1
|
Slick RA, Tinklenberg JA, Sutton J, Zhang L, Meng H, Beatka MJ, Vanden Avond M, Prom MJ, Ott E, Montanaro F, Heisner J, Toro R, Granzier H, Geurts AM, Stowe DF, Hill RB, Lawlor MW. Aberrations in Energetic Metabolism and Stress-Related Pathways Contribute to Pathophysiology in the Neb Conditional Knockout Mouse Model of Nemaline Myopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1528-1547. [PMID: 37422147 PMCID: PMC10548278 DOI: 10.1016/j.ajpath.2023.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 07/10/2023]
Abstract
Nemaline myopathy (NM) is a genetically and clinically heterogeneous disease that is diagnosed on the basis of the presence of nemaline rods on skeletal muscle biopsy. Although NM has typically been classified by causative genes, disease severity or prognosis cannot be predicted. The common pathologic end point of nemaline rods (despite diverse genetic causes) and an unexplained range of muscle weakness suggest that shared secondary processes contribute to the pathogenesis of NM. We speculated that these processes could be identified through a proteome-wide interrogation using a mouse model of severe NM in combination with pathway validation and structural/functional analyses. A proteomic analysis was performed using skeletal muscle tissue from the Neb conditional knockout mouse model compared with its wild-type counterpart to identify pathophysiologically relevant biological processes that might impact disease severity or provide new treatment targets. A differential expression analysis and Ingenuity Pathway Core Analysis predicted perturbations in several cellular processes, including mitochondrial dysfunction and changes in energetic metabolism and stress-related pathways. Subsequent structural and functional studies demonstrated abnormal mitochondrial distribution, decreased mitochondrial respiratory function, an increase in mitochondrial transmembrane potential, and extremely low ATP content in Neb conditional knockout muscles relative to wild type. Overall, the findings of these studies support a role for severe mitochondrial dysfunction as a novel contributor to muscle weakness in NM.
Collapse
Affiliation(s)
- Rebecca A Slick
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jennifer A Tinklenberg
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jessica Sutton
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Liwen Zhang
- Mass Spectrometry and Proteomics Facility, Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Margaret J Beatka
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mark Vanden Avond
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mariah J Prom
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Emily Ott
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Federica Montanaro
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom the NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - James Heisner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rafael Toro
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Henk Granzier
- College of Medicine, University of Arizona, Tucson, Arizona
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David F Stowe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, Wisconsin
| | - R Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
2
|
Abstract
Mitochondrial dysfunction, especially perturbation of oxidative phosphorylation and adenosine triphosphate (ATP) generation, disrupts cellular homeostasis and is a surprisingly frequent cause of central and peripheral nervous system pathology. Mitochondrial disease is an umbrella term that encompasses a host of clinical syndromes and features caused by in excess of 300 different genetic defects affecting the mitochondrial and nuclear genomes. Patients with mitochondrial disease can present at any age, ranging from neonatal onset to late adult life, with variable organ involvement and neurological manifestations including neurodevelopmental delay, seizures, stroke-like episodes, movement disorders, optic neuropathy, myopathy, and neuropathy. Until relatively recently, analysis of skeletal muscle biopsy was the focus of diagnostic algorithms, but step-changes in the scope and availability of next-generation sequencing technology and multiomics analysis have revolutionized mitochondrial disease diagnosis. Currently, there is no specific therapy for most types of mitochondrial disease, although clinical trials research in the field is gathering momentum. In that context, active management of epilepsy, stroke-like episodes, dystonia, brainstem dysfunction, and Parkinsonism are all the more important in improving patient quality of life and reducing mortality.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Robert McFarland
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
3
|
Ronderos-Botero DM, Dileep A, Yapor L, Singhal R. Disruption of cardio-pulmonary coupling in myopathies: Pathophysiological and mechanistic characterization with special emphasis on nemaline myopathy. Front Cardiovasc Med 2022; 9:996567. [DOI: 10.3389/fcvm.2022.996567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022] Open
Abstract
The heart and lung are in continuous reciprocal interaction that creates a functional and anatomical reserve referred to as cardiopulmonary coupling (CPC). Disruption of CPC can occur due to various cardiac or pulmonary pathologies but also can occur in patients with myopathies. Nemaline myopathy (NM) is a skeletal muscle heterogeneous disorder due to contractile proteins' gene mutations that impact lung and cardiac mechanics and thus is expected to adversely affect CPC in a complex manner. We present a case of NM and we review the literature on cardiac and pulmonary effects of myopathy-related disruption of CPC.
Collapse
|
4
|
Elstner M, Olszewski K, Prokisch H, Klopstock T, Murgia M. Multi-Omics Approach to Mitochondrial DNA Damage in Human Muscle Fibers. Int J Mol Sci 2021; 22:ijms222011080. [PMID: 34681740 PMCID: PMC8537949 DOI: 10.3390/ijms222011080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial DNA deletions affect energy metabolism at tissue-specific and cell-specific threshold levels, but the pathophysiological mechanisms determining cell fate remain poorly understood. Chronic progressive external ophthalmoplegia (CPEO) is caused by mtDNA deletions and characterized by a mosaic distribution of muscle fibers with defective cytochrome oxidase (COX) activity, interspersed among fibers with retained functional respiratory chain. We used diagnostic histochemistry to distinguish COX-negative from COX-positive fibers in nine muscle biopsies from CPEO patients and performed laser capture microdissection (LCM) coupled to genome-wide gene expression analysis. To gain molecular insight into the pathogenesis, we applied network and pathway analysis to highlight molecular differences of the COX-positive and COX-negative fiber transcriptome. We then integrated our results with proteomics data that we previously obtained comparing COX-positive and COX-negative fiber sections from three other patients. By virtue of the combination of LCM and a multi-omics approach, we here provide a comprehensive resource to tackle the pathogenic changes leading to progressive respiratory chain deficiency and disease in mitochondrial deletion syndromes. Our data show that COX-negative fibers upregulate transcripts involved in translational elongation and protein synthesis. Furthermore, based on functional annotation analysis, we find that mitochondrial transcripts are the most enriched among those with significantly different expression between COX-positive and COX-negative fibers, indicating that our unbiased large-scale approach resolves the core of the pathogenic changes. Further enrichments include transcripts encoding LIM domain proteins, ubiquitin ligases, proteins involved in RNA turnover, and, interestingly, cell cycle arrest and cell death. These pathways may thus have a functional association to the molecular pathogenesis of the disease. Overall, the transcriptome and proteome show a low degree of correlation in CPEO patients, suggesting a relevant contribution of post-transcriptional mechanisms in shaping this disease phenotype.
Collapse
Affiliation(s)
- Matthias Elstner
- Department of Neurology, Technical University Munich, 81675 Munich, Germany;
| | - Konrad Olszewski
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8001 Zurich, Switzerland;
| | - Holger Prokisch
- Institute of Human Genetics, Technical University Munich, 81675 Munich, Germany;
- Institute of Neurogenomics, Helmholtz Zentrum Munich, 85764 Neuherberg, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University of Munich, 80336 Munich, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 81675 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81675 Munich, Germany
| | - Marta Murgia
- Department of Proteomics a Signal Transduction, Max Planck Institute of Biochemistry, 82352 Martinsried, Germany
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
- Correspondence:
| |
Collapse
|
5
|
Gayathri N, Deepha S, Sharma S. Diagnosis of primary mitochondrial disorders -Emphasis on myopathological aspects. Mitochondrion 2021; 61:69-84. [PMID: 34592422 DOI: 10.1016/j.mito.2021.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/03/2021] [Accepted: 09/22/2021] [Indexed: 12/29/2022]
Abstract
Mitochondrial disorders are one of the most common neurometabolic disorders affecting all age groups. The phenotype-genotype heterogeneity in these disorders can be attributed to the dual genetic control on mitochondrial functions, posing a challenge for diagnosis. Though the advancement in the high-throughput sequencing and other omics platforms resulted in a "genetics-first" approach, the muscle biopsy remains the benchmark in most of the mitochondrial disorders. This review focuses on the myopathological aspects of primary mitochondrial disorders. The utility of muscle biopsy is not limited to analyse the structural abnormalities; rather it also proves to be a potential tool to understand the deranged sub-cellular functions.
Collapse
Affiliation(s)
- Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India.
| | - Sekar Deepha
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India
| | - Shivani Sharma
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India
| |
Collapse
|
6
|
Allouche S, Schaeffer S, Chapon F. [Mitochondrial diseases in adults: An update]. Rev Med Interne 2021; 42:541-557. [PMID: 33455836 DOI: 10.1016/j.revmed.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
Mitochondrial diseases, characterized by a respiratory chain deficiency, are considered as rare genetic diseases but are the most frequent among inherited metabolic disorders. The complexity of their diagnosis is due to the dual control by the mitochondrial (mtDNA) and the nuclear DNA (nDNA), and to the heterogeneous clinical presentations; illegitimate association of symptoms should prompt the clinician to evoke a mitochondrial disorder. The goals of this review are to provide clinicians a better understanding of mitochondrial diseases in adults. After a brief overview on the mitochondrial origin and functions, especially their role in the energy metabolism, we will describe the genetic bases for mitochondrial diseases, then we will describe the various clinical presentations with the different affected tissues as well as the main symptoms encountered. Even if the new sequencing approaches have profoundly changed the diagnostic process, the brain imaging, the biological, the biochemical, and the histological explorations are still important highlighting the need for a multidisciplinary approach. While for most of the patients with a mitochondrial disease, only supportive and symptomatic therapies are available, recent advances in the understanding of the pathophysiological mechanisms have been made and new therapies are being developed and are evaluated in human clinical trials.
Collapse
Affiliation(s)
- S Allouche
- Laboratoire de biochimie, Centre Hospitalier et Universitaire, avenue côte de nacre, 14033 Caen cedex, France.
| | - S Schaeffer
- Centre de compétence des maladies neuromusculaires, Centre Hospitalier et Universitaire, avenue côte de nacre, 14033 Caen cedex, France
| | - F Chapon
- Centre de compétence des maladies neuromusculaires, Centre Hospitalier et Universitaire, avenue côte de nacre, 14033 Caen cedex, France
| |
Collapse
|
7
|
Memme JM, Hood DA. Molecular Basis for the Therapeutic Effects of Exercise on Mitochondrial Defects. Front Physiol 2021; 11:615038. [PMID: 33584337 PMCID: PMC7874077 DOI: 10.3389/fphys.2020.615038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is common to many organ system disorders, including skeletal muscle. Aging muscle and diseases of muscle are often accompanied by defective mitochondrial ATP production. This manuscript will focus on the pre-clinical evidence supporting the use of regular exercise to improve defective mitochondrial metabolism and function in skeletal muscle, through the stimulation of mitochondrial turnover. Examples from aging muscle, muscle-specific mutations and cancer cachexia will be discussed. We will also examine the effects of exercise on the important mitochondrial regulators PGC-1α, and Parkin, and summarize the effects of exercise to reverse mitochondrial dysfunction (e.g., ROS production, apoptotic susceptibility, cardiolipin synthesis) in muscle pathology. This paper will illustrate the breadth and benefits of exercise to serve as "mitochondrial medicine" with age and disease.
Collapse
Affiliation(s)
- Jonathan M. Memme
- Muscle Health Research Centre, York University, Toronto, ON, Canada
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - David A. Hood
- Muscle Health Research Centre, York University, Toronto, ON, Canada
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
8
|
Edwards NJ, Hwang C, Marini S, Pagani CA, Spreadborough PJ, Rowe CJ, Yu P, Mei A, Visser N, Li S, Hespe GE, Huber AK, Strong AL, Shelef MA, Knight JS, Davis TA, Levi B. The role of neutrophil extracellular traps and TLR signaling in skeletal muscle ischemia reperfusion injury. FASEB J 2020; 34:15753-15770. [PMID: 33089917 DOI: 10.1096/fj.202000994rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Ischemia reperfusion (IR) injury results in devastating skeletal muscle fibrosis. Here, we recapitulate this injury with a mouse model of hindlimb IR injury which leads to skeletal muscle fibrosis. Injury resulted in extensive immune infiltration with robust neutrophil extracellular trap (NET) formation in the skeletal muscle, however, direct targeting of NETs via the peptidylarginine deiminase 4 (PAD4) mechanism was insufficient to reduce muscle fibrosis. Circulating levels of IL-10 and TNFα were significantly elevated post injury, indicating toll-like receptor (TLR) signaling may be involved in muscle injury. Administration of hydroxychloroquine (HCQ), a small molecule inhibitor of TLR7/8/9, following injury reduced NET formation, IL-10, and TNFα levels and ultimately mitigated muscle fibrosis and improved myofiber regeneration following IR injury. HCQ treatment decreased fibroadipogenic progenitor cell proliferation and partially inhibited ERK1/2 phosphorylation in the injured tissue, suggesting it may act through a combination of TLR7/8/9 and ERK signaling mechanisms. We demonstrate that treatment with FDA-approved HCQ leads to decreased muscle fibrosis and increased myofiber regeneration following IR injury, suggesting short-term HCQ treatment may be a viable treatment to prevent muscle fibrosis in ischemia reperfusion and traumatic extremity injury.
