels in SCD patients and its relationship to pain phenotype. We measured nitrite in SCD subjects and examined its relationship to SCD pain. In SCD subjects, median whole blood, red blood cell and plasma nitrite levels were higher than in controls, and were not associated with pain burden. Similarly, Townes and BERK homozygous SCD mice had elevated blood nitrite. Additionally, in red blood cells and plasma from SCD subjects and in blood and kidney from Townes homozygous mice, levels of cyclic guanosine monophosphate (cGMP) were higher compared to controls. In vitro, hemoglobin concentration, rather than sickle hemoglobin, was responsible for nitrite metabolism rate. In vivo, inhibition of NO synthases and xanthine oxidoreductase decreased nitrite levels in homozygotes but not in control mice. Long-term nitrite treatment in SCD mice further elevated blood nitrite and cGMP, worsened anemia, decreased platelets, and did not change pain response. These data suggest that SCD in humans and animals is associated with increased nitrite/NO availability, which is unrelated to pain phenotype. These findings might explain why multiple clinical trials aimed at increasing NO availability in SCD patients failed to improve pain outcomes.
Collapse
Affiliation(s)
- Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Nicholas Spornick
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Margaret Y Nettleton
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Elizabeth Walek
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20010, USA
| | - Meghann L Smith
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Julia C Finkel
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20010, USA
| | - Deepika S Darbari
- Division of Hematology, Center for Cancer and Blood Disorders, Children's National Hospital, Department of Pediatrics, George Washington University School of Medicine, Washington, DC, 20010, USA
| | - Paul Wakim
- Biostatistics and Clinical Epidemiology Service, National Institutes of Health Clinical Center, Bethesda, MD, 20892, USA
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
32
|
Laurentino MR, Parente Filho SLA, Parente LLC, da Silva Júnior GB, Daher EDF, Lemes RPG. Non-invasive urinary biomarkers of renal function in sickle cell disease: an overview. Ann Hematol 2019; 98:2653-2660. [PMID: 31641850 DOI: 10.1007/s00277-019-03813-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/26/2019] [Indexed: 12/27/2022]
Abstract
Sickle cell disease (SCD) is a hereditary condition characterized by homozygosis of the hemoglobin S (HbS) gene. Marked morbimortality is observed due to chronic hemolysis, endothelial injury, and episodes of vaso-occlusion, which leads to multi-organ damage. Renal impairment is common and may have different presentations, such as deficiency in urinary acidification or concentration, glomerulopathies, proteinuria, and hematuria, frequently resulting in end-stage renal disease (ESRD). Novel biomarkers of renal function, such as kidney injury molecule 1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) and monocyte chemoattractant protein 1 (MCP-1) are being studied in order to enable early diagnosis of kidney damage in SCD.
Collapse
Affiliation(s)
- Marília Rocha Laurentino
- Post-Graduation Program in Pharmaceutical Sciences, School of Pharmacy, Federal University of Ceara, Capitão Francisco Pedro, Street, n.1210 - Rodolfo Teófilo, Fortaleza, Ceara, CEP 60430-370, Brazil.
| | - Sérgio Luiz Arruda Parente Filho
- Medical Sciences Post-Graduation Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Geraldo Bezerra da Silva Júnior
- Public Health Post-Graduation Program, School of Medicine, Health Sciences Center, University of Fortaleza, Fortaleza, Ceara, Brazil
| | - Elizabeth De Francesco Daher
- Medical Sciences Post-Graduation Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Romélia Pinheiro Gonçalves Lemes
- Post-Graduation Program in Pharmaceutical Sciences, School of Pharmacy, Federal University of Ceara, Capitão Francisco Pedro, Street, n.1210 - Rodolfo Teófilo, Fortaleza, Ceara, CEP 60430-370, Brazil
| |
Collapse
|
33
|
Premont RT, Reynolds JD, Zhang R, Stamler JS. Role of Nitric Oxide Carried by Hemoglobin in Cardiovascular Physiology: Developments on a Three-Gas Respiratory Cycle. Circ Res 2019; 126:129-158. [PMID: 31590598 DOI: 10.1161/circresaha.119.315626] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A continuous supply of oxygen is essential for the survival of multicellular organisms. The understanding of how this supply is regulated in the microvasculature has evolved from viewing erythrocytes (red blood cells [RBCs]) as passive carriers of oxygen to recognizing the complex interplay between Hb (hemoglobin) and oxygen, carbon dioxide, and nitric oxide-the three-gas respiratory cycle-that insures adequate oxygen and nutrient delivery to meet local metabolic demand. In this context, it is blood flow and not blood oxygen content that is the main driver of tissue oxygenation by RBCs. Herein, we review the lines of experimentation that led to this understanding of RBC function; from the foundational understanding of allosteric regulation of oxygen binding in Hb in the stereochemical model of Perutz, to blood flow autoregulation (hypoxic vasodilation governing oxygen delivery) observed by Guyton, to current understanding that centers on S-nitrosylation of Hb (ie, S-nitrosohemoglobin; SNO-Hb) as a purveyor of oxygen-dependent vasodilatory activity. Notably, hypoxic vasodilation is recapitulated by native S-nitrosothiol (SNO)-replete RBCs and by SNO-Hb itself, whereby SNO is released from Hb and RBCs during deoxygenation, in proportion to the degree of Hb deoxygenation, to regulate vessels directly. In addition, we discuss how dysregulation of this system through genetic mutation in Hb or through disease is a common factor in oxygenation pathologies resulting from microcirculatory impairment, including sickle cell disease, ischemic heart disease, and heart failure. We then conclude by identifying potential therapeutic interventions to correct deficits in RBC-mediated vasodilation to improve oxygen delivery-steps toward effective microvasculature-targeted therapies. To the extent that diseases of the heart, lungs, and blood are associated with impaired tissue oxygenation, the development of new therapies based on the three-gas respiratory system have the potential to improve the well-being of millions of patients.
