1
|
de Souza BL, Pieretti JC, Zucareli C, Seabra AB, Oliveira HC. Long-term effects of seed priming with nanoencapsulated nitric oxide donors on the early development and drought tolerance of wheat plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112498. [PMID: 40216260 DOI: 10.1016/j.plantsci.2025.112498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/21/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025]
Abstract
The objective of this work was to identify the effect of seed priming with nitric oxide (NO)-releasing nanoparticles on the germination process and initial growth of wheat plants (Triticum aestivum L.) under water deficit conditions in a laboratory and in a greenhouse environment, and compare the results with the non-nanoencapsulated NO donors. Initially, a dose-response curve was made for chitosan/tripolyphosphate nanoparticles containing S-nitroso-mercaptosuccinic acid (NP-MSNO) or S-nitrosoglutathione (NP-GSNO), which showed the optimal dose of 500 µM of both NO donors for the protection of wheat against water deficit. Subsequently, comparisons were made of the effects of priming with NP-GSNO and NP-MSNO in relation to priming with water, free MSNO and GSNO, and chitosan nanoparticles without NO donor, as well as the control without priming, under laboratory and greenhouse conditions, to evaluate morphological, physiological, and biochemical parameters. When the water deficit was applied in the laboratory, the NP-MSNO and NP-GSNO treatments led to greater increases in germination, chlorophyll content, and root morphological parameters compared to the other treatments. In the greenhouse, seed priming with NP-GSNO or NP-MSNO led to gains in root morphology, leaf water content, stomatal conductance, and S-nitrosothiol content in shoots and roots. In particular, nanoencapsulated GSNO promoted the best responses. In general, seed priming with nanoencapsulated NO donors provided benefits for germination and the vigor of wheat seedlings under water deficit, and these benefits remained in the greenhouse environment for a period of more than 30 days after treatment.
Collapse
Affiliation(s)
- Beatriz Larissa de Souza
- Department of Animal and Plant Biology, State University of Londrina (UEL), Celso Garcia Cid Road, km 380, Londrina, PR 86057-970, Brazil; Department of Agronomy, State University of Londrina (UEL, Celso Garcia Cid Road, km 380, Londrina, PR Zipcode 86057-970, Brazil.
| | - Joana Claudio Pieretti
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Avenida dos Estados, Santo André, SP Zipcode 09210-580, Brazil
| | - Claudemir Zucareli
- Department of Agronomy, State University of Londrina (UEL, Celso Garcia Cid Road, km 380, Londrina, PR Zipcode 86057-970, Brazil
| | - Amedea Barozzi Seabra
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Avenida dos Estados, Santo André, SP Zipcode 09210-580, Brazil
| | - Halley Caixeta Oliveira
- Department of Animal and Plant Biology, State University of Londrina (UEL), Celso Garcia Cid Road, km 380, Londrina, PR 86057-970, Brazil.
| |
Collapse
|
2
|
Xu X, Shrestha RK, Shu J, Cheng H, Wang H, Cui H, Ni J, Ni C. Photocatalysis of nanoparticles mediates the response of plants towards nitric oxide in air. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109817. [PMID: 40147320 DOI: 10.1016/j.plaphy.2025.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Nitric oxide (NO), a signaling molecule involved in plant growth and metabolism, can be synthesized endogenously or assimilated from the atmosphere. Although NO can be oxidized to nitrate or NO2 by phototactically induced hot charge carriers over nanoparticles (NPs) under insolation, the specific role of NP-mediated NO transformation on foliage surfaces in stimulating plant enzymes remains unclear. In this research, Trident (T) and Willow (W) types of water spinach (Ipomoea aquatica Forsk) were employed to probe the physiological alteration by NO transformation and oxidants over photocatalytic NPs. The biomass of T was significantly enhanced by the 240-ppb NO stress or NPs, while W was immune to either condition. According to in-situ diffuse-reflectance-infrared-Fourier-transform spectroscopy, foliar ZnO or TiO2 (2 mg per plant) stimulated the oxidation of NO to NO3- and the production of •OH. NPs enhanced the activity of antioxidant enzymes and NR (nitrate reductase [NAD(P)H]) in T with low SOD (superoxide dismutase, 32 ± 7 Umin-1g-1), NR activity (reaching 188 ± 4 nmol h-1g-1) was positively correlated with a 46.39 % increase in biomass. Conversely, W, endowed with ample SOD (502 ± 30 Umin-1g-1) to offset the stress caused by NO or NPs, displayed negligible growth or NR alterations. Our findings indicate that a high [SOD] could counterbalance the oxidizing NO stress, while the photocatalytic NO conversion into nitrate could boost the NR production in plant with low [SOD] and under NO stress. This research contributes to understanding the impact of NPs application and plant responses to pollutant gas stress.
Collapse
Affiliation(s)
- Xueqin Xu
- College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715, China; Wushan County Agriculture and Rural Committee, No. 84, Jingtan 1st Road, Gaotang Street, Wushan County, Chongqing, China
| | - Ram Kumar Shrestha
- College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715, China; Lamjung Campus, Institute of Agriculture and Animal Science, Tribhuvan University, Nepal
| | - Jiawang Shu
- College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715, China
| | - Hong Cheng
- College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715, China
| | - Hengrui Wang
- College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715, China
| | - Hengxin Cui
- College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715, China
| | - Jiupai Ni
- College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715, China
| | - Chengsheng Ni
- College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715, China; Southwest Key Laboratory of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei, 400715, China.
| |
Collapse
|
3
|
Chaudron Z, Nicolas-Francès V, Pichereaux C, Hichami S, Rosnoblet C, Besson-Bard A, Wendehenne D. Nitric oxide production and protein S-nitrosation in algae. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112472. [PMID: 40107518 DOI: 10.1016/j.plantsci.2025.112472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Key roles for nitric oxide in signalling processes and plant physiological processes are now well established. In particular, the identification and functional characterisation of proteins regulated by S-nitrosation, a NO-dependent post-translational modification, provided remarkable insights into the subtle mechanisms by which NO mediates its effects. Nevertheless, and despite the considerable progress in understanding NO signalling, the question of how plant cells produce NO is not yet fully resolved. Interestingly, there is now compelling evidence that algae constitute promising biological models to investigate NO production and functions in plants. This article reviews recent highlights of research on NO production in algae and provides an overview of S-nitrosation in these organisms at the proteome level.
Collapse
Affiliation(s)
- Zoé Chaudron
- Université Bourgogne Europe, Institut Agro Dijon, INRAE, UMR Agroécologie, Dijon, France
| | | | - Carole Pichereaux
- Fédération de Recherche (FR3450), Agrobiosciences, Interactions et Biodiversité (FRAIB), CNRS, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse UPS, CNRS, Toulouse, France
| | - Siham Hichami
- Université Bourgogne Europe, Institut Agro Dijon, INRAE, UMR Agroécologie, Dijon, France
| | - Claire Rosnoblet
- Université Bourgogne Europe, Institut Agro Dijon, INRAE, UMR Agroécologie, Dijon, France
| | - Angelique Besson-Bard
- Université Bourgogne Europe, Institut Agro Dijon, INRAE, UMR Agroécologie, Dijon, France.
| | - David Wendehenne
- Université Bourgogne Europe, Institut Agro Dijon, INRAE, UMR Agroécologie, Dijon, France
| |
Collapse
|
4
|
Xu S, Wei Y, Zhao P, Sun Y, Gao K, Yin C, Wang C, Fang R, Ye J. A Nitrate Transporter OsNPF6.1 Promotes Nitric Oxide Signaling and Virus Resistance. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40390394 DOI: 10.1111/pce.15626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 03/24/2025] [Accepted: 05/09/2025] [Indexed: 05/21/2025]
Abstract
Nitric oxide (NO) is a vital immune molecule eliciting resistance to diverse microbial pathogens in humans and animals. However, its functional integration into plant immune networks remains incompletely characterized. In this study, we reveal that both endogenous induction and exogenous supplementation of NO significantly enhance resistance to rice stripe virus (RSV), a Bunyavirus that poses a huge threat to rice production. The nitrate transporter OsNPF6.1 potentiates virus resistance by upregulating the expression of nitrate reductase (OsNR2) and subsequent NO biosynthesis. Functional analyses demonstrate that the disease-specific protein (SP) encoded by RSV interacts with OsNPF6.1 to impair its nitrate transport activity, effectively subverting host immunity to facilitate RSV infection. Notably, this host-pathogen interaction exhibits nitrogen dependency: low nitrate availability attenuates the OsNPF6.1-SP association, preserving transporter functionality and virus resistance. Thus, this study not only provides novel insights into the coordination of growth-defense tradeoffs but also proposes actionable strategies for crop protection via optimized nitrogen management.
Collapse
Affiliation(s)
- Shuang Xu
- Department of Agri-microbiomics and Biotechnology, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Wei
- Department of Agri-microbiomics and Biotechnology, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pingzhi Zhao
- Department of Agri-microbiomics and Biotechnology, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanwei Sun
- Department of Agri-microbiomics and Biotechnology, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kaixing Gao
- Department of Agri-microbiomics and Biotechnology, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cece Yin
- Department of Agri-microbiomics and Biotechnology, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chunming Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Rongxiang Fang
- Department of Agri-microbiomics and Biotechnology, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Ye
- Department of Agri-microbiomics and Biotechnology, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Wal A, Staszek P, Gniazdowska A, Chrastný V, Šípková A, Bieniek J, Krasuska U. Nitric oxide stimulates digestion modifying the nutrient composition of the traps' fluid of Nepenthes x ventrata. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 358:112558. [PMID: 40389119 DOI: 10.1016/j.plantsci.2025.112558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 05/07/2025] [Accepted: 05/14/2025] [Indexed: 05/21/2025]
Abstract
External digestion performed by autotrophs is a characteristic feature of carnivorous plants, such as those of the Nepenthes spp. These plants developed jug-shaped traps filled with digestive fluid that consists of water, various proteins (mostly enzymes), and nutrients. Moreover, the presence of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the traps' fluid of N. ventrata has been demonstrated. RNS, among them nitric oxide (NO), accelerates digestion e.g. by the alteration of ROS levels. The aim of the study was to demonstrate the stimulation of external digestion by NOx supplementation linked to the modulation of the nutrient composition of the trap fluid, digestive enzyme activity and gene transcription. Using the digestion fluid of N. ventrata mature traps we indicated that NOx temporarily increases K, Fe, Cu and ammonia that may be involved in the modulation of free radicals content. The stimulatory effect of NOx on the activities of enzymes responsible for digestion, and on the transcripts' levels of Nepenthesin I and II, Purple Acid Phosphatase, and S-like Ribonuclease was shown. The decrease in the level of carbonylated proteins (from food source) in the trap' fluid during digestion suggests their absorption by Nepenthes trap tissues. We also demonstrated the presence of carbonylated proteins in the trap fluid before feeding.