Collapse
Affiliation(s)
- Nicole J Edwards
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Charles Hwang
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Simone Marini
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Chase A Pagani
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Philip J Spreadborough
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Cassie J Rowe
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Pauline Yu
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Annie Mei
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Noelle Visser
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Shuli Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Geoffrey E Hespe
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Amanda K Huber
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Amy L Strong
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Miriam A Shelef
- Division of Rheumatology, University of Wisconsin and William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Jason S Knight
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Thomas A Davis
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Benjamin Levi
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
9
|
Hu C, Li X, Zhao L, Shi Y, Zhou S, Wang Y. Clinical Profile and Outcome of Pediatric Mitochondrial Myopathy in China. Front Neurol 2020; 11:1000. [PMID: 33013660 PMCID: PMC7506116 DOI: 10.3389/fneur.2020.01000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction: Mitochondrial myopathy in children has notable clinical and genetic heterogeneity, but detailed data is lacking. Patients and Methods: In this study, we retrospectively reviewed the clinical presentation, laboratory investigation, genetic and histopathological characteristics, and follow-ups of 21 pediatric mitochondrial myopathy cases from China. Results: Twenty-four patients suspected with mitochondrial myopathy were enrolled initially and 21 were genetically identified. Fourteen patients were found to harbor mitochondrial DNA point mutations (14/21, 66.7%), including m.3243A>G (9/15, 60%), m.3303C>T (2/15, 13.3%), m.3302A>G (1/15, 6.7%), m.3250T>C (1/15, 6.7%), m.3251A>G (1/15, 6.7%), of whom 12 patients presented with progressive proximal mitochondrial myopathy (12/14, 85.7%). Three patients revealed large-scale deletion in blood or muscle tissue (3/21, 14.3%), presenting with Kearns-Sayer syndrome (1/3, 33.3%) or chronic progressive external ophthalmoplegia (2/3, 66.7%). Four patients were found to harbor pathogenic nuclear gene variants (4/21, 19.0%), including five variants in TK2 gene and two variants in SURF1 gene. During the follow-ups up to 7 years, 10 patients developed cardiomyopathy (10/21, 47.6%), 13 patients occurred at least once hypercapnic respiratory failure (13/21, 61.9%), six experienced recurrent respiratory failure and intubation (6/21, 28.6%), eight patients failed to survive (8/21, 38.1%). With nocturnal non-invasive ventilation of BiPAP, three patients recovered from respiratory failure, and led a relative stable and functional life (3/21, 14.3%). Conclusion: Mitochondrial myopathy in children has great clinical, pathological, and genetical heterogeneity. Progressive proximal myopathy is most prevalent. Mitochondrial DNA point mutations are most common. And respiratory failure is a critical risk factor of poor prognosis.
Collapse
Affiliation(s)
- Chaoping Hu
- Neurology Department, Children's Hospital of Fudan University, Shanghai, China
| | - Xihua Li
- Neurology Department, Children's Hospital of Fudan University, Shanghai, China
| | - Lei Zhao
- Neurology Department, Children's Hospital of Fudan University, Shanghai, China
| | - Yiyun Shi
- Neurology Department, Children's Hospital of Fudan University, Shanghai, China
| | - Shuizhen Zhou
- Neurology Department, Children's Hospital of Fudan University, Shanghai, China
| | - Yi Wang
- Neurology Department, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
10
|
Schon KR, Ratnaike T, van den Ameele J, Horvath R, Chinnery PF. Mitochondrial Diseases: A Diagnostic Revolution. Trends Genet 2020; 36:702-717. [PMID: 32674947 DOI: 10.1016/j.tig.2020.06.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022]
Abstract
Mitochondrial disorders have emerged as a common cause of inherited disease, but are traditionally viewed as being difficult to diagnose clinically, and even more difficult to comprehensively characterize at the molecular level. However, new sequencing approaches, particularly whole-genome sequencing (WGS), have dramatically changed the landscape. The combined analysis of nuclear and mitochondrial DNA (mtDNA) allows rapid diagnosis for the vast majority of patients, but new challenges have emerged. We review recent discoveries that will benefit patients and families, and highlight emerging questions that remain to be resolved.
Collapse
Affiliation(s)
- Katherine R Schon
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Thiloka Ratnaike
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Department of Paediatrics, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Jelle van den Ameele
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
11
|
Lim AZ, McMacken G, Rastelli F, Oláhová M, Baty K, Hopton S, Falkous G, Töpf A, Lochmüller H, Marini-Bettolo C, McFarland R, Taylor RW. A novel, pathogenic dinucleotide deletion in the mitochondrial MT-TY gene causing myasthenia-like features. Neuromuscul Disord 2020; 30:661-668. [PMID: 32684384 PMCID: PMC7477489 DOI: 10.1016/j.nmd.2020.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/29/2022]
Abstract
Mitochondrial DNA (mtDNA)-related diseases often pose a diagnostic challenge and require rigorous clinical and laboratory investigation. Pathogenic variants in the mitochondrial tRNA gene MT-TY, which encodes the tRNATyr, are a rare cause of mitochondrial disease. Here we describe a novel m.5860delTA anticodon variant in the MT-TY gene in a patient who initially presented with features akin to a childhood onset myasthenic syndrome. Using histochemical, immunohistochemical and protein studies we demonstrate that this mutation leads to severe biochemical defects of mitochondrial translation, which is reflected in the early onset and progressive phenotype. This case highlights the clinical overlap between mtDNA-related diseases and other neuromuscular disorders, and demonstrates the potential pitfalls in analysis of next generation sequencing results, given whole exome sequencing of a blood DNA sample failed to make a genetics diagnosis. Muscle biopsy remains an important requirement in the diagnosis of mitochondrial disease and in establishing the pathogenicity of novel mtDNA variants.
Collapse
Affiliation(s)
- Albert Z Lim
- Wellcome Centre for Mitochondrial Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Grace McMacken
- The John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK; Department of Neurosciences, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, UK
| | - Francesca Rastelli
- Wellcome Centre for Mitochondrial Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Monika Oláhová
- Wellcome Centre for Mitochondrial Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK; Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Karen Baty
- Wellcome Centre for Mitochondrial Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne, UK
| | - Sila Hopton
- Wellcome Centre for Mitochondrial Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne, UK
| | - Gavin Falkous
- Wellcome Centre for Mitochondrial Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne, UK
| | - Ana Töpf
- The John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Research Institute, Children's Hospital of Eastern Ontario, Ottawa, Canada; Division of Neurology, Department of Medicine, Ottawa University, Ottawa, Canada
| | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
12
|
Comment on: "Mitochondrial Mechanisms of Neuromuscular Junction Degeneration with Aging. Cells 2020, 9, 197". Cells 2020; 9:cells9081796. [PMID: 32751058 PMCID: PMC7464736 DOI: 10.3390/cells9081796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/28/2020] [Indexed: 12/28/2022] Open
|
13
|
Hu C, Li X, Zhao L, Shi Y, Zhou S, Wu B, Wang Y. Clinical and molecular characterization of pediatric mitochondrial disorders in south of China. Eur J Med Genet 2020; 63:103898. [PMID: 32348839 DOI: 10.1016/j.ejmg.2020.103898] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/15/2020] [Accepted: 02/19/2020] [Indexed: 12/30/2022]
Abstract
Mitochondrial disorders (MDs) are genetic ailments affecting all age groups. Epidemiological data and frequencies of gene mutations in pediatric patients in China are scarce. This retrospective study assessed 101 patients with suspected MDs treated at the Neurology Department of Children's Hospital, Fudan University, in 2011-2017. Mitochondrial (mtDNA) and nuclear (nDNA) samples were assessed by long-range polymerase chain reaction (PCR)-based whole mtDNA sequencing and whole exome sequencing (WES) for identifying pathogenic mutations. Muscle samples underwent various staining protocols and immunofluorescence for detecting selected proteins. Seventeen mutations in the MT-TL1, MT-COX2, MT-ND4, MT, tRNA TRNE, MT-TN, MT-TK, MT-ATP6, MT-ND6, MT-ND3 and MT-CO3 genes were identified in 39 patients, of which m.3243A > G, m.3303C > T, m.8993T > C/G, m.9176T > C, and m.10191T > C were most common. Mitochondrial myopathy and MELAS were most common for m.3243A > G mutation. Four novel mutations were detected, including m.9478insT, m.5666T > C, m.8265T > C, and m.8380-13600 deletion mutations related to Leigh syndrome, mitochondrial myopathy and KSS, respectively. Thirty-three mutations in the TK2, POLG, IBA57, HADHB, FBXL4, ALDH5A1, FOXRED1, TPK1, NDUFAF5, NDUFAF7, NDUFV1, CARS2, PDHA1, and HIBCH genes were identified in 19 patients, including 23 currently unknown. Higher rates of TK2, POLG, IBA57, and HADHB mutations were found in nDNA-mutated MD compared with the remaining individuals. Besides, IBA57 c.286T > C (p.Y96H), TK2 c.497A > T (p.D166V) founder mutations critically contributed to MDs. Comprehensive genomic analysis plays a critical role in pediatric MD diagnosis. These data summarize the relative frequencies of different gene mutations in a large Chinese population, and identified 23 novel MD-associated nDNA and 4 novel mtDNA mutations.
Collapse
Affiliation(s)
- Chaoping Hu
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Xihua Li
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China.
| | - Lei Zhao
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Yiyun Shi
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Shuizhen Zhou
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Bingbing Wu
- Translational Research Center for Development and Disease, Children's Hospital of Fudan University, Shanghai, China
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Set KK, Sen K, Huq AHM, Agarwal R. Mitochondrial Disorders of the Nervous System: A Review. Clin Pediatr (Phila) 2019; 58:381-394. [PMID: 30607979 DOI: 10.1177/0009922818821890] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kallol K Set
- 1 Dayton Children's Hospital, Dayton, OH, USA.,2 Wright State University Boonshoft School of Medicine, Dayton, OH, USA
| | - Kuntal Sen
- 3 Children's Hospital of Michigan, Detroit, MI, USA.,4 Wayne State University School of Medicine, Detroit, MI, USA
| | - A H M Huq
- 3 Children's Hospital of Michigan, Detroit, MI, USA.,4 Wayne State University School of Medicine, Detroit, MI, USA
| | - Rajkumar Agarwal
- 1 Dayton Children's Hospital, Dayton, OH, USA.,2 Wright State University Boonshoft School of Medicine, Dayton, OH, USA
| |
Collapse
|
15
|
Hayhurst H, de Coo IFM, Piekutowska-Abramczuk D, Alston CL, Sharma S, Thompson K, Rius R, He L, Hopton S, Ploski R, Ciara E, Lake NJ, Compton AG, Delatycki MB, Verrips A, Bonnen PE, Jones SA, Morris AA, Shakespeare D, Christodoulou J, Wesol-Kucharska D, Rokicki D, Smeets HJM, Pronicka E, Thorburn DR, Gorman GS, McFarland R, Taylor RW, Ng YS. Leigh syndrome caused by mutations in MTFMT is associated with a better prognosis. Ann Clin Transl Neurol 2019; 6:515-524. [PMID: 30911575 PMCID: PMC6414492 DOI: 10.1002/acn3.725] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 12/18/2022] Open
Abstract
Objectives Mitochondrial methionyl‐tRNA formyltransferase (MTFMT) is required for the initiation of translation and elongation of mitochondrial protein synthesis. Pathogenic variants in MTFMT have been associated with Leigh syndrome (LS) and mitochondrial multiple respiratory chain deficiencies. We sought to elucidate the spectrum of clinical, neuroradiological and molecular genetic findings of patients with bi‐allelic pathogenic variants in MTFMT. Methods Retrospective cohort study combining new cases and previously published cases. Results Thirty‐eight patients with pathogenic variants in MTFMT were identified, including eight new cases. The median age of presentation was 14 months (range: birth to 17 years, interquartile range [IQR] 4.5 years), with developmental delay and motor symptoms being the most frequent initial manifestation. Twenty‐nine percent of the patients survived into adulthood. MRI headings in MTFMT pathogenic variants included symmetrical basal ganglia changes (62%), periventricular and subcortical white matter abnormalities (55%), and brainstem lesions (48%). Isolated complex I and combined respiratory chain deficiencies were identified in 31% and 59% of the cases, respectively. Reduction of the mitochondrial complex I and complex IV subunits was identified in the fibroblasts (13/13). Sixteen pathogenic variants were identified, of which c.626C>T was the most common. Seventy‐four percent of the patients were alive at their last clinical review (median 6.8 years, range: 14 months to 31 years, IQR 14.5 years). Interpretation Patients that harbour pathogenic variants in MTFMT have a milder clinical phenotype and disease progression compared to LS caused by other nuclear defects. Fibroblasts may preclude the need for muscle biopsy, to prove causality of any novel variant.