Collapse
Affiliation(s)
- Richard T Premont
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Harrington Discovery Institute (R.T.P., J.D.R., J.S.S.), University Hospitals Cleveland Medical Center, OH
| | - James D Reynolds
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Department of Anesthesiology and Perioperative Medicine (J.D.R.), Case Western Reserve University School of Medicine, OH.,Harrington Discovery Institute (R.T.P., J.D.R., J.S.S.), University Hospitals Cleveland Medical Center, OH
| | - Rongli Zhang
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Department of Medicine, Cardiovascular Research Institute (R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH
| | - Jonathan S Stamler
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Department of Medicine, Cardiovascular Research Institute (R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Harrington Discovery Institute (R.T.P., J.D.R., J.S.S.), University Hospitals Cleveland Medical Center, OH
| |
Collapse
|
34
|
Grau M, Jerke M, Nader E, Schenk A, Renoux C, Collins B, Dietz T, Bizjak DA, Joly P, Bloch W, Connes P, Prokop A. Effect of acute exercise on RBC deformability and RBC nitric oxide synthase signalling pathway in young sickle cell anaemia patients. Sci Rep 2019; 9:11813. [PMID: 31413300 PMCID: PMC6694163 DOI: 10.1038/s41598-019-48364-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/02/2019] [Indexed: 01/29/2023] Open
Abstract
Sickle cell anaemia (SCA) is characterized by reduced red blood cell (RBC) deformability and nitric oxide (NO) bioavailability. The aim of the study was to investigate whether exercise might affect these parameters in SCA. SCA patients and healthy controls (AA) performed an acute submaximal exercise test until subjects reached the first ventilatory threshold (VT 1). Blood was sampled at rest and at VT 1. At rest, free haemoglobin level was higher and RBC count, haemoglobin and haematocrit were lower in SCA compared to AA. RBC deformability was lower in SCA. Exercise had no effect on the tested parameters. RBC NO level was higher in SCA compared to AA at rest and significantly decreased after exercise in SCA. This might be related to a reduction in RBC-NO synthase (RBC-NOS) activation which was only observed in SCA after exercise. Free radical levels were higher in SCA at rest but concentration was not affected by exercise. Marker for lipid peroxidation and antioxidative capacity were similar in SCA and AA and not affected by exercise. In conclusion, a single acute submaximal bout of exercise has no deleterious effects on RBC deformability or oxidative stress markers in SCA, and seems to modulate RBC-NOS signalling pathway.
Collapse
Affiliation(s)
- Marijke Grau
- German Sport University Cologne, Department of Molecular and Cellular Sports Medicine, Cologne, Germany.