Collapse
Affiliation(s)
- Agnieszka Wal
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw 02-776, Poland.
| | - Pawel Staszek
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw 02-776, Poland
| | - Agnieszka Gniazdowska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw 02-776, Poland
| | - Vladislav Chrastný
- Faculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, Suchdol, Prague 165 00, Czech Republic
| | - Adéla Šípková
- Faculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, Suchdol, Prague 165 00, Czech Republic
| | - Jakub Bieniek
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw 02-776, Poland
| | - Urszula Krasuska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw 02-776, Poland.
| |
Collapse
|
6
|
Corpas FJ, Taboada J, Sánchez-Romera B, López-Jaramillo J, Palma JM. Peroxisomal Sulfite Oxidase (SOX), an alternative source of NO in higher plants which is upregulated by H 2S. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 225:110000. [PMID: 40359722 DOI: 10.1016/j.plaphy.2025.110000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025]
Abstract
Nitric oxide (•NO) is a free radical that is endogenously produced in plant cells, though its enzymatic synthesis remains a subject of ongoing debate. Plant peroxisomes, subcellular compartments with active nitro-oxidative metabolism, play a role in various metabolic pathways. Sulfite oxidase (SOX), a peroxisomal enzyme requiring the molybdenum cofactor (MoCo), catalyzes the oxidation of sulfite (SO32-) to sulfate (SO42-), along with the concomitant production of H2O2. Using reconstituted recombinant SOX from pepper (Capsicum annuum L.) fruit, it was shown that this enzyme has the capacity to generate •NO using nitrite (NO2-) as a substrate and NADH as an electron donor which was detected by electron paramagnetic resonance (EPR) spectroscopy coupled with the spin-trapping method. Furthermore, this •NO generation was upregulated in the presence of hydrogen sulfide (H2S) but was downregulated by H2O2 which highlights the relationship between H2O2, •NO, and H2S. This data opens new avenues for understanding the enzymatic sources of •NO in higher plants, particularly within peroxisomes.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain.
| | - Jorge Taboada
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Beatriz Sánchez-Romera
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | | | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
7
|
Valentovičová K, Demecsová L, Liptáková Ľ, Zelinová V, Tamás L. Barley root tip peroxidases convert DAF-FM and DAR-4M to an NO-independent fluorescent product using H 2O 2 derived from polyamine catabolism by polyamine oxidases. JOURNAL OF PLANT PHYSIOLOGY 2025; 308:154477. [PMID: 40138857 DOI: 10.1016/j.jplph.2025.154477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
The aim of our study was to investigate the possible involvement of barley root tip peroxidases and polyamine oxidases in the conversion of DAF-FM or DAR-4M into an NO-independent fluorescent product after the exogenous application of polyamines. Application of spermidine or spermine into the incubation medium increased H2O2 production by root tip segments in a dose-dependent manner. This spermidine- or spermine-induced increase in H2O2 production was accompanied by intensified fluorescence of both DAF-FM and DAR-4M in a polyamine dose-dependent manner, similarly to exogenously added H2O2. On the contrary, exogenous putrescine neither evoked H2O2 production nor increased DAF-FM or DAR-4M fluorescence. Application of guazatine, a polyamine oxidase inhibitor, into the incubation medium inhibited both H2O2 production and DAF-FM or DAR-4M fluorescence. Spermidine- or spermine-induced DAF-FM or DAR-4M fluorescence decreased with an increasing amount of catalase or guaiacol, a competitive substrate for peroxidase, in the incubation medium. Exogenous application of indole-3-acetic acid, a well-known activator of NO generation in roots, but not of H2O2, spermidine or spermine, induces NO accumulation in the root tips. Exogenous application of spermidine or spermine to plant tissues with high polyamine oxidase and peroxidase activity, as are the barley root tips, generates an NO-independent fluorescence signal from either DAF-FM or DAR-4M, giving a false positive signal for NO emission.
Collapse
Affiliation(s)
- Katarína Valentovičová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-84523, Bratislava, Slovak Republic
| | - Loriana Demecsová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-84523, Bratislava, Slovak Republic
| | - Ľubica Liptáková
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-84523, Bratislava, Slovak Republic
| | - Veronika Zelinová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-84523, Bratislava, Slovak Republic
| | - Ladislav Tamás
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-84523, Bratislava, Slovak Republic.
| |
Collapse
|
8
|
Demecsová L, Liptáková Ľ, Valentovičová K, Zelinová V, Tamás L. Inhibition of flavohemeproteins enhances the emission and level of nitric oxide in barley root tips. PROTOPLASMA 2025:10.1007/s00709-025-02058-w. [PMID: 40167809 DOI: 10.1007/s00709-025-02058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
In this study, using a pharmaceutical approach, we analyzed the NO accumulation and emission from the root tips of barley seedlings and the possible mechanisms of NO catabolism. Application of flavohemeprotein inhibitors, such as azide, cyanide, diphenyleneiodonium and dicumarol, an inhibitor of the plasma membrane electron transport chain, increased the NO level in root tissue and stimulated the NO emission from root tip cells. It can be concluded that barley root tips generate and, at the same time, consume a considerable amount of NO, probably by the plasma membrane flavohemeproteins. This high NO-consuming activity of barley root tips efficiently degraded even the externally applied high concentrations of NO without marked root growth inhibition. These results suggest that the root tip cells NO consumption activity plays an important role in the regulation of NO level in barley root tips.
Collapse
Affiliation(s)
- Loriana Demecsová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, 84523, Bratislava, Slovak Republic
| | - Ľubica Liptáková
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, 84523, Bratislava, Slovak Republic
| | - Katarína Valentovičová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, 84523, Bratislava, Slovak Republic
| | - Veronika Zelinová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, 84523, Bratislava, Slovak Republic
| | - Ladislav Tamás
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, 84523, Bratislava, Slovak Republic.
| |
Collapse
|
9
|
Samant SB, Swain J, Yadav N, Yadav R, Singh P, Rai P, Sheri V, Sreeman S, Subramanyam R, Pareek A, Gupta KJ. Overexpression of Phytoglobin1 in Rice Leads to Enhanced Nitrogen Use Efficiency via Modulation of Nitric Oxide. PLANT, CELL & ENVIRONMENT 2025; 48:2755-2768. [PMID: 39569580 DOI: 10.1111/pce.15289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Nitric oxide (NO) is one of the byproducts of nitrogen metabolism. Excess amount of NO is scavenged by phytoglobins. The role of phytoglobin mediated NO homoeostasis in modulation of nitrate transporters was investigated using NO scavenger cPTIO, phytoglobin overexpressing rice and Arabidopsis. Growing plants under low nitrate leads to generation of reduced levels of NO accompanied by elevated expression of high affinity transporters (HATs) such as NRT2.1, NRT2.3 and NRT2.4. Scavenging of NO by cPTIO under optimal nitrate caused enhanced HATs expression. Phytoglobin overexpressing Arabidopsis showed improved growth and enhanced expression of HATs under low nitrogen in comparison to WT. Pretreatment of optimal nitrate grown plants with NO scavenger cPTIO enhanced HATs expression and shifting of these primed plants from optimal to low nitrate leads to further elevation of HATs expression accompanied by enhanced nitrogen uptake and its accumulation with positive effect on growth. Phytoglobin overexpression in rice leads to enhanced HATs expression, improved growth, nitrogen accumulation under low nitrate. Pgb OE lines showed enhanced accumulation of amino acids. Taken together our results suggest an important role of phytoglobins in nitrogen uptake and assimilation.
Collapse
Affiliation(s)
- Sanjib Bal Samant
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Jagannath Swain
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Nidhi Yadav
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Reena Yadav
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Pooja Singh
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Preeti Rai
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Vijay Sheri
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Sheshshayee Sreeman
- Department of Physiology, University of Agricultural Sciences, Bangalore, Karnataka, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Ashwani Pareek
- National Agri-Food and Bio Manufacturing Institute, Mohali, Punjab, India
| | | |
Collapse
|
10
|
Reda M, Kabała K, Stanisławski J, Szczepski K, Janicka M. Regulation of NO-Generating System Activity in Cucumber Root Response to Cold. Int J Mol Sci 2025; 26:1599. [PMID: 40004064 PMCID: PMC11855582 DOI: 10.3390/ijms26041599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Nitric oxide (NO) functions as a signaling molecule in plant adaptation to changing environmental conditions. NO levels were found to increase in plants in response to low temperatures (LTs). However, knowledge of the pathways involved in enhanced NO production under cold stress is still limited. For this reason, we aimed to determine the role of different NO sources in NO generation in cucumber roots exposed to 10 °C for short (1 d) and long (6 d) periods. The short-term treatment of seedlings with LT markedly increased plasma membrane-bound nitrate reductase (PM-NR) activity and induced the expression of three genes encoding NR in cucumber (CsNR1-3). On the other hand, long-term exposure was related to both increased cytoplasmic NR (cNR) activity and induced expression of the CsARC gene, encoding the amidoxime-reducing component (ARC) protein. The decrease in nitrite reductase (NiR) activity and the higher NO2-/NO3- ratio in the roots of plants exposed to LTs for 1 d suggest that tissue conditions may favor NR-dependent NO production. Regardless of NR stimulation, a significant increase in NOS-like activity was observed in the roots, especially during the long-term treatment of plants with LT. These results indicate that diverse NO-producing routes, both reductive and oxidative, are activated in cucumber tissues at different stages of cold stress.
Collapse
Affiliation(s)
| | | | | | | | - Małgorzata Janicka
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland; (M.R.); (K.K.); (J.S.); (K.S.)
| |
Collapse
|
11
|
Sennert E, Bistoni G, Suhm MA. OH-Detected Aromatic Microsolvation of an Organic NO Radical: Halogenation Controls the Solvation Side. J Phys Chem A 2025; 129:1648-1658. [PMID: 39882713 PMCID: PMC11831666 DOI: 10.1021/acs.jpca.4c07744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
The persistent organic radical 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) protects its NO radical center by four methyl groups. Two of them are arranged tightly (t) on one side of the six-membered puckered heterocycle, and the other two more openly (o) on the other side. It is shown by OH stretching infrared spectroscopy in heated supersonic jet expansions that the hydrogen bond and aromatic ring of a first solvating benzyl alcohol have almost no preference for either side. An increased preference for the t side develops in para-halogenated benzyl alcohols, and it is inverted for ortho-halogenated benzyl alcohols. The experimental dependence on the actual halogen (Cl, Br, and I) is weak, whereas different quantum chemical approaches predict more or less pronounced trends along the halogen series. Some of the benzyl alcohol in the pre-expansion reservoir reduces the TEMPO radical to the closed-shell heterocyclic hydroxylamine TEMPO-H (1-hydroxy-2,2,6,6-tetramethylpiperidine), to the extent that the TEMPO-H···TEMPO complex is observed as an impurity.
Collapse
Affiliation(s)
- Elisabeth Sennert
- Institute
of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Giovanni Bistoni
- Dipartmento
di Chimica, Biologia e Biotecnologie, Università
Degli Studi Di Perugia, Via Elce di sotto 8, 06123 Perugia, Italy
| | - Martin A. Suhm
- Institute
of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
12
|
Luo X, Li X, Zhang Y, Zhao F, Wang J, Wu J. Cloning and characterization of a novel nitric oxide synthase gene from Exiguobacterium profundum and its expression in Escherichia coli. Protein Expr Purif 2025; 226:106609. [PMID: 39299600 DOI: 10.1016/j.pep.2024.106609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/27/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
The recognition and characterization of gene-encoded nitric oxide synthase (NOS) from Exiguobacterium profundum are reported in this study. A new gene was sequenced and cloned from E. profundum and heterologously expressed in E. coli for functional identification, followed by protein purification using the His-tag. The stability and activity characteristics of the recombinant NOS were evaluated using different concentrations of IPTG at various time points. A band of approximately 42 kDa was observed by SDS-PAGE. The Km value of NOS, calculated based on the Michaelis-Menten equation was 0.59 μmol/L. Additionally, homologous sequence alignment analysis indicated that the new NOS shared 80.48 % similarity with the same protein from Bacillus subtilis and Umezawaea. The construction of the NOS expression vector and the purification of the recombinant protein provide a foundation for further functional research and inhibitor development.