Collapse
Affiliation(s)
- Hannah Hayhurst
- Wellcome Centre for Mitochondrial Research Institute of Neuroscience Newcastle University Newcastle upon Tyne United Kingdom
| | - Irenaeus F M de Coo
- Department of Neurology Erasmus Medical Centre Rotterdam Netherlands.,Department of Paediatrics, Nutrition and Metabolic Diseases The Children's Memorial Health Institute Warsaw Poland
| | | | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research Institute of Neuroscience Newcastle University Newcastle upon Tyne United Kingdom
| | - Sunil Sharma
- Wellcome Centre for Mitochondrial Research Institute of Neuroscience Newcastle University Newcastle upon Tyne United Kingdom
| | - Kyle Thompson
- Wellcome Centre for Mitochondrial Research Institute of Neuroscience Newcastle University Newcastle upon Tyne United Kingdom
| | - Rocio Rius
- Victorian Clinical Genetics Service and Murdoch Children's Research Institute Parkville Victoria 3052 Australia.,Department of Paediatrics University of Melbourne Melbourne Victoria 3052 Australia
| | - Langping He
- Wellcome Centre for Mitochondrial Research Institute of Neuroscience Newcastle University Newcastle upon Tyne United Kingdom
| | - Sila Hopton
- Wellcome Centre for Mitochondrial Research Institute of Neuroscience Newcastle University Newcastle upon Tyne United Kingdom
| | - Rafal Ploski
- Department of Medical Genetics The Children's Memorial Health Institute Warsaw 04-730 Poland
| | - Elzbieta Ciara
- Department of Medical Genetics The Children's Memorial Health Institute Warsaw 04-730 Poland
| | - Nicole J Lake
- Victorian Clinical Genetics Service and Murdoch Children's Research Institute Parkville Victoria 3052 Australia.,Department of Paediatrics University of Melbourne Melbourne Victoria 3052 Australia
| | - Alison G Compton
- Victorian Clinical Genetics Service and Murdoch Children's Research Institute Parkville Victoria 3052 Australia.,Department of Paediatrics University of Melbourne Melbourne Victoria 3052 Australia
| | - Martin B Delatycki
- Victorian Clinical Genetics Service and Murdoch Children's Research Institute Parkville Victoria 3052 Australia.,Department of Paediatrics University of Melbourne Melbourne Victoria 3052 Australia
| | - Aad Verrips
- Department of Neurology Canisius Wilhelmina Hospital Nijmegen The Netherlands
| | - Penelope E Bonnen
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | - Simon A Jones
- Manchester Centre for Genomic Medicine Manchester University NHS Foundation Trust Manchester Academic Health Sciences Centre Manchester UK
| | - Andrew A Morris
- Manchester Centre for Genomic Medicine Manchester University NHS Foundation Trust Manchester Academic Health Sciences Centre Manchester UK
| | - David Shakespeare
- Neuro-Rehabilitation Unit Royal Preston Hospital Preston United Kingdom
| | - John Christodoulou
- Victorian Clinical Genetics Service and Murdoch Children's Research Institute Parkville Victoria 3052 Australia.,Department of Paediatrics University of Melbourne Melbourne Victoria 3052 Australia
| | - Dorota Wesol-Kucharska
- Department of Clinical Genomics Research Schools GROW and MHeNS Maastricht University Maastricht The Netherlands
| | - Dariusz Rokicki
- Department of Clinical Genomics Research Schools GROW and MHeNS Maastricht University Maastricht The Netherlands
| | - Hubert J M Smeets
- Department of Paediatrics, Nutrition and Metabolic Diseases The Children's Memorial Health Institute Warsaw Poland
| | - Ewa Pronicka
- Department of Medical Genetics The Children's Memorial Health Institute Warsaw 04-730 Poland.,Neuro-Rehabilitation Unit Royal Preston Hospital Preston United Kingdom
| | - David R Thorburn
- Victorian Clinical Genetics Service and Murdoch Children's Research Institute Parkville Victoria 3052 Australia.,Department of Paediatrics University of Melbourne Melbourne Victoria 3052 Australia
| | - Grainne S Gorman
- Wellcome Centre for Mitochondrial Research Institute of Neuroscience Newcastle University Newcastle upon Tyne United Kingdom
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research Institute of Neuroscience Newcastle University Newcastle upon Tyne United Kingdom
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research Institute of Neuroscience Newcastle University Newcastle upon Tyne United Kingdom
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research Institute of Neuroscience Newcastle University Newcastle upon Tyne United Kingdom
| |
Collapse
|
16
|
Sommerville EW, Zhou XL, Oláhová M, Jenkins J, Euro L, Konovalova S, Hilander T, Pyle A, He L, Habeebu S, Saunders C, Kelsey A, Morris AAM, McFarland R, Suomalainen A, Gorman GS, Wang ED, Thiffault I, Tyynismaa H, Taylor RW. Instability of the mitochondrial alanyl-tRNA synthetase underlies fatal infantile-onset cardiomyopathy. Hum Mol Genet 2019; 28:258-268. [PMID: 30285085 PMCID: PMC6321959 DOI: 10.1093/hmg/ddy294] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 11/14/2022] Open
Abstract
Recessively inherited variants in AARS2 (NM_020745.2) encoding mitochondrial alanyl-tRNA synthetase (mt-AlaRS) were first described in patients presenting with fatal infantile cardiomyopathy and multiple oxidative phosphorylation defects. To date, all described patients with AARS2-related fatal infantile cardiomyopathy are united by either a homozygous or compound heterozygous c.1774C>T (p.Arg592Trp) missense founder mutation that is absent in patients with other AARS2-related phenotypes. We describe the clinical, biochemical and molecular investigations of two unrelated boys presenting with fatal infantile cardiomyopathy, lactic acidosis and respiratory failure. Oxidative histochemistry showed cytochrome c oxidase-deficient fibres in skeletal and cardiac muscle. Biochemical studies showed markedly decreased activities of mitochondrial respiratory chain complexes I and IV with a mild decrease of complex III activity in skeletal and cardiac muscle. Using next-generation sequencing, we identified a c.1738C>T (p.Arg580Trp) AARS2 variant shared by both patients that was in trans with a loss-of-function heterozygous AARS2 variant; a c.1008dupT (p.Asp337*) nonsense variant or an intragenic deletion encompassing AARS2 exons 5-7. Interestingly, our patients did not harbour the p.Arg592Trp AARS2 founder mutation. In silico modelling of the p.Arg580Trp substitution suggested a deleterious impact on protein stability and folding. We confirmed markedly decreased mt-AlaRS protein levels in patient fibroblasts, skeletal and cardiac muscle, although mitochondrial protein synthesis defects were confined to skeletal and cardiac muscle. In vitro data showed that the p.Arg580Trp variant had a minimal effect on activation, aminoacylation or misaminoacylation activities relative to wild-type mt-AlaRS, demonstrating that instability of mt-AlaRS is the biological mechanism underlying the fatal cardiomyopathy phenotype in our patients.
Collapse
Affiliation(s)
- Ewen W Sommerville
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Monika Oláhová
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Janda Jenkins
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO, USA
| | - Liliya Euro
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Svetlana Konovalova
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Taru Hilander
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Langping He
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Sultan Habeebu
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO, USA
| | - Carol Saunders
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA
- School of Medicine, University of Missouri Kansas City, Kansas City, MO , USA
| | - Anna Kelsey
- Institute of Human Development, University of Manchester, Manchester M13 9PL, UK; Willink Metabolic Unit, Genomic Medicine, Saint Mary’s Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Andrew A M Morris
- Institute of Human Development, University of Manchester, Manchester M13 9PL, UK; Willink Metabolic Unit, Genomic Medicine, Saint Mary’s Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Anu Suomalainen
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki Finland
- Department of Neurosciences, Helsinki University Hospital, Helsinki, Finland
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Isabelle Thiffault
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA
- School of Medicine, University of Missouri Kansas City, Kansas City, MO , USA
| | - Henna Tyynismaa
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
17
|
Bala U, Leong MPY, Lim CL, Shahar HK, Othman F, Lai MI, Law ZK, Ramli K, Htwe O, Ling KH, Cheah PS. Defects in nerve conduction velocity and different muscle fibre-type specificity contribute to muscle weakness in Ts1Cje Down syndrome mouse model. PLoS One 2018; 13:e0197711. [PMID: 29795634 PMCID: PMC5967806 DOI: 10.1371/journal.pone.0197711] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/07/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Down syndrome (DS) is a genetic disorder caused by presence of extra copy of human chromosome 21. It is characterised by several clinical phenotypes. Motor dysfunction due to hypotonia is commonly seen in individuals with DS and its etiology is yet unknown. Ts1Cje, which has a partial trisomy (Mmu16) homologous to Hsa21, is well reported to exhibit various typical neuropathological features seen in individuals with DS. This study investigated the role of skeletal muscles and peripheral nerve defects in contributing to muscle weakness in Ts1Cje mice. RESULTS Assessment of the motor performance showed that, the forelimb grip strength was significantly (P<0.0001) greater in the WT mice compared to Ts1Cje mice regardless of gender. The average survival time of the WT mice during the hanging wire test was significantly (P<0.0001) greater compared to the Ts1Cje mice. Also, the WT mice performed significantly (P<0.05) better than the Ts1Cje mice in the latency to maintain a coordinated motor movement against the rotating rod. Adult Ts1Cje mice exhibited significantly (P<0.001) lower nerve conduction velocity compared with their aged matched WT mice. Further analysis showed a significantly (P<0.001) higher population of type I fibres in WT compared to Ts1Cje mice. Also, there was significantly (P<0.01) higher population of COX deficient fibres in Ts1Cje mice. Expression of Myf5 was significantly (P<0.05) reduced in triceps of Ts1Cje mice while MyoD expression was significantly (P<0.05) increased in quadriceps of Ts1Cje mice. CONCLUSION Ts1Cje mice exhibited weaker muscle strength. The lower population of the type I fibres and higher population of COX deficient fibres in Ts1Cje mice may contribute to the muscle weakness seen in this mouse model for DS.
Collapse
Affiliation(s)
- Usman Bala
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Human Anatomy, College of Medical Sciences, Gombe State University, Gombe, Nigeria
| | - Melody Pui-Yee Leong
- Genetics and Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chai Ling Lim
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hayati Kadir Shahar
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Fauziah Othman
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mei-I Lai
- Genetics and Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zhe-Kang Law
- Department of Medicine, UKM Medical Centre, Jalan Yaakob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur
| | - Khairunnisa Ramli
- Tissue Engineering Centre, UKM Medical Centre, Jalan Yaakob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur
| | - Ohnmar Htwe
- Department of Orthopaedic and Traumatology, UKM Medical Centre, Jalan Yaakob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur
| | - King-Hwa Ling
- Genetics and Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
18
|
Dölle C, Bindoff LA, Tzoulis C. 3,3'-Diaminobenzidine staining interferes with PCR-based DNA analysis. Sci Rep 2018; 8:1272. [PMID: 29352159 PMCID: PMC5775208 DOI: 10.1038/s41598-018-19745-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/08/2018] [Indexed: 11/09/2022] Open
Abstract
3,3'-Diaminobenzidine (DAB) is a widely used chromogen in histological staining methods and stained tissue is often used in downstream molecular analyses such as quantitative PCR (qPCR). Using microdissected muscle fibers from sequential muscle sections stained by DAB-dependent and -independent methods, we show that DAB exerts a strong inhibitory effect on qPCR-based mitochondrial DNA quantification. This effect introduces a significant bias in the estimation of mitochondrial DNA copy number and deletion levels between DAB-positive and -negative fibers. We reproduce our findings in microdissected neurons from human brain tissue, suggesting a general effect of DAB staining on PCR analyses independent of the underlying tissue or cell type. Using an exogenous DNA template added to tissue samples we provide evidence that DAB-staining predominantly interferes with the tissue-derived DNA template rather than inhibiting DNA polymerase activity. Our results suggest that DAB-based staining is incompatible with PCR-based quantification methods and some of the previously reported results employing this approach should be reconsidered.