| | - Max Jerke
- German Sport University Cologne, Department of Molecular and Cellular Sports Medicine, Cologne, Germany
| | - Elie Nader
- University of Lyon, University Claude Bernard Lyon 1, Interuniversity Laboratory of Human Movement Biology EA7424, "Vascular Biology and Red Blood Cell" team, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France
| | - Alexander Schenk
- German Sport University Cologne, Department of Molecular and Cellular Sports Medicine, Cologne, Germany
| | - Celine Renoux
- University of Lyon, University Claude Bernard Lyon 1, Interuniversity Laboratory of Human Movement Biology EA7424, "Vascular Biology and Red Blood Cell" team, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France.,East Biology Centre, UF "Biochemistry of Red Blood Cell Disease", Academic Hospital of Lyon, HCL, Lyon, France
| | - Bianca Collins
- German Sport University Cologne, Department of Molecular and Cellular Sports Medicine, Cologne, Germany
| | - Thomas Dietz
- German Sport University Cologne, Department of Molecular and Cellular Sports Medicine, Cologne, Germany
| | - Daniel Alexander Bizjak
- German Sport University Cologne, Department of Molecular and Cellular Sports Medicine, Cologne, Germany
| | - Philippe Joly
- University of Lyon, University Claude Bernard Lyon 1, Interuniversity Laboratory of Human Movement Biology EA7424, "Vascular Biology and Red Blood Cell" team, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France.,East Biology Centre, UF "Biochemistry of Red Blood Cell Disease", Academic Hospital of Lyon, HCL, Lyon, France
| | - Wilhelm Bloch
- German Sport University Cologne, Department of Molecular and Cellular Sports Medicine, Cologne, Germany
| | - Philippe Connes
- University of Lyon, University Claude Bernard Lyon 1, Interuniversity Laboratory of Human Movement Biology EA7424, "Vascular Biology and Red Blood Cell" team, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France
| | - Aram Prokop
- Children's Hospital Amsterdamer Straße Cologne; Clinic for Children and Youth Medicine, Paediatric Oncology/Haematology, Cologne, Germany
| |
Collapse
|
35
|
Kassa T, Wood F, Strader MB, Alayash AI. Antisickling Drugs Targeting βCys93 Reduce Iron Oxidation and Oxidative Changes in Sickle Cell Hemoglobin. Front Physiol 2019; 10:931. [PMID: 31396101 PMCID: PMC6668304 DOI: 10.3389/fphys.2019.00931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/09/2019] [Indexed: 01/05/2023] Open
Abstract
Sickle cell disease is a genetic blood disorder caused by a single point mutation in the β globin gene where glutamic acid is replaced by valine at the sixth position of the β chain of hemoglobin (Hb). At low oxygen tension, the polymerization of deoxyHbS into fibers occurs in red blood cells (RBCs) leading to an impaired blood vessel transit. Sickle cell hemoglobin (HbS), when oxidized with hydrogen peroxide (H2O2), stays longer in a highly oxidizing ferryl (Fe4+) form causing irreversible oxidation of βCys93 to a destabilizing cysteic acid. We have previously reported that an antisickling drug can be designed to bind specifically to βCys93 and effectively protect against its irreversible oxidation by H2O2. Here, we report oxygen dissociation, oxidation, and polymerization kinetic reactions for four antisickling drugs (under different preclinical/clinical developmental stages) that either site-specifically target βCys93 or other sites on the HbS molecule. Molecules that specifically bind to or modify βCys93, such as 4,4′-di(1,2,3-triazolyl) disulfide (TD-3) and hydroxyurea (HU) were contrasted with molecules that target other sites on Hb including 5-hydroxymethyl-2-furfural (5-HMF) and L-glutamine. All reagents induced a left shift in the oxygen dissociation curve (ODC) except L-glutamine. In the presence of H2O2 (2.5:1, H2O2:heme), both TD-3 and HU reduced the ferryl heme by 22 and 37%, respectively, which corresponded to a 3- to 2-fold reduction in the levels of βCys93 oxidation as verified by mass spectrometry. Increases in the delay times prior to polymerization of HbS under hypoxia were in the following order: TD-3 > HU > 5-HMF = L-glutamine. Designing antisickling agents that can specifically target βCys93 may provide a dual antioxidant and antisickling therapeutic benefits in treating this disease.
Collapse
Affiliation(s)
- Tigist Kassa
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Francine Wood
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Michael Brad Strader
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
36
|
Nolfi-Donegan D, Pradhan-Sundd T, Pritchard KA, Hillery CA. Redox Signaling in Sickle Cell Disease. CURRENT OPINION IN PHYSIOLOGY 2019; 9:26-33. [PMID: 31240269 DOI: 10.1016/j.cophys.2019.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sickle cell disease (SCD) is characterized by chronic hemolysis and repeated episodes of vascular occlusion leading to progressive organ injury. SCD is characterized by unbalanced, simultaneous pro-oxidant and anti-oxidant processes at the molecular, cellular and tissue levels, with the majority of reactions tipped in favor of pro-oxidant pathways. In this brief review we discuss new findings regarding how oxidized hemin, hemolysis, mitochondrial dysfunction and the innate immune system generate oxidative stress while hemopexin, haptoglobin, heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) may provide protection in human and murine SCD. We will also describe recent clinical trials showing beneficial effects of antioxidant therapy in SCD.
Collapse
Affiliation(s)
- Deirdre Nolfi-Donegan
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tirthadipa Pradhan-Sundd
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kirkwood A Pritchard
- Department of Surgery, Division of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Cheryl A Hillery
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|