Collapse
Affiliation(s)
- Xifan Luo
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300392, PR China
| | - Xinyu Li
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300392, PR China
| | - Yaru Zhang
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300392, PR China
| | - Fei Zhao
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300392, PR China
| | - Jinlong Wang
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300392, PR China
| | - Jiang Wu
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300392, PR China.
| |
Collapse
|
13
|
Preisler AC, do Carmo GC, da Silva RC, Simões ALDO, Izidoro JDC, Pieretti JC, dos Reis RA, Jacob ALF, Seabra AB, Oliveira HC. Improving Soybean Germination and Nodule Development with Nitric Oxide-Releasing Polymeric Nanoparticles. PLANTS (BASEL, SWITZERLAND) 2024; 14:17. [PMID: 39795275 PMCID: PMC11723237 DOI: 10.3390/plants14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025]
Abstract
Nitric oxide (NO) is a multifunctional signaling molecule in plants, playing key roles in germination, microbial symbiosis, and nodule formation. However, its instability requires innovative approaches, such as using nanoencapsulated NO donors, to prolong its effects. This study evaluated the impact of treating soybean (Glycine max) seeds with the NO donor S-nitrosoglutathione (GSNO), encapsulated in polymeric nanoparticles, on the germination, nodulation, and plant growth. Seeds were treated with free GSNO, chitosan nanoparticles with/without NO (NP CS-GSNO/NP CS-GSH, where GSH is glutathione, the NO donor precursor), and alginate nanoparticles with/without NO (NP Al-GSNO/NP Al-GSH). Chitosan nanoparticles (positive zeta potential) were smaller and released NO faster compared with alginate nanoparticles (negative zeta potential). The seed treatment with NP CS-GSNO (1 mM, related to GSNO concentration) significantly improved germination percentage, root length, number of secondary roots, and dry root mass of soybean compared with the control. Conversely, NP CS-GSH resulted in decreased root and shoot length. NP Al-GSNO enhanced shoot dry mass and increased the number of secondary roots by approximately threefold at the highest concentrations. NP CS-GSNO, NP Al-GSNO, and NP Al-GSH increased S-nitrosothiol levels in the roots by approximately fourfold compared with the control. However, NP CS-GSNO was the only treatment that increased the nodule dry mass of soybean plants. Therefore, our results indicate the potential of chitosan nanoparticles to improve the application of NO donors in soybean seeds.
Collapse
Affiliation(s)
- Ana Cristina Preisler
- Department of Animal and Plant Biology, Londrina State University, Londrina 86057-970, PR, Brazil; (A.C.P.); (G.C.d.C.); (A.L.d.O.S.)
- Department of Agronomy, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Giovanna Camargo do Carmo
- Department of Animal and Plant Biology, Londrina State University, Londrina 86057-970, PR, Brazil; (A.C.P.); (G.C.d.C.); (A.L.d.O.S.)
| | - Rafael Caetano da Silva
- Department of Biodiversity Conservation, Institute of Environmental Research, São Paulo 04301-902, SP, Brazil;
| | - Ana Luisa de Oliveira Simões
- Department of Animal and Plant Biology, Londrina State University, Londrina 86057-970, PR, Brazil; (A.C.P.); (G.C.d.C.); (A.L.d.O.S.)
- Department of Agronomy, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Juliana de Carvalho Izidoro
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil; (J.d.C.I.); (J.C.P.); (R.A.d.R.); (A.L.F.J.); (A.B.S.)
| | - Joana Claudio Pieretti
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil; (J.d.C.I.); (J.C.P.); (R.A.d.R.); (A.L.F.J.); (A.B.S.)
| | - Roberta Albino dos Reis
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil; (J.d.C.I.); (J.C.P.); (R.A.d.R.); (A.L.F.J.); (A.B.S.)
| | - André Luiz Floriano Jacob
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil; (J.d.C.I.); (J.C.P.); (R.A.d.R.); (A.L.F.J.); (A.B.S.)
| | - Amedea Barozzi Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil; (J.d.C.I.); (J.C.P.); (R.A.d.R.); (A.L.F.J.); (A.B.S.)
| | - Halley Caixeta Oliveira
- Department of Animal and Plant Biology, Londrina State University, Londrina 86057-970, PR, Brazil; (A.C.P.); (G.C.d.C.); (A.L.d.O.S.)
| |
Collapse
|
14
|
Kolupaev YE, Yemets A, Yastreb TO, Blume Y. Functional interaction of melatonin with gasotransmitters and ROS in plant adaptation to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2024; 15:1505874. [PMID: 39726429 PMCID: PMC11669522 DOI: 10.3389/fpls.2024.1505874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
Melatonin is considered a multifunctional stress metabolite and a novel plant hormone affecting seed germination, root architecture, circadian rhythms, leaf senescence, and fruit ripening. Melatonin functions related to plant adaptation to stress stimuli of various natures are considered especially important. One of the key components of melatonin's stress-protective action is its ability to neutralise reactive oxygen species (ROS) and reactive nitrogen species directly. However, many of its effects are related to its involvement in the signalling network of plant cells and its influence on the expression of a large number of genes important for adaptation to adverse factors. Insights into the functional relationships of melatonin with gasotransmitters (GT) - gaseous molecules performing signalling functions - are still emerging. This review has analysed and summarised the experimental data that testify to the participation of the main GTs - nitric oxide, hydrogen sulfide, and carbon monoxide - in the implementation of the protective effect of melatonin when plants are exposed to abiotic stimuli of various nature. In addition, modulation by melatonin of one of the most important components in the action of GTs and ROS - post-translational modifications of proteins and the influence of ROS and GTs on melatonin synthesis in plants under stress conditions and the specific physiological effects of exogenous melatonin and GTs have been reviewed. Finally, the prospects of the GTs' practical application to achieve synergistic stress-protective effects on plants have been considered.
Collapse
Affiliation(s)
- Yuriy E. Kolupaev
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine
| | - Alla Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Tetiana O. Yastreb
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine
| | - Yaroslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
15
|
Gupta R, Kumar V, Verma N, Tewari RK. Nitric oxide-mediated regulation of macronutrients in plants. Nitric Oxide 2024; 153:13-25. [PMID: 39389288 DOI: 10.1016/j.niox.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/08/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
In plant physiology, nitric oxide (NO) is a widely used signaling molecule. It is a free radical and an important component of the N-cycle. NO is produced endogenously inside plant cells, where it participates in multiple functions and provides protection against several abiotic and biotic stresses. NO and its interplay with macronutrients had remarkable effects on plant growth and development, the signaling pathway, and defense mechanisms. Its chemical properties, synthetic pathways, physiological effects, antioxidant action, signal transduction, and regulation of transporter genes and proteins have been studied. NO emerges as a key regulator under macronutrient deficiency. In plants, NO also affects reactive oxygen species (ROS), reactive nitrogen species (RNS), and post-translational modifications (PTMs). The function of NO and its significant control in the functions and adjustments of macronutrients under macronutrient deficit were summed up in this review. NO regulate functions of macronutrients and associated signaling events involved with macronutrient transporters in different plants.
Collapse
Affiliation(s)
- Roshani Gupta
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Vijay Kumar
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Nikita Verma
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | | |
Collapse
|
16
|
Saini S, Sharma P, Pooja P, Sharma A. An updated mechanistic overview of nitric oxide in drought tolerance of plants. Nitric Oxide 2024; 153:82-97. [PMID: 39395712 DOI: 10.1016/j.niox.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/17/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Drought stress, an inevitable global issue due to climate change, hinders plant growth and yield. Nitric oxide (NO), a tiny gaseous signaling compound is now gaining massive attention from the plant science community due to its unparalleled array of mechanisms for ameliorating various abiotic stresses, including drought. Supplementation of NO has shown its astounding effect in improving drought tolerance by prominently influencing its tendency to modulate stomatal movement and reduce oxidative stress; it can enormously affect the various other physio-biochemical processes such as root structure, photosynthesis, osmolyte cumulation, and seed establishment of plants due to its amalgamation with a wide range of molecules during drought conditions. The production and inhibition of root development majorly depend on NO concentration and/or experimental conditions. As a lipophilic free gasotransmitter, NO readily reacts with free metals and oxygen species and has been shown to enhance or reduce the redox homeostasis of plants, depending on whether acting in a chronic or acute mode. NO can easily alter the enzymes, protein activities, and genomic transcriptional and post-translational modifications that assist functional retrieval from water stress. Although progress is ongoing, much work remains to be done to describe the proper target site and mechanistic approach of this vibrant molecule in plant drought tolerance. This detailed review navigates through the comprehensive and clear picture of the mechanistic potential of NO in drought stress following molecular approaches and suggests effective physiological and biochemical strategies to overcome the negative impacts of drought. We explore its potential to increase crop production, thereby ensuring global food security in drought-prone areas. In an era marked by unrelenting climatic conditions, the implications of NO show a promising approach to sustainable farming, providing a beacon of hope for future crop productivity.
Collapse
Affiliation(s)
- Sakshi Saini
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Priyanka Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Pooja Pooja
- Department of Botany and Physiology, Haryana Agricultural University, Hisar, 125004, Haryana, India.
| | - Asha Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
17
|
Wal A, Piekarniak M, Staszek P, Chodór K, Bieniek J, Gniazdowska A, Krasuska U. Nitric oxide action in the digestive fluid of Nepenthes × ventrata is linked to the modulation of ROS level. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109088. [PMID: 39241628 DOI: 10.1016/j.plaphy.2024.109088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Nepenthes are carnivorous plants with photoactive leaves converted into jug-shaped containers filled with the digestive fluid. The digestion requires various enzymes and reactive oxygen species (ROS) that facilitate proteolysis. Reactive nitrogen species are present in the digestive fluid of Nepenthes × ventrata, and the increased nitric oxide (NO) formation is associated with protein degradation. The aim of the work was to verify the beneficial effect of NO application into the trap on the dynamics of protein digestion and ROS homeostasis. Measurements were done using the digestive fluid or the tissue collected from the mature pitcher plants (fed) grown in a greenhouse. Two independent methods confirmed NO formation in the digestive fluid of fed and non-fed traps. NO supplementation with food into the trap accelerated protein degradation in the digestive fluid by increasing the proteolytic activity. NO modulated free radical formation (as the result of direct impact on NADPH oxidase), stimulated ROS scavenging capacity, increased -SH groups and flavonoids content, particularly at the beginning of the digestion. In non-fed traps, the relatively high level of protein nitration in the digestive fluid may prevent self-protein proteolysis. Whereas, after initiation of the digestion decreasing level of nitrated proteins in the fluid may indicate their accelerated degradation. Therefore, it can be assumed that NO exhibits a protective effect on the fluid and the trap tissue before digestion, while during digestion, NO is an accelerator of protein decomposition and the ROS balance keeper.
Collapse
Affiliation(s)
- Agnieszka Wal
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Maciej Piekarniak
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Pawel Staszek
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Kamila Chodór
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Jakub Bieniek
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Agnieszka Gniazdowska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Urszula Krasuska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
18
|
Zeng S, Sun X, Zhai J, Li X, Pedro GC, Nian H, Li K, Xu H. SlTrxh functions downstream of SlMYB86 and positively regulates nitrate stress tolerance via S-nitrosation in tomato seedling. HORTICULTURE RESEARCH 2024; 11:uhae184. [PMID: 39247888 PMCID: PMC11374535 DOI: 10.1093/hr/uhae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/01/2024] [Indexed: 09/10/2024]
Abstract
Nitric oxide (NO) is a redox-dependent signaling molecule that plays a crucial role in regulating a wide range of biological processes in plants. It functions by post-translationally modifying proteins, primarily through S-nitrosation. Thioredoxin (Trx), a small and ubiquitous protein with multifunctional properties, plays a pivotal role in the antioxidant defense system. However, the regulatory mechanism governing the response of tomato Trxh (SlTrxh) to excessive nitrate stress remains unknown. In this study, overexpression or silencing of SlTrxh in tomato led to increased or decreased nitrate stress tolerance, respectively. The overexpression of SlTrxh resulted in a reduction in levels of reactive oxygen species (ROS) and an increase in S-nitrosothiol (SNO) contents; conversely, silencing SlTrxh exhibited the opposite trend. The level of S-nitrosated SlTrxh was increased and decreased in SlTrxh overexpression and RNAi plants after nitrate treatment, respectively. SlTrxh was found to be susceptible to S-nitrosation both in vivo and in vitro, with Cysteine 54 potentially being the key site for S-nitrosation. Protein interaction assays revealed that SlTrxh physically interacts with SlGrx9, and this interaction is strengthened by S-nitrosation. Moreover, a combination of yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR), and transient expression assays confirmed the direct binding of SlMYB86 to the SlTrxh promoter, thereby enhancing its expression. SlMYB86 is located in the nucleus and SlMYB86 overexpressed and knockout tomato lines showed enhanced and decreased nitrate stress tolerance, respectively. Our findings indicate that SlTrxh functions downstream of SlMYB86 and highlight the potential significance of S-nitrosation of SlTrxh in modulating its function under nitrate stress.