Collapse
Affiliation(s)
- Christian Dölle
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Laurence A Bindoff
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Charalampos Tzoulis
- Department of Neurology, Haukeland University Hospital, Bergen, Norway. .,Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
19
|
Kullar PJ, Gomez-Duran A, Gammage PA, Garone C, Minczuk M, Golder Z, Wilson J, Montoya J, Häkli S, Kärppä M, Horvath R, Majamaa K, Chinnery PF. Heterozygous SSBP1 start loss mutation co-segregates with hearing loss and the m.1555A>G mtDNA variant in a large multigenerational family. Brain 2018; 141:55-62. [PMID: 29182774 PMCID: PMC5837410 DOI: 10.1093/brain/awx295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/10/2017] [Accepted: 09/25/2017] [Indexed: 11/30/2022] Open
Abstract
The m.1555A>G mtDNA variant causes maternally inherited deafness, but the reasons for the highly variable clinical penetrance are not known. Exome sequencing identified a heterozygous start loss mutation in SSBP1, encoding the single stranded binding protein 1 (SSBP1), segregating with hearing loss in a multi-generational family transmitting m.1555A>G, associated with mtDNA depletion and multiple deletions in skeletal muscle. The SSBP1 mutation reduced steady state SSBP1 levels leading to a perturbation of mtDNA metabolism, likely compounding the intra-mitochondrial translation defect due to m.1555A>G in a tissue-specific manner. This family demonstrates the importance of rare trans-acting genetic nuclear modifiers in the clinical expression of mtDNA disease.
Collapse
Affiliation(s)
- Peter J Kullar
- MRC-Mitochondrial Biology Unit, University of Cambridge, CB2 0XY, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Aurora Gomez-Duran
- MRC-Mitochondrial Biology Unit, University of Cambridge, CB2 0XY, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Payam A Gammage
- MRC-Mitochondrial Biology Unit, University of Cambridge, CB2 0XY, UK
| | - Caterina Garone
- MRC-Mitochondrial Biology Unit, University of Cambridge, CB2 0XY, UK
| | - Michal Minczuk
- MRC-Mitochondrial Biology Unit, University of Cambridge, CB2 0XY, UK
| | - Zoe Golder
- MRC-Mitochondrial Biology Unit, University of Cambridge, CB2 0XY, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Janet Wilson
- Institute of Health and Society, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Julio Montoya
- Universidad de Zaragoza-CIBER de Enfermedades Raras (CIBERER)-Instituto de Investigación Sanitaria de Aragón, Spain
| | - Sanna Häkli
- Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Mikko Kärppä
- Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Rita Horvath
- Institute of Genetic Medicine, Newcastle University, UK
| | - Kari Majamaa
- Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Patrick F Chinnery
- MRC-Mitochondrial Biology Unit, University of Cambridge, CB2 0XY, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
20
|
Zhou Y, Yi J, Liu L, Wang X, Dong L, Du A. Acute mitochondrial myopathy with respiratory insufficiency and motor axonal polyneuropathy. Int J Neurosci 2017; 128:231-236. [PMID: 28969510 DOI: 10.1080/00207454.2017.1387113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Mitochondrial myopathies (MMs) are mainly presented with chronic muscle weakness and accompanied with other syndromes. MM with acute respiratory insufficiency is rare. AIMS To reveal the clinical, pathological and molecular characteristics of a life-threatening MM. METHODS Muscle biopsy and enzyme staining were performed in skeletal muscles. Mitochondrial DNA (mtDNA) sequencing was analyzed and heteroplasmy were quantified by pyrosequencing. RESULTS All three patients had tachycardia, acute lactic acidosis, dyspnea and sudden severe muscle weakness. Two patients had calf edema and abdominal pain, and one had a heart attack. Electromyography in two patients showed dramatically decreased axonal amplitudes of motor nerves. Muscle biopsies showed ragged red fibers and dramatic mitochondrial abnormality. A mtDNA m.3243A>G mutation was identified in Patient 1 (mutation load: 29% in blood and 73% in muscle) and Patient 3 (79% in blood and 89% in muscle). A mtDNA m.8344A>G mutation was found in Patient 2 (mutation load 80.4% in blood). CONCLUSION MM characterized by lactic acidosis, respiratory failure and acute motor axonal neuropathy is life threatening.
Collapse
Affiliation(s)
- Ying Zhou
- a Department of Cardiology , Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Jianhua Yi
- b Department of Emergency Medicine , Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Li Liu
- c Mitochondrial Disease Research Center, Institute of Genetics , College of Life Science, Zhejiang University , Hangzhou , China
| | - Xiaoping Wang
- d Department of Neurology , Tongren Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Liang Dong
- a Department of Cardiology , Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Ailian Du
- d Department of Neurology , Tongren Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| |
Collapse
|
21
|
Sommerville EW, Alston CL, Pyle A, He L, Falkous G, Naismith K, Chinnery PF, McFarland R, Taylor RW. De novo CTBP1 variant is associated with decreased mitochondrial respiratory chain activities. NEUROLOGY-GENETICS 2017; 3:e187. [PMID: 28955726 PMCID: PMC5610040 DOI: 10.1212/nxg.0000000000000187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/21/2017] [Indexed: 11/16/2022]
Abstract
Objective: To determine the genetic etiology of a young woman presenting an early-onset, progressive neurodegenerative disorder with evidence of decreased mitochondrial complex I and IV activities in skeletal muscle suggestive of a mitochondrial disorder. Methods: A case report including diagnostic workup, whole-exome sequencing of the affected patient, filtering, and prioritization of candidate variants assuming a suspected autosomal recessive mitochondrial disorder and segregation studies. Results: After excluding candidate variants for an autosomal recessive mitochondrial disorder, re-evaluation of rare and novel heterozygous variants identified a recently reported, recurrent pathogenic heterozygous CTBP1 missense change (c.991C>T, p.Arg331Trp), which was confirmed to have arisen de novo. Conclusions: We report the fifth known patient harboring a recurrent pathogenic de novo c.991C>T p.(Arg331Trp) CTBP1 variant, who was initially suspected to have an autosomal recessive mitochondrial disorder. Inheritance of suspected early-onset mitochondrial disease could wrongly be assumed to be autosomal recessive. Hence, this warrants continued re-evaluation of rare and novel heterozygous variants in patients with apparently unsolved suspected mitochondrial disease investigated using next-generation sequencing.
Collapse
Affiliation(s)
- Ewen W Sommerville
- Wellcome Centre for Mitochondrial Research (E.W.S., C.L.A., L.H., G.F., R.M., R.W.T.), Institute of Neuroscience, Newcastle University, United Kingdom; Department of Molecular and Human Genetics (E.W.S.), Baylor College of Medicine, Houston, TX; Wellcome Centre for Mitochondrial Research (A.P.), Institute of Genetic Medicine, Newcastle University; Armistead Child Development Centre (K.N.), Kings Cross Hospital, Dundee, Scotland; Department of Clinical Neurosciences (P.F.C.), School of Clinical Medicine, University of Cambridge; and MRC Mitochondrial Biology Unit (P.F.C.), University of Cambridge, United Kingdom
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research (E.W.S., C.L.A., L.H., G.F., R.M., R.W.T.), Institute of Neuroscience, Newcastle University, United Kingdom; Department of Molecular and Human Genetics (E.W.S.), Baylor College of Medicine, Houston, TX; Wellcome Centre for Mitochondrial Research (A.P.), Institute of Genetic Medicine, Newcastle University; Armistead Child Development Centre (K.N.), Kings Cross Hospital, Dundee, Scotland; Department of Clinical Neurosciences (P.F.C.), School of Clinical Medicine, University of Cambridge; and MRC Mitochondrial Biology Unit (P.F.C.), University of Cambridge, United Kingdom
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research (E.W.S., C.L.A., L.H., G.F., R.M., R.W.T.), Institute of Neuroscience, Newcastle University, United Kingdom; Department of Molecular and Human Genetics (E.W.S.), Baylor College of Medicine, Houston, TX; Wellcome Centre for Mitochondrial Research (A.P.), Institute of Genetic Medicine, Newcastle University; Armistead Child Development Centre (K.N.), Kings Cross Hospital, Dundee, Scotland; Department of Clinical Neurosciences (P.F.C.), School of Clinical Medicine, University of Cambridge; and MRC Mitochondrial Biology Unit (P.F.C.), University of Cambridge, United Kingdom
| | - Langping He
- Wellcome Centre for Mitochondrial Research (E.W.S., C.L.A., L.H., G.F., R.M., R.W.T.), Institute of Neuroscience, Newcastle University, United Kingdom; Department of Molecular and Human Genetics (E.W.S.), Baylor College of Medicine, Houston, TX; Wellcome Centre for Mitochondrial Research (A.P.), Institute of Genetic Medicine, Newcastle University; Armistead Child Development Centre (K.N.), Kings Cross Hospital, Dundee, Scotland; Department of Clinical Neurosciences (P.F.C.), School of Clinical Medicine, University of Cambridge; and MRC Mitochondrial Biology Unit (P.F.C.), University of Cambridge, United Kingdom
| | - Gavin Falkous
- Wellcome Centre for Mitochondrial Research (E.W.S., C.L.A., L.H., G.F., R.M., R.W.T.), Institute of Neuroscience, Newcastle University, United Kingdom; Department of Molecular and Human Genetics (E.W.S.), Baylor College of Medicine, Houston, TX; Wellcome Centre for Mitochondrial Research (A.P.), Institute of Genetic Medicine, Newcastle University; Armistead Child Development Centre (K.N.), Kings Cross Hospital, Dundee, Scotland; Department of Clinical Neurosciences (P.F.C.), School of Clinical Medicine, University of Cambridge; and MRC Mitochondrial Biology Unit (P.F.C.), University of Cambridge, United Kingdom
| | - Karen Naismith
- Wellcome Centre for Mitochondrial Research (E.W.S., C.L.A., L.H., G.F., R.M., R.W.T.), Institute of Neuroscience, Newcastle University, United Kingdom; Department of Molecular and Human Genetics (E.W.S.), Baylor College of Medicine, Houston, TX; Wellcome Centre for Mitochondrial Research (A.P.), Institute of Genetic Medicine, Newcastle University; Armistead Child Development Centre (K.N.), Kings Cross Hospital, Dundee, Scotland; Department of Clinical Neurosciences (P.F.C.), School of Clinical Medicine, University of Cambridge; and MRC Mitochondrial Biology Unit (P.F.C.), University of Cambridge, United Kingdom
| | - Patrick F Chinnery
- Wellcome Centre for Mitochondrial Research (E.W.S., C.L.A., L.H., G.F., R.M., R.W.T.), Institute of Neuroscience, Newcastle University, United Kingdom; Department of Molecular and Human Genetics (E.W.S.), Baylor College of Medicine, Houston, TX; Wellcome Centre for Mitochondrial Research (A.P.), Institute of Genetic Medicine, Newcastle University; Armistead Child Development Centre (K.N.), Kings Cross Hospital, Dundee, Scotland; Department of Clinical Neurosciences (P.F.C.), School of Clinical Medicine, University of Cambridge; and MRC Mitochondrial Biology Unit (P.F.C.), University of Cambridge, United Kingdom
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research (E.W.S., C.L.A., L.H., G.F., R.M., R.W.T.), Institute of Neuroscience, Newcastle University, United Kingdom; Department of Molecular and Human Genetics (E.W.S.), Baylor College of Medicine, Houston, TX; Wellcome Centre for Mitochondrial Research (A.P.), Institute of Genetic Medicine, Newcastle University; Armistead Child Development Centre (K.N.), Kings Cross Hospital, Dundee, Scotland; Department of Clinical Neurosciences (P.F.C.), School of Clinical Medicine, University of Cambridge; and MRC Mitochondrial Biology Unit (P.F.C.), University of Cambridge, United Kingdom
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research (E.W.S., C.L.A., L.H., G.F., R.M., R.W.T.), Institute of Neuroscience, Newcastle University, United Kingdom; Department of Molecular and Human Genetics (E.W.S.), Baylor College of Medicine, Houston, TX; Wellcome Centre for Mitochondrial Research (A.P.), Institute of Genetic Medicine, Newcastle University; Armistead Child Development Centre (K.N.), Kings Cross Hospital, Dundee, Scotland; Department of Clinical Neurosciences (P.F.C.), School of Clinical Medicine, University of Cambridge; and MRC Mitochondrial Biology Unit (P.F.C.), University of Cambridge, United Kingdom
| |
Collapse
|
22
|
Lee SR, Han J. Mitochondrial Mutations in Cardiac Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:81-111. [PMID: 28551783 DOI: 10.1007/978-3-319-55330-6_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria individually encapsulate their own genome, unlike other cellular organelles. Mitochondrial DNA (mtDNA) is a circular, double-stranded, 16,569-base paired DNA containing 37 genes: 13 proteins of the mitochondrial respiratory chain, two ribosomal RNAs (rRNAs; 12S and 16S), and 22 transfer RNAs (tRNAs). The mtDNA is more vulnerable to oxidative modifications compared to nuclear DNA because of its proximity to ROS-producing sites, limited presence of DNA damage repair systems, and continuous replication in the cell. mtDNA mutations can be inherited or sporadic. Simple mtDNA mutations are point mutations, which are frequently found in mitochondrial tRNA loci, causing mischarging of mitochondrial tRNAs or deletion, duplication, or reduction in mtDNA content. Because mtDNA has multiple copies and a specific replication mechanism in cells or tissues, it can be heterogenous, resulting in characteristic phenotypic presentations such as heteroplasmy, genetic drift, and threshold effects. Recent studies have increased the understanding of basic mitochondrial genetics, providing an insight into the correlations between mitochondrial mutations and cardiac manifestations including hypertrophic or dilated cardiomyopathy, arrhythmia, autonomic nervous system dysfunction, heart failure, or sudden cardiac death with a syndromic or non-syndromic phenotype. Clinical manifestations of mitochondrial mutations, which result from structural defects, functional impairment, or both, are increasingly detected but are not clear because of the complex interplay between the mitochondrial and nuclear genomes, even in homoplasmic mitochondrial populations. Additionally, various factors such as individual susceptibility, nutritional state, and exposure to chemicals can influence phenotypic presentation, even for the same mtDNA mutation.In this chapter, we summarize our current understanding of mtDNA mutations and their role in cardiac involvement. In addition, epigenetic modifications of mtDNA are briefly discussed for future elucidation of their critical role in cardiac involvement. Finally, current strategies for dealing with mitochondrial mutations in cardiac disorders are briefly stated.