Collapse
Affiliation(s)
- Senlin Zeng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan 650224, China
| | - Xudong Sun
- Yunnan Key Laboratory of Crop Wild Relatives, The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jiali Zhai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan 650224, China
| | - Xixian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan 650224, China
| | | | - Hongjuan Nian
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan 650224, China
| | - Kunzhi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan 650224, China
| | - Huini Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan 650224, China
| |
Collapse
|
19
|
Dard A, Van Breusegem F, Mhamdi A. Redox regulation of gene expression: proteomics reveals multiple previously undescribed redox-sensitive cysteines in transcription complexes and chromatin modifiers. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4476-4493. [PMID: 38642390 DOI: 10.1093/jxb/erae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Redox signalling is crucial for regulating plant development and adaptation to environmental changes. Proteins with redox-sensitive cysteines can sense oxidative stress and modulate their functions. Recent proteomics efforts have comprehensively mapped the proteins targeted by oxidative modifications. The nucleus, the epicentre of transcriptional reprogramming, contains a large number of proteins that control gene expression. Specific redox-sensitive transcription factors have long been recognized as key players in decoding redox signals in the nucleus and thus in regulating transcriptional responses. Consequently, the redox regulation of the nuclear transcription machinery and its cofactors has received less attention. In this review, we screened proteomic datasets for redox-sensitive cysteines on proteins of the core transcription complexes and chromatin modifiers in Arabidopsis thaliana. Our analysis indicates that redox regulation affects every step of gene transcription, from initiation to elongation and termination. We report previously undescribed redox-sensitive subunits in transcription complexes and discuss the emerging challenges in unravelling the landscape of redox-regulated processes involved in nuclear gene transcription.
Collapse
Affiliation(s)
- Avilien Dard
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| |
Collapse
|
20
|
Lubyanova A, Allagulova C. Exogenous Sodium Nitroprusside Affects the Redox System of Wheat Roots Differentially Regulating the Activity of Antioxidant Enzymes under Short-Time Osmotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1895. [PMID: 39065422 PMCID: PMC11280031 DOI: 10.3390/plants13141895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
Nitric oxide (NO) is a multifunctional signalling molecule involved in the regulation of plant ontogenesis and adaptation to different adverse environmental factors, in particular to osmotic stress. Understanding NO-induced plant protection is important for the improvement of plant stress tolerance and crop productivity under global climate changes. The root system is crucial for plant survival in a changeable environment. Damages that it experiences under water deficit conditions during the initial developmental periods seriously affect the viability of the plants. This work was devoted to the comparative analysis of the pretreatment of wheat seedlings through the root system with NO donor sodium nitroprusside (SNP) for 24 h on various parameters of redox homeostasis under exposure to osmotic stress (PEG 6000, 12%) over 0.5-24 h. The active and exhausted solutions of SNP, termed as (SNP/+NO) and (SNP/-NO), respectively, were used in this work at a concentration of 2 × 10-4 M. Using biochemistry and light microscopy methods, it has been revealed that osmotic stress caused oxidative damages and the disruption of membrane cell structures in wheat roots. PEG exposure increased the production of superoxide (O2•-), hydrogen peroxide (H2O2), malondialdehyde (MDA), and the levels of electrolyte leakage (EL) and lipid peroxidation (LPO). Stress treatment enhanced the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), the excretion of proline, and the rate of cell death and inhibited their division. Pretreatment with (SNP/+NO) decreased PEG-induced root damages by differently regulating the antioxidant enzymes under stress conditions. Thus, (SNP/+NO) pretreatment led to SOD, APX, and CAT inhibition during the first 4 h of stress and stimulated their activity after 24 h of PEG exposure when compared to SNP-untreated or (SNP/-NO)-pretreated and stress-subjected plants. Osmotic stress triggered the intense excretion of proline by roots into the external medium. Pretreatment with (SNP/+NO) in contrast with (SNP/-NO) additionally increased stress-induced proline excretion. Our results indicate that NO is able to mitigate the destructive effects of osmotic stress on the roots of wheat seedlings. However, the mechanisms of NO protective action may be different at certain periods of stress exposure.
Collapse
Affiliation(s)
- Alsu Lubyanova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Prospect Oktyabrya 71, lit.1e, 450054 Ufa, Russia;
| | | |
Collapse
|
21
|
González-Gordo S, López-Jaramillo J, Rodríguez-Ruiz M, Taboada J, Palma JM, Corpas FJ. Pepper catalase: a broad analysis of its modulation during fruit ripening and by nitric oxide. Biochem J 2024; 481:883-901. [PMID: 38884605 DOI: 10.1042/bcj20240247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
Catalase is a major antioxidant enzyme located in plant peroxisomes that catalyzes the decomposition of H2O2. Based on our previous transcriptomic (RNA-Seq) and proteomic (iTRAQ) data at different stages of pepper (Capsicum annuum L.) fruit ripening and after exposure to nitric oxide (NO) enriched atmosphere, a broad analysis has allowed us to characterize the functioning of this enzyme. Three genes were identified, and their expression was differentially modulated during ripening and by NO gas treatment. A dissimilar behavior was observed in the protein expression of the encoded protein catalases (CaCat1-CaCat3). Total catalase activity was down-regulated by 50% in ripe (red) fruits concerning immature green fruits. This was corroborated by non-denaturing polyacrylamide gel electrophoresis, where only a single catalase isozyme was identified. In vitro analyses of the recombinant CaCat3 protein exposed to peroxynitrite (ONOO-) confirmed, by immunoblot assay, that catalase underwent a nitration process. Mass spectrometric analysis identified that Tyr348 and Tyr360 were nitrated by ONOO-, occurring near the active center of catalase. The data indicate the complex regulation at gene and protein levels of catalase during the ripening of pepper fruits, with activity significantly down-regulated in ripe fruits. Nitration seems to play a key role in this down-regulation, favoring an increase in H2O2 content during ripening. This pattern can be reversed by the exogenous NO application. While plant catalases are generally reported to be tetrameric, the analysis of the protein structure supports that pepper catalase has a favored quaternary homodimer nature. Taken together, data show that pepper catalase is down-regulated during fruit ripening, becoming a target of tyrosine nitration, which provokes its inhibition.
Collapse
Affiliation(s)
- Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain Granada, Spain
| | | | - Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain Granada, Spain
| | - Jorge Taboada
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain Granada, Spain
| |
Collapse
|
22
|
Kaur D, Schedl A, Lafleur C, Martinez Henao J, van Dam NM, Rivoal J, Bede JC. Arabidopsis Transcriptomics Reveals the Role of Lipoxygenase2 (AtLOX2) in Wound-Induced Responses. Int J Mol Sci 2024; 25:5898. [PMID: 38892085 PMCID: PMC11173247 DOI: 10.3390/ijms25115898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
In wounded Arabidopsis thaliana leaves, four 13S-lipoxygenases (AtLOX2, AtLOX3, AtLOX4, AtLOX6) act in a hierarchical manner to contribute to the jasmonate burst. This leads to defense responses with LOX2 playing an important role in plant resistance against caterpillar herb-ivory. In this study, we sought to characterize the impact of AtLOX2 on wound-induced phytohormonal and transcriptional responses to foliar mechanical damage using wildtype (WT) and lox2 mutant plants. Compared with WT, the lox2 mutant had higher constitutive levels of the phytohormone salicylic acid (SA) and enhanced expression of SA-responsive genes. This suggests that AtLOX2 may be involved in the biosynthesis of jasmonates that are involved in the antagonism of SA biosynthesis. As expected, the jasmonate burst in response to wounding was dampened in lox2 plants. Generally, 1 h after wounding, genes linked to jasmonate biosynthesis, jasmonate signaling attenuation and abscisic acid-responsive genes, which are primarily involved in wound sealing and healing, were differentially regulated between WT and lox2 mutants. Twelve h after wounding, WT plants showed stronger expression of genes associated with plant protection against insect herbivory. This study highlights the dynamic nature of jasmonate-responsive gene expression and the contribution of AtLOX2 to this pathway and plant resistance against insects.
Collapse
Affiliation(s)
- Diljot Kaur
- Department of Plant Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (D.K.); (J.M.H.)
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 rue Sherbrooke E., Montréal, QC H1X 2B2, Canada;
| | - Andreas Schedl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 52, 04103 Leipzig, Germany (N.M.v.D.)
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
- German Biomass Research Centre (DBFZ), Torgauer Straße 116, 04347 Leipzig, Germany
| | - Christine Lafleur
- Department of Animal Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada;
| | - Julian Martinez Henao
- Department of Plant Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (D.K.); (J.M.H.)
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 52, 04103 Leipzig, Germany (N.M.v.D.)
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyerweg-1, 14979 Großbeeren, Germany
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 rue Sherbrooke E., Montréal, QC H1X 2B2, Canada;
| | - Jacqueline C. Bede
- Department of Plant Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (D.K.); (J.M.H.)
| |
Collapse
|
23
|
Gupta KJ, Yadav N, Kumari A, Loake GJ. New insights into nitric oxide biosynthesis underpin lateral root development. MOLECULAR PLANT 2024; 17:691-693. [PMID: 38566415 DOI: 10.1016/j.molp.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/04/2024]
Affiliation(s)
| | - Nidhi Yadav
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110070, India
| | - Aprajita Kumari
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110070, India
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EH9 3BF Edinburgh, UK; Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, EH9 3BF Edinburgh, UK.
| |
Collapse
|
24
|
Gokce A, Sekmen Cetinel AH, Turkan I. Involvement of GLR-mediated nitric oxide effects on ROS metabolism in Arabidopsis plants under salt stress. JOURNAL OF PLANT RESEARCH 2024; 137:485-503. [PMID: 38448641 PMCID: PMC11082007 DOI: 10.1007/s10265-024-01528-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/28/2024] [Indexed: 03/08/2024]
Abstract
Plant glutamate receptor-like channels (GLRs) play important roles in plant development, immune response, defense signaling and Nitric oxide (NO) production. However, their involvement in abiotic stress responses, particularly in regulating Reactive Oxygen Species (ROS), is not well understood. This study aimed to investigate GLR-mediated NO production on ROS regulation in salt-stressed cells. To achieve this, Arabidopsis thaliana Columbia (Col-0) were treated with NaCl, glutamate antagonists [(DNQX (6,7-dinitroquinoxaline-2,3-dione and AP-5(D-2-amino-5-phosphono pentanoic acid)], and NO scavenger [cPTIO (2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt)]. Salt-stressed plants in combination with DNQX and AP-5 have exhibited higher increase in lipid peroxidation (TBARS), hydrogen peroxide (H2O2) and superoxide radical (O-2) contents as compared to solely NaCl-treated plants. Furthermore, NO and total glutathione contents, and S-nitrosoglutathione reductase (GSNOR) activity decreased with these treatments. AP-5 and DNQX increased the activities of NADPH oxidase (NOX), catalase (CAT), peroxidase (POX), cell wall peroxidase (CWPOX) in salt-stressed Arabidopsis leaves. However, their activities (except NOX) were significantly inhibited by cPTIO. Conversely, the combination of NaCl and GLR antagonists, NO scavenger decreased the activities of ascorbate peroxidase (APX), superoxide dismutase (SOD), glutathione reductase (GR), dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) resulting in elevated GSSG levels, a low GSH/GSSG ratio, impaired ROS scavenging, excessive ROS accumulation and cell membrane damage. The findings of this study provide evidence that GLR-mediated NO plays a crucial role in improvement of the tolerance of Arabidopsis plants to salt-induced oxidative stress. It helps to maintain cellular redox homeostasis by reducing ROS accumulation and increasing the activity of SOD, GSNOR, and the ASC-GSH cycle enzymes.