Collapse
Affiliation(s)
- Sung Ryul Lee
- Department of Integrated Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, 47392, South Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Cardiovascular and Metabolic Disease Center, Department of Physiology, College of Medicine, Inje University, Busan, 47392, South Korea.
| |
Collapse
|
23
|
Phadke R. Myopathology of Adult and Paediatric Mitochondrial Diseases. J Clin Med 2017; 6:jcm6070064. [PMID: 28677615 PMCID: PMC5532572 DOI: 10.3390/jcm6070064] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 01/09/2023] Open
Abstract
Mitochondria are dynamic organelles ubiquitously present in nucleated eukaryotic cells, subserving multiple metabolic functions, including cellular ATP generation by oxidative phosphorylation (OXPHOS). The OXPHOS machinery comprises five transmembrane respiratory chain enzyme complexes (RC). Defective OXPHOS gives rise to mitochondrial diseases (mtD). The incredible phenotypic and genetic diversity of mtD can be attributed at least in part to the RC dual genetic control (nuclear DNA (nDNA) and mitochondrial DNA (mtDNA)) and the complex interaction between the two genomes. Despite the increasing use of next-generation-sequencing (NGS) and various omics platforms in unravelling novel mtD genes and pathomechanisms, current clinical practice for investigating mtD essentially involves a multipronged approach including clinical assessment, metabolic screening, imaging, pathological, biochemical and functional testing to guide molecular genetic analysis. This review addresses the broad muscle pathology landscape including genotype–phenotype correlations in adult and paediatric mtD, the role of immunodiagnostics in understanding some of the pathomechanisms underpinning the canonical features of mtD, and recent diagnostic advances in the field.
Collapse
Affiliation(s)
- Rahul Phadke
- Division of Neuropathology, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London WC1N 3BG, UK.
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
| |
Collapse
|
24
|
Sommerville EW, Ng YS, Alston CL, Dallabona C, Gilberti M, He L, Knowles C, Chin SL, Schaefer AM, Falkous G, Murdoch D, Longman C, de Visser M, Bindoff LA, Rawles JM, Dean JCS, Petty RK, Farrugia ME, Haack TB, Prokisch H, McFarland R, Turnbull DM, Donnini C, Taylor RW, Gorman GS. Clinical Features, Molecular Heterogeneity, and Prognostic Implications in YARS2-Related Mitochondrial Myopathy. JAMA Neurol 2017; 74:686-694. [PMID: 28395030 PMCID: PMC5822212 DOI: 10.1001/jamaneurol.2016.4357] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/25/2016] [Indexed: 01/09/2023]
Abstract
Importance YARS2 mutations have been associated with a clinical triad of myopathy, lactic acidosis, and sideroblastic anemia in predominantly Middle Eastern populations. However, the identification of new patients expands the clinical and molecular spectrum of mitochondrial disorders. Objectives To review the clinical, molecular, and genetic features of YARS2-related mitochondrial disease and to demonstrate a new Scottish founder variant. Design, Setting, and Participants An observational case series study was conducted at a national diagnostic center for mitochondrial disease in Newcastle upon Tyne, England, and review of cases published in the literature. Six adults in a well-defined mitochondrial disease cohort and 11 additional cases described in the literature were identified with YARS2 variants between January 1, 2000, and January 31, 2015. Main Outcome and Measures The spectrum of clinical features and disease progression in unreported and reported patients with pathogenic YARS2 variants. Results Seventeen patients (median [interquartile range] age at onset, 1.5 [9.8] years) with YARS2-related mitochondrial myopathy were identified. Fifteen individuals (88%) exhibited an elevated blood lactate level accompanied by generalized myopathy; only 12 patients (71%) manifested with sideroblastic anemia. Hypertrophic cardiomyopathy (9 [53%]) and respiratory insufficiency (8 [47%]) were also prominent clinical features. Central nervous system involvement was rare. Muscle studies showed global cytochrome-c oxidase deficiency in all patients tested and severe, combined respiratory chain complex activity deficiencies. Microsatellite genotyping demonstrated a common founder effect shared between 3 Scottish patients with a p.Leu392Ser variant. Immunoblotting from fibroblasts and myoblasts of an affected Scottish patient showed normal YARS2 protein levels and mild respiratory chain complex defects. Yeast modeling of novel missense YARS2 variants closely correlated with the severity of clinical phenotypes. Conclusions and Relevance The p.Leu392Ser variant is likely a newly identified founder YARS2 mutation. Testing for pathogenic YARS2 variants should be considered in patients presenting with mitochondrial myopathy, characterized by exercise intolerance and muscle weakness even in the absence of sideroblastic anemia irrespective of ethnicity. Regular surveillance and early treatment for cardiomyopathy and respiratory muscle weakness is advocated because early treatment may mitigate the significant morbidity and mortality associated with this genetic disorder.
Collapse
Affiliation(s)
- Ewen W. Sommerville
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, England
| | - Yi Shiau Ng
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, England
| | - Charlotte L. Alston
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, England
| | | | - Micol Gilberti
- Department of Life Sciences, University of Parma, Parma, Italy
| | - Langping He
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, England
| | - Charlotte Knowles
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, England
| | - Sophie L. Chin
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, England
| | - Andrew M. Schaefer
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, England
| | - Gavin Falkous
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, England
| | - David Murdoch
- Department of Cardiology, Queen Elizabeth University Hospital, Glasgow, Scotland
| | - Cheryl Longman
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, Scotland
| | - Marianne de Visser
- Department of Neurology, Academic Medical Centre, Amsterdam, the Netherlands
| | - Laurence A. Bindoff
- Department of Clinical Medicine, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - John M. Rawles
- Department of Medicine, University of Aberdeen, Aberdeen, Scotland (retired)
| | - John C. S. Dean
- Department of Medical Genetics, Medical School Building, University of Aberdeen, Aberdeen, Scotland
| | - Richard K. Petty
- Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, Scotland
| | - Maria E. Farrugia
- Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, Scotland
| | - Tobias B. Haack
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Robert McFarland
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, England
| | - Douglass M. Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, England
| | - Claudia Donnini
- Department of Life Sciences, University of Parma, Parma, Italy
| | - Robert W. Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, England
| | - Gráinne S. Gorman
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, England
| |
Collapse
|
25
|
Hsieh VC, Krane EJ, Morgan PG. Mitochondrial Disease and Anesthesia. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2017. [DOI: 10.1177/2326409817707770] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Vincent C. Hsieh
- Department of Anesthesiology and Perioperative Medicine, University of Washington, Seattle, WA, USA
| | - Elliot J. Krane
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Philip G. Morgan
- Department of Anesthesiology and Perioperative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
26
|
Yubero D, Adin A, Montero R, Jou C, Jiménez-Mallebrera C, García-Cazorla A, Nascimento A, O'Callaghan MM, Montoya J, Gort L, Navas P, Ribes A, Ugarte MD, Artuch R. A statistical algorithm showing coenzyme Q 10 and citrate synthase as biomarkers for mitochondrial respiratory chain enzyme activities. Sci Rep 2016; 6:15. [PMID: 28442759 PMCID: PMC5431365 DOI: 10.1038/s41598-016-0008-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/23/2016] [Indexed: 11/15/2022] Open
Abstract
Laboratory data interpretation for the assessment of complex biological systems remains a great challenge, as occurs in mitochondrial function research studies. The classical biochemical data interpretation of patients versus reference values may be insufficient, and in fact the current classifications of mitochondrial patients are still done on basis of probability criteria. We have developed and applied a mathematic agglomerative algorithm to search for correlations among the different biochemical variables of the mitochondrial respiratory chain in order to identify populations displaying correlation coefficients >0.95. We demonstrated that coenzyme Q10 may be a better biomarker of mitochondrial respiratory chain enzyme activities than the citrate synthase activity. Furthermore, the application of this algorithm may be useful to re-classify mitochondrial patients or to explore associations among other biochemical variables from different biological systems.
Collapse
Affiliation(s)
- D Yubero
- Institut de Recerca Pediàtrica-Hospital Sant Joan de Déu (IRP-HSJD), Barcelona, Spain
| | - A Adin
- Departamento de Estadística e I.O., Universidad Pública de Navarra, Pamplona, Navarre, Spain
- Institute for Advanced Materials (InaMat), Universidad Pública de Navarra, Pamplona, Navarre, Spain
| | - R Montero
- Institut de Recerca Pediàtrica-Hospital Sant Joan de Déu (IRP-HSJD), Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBERER), ISCIII, Barcelona, Spain
| | - C Jou
- Institut de Recerca Pediàtrica-Hospital Sant Joan de Déu (IRP-HSJD), Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBERER), ISCIII, Barcelona, Spain
| | - C Jiménez-Mallebrera
- Institut de Recerca Pediàtrica-Hospital Sant Joan de Déu (IRP-HSJD), Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBERER), ISCIII, Barcelona, Spain
| | - A García-Cazorla
- Institut de Recerca Pediàtrica-Hospital Sant Joan de Déu (IRP-HSJD), Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBERER), ISCIII, Barcelona, Spain
| | - A Nascimento
- Institut de Recerca Pediàtrica-Hospital Sant Joan de Déu (IRP-HSJD), Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBERER), ISCIII, Barcelona, Spain
| | - M M O'Callaghan
- Institut de Recerca Pediàtrica-Hospital Sant Joan de Déu (IRP-HSJD), Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBERER), ISCIII, Barcelona, Spain
| | - J Montoya
- Centro de Investigación Biomédica en Red (CIBERER), ISCIII, Barcelona, Spain
- Departamento de Bioquímica, Biología Celular y Molecular. Universidad de Zaragoza, Zaragoza, Spain
| | - L Gort
- Institut de Bioquímica Clínica, Corporació Sanitària Clinic, Barcelona, Spain
| | - P Navas
- Centro de Investigación Biomédica en Red (CIBERER), ISCIII, Barcelona, Spain
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Sevilla, Spain
| | - A Ribes
- Centro de Investigación Biomédica en Red (CIBERER), ISCIII, Barcelona, Spain
- Institut de Bioquímica Clínica, Corporació Sanitària Clinic, Barcelona, Spain
| | - M D Ugarte
- Departamento de Estadística e I.O., Universidad Pública de Navarra, Pamplona, Navarre, Spain
- Institute for Advanced Materials (InaMat), Universidad Pública de Navarra, Pamplona, Navarre, Spain
| | - R Artuch
- Institut de Recerca Pediàtrica-Hospital Sant Joan de Déu (IRP-HSJD), Barcelona, Spain.