Collapse
Affiliation(s)
- Azime Gokce
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey
| | | | - Ismail Turkan
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey
| |
Collapse
|
25
|
Nejamkin A, Del Castello F, Lamattina L, Foresi N, Correa Aragunde N. Redox regulation in primary nitrate response: Nitric oxide in the spotlight. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108625. [PMID: 38643539 DOI: 10.1016/j.plaphy.2024.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/02/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
Nitrogen (N) is the main macronutrient of plants that determines growth and productivity. Nitrate is the major source form of N in soils and its uptake and assimilatory pathway has been extensively studied. The early events that occur after the perception of nitrate is known as primary nitrate response (PNR). In this review, new findings on the redox signal that impacts PNR are discussed. We will focus on the novel role of Nitric Oxide (NO) as a signal molecule and the mechanisms that are involved to control NO homeostasis during PNR. Moreover, the role of Reactive Oxygen Species (ROS) and the possible interplay with NO in the PNR are discussed. The sources of NO during PNR will be analyzed as well as the regulation of its intracellular levels. Furthermore, we explored the relevance of the direct action of NO through the S-nitrosation of the transcription factor NLP7, one of the master regulators in the nitrate signaling cascade. This review gives rise to an interesting field with new actors to mark future research directions. This allows us to increase the knowledge of the physiological and molecular fine-tuned modulation during nitrate signaling processes in plants. The discussion of new experimental data will stimulate efforts to further refine our understanding of the redox regulation of nitrate signaling.
Collapse
Affiliation(s)
- Andrés Nejamkin
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar Del Plata, Argentina
| | - Fiorella Del Castello
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar Del Plata, Argentina
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar Del Plata, Argentina
| | - Noelia Foresi
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar Del Plata, Argentina
| | - Natalia Correa Aragunde
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar Del Plata, Argentina.
| |
Collapse
|
26
|
Muñoz-Vargas MA, Taboada J, González-Gordo S, Palma JM, Corpas FJ. Characterization of leucine aminopeptidase (LAP) activity in sweet pepper fruits during ripening and its inhibition by nitration and reducing events. PLANT CELL REPORTS 2024; 43:92. [PMID: 38466441 PMCID: PMC10927865 DOI: 10.1007/s00299-024-03179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024]
Abstract
KEY MESSAGE Pepper fruits contain two leucine aminopeptidase (LAP) genes which are differentially modulated during ripening and by nitric oxide. The LAP activity increases during ripening but is negatively modulated by nitration. Leucine aminopeptidase (LAP) is an essential metalloenzyme that cleaves N-terminal leucine residues from proteins but also metabolizes dipeptides and tripeptides. LAPs play a fundamental role in cell protein turnover and participate in physiological processes such as defense mechanisms against biotic and abiotic stresses, but little is known about their involvement in fruit physiology. This study aims to identify and characterize genes encoding LAP and evaluate their role during the ripening of pepper (Capsicum annuum L.) fruits and under a nitric oxide (NO)-enriched environment. Using a data-mining approach of the pepper plant genome and fruit transcriptome (RNA-seq), two LAP genes, designated CaLAP1 and CaLAP2, were identified. The time course expression analysis of these genes during different fruit ripening stages showed that whereas CaLAP1 decreased, CaLAP2 was upregulated. However, under an exogenous NO treatment of fruits, both genes were downregulated. On the contrary, it was shown that during fruit ripening LAP activity increased by 81%. An in vitro assay of the LAP activity in the presence of different modulating compounds including peroxynitrite (ONOO-), NO donors (S-nitrosoglutathione and nitrosocyteine), reducing agents such as reduced glutathione (GSH), L-cysteine (L-Cys), and cyanide triggered a differential response. Thus, peroxynitrite and reducing compounds provoked around 50% inhibition of the LAP activity in green immature fruits, whereas cyanide upregulated it 1.5 folds. To our knowledge, this is the first characterization of LAP in pepper fruits as well as of its regulation by diverse modulating compounds. Based on the capacity of LAP to metabolize dipeptides and tripeptides, it could be hypothesized that the LAP might be involved in the GSH recycling during the ripening process.
Collapse
Affiliation(s)
- María A Muñoz-Vargas
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain
| | - Jorge Taboada
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain
| | - Salvador González-Gordo
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain
| | - José M Palma
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain
| | - Francisco J Corpas
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain.
| |
Collapse
|
27
|
Gautam H, Khan S, Nidhi, Sofo A, Khan NA. Appraisal of the Role of Gaseous Signaling Molecules in Thermo-Tolerance Mechanisms in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:791. [PMID: 38592775 PMCID: PMC10975175 DOI: 10.3390/plants13060791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/19/2024] [Accepted: 03/09/2024] [Indexed: 04/11/2024]
Abstract
A significant threat to the ongoing rise in temperature caused by global warming. Plants have many stress-resistance mechanisms, which is responsible for maintaining plant homeostasis. Abiotic stresses largely increase gaseous molecules' synthesis in plants. The study of gaseous signaling molecules has gained attention in recent years. The role of gaseous molecules, such as nitric oxide (NO), hydrogen sulfide (H2S), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), and ethylene, in plants under temperature high-temperature stress are discussed in the current review. Recent studies revealed the critical function that gaseous molecules play in controlling plant growth and development and their ability to respond to various abiotic stresses. Here, we provide a thorough overview of current advancements that prevent heat stress-related plant damage via gaseous molecules. We also explored and discussed the interaction of gaseous molecules. In addition, we provided an overview of the role played by gaseous molecules in high-temperature stress responses, along with a discussion of the knowledge gaps and how this may affect the development of high-temperature-resistant plant species.
Collapse
Affiliation(s)
- Harsha Gautam
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Sheen Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Nidhi
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Adriano Sofo
- Department of European and Mediterranean Cultures: Architecture, Environment, Cultural Heritage (DiCEM), University of Basilicata, 75100 Matera, Italy
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
28
|
Sharma G, Sharma N, Ohri P. Harmonizing hydrogen sulfide and nitric oxide: A duo defending plants against salinity stress. Nitric Oxide 2024; 144:1-10. [PMID: 38185242 DOI: 10.1016/j.niox.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Accepted: 01/05/2024] [Indexed: 01/09/2024]
Abstract
In the face of escalating salinity stress challenges in agricultural systems, this review article delves into the harmonious partnership between hydrogen sulfide (H2S) and nitric oxide (NO) as they collectively act as formidable defenders of plants. Once considered as harmful pollutants, H2S and NO have emerged as pivotal gaseous signal molecules that profoundly influence various facets of plant life. Their roles span from enhancing seed germination to promoting overall growth and development. Moreover, these molecules play a crucial role in bolstering stress tolerance mechanisms and maintaining essential plant homeostasis. This review navigates through the intricate signaling pathways associated with H2S and NO, elucidating their synergistic effects in combating salinity stress. We explore their potential to enhance crop productivity, thereby ensuring food security in saline-affected regions. In an era marked by pressing environmental challenges, the manipulation of H2S and NO presents promising avenues for sustainable agriculture, offering a beacon of hope for the future of global food production.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Nandni Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
29
|
Ahmad B, Mukarram M, Choudhary S, Petrík P, Dar TA, Khan MMA. Adaptive responses of nitric oxide (NO) and its intricate dialogue with phytohormones during salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108504. [PMID: 38507841 DOI: 10.1016/j.plaphy.2024.108504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/23/2024] [Accepted: 03/03/2024] [Indexed: 03/22/2024]
Abstract
Nitric oxide (NO) is a gaseous free radical that acts as a messenger for various plant phenomena corresponding to photomorphogenesis, fertilisation, flowering, germination, growth, and productivity. Recent developments have suggested the critical role of NO in inducing adaptive responses in plants during salinity. NO minimises salinity-induced photosynthetic damage and improves plant-water relation, nutrient uptake, stomatal conductance, electron transport, and ROS and antioxidant metabolism. NO contributes active participation in ABA-mediated stomatal regulation. Similar crosstalk of NO with other phytohormones such as auxins (IAAs), gibberellins (GAs), cytokinins (CKs), ethylene (ET), salicylic acid (SA), strigolactones (SLs), and brassinosteroids (BRs) were also observed. Additionally, we discuss NO interaction with other gaseous signalling molecules such as reactive oxygen species (ROS) and reactive sulphur species (RSS). Conclusively, the present review traces critical events in NO-induced morpho-physiological adjustments under salt stress and discusses how such modulations upgrade plant resilience.
Collapse
Affiliation(s)
- Bilal Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India; Department of Botany, Govt Degree College for Women, Pulwama, University of Kashmir, 192301, India
| | - Mohammad Mukarram
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001, Zvolen, Slovakia; Food and Plant Biology Group, Department of Plant Biology, School of Agriculture, Universidad de la República, Montevideo, Uruguay.
| | - Sadaf Choudhary
- Department of Botany, Govt Degree College for Women, Pulwama, University of Kashmir, 192301, India
| | - Peter Petrík
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstraße 19, 82467, Garmisch-Partenkirchen, Germany
| | - Tariq Ahmad Dar
- Sri Pratap College, Cluster University Srinagar, 190001, India
| | - M Masroor A Khan
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
30
|
Singh P, Jaiswal S, Tripathi DK, Singh VP. Nitric oxide acts upstream of indole-3-acetic acid in ameliorating arsenate stress in tomato seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108461. [PMID: 38461754 DOI: 10.1016/j.plaphy.2024.108461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024]
Abstract
After their discovery, nitric oxide (NO) and indole-3-acetic acid (IAA) have been reported as game-changing cellular messengers for reducing abiotic stresses in plants. But, information regarding their shared signaling in regulating metal stress is still unclear. Herein, we have investigated about the joint role of NO and IAA in mitigation of arsenate [As(V)] toxicity in tomato seedlings. Arsenate being a toxic metalloid increases the NPQ level and cell death while decreasing the biomass accumulation, photosynthetic pigments, chlorophyll a fluorescence, endogenous NO content in tomato seedlings. However, application of IAA or SNP to the As(V) stressed seedlings improved growth together with less accumulation of arsenic and thus, preventing cell death. Interestingly, addition of c-PTIO, {2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide, a scavenger of NO} and 2, 3, 5-triidobenzoic acid (TIBA, an inhibitor of polar auxin transport) further increased cell death and inhibited activity of GST, leading to As(V) toxicity. However, addition of IAA to SNP and TIBA treated seedlings reversed the effect of TIBA resulting into decreased As(V) toxicity. These findings demonstrate that IAA plays a crucial and advantageous function in NO-mediated reduction of As(V) toxicity in seedlings of tomato. Overall, this study concluded that IAA might be acting as a downstream signal for NO-mediated reduction of As(V) toxicity in tomato seedlings.
Collapse
Affiliation(s)
- Pooja Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Saumya Jaiswal
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|
31
|
Espinosa-Vellarino FL, Garrido I, Casimiro I, Silva AC, Espinosa F, Ortega A. Enzymes Involved in Antioxidant and Detoxification Processes Present Changes in the Expression Levels of Their Coding Genes under the Stress Caused by the Presence of Antimony in Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:609. [PMID: 38475456 DOI: 10.3390/plants13050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Currently, there is an increasing presence of heavy metals and metalloids in soils and water due to anthropogenic activities. However, the biggest problem caused by this increase is the difficulty in recycling these elements and their high permanence in soils. There are plants with great capacity to assimilate these elements or make them less accessible to other organisms. We analyzed the behavior of Solanum lycopersicum L., a crop with great agronomic interest, under the stress caused by antimony (Sb). We evaluated the antioxidant response throughout different exposure times to the metalloid. Our results showed that the enzymes involved in the AsA-GSH cycle show changes in their expression level under the stress caused by Sb but could not find a relationship between the NITROSOGLUTATHIONE REDUCTASE (GSNOR) expression data and nitric oxide (NO) content in tomato roots exposed to Sb. We hypothesize that a better understanding of how these enzymes work could be key to develop more tolerant varieties to this kind of abiotic stress and could explain a greater or lesser phytoremediation capacity. Moreover, we deepened our knowledge about Glutathione S-transferase (GST) and Glutathione Reductase (GR) due to their involvement in the elimination of the xenobiotic component.
Collapse
Affiliation(s)
- Francisco Luis Espinosa-Vellarino
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Inmaculada Garrido
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Ilda Casimiro
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Ana Cláudia Silva
- Centro Tecnológico Nacional Agroalimentario "Extremadura" (CTAEX), Ctra. Villafranco-Balboa 1.2, 06195 Badajoz, Spain
| | - Francisco Espinosa
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Alfonso Ortega
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| |
Collapse
|
32
|
Welle M, Niether W, Stöhr C. The underestimated role of plant root nitric oxide emission under low-oxygen stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1290700. [PMID: 38379951 PMCID: PMC10876902 DOI: 10.3389/fpls.2024.1290700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024]
Abstract
The biotic release of nitric oxide (NO), a greenhouse gas, into the atmosphere contributes to climate change. In plants, NO plays a significant role in metabolic and signaling processes. However, little attention has been paid to the plant-borne portion of global NO emissions. Owing to the growing significance of global flooding events caused by climate change, the extent of plant NO emissions has been assessed under low-oxygen conditions for the roots of intact plants. Each examined plant species (tomato, tobacco, and barley) exhibited NO emissions in a highly oxygen-dependent manner. The transfer of data obtained under laboratory conditions to the global area of farmland was used to estimate possible plant NO contribution to greenhouse gas budgets. Plant-derived and stress-induced NO emissions were estimated to account for the equivalent of 1 to 9% of global annual NO emissions from agricultural land. Because several stressors induce NO formation in plants, the actual impact may be even higher.
Collapse
Affiliation(s)
- Marcel Welle
- Plant Physiology, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | | | | |
Collapse
|
33
|
Sougrakpam Y, Deswal R. Identification of nitric oxide regulated low abundant myrosinases from seeds and seedlings of Brassica juncea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111932. [PMID: 38030037 DOI: 10.1016/j.plantsci.2023.111932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Myrosinases constitute an important component of the glucosinolate-myrosinase system responsible for interaction of plants with microorganisms, insects, pest, and herbivores. It is a distinctive feature of Brassicales. Multiple isozymes of myrosinases are present in the vacuoles. Active myrosinases are also present in the apoplast and the nucleus however, the similarity or difference in the biochemical properties with the vacuolar myrosinases are not known. Here, we have attempted to isolate, characterize, and identify myrosinases from seeds, seedlings, apoplast, and nucleus to understand these forms. 2D-CN/SDS-PAGE coupled with western blotting and MS have shown low abundant myrosinases (65/70/72/75 kDa) in seeds and seedlings and apoplast & nucleus of seedlings to exist as dimers, oligomers, and as protein complex. Nuclear membrane associated form of myrosinase was also identified. The present study for the first time has shown enzymatically active myrosinase-alpha-mannosidase complex in seedlings. Both 65 and 70 kDa myrosinase in seedlings were S-nitrosated. Nitric oxide donor treatment (GSNO) led to 25% reduction in myrosinase activity which was reversed by DTT suggesting redox regulation of myrosinase. These S-nitrosated myrosinases might be a component of NO signalling in B. juncea.
Collapse
Affiliation(s)
- Yaiphabi Sougrakpam
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi 110007, India.
| | - Renu Deswal
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi 110007, India.
| |
Collapse
|
34
|
Pathak PK, Yadav N, Kaladhar VC, Jaiswal R, Kumari A, Igamberdiev AU, Loake GJ, Gupta KJ. The emerging roles of nitric oxide and its associated scavengers-phytoglobins-in plant symbiotic interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:563-577. [PMID: 37843034 DOI: 10.1093/jxb/erad399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
A key feature in the establishment of symbiosis between plants and microbes is the maintenance of the balance between the production of the small redox-related molecule, nitric oxide (NO), and its cognate scavenging pathways. During the establishment of symbiosis, a transition from a normoxic to a microoxic environment often takes place, triggering the production of NO from nitrite via a reductive production pathway. Plant hemoglobins [phytoglobins (Phytogbs)] are a central tenant of NO scavenging, with NO homeostasis maintained via the Phytogb-NO cycle. While the first plant hemoglobin (leghemoglobin), associated with the symbiotic relationship between leguminous plants and bacterial Rhizobium species, was discovered in 1939, most other plant hemoglobins, identified only in the 1990s, were considered as non-symbiotic. From recent studies, it is becoming evident that the role of Phytogbs1 in the establishment and maintenance of plant-bacterial and plant-fungal symbiosis is also essential in roots. Consequently, the division of plant hemoglobins into symbiotic and non-symbiotic groups becomes less justified. While the main function of Phytogbs1 is related to the regulation of NO levels, participation of these proteins in the establishment of symbiotic relationships between plants and microorganisms represents another important dimension among the other processes in which these key redox-regulatory proteins play a central role.
Collapse
Affiliation(s)
- Pradeep Kumar Pathak
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Nidhi Yadav
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Rekha Jaiswal
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Aprajita Kumari
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | | |
Collapse
|
35
|
Houmani H, Corpas FJ. Can nutrients act as signals under abiotic stress? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108313. [PMID: 38171136 DOI: 10.1016/j.plaphy.2023.108313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Plant cells are in constant communication to coordinate development processes and environmental reactions. Under stressful conditions, such communication allows the plant cells to adjust their activities and development. This is due to intercellular signaling events which involve several components. In plant development, cell-to-cell signaling is ensured by mobile signals hormones, hydrogen peroxide (H2O2), nitric oxide (NO), or hydrogen sulfide (H2S), as well as several transcription factors and small RNAs. Mineral nutrients, including macro and microelements, are determinant factors for plant growth and development and are, currently, recognized as potential signal molecules. This review aims to highlight the role of nutrients, particularly calcium, potassium, magnesium, nitrogen, phosphorus, and iron as signaling components with special attention to the mechanism of response against stress conditions.
Collapse
Affiliation(s)
- Hayet Houmani
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/Profesor Albareda, 1, 18008, Granada, Spain; Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, PO Box 901, 2050, Hammam-Lif, Tunisia
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/Profesor Albareda, 1, 18008, Granada, Spain.
| |
Collapse
|
36
|
López-Gómez P, Buezo J, Urra M, Cornejo A, Esteban R, Fernández de Los Reyes J, Urarte E, Rodríguez-Dobreva E, Chamizo-Ampudia A, Eguaras A, Wolf S, Marino D, Martínez-Merino V, Moran JF. A new oxidative pathway of nitric oxide production from oximes in plants. MOLECULAR PLANT 2024; 17:178-198. [PMID: 38102832 DOI: 10.1016/j.molp.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/06/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Nitric oxide (NO) is an essential reactive oxygen species and a signal molecule in plants. Although several studies have proposed the occurrence of oxidative NO production, only reductive routes for NO production, such as the nitrate (NO-3) -upper-reductase pathway, have been evidenced to date in land plants. However, plants grown axenically with ammonium as the sole source of nitrogen exhibit contents of nitrite and NO3-, evidencing the existence of a metabolic pathway for oxidative production of NO. We hypothesized that oximes, such as indole-3-acetaldoxime (IAOx), a precursor to indole-3-acetic acid, are intermediate oxidation products in NO synthesis. We detected the production of NO from IAOx and other oximes catalyzed by peroxidase (POD) enzyme using both 4-amino-5-methylamino-2',7'-difluorescein fluorescence and chemiluminescence. Flavins stimulated the reaction, while superoxide dismutase inhibited it. Interestingly, mouse NO synthase can also use IAOx to produce NO at a lower rate than POD. We provided a full mechanism for POD-dependent NO production from IAOx consistent with the experimental data and supported by density functional theory calculations. We showed that the addition of IAOx to extracts from Medicago truncatula increased the in vitro production of NO, while in vivo supplementation of IAOx and other oximes increased the number of lateral roots, as shown for NO donors, and a more than 10-fold increase in IAOx dehydratase expression. Furthermore, we found that in vivo supplementation of IAOx increased NO production in Arabidopsis thaliana wild-type plants, while prx33-34 mutant plants, defective in POD33-34, had reduced production. Our data show that the release of NO by IAOx, as well as its auxinic effect, explain the superroot phenotype. Collectively, our study reveals that plants produce NO utilizing diverse molecules such as oximes, POD, and flavins, which are widely distributed in the plant kingdom, thus introducing a long-awaited oxidative pathway to NO production in plants. This knowledge has essential implications for understanding signaling in biological systems.
Collapse
Affiliation(s)
- Pedro López-Gómez
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - Javier Buezo
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - Marina Urra
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - Alfonso Cornejo
- Institute for Advanced Materials and Mathematics (INAMAT2), Department of Sciences, Public University of Navarre (UPNA), Campus de Arrosadía, 31006 Pamplona, Spain
| | - Raquel Esteban
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Sarriena s/n, Apdo. 644, 48080 Bilbao, Spain
| | - Jorge Fernández de Los Reyes
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - Estibaliz Urarte
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - Estefanía Rodríguez-Dobreva
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - Alejandro Chamizo-Ampudia
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - Alejandro Eguaras
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - Sebastian Wolf
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Geschwister-Scholl-Platz, 72074 Tübingen, Germany
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Sarriena s/n, Apdo. 644, 48080 Bilbao, Spain
| | - Victor Martínez-Merino
- Institute for Advanced Materials and Mathematics (INAMAT2), Department of Sciences, Public University of Navarre (UPNA), Campus de Arrosadía, 31006 Pamplona, Spain.
| | - Jose F Moran
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, 31192 Mutilva, Spain.
| |
Collapse
|
37
|
Sougrakpam Y, Babuta P, Deswal R. Nitric oxide (NO) modulates low temperature-stress signaling via S-nitrosation, a NO PTM, inducing ethylene biosynthesis inhibition leading to enhanced post-harvest shelf-life of agricultural produce. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:2051-2065. [PMID: 38222283 PMCID: PMC10784255 DOI: 10.1007/s12298-023-01371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 01/16/2024]
Abstract
Low temperature (cold) stress is one of the major abiotic stress conditions affecting crop productivity worldwide. Nitric oxide (NO) is a dynamic signaling molecule that interacts with various stress regulators and provides abiotic stress tolerance. Stress enhanced NO contributes to S-nitrosothiol accumulation which causes oxidation of the -SH group in proteins leading to S-nitrosation, a post-translational modification. Cold stress induced in vivo S-nitrosation of > 240 proteins majorly belonging to stress/signaling/redox (myrosinase, SOD, GST, CS, DHAR), photosynthesis (RuBisCO, PRK), metabolism (FBA, GAPDH, TPI, SBPase), and cell wall modification (Beta-xylosidases, alpha-l-arabinogalactan) in different crop plants indicated role of NO in these important cellular and metabolic pathways. NO mediated regulation of a transcription factor CBF (C-repeat Binding Factor, a transcription factor) at transcriptional and post-translational level was shown in Solanum lycopersicum seedlings. NO donor priming enhances seed germination, breaks dormancy and provides tolerance to stress in crops. Its role in averting stress, promoting seed germination, and delaying senescence paved the way for use of NO and NO releasing compounds to prevent crop loss and increase the shelf-life of fruits and vegetables. An alternative to energy consuming and expensive cold storage led to development of a storage device called "shelf-life enhancer" that delays senescence and increases shelf-life at ambient temperature (25-27 °C) using NO donor. The present review summarizes NO research in plants and exploration of NO for its translational potential to improve agricultural yield and post-harvest crop loss. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01371-z.
Collapse
Affiliation(s)
- Yaiphabi Sougrakpam
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, Delhi 110007 India
| | - Priyanka Babuta
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, Delhi 110007 India
| | - Renu Deswal
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, Delhi 110007 India
| |
Collapse
|
38
|
Kandhol N, Rai P, Pandey S, Singh S, Sharma S, Corpas FJ, Singh VP, Tripathi DK. Zinc induced regulation of PCR1 gene for cadmium stress resistance in rice roots. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111783. [PMID: 37421983 DOI: 10.1016/j.plantsci.2023.111783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/28/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
In this study, the interaction between zinc (Zn) and cadmium (Cd) was investigated in rice roots to evaluate how Zn can protect the plants from Cd stress. Rice seedlings were treated with Cd (100 μM) and Zn (100 μM) in different combinations (Cd alone, Zn alone, Zn+ Cd, Zn+ Cd+ L-NAME, Zn+ Cd+ L-NAME+ SNP). Rice roots treated with only Zn also displayed similar toxic effects, however when combined with Cd exhibited improved growth. Treating the plant with Zn along with Cd distinctly reduced Cd concentration in roots while increasing its own accumulation due to modulation in expression of Zinc-Regulated Transporter (ZRT)-/IRT-Like Protein (OsZIP1) and Plant Cadmium Resistance1 (OsPCR1). Cd reduced plant biomass, cell viability, pigments, photosynthesis and causing oxidative stress due to inhibition in ascorbate-glutathione cycle. L-NAME (NG-nitro L-arginine methyl ester), prominently suppressed the beneficial impacts of Zn against Cd stress, whereas the presence of a NO donor, sodium nitroprusside (SNP), significantly reversed this effect of L-NAME. Collectively, results point that NO signalling is essential for Zn- mediated cross-tolerance against Cd stress via by modulating uptake of Cd and Zn and expression of OsZIP1 and OsPCR1, and ROS homeostasis due to fine tuning of ascorbate-glutathione cycle which finally lessened oxidative stress in rice roots. The results of this study can be utilized to develop new varieties of rice through genetic modifications which will be of great significance for maintaining crop productivity in Cd-contaminated areas throughout the world.