- Centro de Investigación Biomédica en Red (CIBERER), ISCIII, Barcelona, Spain.
| |
Collapse
|
27
|
Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW. The genetics and pathology of mitochondrial disease. J Pathol 2016; 241:236-250. [PMID: 27659608 PMCID: PMC5215404 DOI: 10.1002/path.4809] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/30/2022]
Abstract
Mitochondria are double-membrane-bound organelles that are present in all nucleated eukaryotic cells and are responsible for the production of cellular energy in the form of ATP. Mitochondrial function is under dual genetic control - the 16.6-kb mitochondrial genome, with only 37 genes, and the nuclear genome, which encodes the remaining ∼1300 proteins of the mitoproteome. Mitochondrial dysfunction can arise because of defects in either mitochondrial DNA or nuclear mitochondrial genes, and can present in childhood or adulthood in association with vast clinical heterogeneity, with symptoms affecting a single organ or tissue, or multisystem involvement. There is no cure for mitochondrial disease for the vast majority of mitochondrial disease patients, and a genetic diagnosis is therefore crucial for genetic counselling and recurrence risk calculation, and can impact on the clinical management of affected patients. Next-generation sequencing strategies are proving pivotal in the discovery of new disease genes and the diagnosis of clinically affected patients; mutations in >250 genes have now been shown to cause mitochondrial disease, and the biochemical, histochemical, immunocytochemical and neuropathological characterization of these patients has led to improved diagnostic testing strategies and novel diagnostic techniques. This review focuses on the current genetic landscape associated with mitochondrial disease, before focusing on advances in studying associated mitochondrial pathology in two, clinically relevant organs - skeletal muscle and brain. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Charlotte L Alston
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Mariana C Rocha
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Nichola Z Lax
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
28
|
Ng YS, Alston CL, Diodato D, Morris AA, Ulrick N, Kmoch S, Houštěk J, Martinelli D, Haghighi A, Atiq M, Gamero MA, Garcia-Martinez E, Kratochvílová H, Santra S, Brown RM, Brown GK, Ragge N, Monavari A, Pysden K, Ravn K, Casey JP, Khan A, Chakrapani A, Vassallo G, Simons C, McKeever K, O'Sullivan S, Childs AM, Østergaard E, Vanderver A, Goldstein A, Vogt J, Taylor RW, McFarland R. The clinical, biochemical and genetic features associated with RMND1-related mitochondrial disease. J Med Genet 2016; 53:768-775. [PMID: 27412952 PMCID: PMC5264221 DOI: 10.1136/jmedgenet-2016-103910] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/11/2016] [Accepted: 05/26/2016] [Indexed: 12/16/2022]
Abstract
Background Mutations in the RMND1 (Required for Meiotic Nuclear Division protein 1) gene have recently been linked to infantile onset mitochondrial disease characterised by multiple mitochondrial respiratory chain defects. Methods We summarised the clinical, biochemical and molecular genetic investigation of an international cohort of affected individuals with RMND1 mutations. In addition, we reviewed all the previously published cases to determine the genotype–phenotype correlates and performed survival analysis to identify prognostic factors. Results We identified 14 new cases from 11 pedigrees that harbour recessive RMND1 mutations, including 6 novel variants: c.533C>A, p.(Thr178Lys); c.565C>T, p.(Gln189*); c.631G>A, p.(Val211Met); c.1303C>T, p.(Leu435Phe); c.830+1G>A and c.1317+1G>T. Together with all previously published cases (n=32), we show that congenital sensorineural deafness, hypotonia, developmental delay and lactic acidaemia are common clinical manifestations with disease onset under 2 years. Renal involvement is more prevalent than seizures (66% vs 44%). In addition, median survival time was longer in patients with renal involvement compared with those without renal disease (6 years vs 8 months, p=0.009). The neurological phenotype also appears milder in patients with renal involvement. Conclusions The clinical phenotypes and prognosis associated with RMND1 mutations are more heterogeneous than that were initially described. Regular monitoring of kidney function is imperative in the clinical practice in light of nephropathy being present in over 60% of cases. Furthermore, renal replacement therapy should be considered particularly in those patients with mild neurological manifestation as shown in our study that four recipients of kidney transplant demonstrate good clinical outcome to date.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Charlotte L Alston
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Daria Diodato
- Neuromuscular and Neurodegenerative Disease Unit, Children Research Hospital Bambino Gesù, Rome, Italy
| | - Andrew A Morris
- Department of Genetic Medicine, Central Manchester University Hospitals NHS Foundation Trust, St Mary's Hospital, Manchester, UK
| | - Nicole Ulrick
- Department of Neurology, George Washington University Medical School, Children's National Health System, Washington, DC, USA
| | - Stanislav Kmoch
- First Faculty of Medicine, Institute for Inherited Metabolic Disorders, Charles University in Prague, Prague, Czech Republic
| | - Josef Houštěk
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Diego Martinelli
- Division of Metabolism, Children Research Hospital Bambino Gesù, Rome, Italy
| | - Alireza Haghighi
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine and the Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Mehnaz Atiq
- Department of Pediatrics, Aga Khan University, Karachi, Pakistan
| | | | | | - Hana Kratochvílová
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Saikat Santra
- Department of Clinical Inherited Metabolic Disorders, Birmingham Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Ruth M Brown
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford, UK
| | - Garry K Brown
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford, UK
| | - Nicola Ragge
- Clinical Genetics Unit, West Midlands Regional Genetics Service, Birmingham Women's NHS Foundation Trust, Birmingham, UK.,Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Ahmad Monavari
- National Centre for Inherited Metabolic Disorders, Temple Street Children's University Hospital, Dublin, Ireland
| | - Karen Pysden
- Department of Paediatric Medicine, Leeds General Infirmary, Leeds, UK
| | - Kirstine Ravn
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jillian P Casey
- Department of Clinical Genetics, Temple Street Children's University Hospital, Dublin, Ireland
| | - Arif Khan
- Leicester Children's Hospital, Leicester Royal Infirmary, Leicester, UK
| | - Anupam Chakrapani
- Department of Metabolic Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Grace Vassallo
- Department of Paediatric Neurology, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Cas Simons
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - Karl McKeever
- Department of Paediatric Medicine, The Royal Belfast Hospital for Sick Children, Belfast, UK
| | - Siobhan O'Sullivan
- Department of Paediatric Medicine, The Royal Belfast Hospital for Sick Children, Belfast, UK
| | - Anne-Marie Childs
- Department of Paediatric Medicine, Leeds General Infirmary, Leeds, UK
| | - Elsebet Østergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Adeline Vanderver
- Department of Neurology, George Washington University Medical School, Children's National Health System, Washington, DC, USA
| | - Amy Goldstein
- Division of Child Neurology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Julie Vogt
- Department of Medical and Molecular Genetics, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Robert McFarland
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
29
|
Taivassalo T, Hussain SN. Contribution of the Mitochondria to Locomotor Muscle Dysfunction in Patients With COPD. Chest 2016; 149:1302-12. [DOI: 10.1016/j.chest.2015.11.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/09/2015] [Accepted: 11/24/2015] [Indexed: 11/29/2022] Open
|
30
|
|
31
|
Konokhova Y, Spendiff S, Jagoe RT, Aare S, Kapchinsky S, MacMillan NJ, Rozakis P, Picard M, Aubertin-Leheudre M, Pion CH, Bourbeau J, Hepple RT, Taivassalo T. Failed upregulation of TFAM protein and mitochondrial DNA in oxidatively deficient fibers of chronic obstructive pulmonary disease locomotor muscle. Skelet Muscle 2016; 6:10. [PMID: 26893822 PMCID: PMC4758107 DOI: 10.1186/s13395-016-0083-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/06/2016] [Indexed: 12/29/2023] Open
Abstract
Background Low mitochondrial content and oxidative capacity are well-established features of locomotor muscle dysfunction, a prevalent and debilitating systemic occurrence in patients with chronic obstructive pulmonary disease (COPD). Although the exact cause is not firmly established, physical inactivity and oxidative stress are among the proposed underlying mechanisms. Here, we assess the impact of COPD pathophysiology on mitochondrial DNA (mtDNA) integrity, biogenesis, and cellular oxidative capacity in locomotor muscle of COPD patients and healthy controls. We hypothesized that the high oxidative stress environment of COPD muscle would yield a higher presence of deletion-containing mtDNA and oxidative-deficient fibers and impaired capacity for mitochondrial biogenesis. Methods Vastus lateralis biopsies were analyzed from 29 COPD patients and 19 healthy age-matched controls for the presence of mtDNA deletions, levels of oxidatively damaged DNA, mtDNA copy number, and regulators of mitochondrial biogenesis as well the proportion of oxidative-deficient fibers (detected histologically as cytochrome c oxidase-deficient, succinate dehydrogenase positive (COX−/SDH+ )). Additionally, mtDNA copy number and mitochondrial transcription factor A (TFAM) content were measured in laser captured COX−SDH+ and normal single fibers of both COPD and controls. Results Compared to controls, COPD muscle exhibited significantly higher levels of oxidatively damaged DNA (8-hydroxy-2-deoxyguanosine (8-OHdG) levels = 387 ± 41 vs. 258 ± 21 pg/mL) and higher prevalence of mtDNA deletions (74 vs. 15 % of subjects in each group), which was accompanied by a higher abundance of oxidative-deficient fibers (8.0 ± 2.1 vs. 1.5 ± 0.4 %). Interestingly, COPD patients with mtDNA deletions had higher levels of 8-OHdG (457 ± 46 pg/mL) and longer smoking history (66.3 ± 7.5 years) than patients without deletions (197 ± 29 pg/mL; 38.0 ± 7.3 years). Transcript levels of regulators of mitochondrial biogenesis and oxidative metabolism were upregulated in COPD compared to controls. However, single fiber analyses of COX−/SDH+ and normal fibers exposed an impairment in mitochondrial biogenesis in COPD; in healthy controls, we detected a marked upregulation of mtDNA copy number and TFAM protein in COX−/SDH+ compared to normal fibers, reflecting the expected compensatory attempt by the oxidative-deficient cells to increase energy levels; in contrast, they were similar between COX−/SDH+ and normal fibers in COPD patients. Taken together, these findings suggest that although the signaling factors regulating mitochondrial biogenesis are increased in COPD muscle, impairment in the translation of these signals prevents the restoration of normal oxidative capacity. Conclusions Single fiber analyses provide the first substantive evidence that low muscle oxidative capacity in COPD cannot be explained by physical inactivity alone and is likely driven by the disease pathophysiology.
Collapse
Affiliation(s)
- Yana Konokhova
- Department of Kinesiology, McGill University, 475 Pine Ave West, Room 222, Montreal, Quebec H2W1S4 Canada.,Department of Critical Care Medicine, McGill University Health Center, Montreal, Canada
| | - Sally Spendiff
- Department of Kinesiology, McGill University, 475 Pine Ave West, Room 222, Montreal, Quebec H2W1S4 Canada.,Department of Critical Care Medicine, McGill University Health Center, Montreal, Canada
| | - R Thomas Jagoe
- Departments of Oncology and Medicine, McGill University, Montreal, Canada
| | - Sudhakar Aare
- Department of Critical Care Medicine, McGill University Health Center, Montreal, Canada
| | - Sophia Kapchinsky
- Department of Kinesiology, McGill University, 475 Pine Ave West, Room 222, Montreal, Quebec H2W1S4 Canada
| | - Norah J MacMillan
- Department of Kinesiology, McGill University, 475 Pine Ave West, Room 222, Montreal, Quebec H2W1S4 Canada
| | - Paul Rozakis
- Department of Kinesiology, McGill University, 475 Pine Ave West, Room 222, Montreal, Quebec H2W1S4 Canada
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Department of Neurology, and Columbia Translational Neuroscience Initiative, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY USA
| | | | - Charlotte H Pion
- Département de Kinanthropologie, Université du Québec à Montréal, Montreal, Canada
| | - Jean Bourbeau
- Respiratory Epidemiology and Clinical Research Unit, Center for Innovative Medicine (CIM), McGill University Health Centre, Montreal, Canada
| | - Russell T Hepple
- Department of Kinesiology, McGill University, 475 Pine Ave West, Room 222, Montreal, Quebec H2W1S4 Canada.,Department of Critical Care Medicine, McGill University Health Center, Montreal, Canada.,Meakins Christie Laboratories, McGill University, Montreal, Canada
| | - Tanja Taivassalo
- Department of Kinesiology, McGill University, 475 Pine Ave West, Room 222, Montreal, Quebec H2W1S4 Canada.,Respiratory Epidemiology and Clinical Research Unit, Center for Innovative Medicine (CIM), McGill University Health Centre, Montreal, Canada
| |
Collapse
|
32
|
Khan NA, Govindaraj P, Meena AK, Thangaraj K. Mitochondrial disorders: challenges in diagnosis & treatment. Indian J Med Res 2016; 141:13-26. [PMID: 25857492 PMCID: PMC4405934 DOI: 10.4103/0971-5916.154489] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial dysfunctions are known to be responsible for a number of heterogenous clinical presentations with multi-systemic involvement. Impaired oxidative phosphorylation leading to a decrease in cellular energy (ATP) production is the most important cause underlying these disorders. Despite significant progress made in the field of mitochondrial medicine during the last two decades, the molecular mechanisms underlying these disorders are not fully understood. Since the identification of first mitochondrial DNA (mtDNA) mutation in 1988, there has been an exponential rise in the identification of mtDNA and nuclear DNA mutations that are responsible for mitochondrial dysfunction and disease. Genetic complexity together with ever widening clinical spectrum associated with mitochondrial dysfunction poses a major challenge in diagnosis and treatment. Effective therapy has remained elusive till date and is mostly efficient in relieving symptoms. In this review, we discuss the important clinical and genetic features of mitochondrials disorders with special emphasis on diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular & Molecular Biology, Nizam's Institute of Medical Sciences, Hyderabad, India
| |
Collapse
|
33
|
Ng YS, Turnbull DM. Mitochondrial disease: genetics and management. J Neurol 2016; 263:179-91. [PMID: 26315846 PMCID: PMC4723631 DOI: 10.1007/s00415-015-7884-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/18/2015] [Accepted: 08/18/2015] [Indexed: 12/14/2022]
Abstract
Mitochondrial disease is one of the most common groups of genetic diseases with a minimum prevalence of greater than 1 in 5000 in adults. Whilst multi-system involvement is often evident, neurological manifestation is the principal presentation in most cases. The multiple clinical phenotypes and the involvement of both the mitochondrial and nuclear genome make mitochondrial disease particularly challenging for the clinician. In this review article we cover mitochondrial genetics and common neurological presentations associated with adult mitochondrial disease. In addition, specific and supportive treatments are discussed.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Doug M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
34
|
Rocha MC, Grady JP, Grünewald A, Vincent A, Dobson PF, Taylor RW, Turnbull DM, Rygiel KA. A novel immunofluorescent assay to investigate oxidative phosphorylation deficiency in mitochondrial myopathy: understanding mechanisms and improving diagnosis. Sci Rep 2015; 5:15037. [PMID: 26469001 PMCID: PMC4606788 DOI: 10.1038/srep15037] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/04/2015] [Indexed: 02/07/2023] Open
Abstract
Oxidative phosphorylation defects in human tissues are often challenging to quantify due to a mosaic pattern of deficiency. Biochemical assays are difficult to interpret due to the varying enzyme deficiency levels found in individual cells. Histochemical analysis allows semi-quantitative assessment of complex II and complex IV activities, but there is no validated histochemical assay to assess complex I activity which is frequently affected in mitochondrial pathology. To help improve the diagnosis of mitochondrial disease and to study the mechanisms underlying mitochondrial abnormalities in disease, we have developed a quadruple immunofluorescent technique enabling the quantification of key respiratory chain subunits of complexes I and IV, together with an indicator of mitochondrial mass and a cell membrane marker. This assay gives precise and objective quantification of protein abundance in large numbers of individual muscle fibres. By assessing muscle biopsies from subjects with a range of different mitochondrial genetic defects we have demonstrated that specific genotypes exhibit distinct biochemical signatures in muscle, providing evidence for the diagnostic use of the technique, as well as insight into the underlying molecular pathology. Stringent testing for reproducibility and sensitivity confirms the potential value of the technique for mechanistic studies of disease and in the evaluation of therapeutic approaches.