Collapse
Affiliation(s)
- Nidhi Kandhol
- Crop Nanobiology and Molecular Biology Lab, Amity Institute of Organic Agriculture (AIOA), Amity University, Noida, Sector 125, Noida, Uttar Pradesh
| | - Padmaja Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211002, India
| | - Sangeeta Pandey
- Plant Microbe Interaction Laboratory, Amity Institute of Organic Agriculture (AIOA), Amity University, Noida, Sector 125, Noida, Uttar Pradesh
| | - Samiksha Singh
- Department of Botany, S.N. Sen B.V. Post Graduate College, Chhatrapati Shahu Ji Maharaj University, Kanpur 208001, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211002, India
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de InvestigacionesCientíficas (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Allahabad 211002, India.
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Biology Lab, Amity Institute of Organic Agriculture (AIOA), Amity University, Noida, Sector 125, Noida, Uttar Pradesh.
| |
Collapse
|
39
|
Ghosh P, Saha S, Mukherjee S, Chattopadhyay A, Sahoo P. Direct fluorescence labelling of NO inside plant cells. Org Biomol Chem 2023; 21:9270-9274. [PMID: 37970956 DOI: 10.1039/d3ob01647a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Nitric oxide (NO) plays a key role in regulating plant growth, enhances nutrient uptake, and activates disease and stress tolerance mechanisms in most plants. NO is marked as a potential tool for improving the yield and quality of horticultural crop species. Research on NO in plant species can provide an abundance of valuable information regarding this. Hence, we have prepared a simple chemosensor (NPO) for the detection of endogenous NO in chickpea saplings. NPO selectively interacts with NO as determined through a chemodosimetric method to clearly show both the colorimetric and fluorometric changes. After the interaction with NO, the colorless NPO turns yellow as observed by the naked eye and shows bright cyan-blue fluorescence under a UV lamp. The 1 : 1 stoichiometric ratio between NPO and NO is determined from Job's plot resulting in a stable diazeniumdiolate product. The interaction mechanism is well established by absorption, fluorescence titration, NMR titration, HRMS, and DFT calculations. This method has successfully been employed in the plant's root and stem systems to label NO. Confocal microscopy images might help us to understand the endogenous NO generation and the mechanism that happens inside plant tissues.
Collapse
Affiliation(s)
- Priyotosh Ghosh
- Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.
| | - Shrabani Saha
- Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.
| | - Sunanda Mukherjee
- Department of Zoology, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | | | - Prithidipa Sahoo
- Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.
| |
Collapse
|
40
|
Mariyam S, Bhardwaj R, Khan NA, Sahi SV, Seth CS. Review on nitric oxide at the forefront of rapid systemic signaling in mitigation of salinity stress in plants: Crosstalk with calcium and hydrogen peroxide. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111835. [PMID: 37611833 DOI: 10.1016/j.plantsci.2023.111835] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Soil salinity is a global issue that limits plant growth in agricultural fields and contributes to food crisis. Salt stressors impede plant's ionic, osmotic, and oxidative balance, as well as a variety of physiological functions. Exposure to salinity stress manifest considerable ROS clustering, entailing modification in performance of various organelles. To deal with salinity, plants use a variety of coping strategies, such as osmoregulation, ion-homeostasis, increased antioxidant synthesis, and so on. Nitric oxide (NO) is a pivotal signalling molecule that helps facilitate salt stress-induced physiological plant responses. A variety of evidences point to NO being produced under similar stress conditions and with similar kinetics as hydrogen peroxide (H2O2). The interplay between H2O2 and NO has important functional implications for modulating plant transduction processes. Besides, NO and calcium (Ca2+)-dependent pathways also have some connection in salt stress response mechanisms. Extensive crosstalk between NO and Ca2+ signalling pathways is investigated, and it suggests that almost every type of Ca2+ channel is under the tight control of NO, and NO acts as a Ca2+ mobilising compound and aids in signal reliance. The review provides insights into understanding recent advances regarding NO's, Ca2+ and H2O2 role in salt stress reduction with entwine signaling mechanisms.
Collapse
Affiliation(s)
- Safoora Mariyam
- Department of Botany, University of Delhi, New Delhi 110007, Delhi, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Nafees A Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Shivendra V Sahi
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19104, USA
| | | |
Collapse
|
41
|
Saini S, Sharma P, Singh P, Kumar V, Yadav P, Sharma A. Nitric oxide: An emerging warrior of plant physiology under abiotic stress. Nitric Oxide 2023; 140-141:58-76. [PMID: 37848156 DOI: 10.1016/j.niox.2023.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
The natural environment of plants comprises a complex set of various abiotic stresses and their capability to react and survive under this anticipated changing climate is highly flexible and involves a series of balanced interactions between signaling molecules where nitric oxide becomes a crucial component. In this article, we focussed on the role of nitric oxide (NO) in various signal transduction pathways of plants and its positive impact on maintaining cellular homeostasis under various abiotic stresses. Besides this, the recent data on interactions of NO with various phytohormones to control physiological and biochemical processes to attain abiotic stress tolerance have also been considered. These crosstalks modulate the plant's defense mechanism and help in alleviating the negative impact of stress. While focusing on the diverse functions of NO, an effort has been made to explore the functions of NO-mediated post-translational modifications, such as the N-end rule pathway, tyrosine nitration, and S-nitrosylation which revealed the exact mechanism and characterization of proteins that modify various metabolic processes in stressed conditions. Considering all of these factors, the present review emphasizes the role of NO and its interlinking with various phytohormones in maintaining developmental processes in plants, specifically under unfavorable environments.
Collapse
Affiliation(s)
- Sakshi Saini
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Priyanka Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Pooja Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vikram Kumar
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Priya Yadav
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India.
| | - Asha Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
42
|
Zuccarelli R, Rodríguez-Ruiz M, Silva FO, Gomes LDL, Lopes-Oliveira PJ, Zsögön A, Andrade SCS, Demarco D, Corpas FJ, Peres LEP, Rossi M, Freschi L. Loss of S-nitrosoglutathione reductase disturbs phytohormone homeostasis and regulates shoot side branching and fruit growth in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6349-6368. [PMID: 37157899 DOI: 10.1093/jxb/erad166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
S-Nitrosoglutathione plays a central role in nitric oxide (NO) homeostasis, and S-nitrosoglutathione reductase (GSNOR) regulates the cellular levels of S-nitrosoglutathione across kingdoms. Here, we investigated the role of endogenous NO in shaping shoot architecture and controlling fruit set and growth in tomato (Solanum lycopersicum). SlGSNOR silencing promoted shoot side branching and led to reduced fruit size, negatively impacting fruit yield. Greatly intensified in slgsnor knockout plants, these phenotypical changes were virtually unaffected by SlGSNOR overexpression. Silencing or knocking out of SlGSNOR intensified protein tyrosine nitration and S-nitrosation and led to aberrant auxin production and signaling in leaf primordia and fruit-setting ovaries, besides restricting the shoot basipetal polar auxin transport stream. SlGSNOR deficiency triggered extensive transcriptional reprogramming at early fruit development, reducing pericarp cell proliferation due to restrictions on auxin, gibberellin, and cytokinin production and signaling. Abnormal chloroplast development and carbon metabolism were also detected in early-developing NO-overaccumulating fruits, possibly limiting energy supply and building blocks for fruit growth. These findings provide new insights into the mechanisms by which endogenous NO fine-tunes the delicate hormonal network controlling shoot architecture, fruit set, and post-anthesis fruit development, emphasizing the relevance of NO-auxin interaction for plant development and productivity.
Collapse
Affiliation(s)
- Rafael Zuccarelli
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Marta Rodríguez-Ruiz
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Fernanda O Silva
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Letícia D L Gomes
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Patrícia J Lopes-Oliveira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Sónia C S Andrade
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Diego Demarco
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Lázaro E P Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, 13418-900, Piracicaba, SP, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
43
|
Krasuska U, Wal A, Staszek P, Ciacka K, Gniazdowska A. Do Reactive Oxygen and Nitrogen Species Have a Similar Effect on Digestive Processes in Carnivorous Nepenthes Plants and Humans? BIOLOGY 2023; 12:1356. [PMID: 37887066 PMCID: PMC10604543 DOI: 10.3390/biology12101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
Carnivorous plants attract animals, trap and kill them, and absorb nutrients from the digested bodies. This unusual (for autotrophs) type of nutrient acquisition evolved through the conversion of photosynthetically active leaves into specialised organs commonly called traps. The genus Nepenthes (pitcher plants) consists of approximately 169 species belonging to the group of carnivorous plants. Pitcher plants are characterised by specialised passive traps filled with a digestive fluid. The digestion that occurs inside the traps of carnivorous plants depends on the activities of many enzymes. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) also participate in the digestive process, but their action is poorly recognised. ROS and RNS, named together as RONS, exhibit concentration-dependent bimodal functions (toxic or signalling). They act as antimicrobial agents, participate in protein modification, and are components of signal transduction cascades. In the human stomach, ROS are considered as the cause of different diseases. RNS have multifaceted functions in the gastrointestinal tract, with both positive and negative impacts on digestion. This review describes the documented and potential impacts of RONS on the digestion in pitcher plant traps, which may be considered as an external stomach.
Collapse
Affiliation(s)
| | - Agnieszka Wal
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (U.K.); (P.S.); (K.C.); (A.G.)