Collapse
Affiliation(s)
- Mariana C Rocha
- Newcastle University Centre for Ageing and Vitality, Institute for Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom.,Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John P Grady
- Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anne Grünewald
- Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Amy Vincent
- Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Philip F Dobson
- Newcastle University Centre for Ageing and Vitality, Institute for Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Doug M Turnbull
- Newcastle University Centre for Ageing and Vitality, Institute for Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom.,Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Karolina A Rygiel
- Newcastle University Centre for Ageing and Vitality, Institute for Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom.,Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
35
|
Niklowitz P, Scherer J, Döring F, Paulussen M, Menke T. Oxidized proportion of muscle coenzyme Q10 increases with age in healthy children. Pediatr Res 2015; 78:365-70. [PMID: 26107394 DOI: 10.1038/pr.2015.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/07/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Coenzyme Q10 (CoQ10) is synthesized in most human tissues, with high concentration in the skeletal muscle. CoQ10 functions in the mitochondrial respiratory chain and serves as a potent liphophilic antioxidant in membranes. CoQ10 deficiency impairs mitochondrial ATP synthesis and increases oxidative stress. It has been suggested that plasma CoQ10 status is not a robust proxy for the diagnosis of CoQ10 deficiency. METHODS We determined the concentration and redox-status of CoQ10 in plasma and muscle tissue from 140 healthy children (0.8-15.3 y) by high-performance liquid chromatography (HPLC) with electrochemical detection. RESULTS There was no correlation between CoQ10 concentration or redox status between plasma and muscle tissue. Lipid-related CoQ10 plasma concentrations showed a negative correlation with age (Spearman's, P ≤ 0.02), but there was no significant age-related correlation for muscle concentration. In muscle tissue, we found a distinct shift in the redox status in favor of the oxidized proportion with increasing age (Spearman's, P ≤ 0.00001). Reference values for muscle CoQ10 concentration (40.5 ± 12.2 pmol/mg wet tissue) and CoQ10 redox status (46.8 ± 6.8% oxidized within total) were established for healthy children. CONCLUSION The age-related redox shift in muscle tissue suggests changes in antioxidative defense during childhood. The reference values established here provide a necessary prerequisite for diagnosing early CoQ10 deficiency.
Collapse
Affiliation(s)
- Petra Niklowitz
- Children's Hospital Datteln, Witten-Herdecke University, Datteln, Germany
| | - Jürgen Scherer
- Children's Hospital Datteln, Witten-Herdecke University, Datteln, Germany
| | - Frank Döring
- Institute of Human Nutrition and Food Science, Molecular Prevention, Christian Albrechts University, Kiel, Germany
| | - Michael Paulussen
- Children's Hospital Datteln, Witten-Herdecke University, Datteln, Germany
| | - Thomas Menke
- Children's Hospital Datteln, Witten-Herdecke University, Datteln, Germany
| |
Collapse
|
36
|
Olpin SE, Murphy E, Kirk RJ, Taylor RW, Quinlivan R. The investigation and management of metabolic myopathies. J Clin Pathol 2015; 68:410-7. [DOI: 10.1136/jclinpath-2014-202808] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/25/2015] [Indexed: 01/19/2023]
Abstract
Metabolic myopathies (MM) are rare inherited primary muscle disorders that are mainly due to abnormalities of muscle energy metabolism resulting in skeletal muscle dysfunction. These diseases include disorders of fatty acid oxidation, glyco(geno)lytic muscle disorders and mitochondrial respiratory chain (MRC) disease. Clinically these disorders present with a range of symptoms including infantile hypotonia, myalgia/exercise tolerance, chronic or acute muscle weakness, cramps/spasms/stiffness or episodic acute rhabdomyolysis. The precipitant may be fasting, infection, general anaesthesia, heat/cold or most commonly, exercise. However, the differential diagnosis includes a wide range of both acquired and inherited conditions and these include exposure to drugs/toxins, inflammatory myopathies, dystrophies and channelopathies. Streamlining of existing diagnostic protocols has now become a realistic prospect given the availability of second-generation sequencing. A diagnostic pathway using a ‘rhabdomyolysis’ gene panel at an early stage of the diagnostic process is proposed. Following detailed clinical evaluation and first-line investigations, some patients will be identified as candidates for McArdle disease/glycogen storage disease type V or MRC disease and these will be referred directly to the specialised services. However, for the majority of patients, second-line investigation is best undertaken through next-generation sequencing using a ‘rhabdomyolysis’ gene panel. Following molecular analysis and careful evaluation of the findings, some patients will receive a clear diagnosis. Further functional or specific targeted testing may be required in other patients to evaluate the significance of uncertain/equivocal findings. For patients with no clear diagnosis, further investigations will be required through a specialist centre.
Collapse
|
37
|
|
38
|
Abstract
Imaging of central-nervous-system (CNS) abnormalities is important in patients with mitochondrial disorders (MCDs) since the CNS is the organ second most frequently affected in MCDs and some of them are potentially treatable. Clinically relevant imaging techniques for visualization of CNS abnormalities in MCDs are computed tomography, magnetic resonance imaging, and MR-spectroscopy. The CNS abnormalities in MCDs visualized by imaging techniques include stroke-like lesions with cytotoxic or vasogenic edema, laminar cortical necrosis, basal ganglia necrosis, focal or diffuse white matter lesions, focal or diffuse atrophy, intra-cerebral calcifications, cysts, lacunas, hypometabolisation, lactacidosis, hemorrhages, cerebral hypo- or hyperperfusion, intra-cerebral artery stenoses, or moyamoya syndrome. The CNS lesions may proceed with or without clinical manifestations, why neuroimaging should be routinely carried out in all MCDs to assess the degree of CNS involvement. Some of these lesions may remain unchanged for years, some may show contiguous spread and progression, but some may even disappear, spontaneously or in response to medication. Dynamics of Stroke-like lesions may be positively influenced by L-arginine, dichloracetate, steroids, edavarone, or antiepileptics. Symptomatic treatment of CNS abnormalities in MCD patients may positively influence their outcome.
Collapse
|
39
|
Van Driessche K, Ducatelle R, Chiers K, Van Coster R, van der Kolk JH, van der Kolk H. Ultrastructural mitochondrial alterations in equine myopathies of unknown origin. Vet Q 2014; 35:2-8. [PMID: 25365353 DOI: 10.1080/01652176.2015.983681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Very few mitochondrial myopathies have been described in horses. OBJECTIVE To examine the ultrastructure of muscle mitochondria in equine cases of myopathy of unknown origin. MATERIALS & METHODS Biopsies of vastus lateralis of the Musculus quadriceps femoris were taken predominantly immediately post mortem and processed for transmission electron microscopy. As a result, electron micrographs of 90 horses in total were available for analysis comprising 4 control horses, 16 horses suffering from myopathy and 70 otherwise diseased horses. RESULTS Following a thorough clinical and laboratory work-up, four out of five patients that did not fit into the usual algorithm to detect known causes of myopathy showed ultrastructural mitochondrial alterations. Small mitochondria with zones with complete disruption of cristae associated with lactic acidemia were detected in a 17-year-old pony mare, extremely long and slender mitochondria with longitudinal cristae in a 5-year-old Quarter horse stallion, a mixture of irregular extremely large mitochondria (measuring 2500 by 800 nm) next to smaller ones in an 8-year-old Hanoverian mare and round mitochondria with only few cristae in a 11-year-old pony gelding. It remains uncertain whether the subsarcolemmal mitochondrial accumulations observed in the fifth patient have any pathological significance. CONCLUSIONS Ultrastructural alterations in mitochondria were detected in at least four horses. To conclude that these are due to mitochondrial dysfuntions, biochemical tests should be performed. PRACTICAL APPLICATIONS The possibility of a mitochondrial myopathy should be included in the differential diagnosis of muscle weakness.
Collapse
Affiliation(s)
- K Van Driessche
- a Department of Pathology, Bacteriology and Avian Medicine , Faculty of Veterinary Medicine , Ghent University , Merelbeke , Belgium
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
PURPOSE To report a case of blepharoptosis in a patient with human immunodeficiency virus (HIV) on highly active antiretroviral therapy (HAART) with biopsy confirmed mitochondrial deletions consistent with HAART related myopathy. METHODS A 51-year-old man with HIV demonstrated visually significant ptosis after being on HAART therapy for over 20 years. RESULTS Muscle tissue biopsy following blepharoplasty was analyzed and found to have significant mitochondrial deletions. CONCLUSIONS This patient represents a case of isolated ptosis consistent with acquired myopathy secondary to mitochondrial dysfunction without systemic manifestations otherwise seen in inherited mitochondrial disorders.
Collapse
|
41
|
Taylor RW, Pyle A, Griffin H, Blakely EL, Duff J, He L, Smertenko T, Alston CL, Neeve VC, Best A, Yarham JW, Kirschner J, Schara U, Talim B, Topaloglu H, Baric I, Holinski-Feder E, Abicht A, Czermin B, Kleinle S, Morris AA, Vassallo G, Gorman GS, Ramesh V, Turnbull DM, Santibanez-Koref M, McFarland R, Horvath R, Chinnery PF. Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA 2014; 312:68-77. [PMID: 25058219 PMCID: PMC6558267 DOI: 10.1001/jama.2014.7184] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE Mitochondrial disorders have emerged as a common cause of inherited disease, but their diagnosis remains challenging. Multiple respiratory chain complex defects are particularly difficult to diagnose at the molecular level because of the massive number of nuclear genes potentially involved in intramitochondrial protein synthesis, with many not yet linked to human disease. OBJECTIVE To determine the molecular basis of multiple respiratory chain complex deficiencies. DESIGN, SETTING, AND PARTICIPANTS We studied 53 patients referred to 2 national centers in the United Kingdom and Germany between 2005 and 2012. All had biochemical evidence of multiple respiratory chain complex defects but no primary pathogenic mitochondrial DNA mutation. Whole-exome sequencing was performed using 62-Mb exome enrichment, followed by variant prioritization using bioinformatic prediction tools, variant validation by Sanger sequencing, and segregation of the variant with the disease phenotype in the family. RESULTS Presumptive causal variants were identified in 28 patients (53%; 95% CI, 39%-67%) and possible causal variants were identified in 4 (8%; 95% CI, 2%-18%). Together these accounted for 32 patients (60% 95% CI, 46%-74%) and involved 18 different genes. These included recurrent mutations in RMND1, AARS2, and MTO1, each on a haplotype background consistent with a shared founder allele, and potential novel mutations in 4 possible mitochondrial disease genes (VARS2, GARS, FLAD1, and PTCD1). Distinguishing clinical features included deafness and renal involvement associated with RMND1 and cardiomyopathy with AARS2 and MTO1. However, atypical clinical features were present in some patients, including normal liver function and Leigh syndrome (subacute necrotizing encephalomyelopathy) seen in association with TRMU mutations and no cardiomyopathy with founder SCO2 mutations. It was not possible to confidently identify the underlying genetic basis in 21 patients (40%; 95% CI, 26%-54%). CONCLUSIONS AND RELEVANCE Exome sequencing enhances the ability to identify potential nuclear gene mutations in patients with biochemically defined defects affecting multiple mitochondrial respiratory chain complexes. Additional study is required in independent patient populations to determine the utility of this approach in comparison with traditional diagnostic methods.