| | | | | | | |
Collapse
|
44
|
Sandalio LM, Espinosa J, Shabala S, León J, Romero-Puertas MC. Reactive oxygen species- and nitric oxide-dependent regulation of ion and metal homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5970-5988. [PMID: 37668424 PMCID: PMC10575707 DOI: 10.1093/jxb/erad349] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Deterioration and impoverishment of soil, caused by environmental pollution and climate change, result in reduced crop productivity. To adapt to hostile soils, plants have developed a complex network of factors involved in stress sensing, signal transduction, and adaptive responses. The chemical properties of reactive oxygen species (ROS) and reactive nitrogen species (RNS) allow them to participate in integrating the perception of external signals by fine-tuning protein redox regulation and signal transduction, triggering specific gene expression. Here, we update and summarize progress in understanding the mechanistic basis of ROS and RNS production at the subcellular level in plants and their role in the regulation of ion channels/transporters at both transcriptional and post-translational levels. We have also carried out an in silico analysis of different redox-dependent modifications of ion channels/transporters and identified cysteine and tyrosine targets of nitric oxide in metal transporters. Further, we summarize possible ROS- and RNS-dependent sensors involved in metal stress sensing, such as kinases and phosphatases, as well as some ROS/RNS-regulated transcription factors that could be involved in metal homeostasis. Understanding ROS- and RNS-dependent signaling events is crucial to designing new strategies to fortify crops and improve plant tolerance of nutritional imbalance and metal toxicity.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Jesús Espinosa
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - José León
- Institute of Plant Molecular and Cellular Biology (CSIC-UPV), Valencia, Spain
| | - María C Romero-Puertas
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| |
Collapse
|
45
|
Mukarram M, Ali J, Dadkhah-Aghdash H, Kurjak D, Kačík F, Ďurkovič J. Chitosan-induced biotic stress tolerance and crosstalk with phytohormones, antioxidants, and other signalling molecules. FRONTIERS IN PLANT SCIENCE 2023; 14:1217822. [PMID: 37538057 PMCID: PMC10394624 DOI: 10.3389/fpls.2023.1217822] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023]
Abstract
Several polysaccharides augment plant growth and productivity and galvanise defence against pathogens. Such elicitors have ecological superiority over traditional growth regulators, considering their amplified biocompatibility, biodegradability, bioactivity, non-toxicity, ubiquity, and inexpensiveness. Chitosan is a chitin-derived polysaccharide that has recently been spotlighted among plant scientists. Chitosan supports plant growth and development and protects against microbial entities such as fungi, bacteria, viruses, nematodes, and insects. In this review, we discuss the current knowledge of chitosan's antimicrobial and insecticidal potential with recent updates. These effects are further explored with the possibilities of chitosan's active correspondence with phytohormones such as jasmonic acid (JA), salicylic acid (SA), indole acetic acid (IAA), abscisic acid (ABA), and gibberellic acid (GA). The stress-induced redox shift in cellular organelles could be substantiated by the intricate participation of chitosan with reactive oxygen species (ROS) and antioxidant metabolism, including hydrogen peroxide (H2O2), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). Furthermore, we propose how chitosan could be intertwined with cellular signalling through Ca2+, ROS, nitric oxide (NO), transcription factors (TFs), and defensive gene activation.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Jamin Ali
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
| | - Hamed Dadkhah-Aghdash
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - František Kačík
- Department of Chemistry and Chemical Technologies, Faculty of Wood Sciences and Technology, Technical University in Zvolen, Zvolen, Slovakia
| | - Jaroslav Ďurkovič
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| |
Collapse
|
46
|
Allagulova CR, Lubyanova AR, Avalbaev AM. Multiple Ways of Nitric Oxide Production in Plants and Its Functional Activity under Abiotic Stress Conditions. Int J Mol Sci 2023; 24:11637. [PMID: 37511393 PMCID: PMC10380521 DOI: 10.3390/ijms241411637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Nitric oxide (NO) is an endogenous signaling molecule that plays an important role in plant ontogenesis and responses to different stresses. The most widespread abiotic stress factors limiting significantly plant growth and crop yield are drought, salinity, hypo-, hyperthermia, and an excess of heavy metal (HM) ions. Data on the accumulation of endogenous NO under stress factors and on the alleviation of their negative effects under exogenous NO treatments indicate the perspectives of its practical application to improve stress resistance and plant productivity. This requires fundamental knowledge of the NO metabolism and the mechanisms of its biological action in plants. NO generation occurs in plants by two main alternative mechanisms: oxidative or reductive, in spontaneous or enzymatic reactions. NO participates in plant development by controlling the processes of seed germination, vegetative growth, morphogenesis, flower transition, fruit ripening, and senescence. Under stressful conditions, NO contributes to antioxidant protection, osmotic adjustment, normalization of water balance, regulation of cellular ion homeostasis, maintenance of photosynthetic reactions, and growth processes of plants. NO can exert regulative action by inducing posttranslational modifications (PTMs) of proteins changing the activity of different enzymes or transcriptional factors, modulating the expression of huge amounts of genes, including those related to stress tolerance. This review summarizes the current data concerning molecular mechanisms of NO production and its activity in plants during regulation of their life cycle and adaptation to drought, salinity, temperature stress, and HM ions.
Collapse
Affiliation(s)
- Chulpan R Allagulova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Alsu R Lubyanova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Azamat M Avalbaev
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| |
Collapse
|
47
|
Gambhir P, Raghuvanshi U, Parida AP, Kujur S, Sharma S, Sopory SK, Kumar R, Sharma AK. Elevated methylglyoxal levels inhibit tomato fruit ripening by preventing ethylene biosynthesis. PLANT PHYSIOLOGY 2023; 192:2161-2184. [PMID: 36879389 PMCID: PMC10315284 DOI: 10.1093/plphys/kiad142] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Methylglyoxal (MG), a toxic compound produced as a by-product of several cellular processes, such as respiration and photosynthesis, is well known for its deleterious effects, mainly through glycation of proteins during plant stress responses. However, very little is known about its impact on fruit ripening. Here, we found that MG levels are maintained at high levels in green tomato (Solanum lycopersicum L.) fruits and decline during fruit ripening despite a respiratory burst during this transition. We demonstrate that this decline is mainly mediated through a glutathione-dependent MG detoxification pathway and primarily catalyzed by a Glyoxalase I enzyme encoded by the SlGLYI4 gene. SlGLYI4 is a direct target of the MADS-box transcription factor RIPENING INHIBITOR (RIN), and its expression is induced during fruit ripening. Silencing of SlGLYI4 leads to drastic MG overaccumulation at ripening stages of transgenic fruits and interferes with the ripening process. MG most likely glycates and inhibits key enzymes such as methionine synthase and S-adenosyl methionine synthase in the ethylene biosynthesis pathway, thereby indirectly affecting fruit pigmentation and cell wall metabolism. MG overaccumulation in fruits of several nonripening or ripening-inhibited tomato mutants suggests that the tightly regulated MG detoxification process is crucial for normal ripening progression. Our results underpin a SlGLYI4-mediated regulatory mechanism by which MG detoxification controls fruit ripening in tomato.
Collapse
Affiliation(s)
- Priya Gambhir
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Utkarsh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Adwaita Prasad Parida
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Stuti Kujur
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Shweta Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
48
|
Muñoz-Vargas MA, López-Jaramillo J, González-Gordo S, Paradela A, Palma JM, Corpas FJ. H 2S-Generating Cytosolic L-Cysteine Desulfhydrase and Mitochondrial D-Cysteine Desulfhydrase from Sweet Pepper ( Capsicum annuum L.) Are Regulated During Fruit Ripening and by Nitric Oxide. Antioxid Redox Signal 2023; 39:2-18. [PMID: 36950799 PMCID: PMC10585658 DOI: 10.1089/ars.2022.0222] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
Aims: Pepper fruit is a horticultural product worldwide consumed that has great nutritional and economic relevance. Besides the phenotypical changes that undergo pepper fruit during ripening, there are many associated modifications at transcriptomic, proteomic, biochemical, and metabolic levels. Nitric oxide (NO) and hydrogen sulfide (H2S) are recognized signal molecules that can exert regulatory functions in diverse plant processes. This study aims at analyzing the interrelationship between NO and H2S during fruit ripening. Results: Our data indicate that the H2S-generating cytosolic L-cysteine desulfhydrase (LCD) and the mitochondrial D-cysteine desulfhydrase (DCD) activities are downregulated during ripening but this effect was reverted after NO treatment of fruits. Innovation and Conclusion: Using as a model the non-climacteric pepper fruits at different ripening stages and under an NO-enriched atmosphere, the activity of the H2S-generating LCD and DCD was analyzed. LCD and DCD activities were downregulated during ripening, but this effect was reverted after NO treatment of fruits. The analysis of LCD activity by non-denaturing polyacrylamide gel electrophoresis (PAGE) allowed identifying three isozymes designated CaLCD I to CaLCD III, which were differentially modulated by NO and strictly dependent on pyridoxal 5'-phosphate (PLP). In vitro analyses of green fruit samples in the presence of different compounds including NO donors, peroxynitrite (ONOO-), and reducing agents such as reduced glutathione (GSH) and L-cysteine (L-Cys) triggered an almost 100% inhibition of CaLCD II and CaLCD III. This redox adaptation process of both enzymes could be cataloged as a hormesis phenomenon. The protein tyrosine (Tyr) nitration (an NO-promoted post-translational modification) of the recombinant LCD was corroborated by immunoblot and by mass spectrometry (MS) analyses. Among the 11 Tyr residues present in this enzyme, MS of the recombinant LCD enabled us to identify that Tyr82 and Tyr254 were nitrated by ONOO-, this occurring near the active center on the enzyme, where His237 and Lys260 together with the cofactor PLP are involved. These data support the relationship between NO and H2S during pepper fruit ripening, since LCD and DCD are regulated by NO during this physiological event, and this could also be extrapolated to other plant species.
Collapse
Affiliation(s)
- María A. Muñoz-Vargas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture. Estación Experimental del Zaidín (Spanish National Research Council, CSIC), Granada, Spain
| | - Javier López-Jaramillo
- Instituto de Biotecnología, Department of Organic Chemistry, University of Granada, Granada, Spain
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture. Estación Experimental del Zaidín (Spanish National Research Council, CSIC), Granada, Spain
| | - Alberto Paradela
- Proteomics Core Facility, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - José M. Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture. Estación Experimental del Zaidín (Spanish National Research Council, CSIC), Granada, Spain
| | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture. Estación Experimental del Zaidín (Spanish National Research Council, CSIC), Granada, Spain
| |
Collapse
|
49
|
Jing H, Yang X, Emenecker RJ, Feng J, Zhang J, Figueiredo MRAD, Chaisupa P, Wright RC, Holehouse AS, Strader LC, Zuo J. Nitric oxide-mediated S-nitrosylation of IAA17 protein in intrinsically disordered region represses auxin signaling. J Genet Genomics 2023; 50:473-485. [PMID: 37187411 PMCID: PMC11070147 DOI: 10.1016/j.jgg.2023.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023]
Abstract
The phytohormone auxin plays crucial roles in nearly every aspect of plant growth and development. Auxin signaling is activated through the phytohormone-induced proteasomal degradation of the Auxin/INDOLE-3-ACETIC ACID (Aux/IAA) family of transcriptional repressors. Notably, many auxin-modulated physiological processes are also regulated by nitric oxide (NO) that executes its biological effects predominantly through protein S-nitrosylation at specific cysteine residues. However, little is known about the molecular mechanisms in regulating the interactive NO and auxin networks. Here, we show that NO represses auxin signaling by inhibiting IAA17 protein degradation. NO induces the S-nitrosylation of Cys-70 located in the intrinsically disordered region of IAA17, which inhibits the TIR1-IAA17 interaction and consequently the proteasomal degradation of IAA17. The accumulation of a higher level of IAA17 attenuates auxin response. Moreover, an IAA17C70W nitrosomimetic mutation renders the accumulation of a higher level of the mutated protein, thereby causing partial resistance to auxin and defective lateral root development. Taken together, these results suggest that S-nitrosylation of IAA17 at Cys-70 inhibits its interaction with TIR1, thereby negatively regulating auxin signaling. This study provides unique molecular insights into the redox-based auxin signaling in regulating plant growth and development.
Collapse
Affiliation(s)
- Hongwei Jing
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biology, Duke University, Durham, NC 27008, USA.
| | - Xiaolu Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ryan J Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jian Feng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Patarasuda Chaisupa
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA; The Translational Plant Sciences Center (TPSC), Virginia Tech, Blacksburg, VA 24061, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
50
|
Graska J, Fidler J, Gietler M, Prabucka B, Nykiel M, Labudda M. Nitric Oxide in Plant Functioning: Metabolism, Signaling, and Responses to Infestation with Ecdysozoa Parasites. BIOLOGY 2023; 12:927. [PMID: 37508359 PMCID: PMC10376146 DOI: 10.3390/biology12070927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological processes in plants, including responses to biotic and abiotic stresses. Changes in endogenous NO concentration lead to activation/deactivation of NO signaling and NO-related processes. This paper presents the current state of knowledge on NO biosynthesis and scavenging pathways in plant cells and highlights the role of NO in post-translational modifications of proteins (S-nitrosylation, nitration, and phosphorylation) in plants under optimal and stressful environmental conditions. Particular attention was paid to the interactions of NO with other signaling molecules: reactive oxygen species, abscisic acid, auxins (e.g., indole-3-acetic acid), salicylic acid, and jasmonic acid. In addition, potential common patterns of NO-dependent defense responses against attack and feeding by parasitic and molting Ecdysozoa species such as nematodes, insects, and arachnids were characterized. Our review definitely highlights the need for further research on the involvement of NO in interactions between host plants and Ecdysozoa parasites, especially arachnids.
Collapse
Affiliation(s)
- Jakub Graska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (J.F.); (M.G.); (B.P.); (M.N.)
| | | | | | | | | | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (J.F.); (M.G.); (B.P.); (M.N.)
| |
Collapse
|