Collapse
Affiliation(s)
- Robert W. Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Angela Pyle
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Helen Griffin
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Emma L. Blakely
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Jennifer Duff
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Langping He
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Tania Smertenko
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Charlotte L. Alston
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Vivienne C. Neeve
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Andrew Best
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - John W. Yarham
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Janbernd Kirschner
- Division of Neuropediatrics and Muscle Disorders, University Medical Center Freiburg, Germany
| | - Ulrike Schara
- Department of Neuropediatrics, University of Essen, Essen, Germany
| | - Beril Talim
- Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Haluk Topaloglu
- Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Ivo Baric
- Department of Paediatrics, University Hospital Center Zagreb & University of Zagreb,School of Medicine, Zagreb, Croatia
| | | | | | | | | | - Andrew A.M. Morris
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, M13 9WL
| | - Grace Vassallo
- Department of Paediatric Neurology, Central Manchester University Hospitals NHS Foundation Trust, Manchester, M13 9WL
| | - Grainne S. Gorman
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Venkateswaran Ramesh
- Department of Paediatric Neurology, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, NE1 4LP
| | - Douglass M. Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Mauro Santibanez-Koref
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Robert McFarland
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Department of Paediatric Neurology, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, NE1 4LP
| | - Rita Horvath
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Patrick F. Chinnery
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
42
|
Pfeffer G, Gorman GS, Griffin H, Kurzawa-Akanbi M, Blakely EL, Wilson I, Sitarz K, Moore D, Murphy JL, Alston CL, Pyle A, Coxhead J, Payne B, Gorrie GH, Longman C, Hadjivassiliou M, McConville J, Dick D, Imam I, Hilton D, Norwood F, Baker MR, Jaiser SR, Yu-Wai-Man P, Farrell M, McCarthy A, Lynch T, McFarland R, Schaefer AM, Turnbull DM, Horvath R, Taylor RW, Chinnery PF. Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance. Brain 2014; 137:1323-36. [PMID: 24727571 PMCID: PMC3999722 DOI: 10.1093/brain/awu060] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/12/2014] [Accepted: 01/30/2014] [Indexed: 12/12/2022] Open
Abstract
Despite being a canonical presenting feature of mitochondrial disease, the genetic basis of progressive external ophthalmoplegia remains unknown in a large proportion of patients. Here we show that mutations in SPG7 are a novel cause of progressive external ophthalmoplegia associated with multiple mitochondrial DNA deletions. After excluding known causes, whole exome sequencing, targeted Sanger sequencing and multiplex ligation-dependent probe amplification analysis were used to study 68 adult patients with progressive external ophthalmoplegia either with or without multiple mitochondrial DNA deletions in skeletal muscle. Nine patients (eight probands) were found to carry compound heterozygous SPG7 mutations, including three novel mutations: two missense mutations c.2221G>A; p.(Glu741Lys), c.2224G>A; p.(Asp742Asn), a truncating mutation c.861dupT; p.Asn288*, and seven previously reported mutations. We identified a further six patients with single heterozygous mutations in SPG7, including two further novel mutations: c.184-3C>T (predicted to remove a splice site before exon 2) and c.1067C>T; p.(Thr356Met). The clinical phenotype typically developed in mid-adult life with either progressive external ophthalmoplegia/ptosis and spastic ataxia, or a progressive ataxic disorder. Dysphagia and proximal myopathy were common, but urinary symptoms were rare, despite the spasticity. Functional studies included transcript analysis, proteomics, mitochondrial network analysis, single fibre mitochondrial DNA analysis and deep re-sequencing of mitochondrial DNA. SPG7 mutations caused increased mitochondrial biogenesis in patient muscle, and mitochondrial fusion in patient fibroblasts associated with the clonal expansion of mitochondrial DNA mutations. In conclusion, the SPG7 gene should be screened in patients in whom a disorder of mitochondrial DNA maintenance is suspected when spastic ataxia is prominent. The complex neurological phenotype is likely a result of the clonal expansion of secondary mitochondrial DNA mutations modulating the phenotype, driven by compensatory mitochondrial biogenesis.
Collapse
Affiliation(s)
- Gerald Pfeffer
- 1 Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Thomas MM, Wang DC, D'Souza DM, Krause MP, Layne AS, Criswell DS, O'Neill HM, Connor MK, Anderson JE, Kemp BE, Steinberg GR, Hawke TJ. Muscle-specific AMPK β1β2-null mice display a myopathy due to loss of capillary density in nonpostural muscles. FASEB J 2014; 28:2098-107. [PMID: 24522207 DOI: 10.1096/fj.13-238972] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AMP-activated protein kinase (AMPK) is a master regulator of metabolism. While muscle-specific AMPK β1β2 double-knockout (β1β2M-KO) mice display alterations in metabolic and mitochondrial capacity, their severe exercise intolerance suggested a secondary contributor to the observed phenotype. We find that tibialis anterior (TA), but not soleus, muscles of sedentary β1β2M-KO mice display a significant myopathy (decreased myofiber areas, increased split and necrotic myofibers, and increased centrally nucleated myofibers. A mitochondrial- and fiber-type-specific etiology to the myopathy was ruled out. However, β1β2M-KO TA muscles displayed significant (P<0.05) increases in platelet aggregation and apoptosis within myofibers and surrounding interstitium (P<0.05). These changes correlated with a 45% decrease in capillary density (P<0.05). We hypothesized that the β1β2M-KO myopathy in resting muscle resulted from impaired AMPK-nNOSμ signaling, causing increased platelet aggregation, impaired vasodilation, and, ultimately, ischemic injury. Consistent with this hypothesis, AMPK-specific phosphorylation (Ser1446) of nNOSμ was decreased in β1β2M-KO compared to wild-type (WT) mice. The AMPK-nNOSμ relationship was further demonstrated by administration of 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) to β1β2-MKO muscles and C2C12 myotubes. AICAR significantly increased nNOSμ phosphorylation and nitric oxide production (P<0.05) within minutes of administration in WT muscles and C2C12 myotubes but not in β1β2M-KO muscles. These findings highlight the importance of the AMPK-nNOSμ pathway in resting skeletal muscle.
Collapse
Affiliation(s)
- Melissa M Thomas
- 2Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St. West, Hamilton, ON L8S4L8, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Augmenter of liver regeneration, a protective factor against ROS-induced oxidative damage in muscle tissue of mitochondrial myopathy affected patients. Int J Biochem Cell Biol 2013; 45:2410-9. [DOI: 10.1016/j.biocel.2013.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 06/24/2013] [Accepted: 07/09/2013] [Indexed: 01/21/2023]
|
45
|
Schaefer AM, Walker M, Turnbull DM, Taylor RW. Endocrine disorders in mitochondrial disease. Mol Cell Endocrinol 2013; 379:2-11. [PMID: 23769710 PMCID: PMC3820028 DOI: 10.1016/j.mce.2013.06.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/30/2013] [Accepted: 06/06/2013] [Indexed: 02/09/2023]
Abstract
Endocrine dysfunction in mitochondrial disease is commonplace, but predominantly restricted to disease of the endocrine pancreas resulting in diabetes mellitus. Other endocrine manifestations occur, but are relatively rare by comparison. In mitochondrial disease, neuromuscular symptoms often dominate the clinical phenotype, but it is of paramount importance to appreciate the multi-system nature of the disease, of which endocrine dysfunction may be a part. The numerous phenotypes attributable to pathogenic mutations in both the mitochondrial (mtDNA) and nuclear DNA creates a complex and heterogeneous catalogue of disease which can be difficult to navigate for novices and experts alike. In this article we provide an overview of the endocrine disorders associated with mitochondrial disease, the way in which the underlying mitochondrial disorder influences the clinical presentation, and how these factors influence subsequent management.
Collapse
Affiliation(s)
- Andrew M. Schaefer
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
- Corresponding authors. Address: Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK. Tel.: +44 1912223685.
| | - Mark Walker
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Douglass M. Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| | - Robert W. Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
- Corresponding authors. Address: Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK. Tel.: +44 1912223685.
| |
Collapse
|
46
|
Benditt JO, Boitano LJ. Pulmonary issues in patients with chronic neuromuscular disease. Am J Respir Crit Care Med 2013; 187:1046-55. [PMID: 23590262 DOI: 10.1164/rccm.201210-1804ci] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Patients with chronic neuromuscular diseases such as spinal cord injury, amyotrophic lateral sclerosis, and muscular dystrophies experience respiratory complications that are cared for by the respiratory practitioner. An organized anatomical approach for evaluation and treatment is helpful to provide appropriate clinical care. Effective noninvasive strategies for management of hypoventilation, sleep-disordered breathing, and cough insufficiency are available for these patients.
Collapse
|
47
|
Spendiff S, Reza M, Murphy JL, Gorman G, Blakely EL, Taylor RW, Horvath R, Campbell G, Newman J, Lochmüller H, Turnbull DM. Mitochondrial DNA deletions in muscle satellite cells: implications for therapies. Hum Mol Genet 2013; 22:4739-47. [PMID: 23847047 PMCID: PMC3820134 DOI: 10.1093/hmg/ddt327] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Progressive myopathy is a major clinical feature of patients with mitochondrial DNA (mtDNA) disease. There is limited treatment available for these patients although exercise and other approaches to activate muscle stem cells (satellite cells) have been proposed. The majority of mtDNA defects are heteroplasmic (a mixture of mutated and wild-type mtDNA present within the muscle) with high levels of mutated mtDNA and low levels of wild-type mtDNA associated with more severe disease. The culture of satellite cell-derived myoblasts often reveals no evidence of the original mtDNA mutation although it is not known if this is lost by selection or simply not present in these cells. We have explored if the mtDNA mutation is present in the satellite cells in one of the commonest genotypes associated with mitochondrial myopathies (patients with single, large-scale mtDNA deletions). Analysis of satellite cells from eight patients showed that the level of mtDNA mutation in the satellite cells is the same as in the mature muscle but is most often subsequently lost during culture. We show that there are two periods of selection against the mutated form, one early on possibly during satellite cell activation and the other during the rapid replication phase of myoblast culture. Our data suggest that the mutations are also lost during rapid replication in vivo, implying that strategies to activate satellite cells remain a viable treatment for mitochondrial myopathies in specific patient groups.
Collapse
Affiliation(s)
- Sally Spendiff
- Wellcome Trust Centre for Mitochondrial Research, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sofou K, Steneryd K, Wiklund LM, Tulinius M, Darin N. MRI of the brain in childhood-onset mitochondrial disorders with central nervous system involvement. Mitochondrion 2013; 13:364-71. [DOI: 10.1016/j.mito.2013.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 04/10/2013] [Accepted: 04/18/2013] [Indexed: 11/28/2022]
|
49
|
Figueira TR, Barros MH, Camargo AA, Castilho RF, Ferreira JCB, Kowaltowski AJ, Sluse FE, Souza-Pinto NC, Vercesi AE. Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health. Antioxid Redox Signal 2013; 18:2029-74. [PMID: 23244576 DOI: 10.1089/ars.2012.4729] [Citation(s) in RCA: 326] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitochondrially generated reactive oxygen species are involved in a myriad of signaling and damaging pathways in different tissues. In addition, mitochondria are an important target of reactive oxygen and nitrogen species. Here, we discuss basic mechanisms of mitochondrial oxidant generation and removal and the main factors affecting mitochondrial redox balance. We also discuss the interaction between mitochondrial reactive oxygen and nitrogen species, and the involvement of these oxidants in mitochondrial diseases, cancer, neurological, and cardiovascular disorders.
Collapse
Affiliation(s)
- Tiago R Figueira
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Determination of coenzyme Q10 tissue status via high-performance liquid chromatography with electrochemical detection in swine tissues (Sus scrofa domestica). Anal Biochem 2013; 437:88-94. [DOI: 10.1016/j.ab.2013.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/07/2013] [Accepted: 02/13/2013] [Indexed: 11/20/2022]
|