1
|
Zídková J, Kramářová T, Kopčilová J, Réblová K, Haberlová J, Mazanec R, Voháňka S, Gřegořová A, Langová M, Honzík T, Šoukalová J, Ošlejšková H, Solařová P, Vyhnálková E, Fajkusová L. Genetic findings in Czech patients with limb girdle muscular dystrophy. Clin Genet 2023; 104:542-553. [PMID: 37526466 DOI: 10.1111/cge.14407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023]
Abstract
Limb girdle muscular dystrophies (LGMD) are a genetically heterogeneous group of muscular dystrophies. The study presents an overview of molecular characteristics of a large cohort of LGMD patients who are representative of the Czech LGMD population. We present 226 LGMD probands in which 433 mutant alleles carrying 157 different variants with a supposed pathogenic effect were identified. Fifty-four variants have been described only in the Czech LGMD population so far. LGMD R1 caplain3-related is the most frequent subtype of LGMD involving 53.1% of patients with genetically confirmed LGMD, followed by LGMD R9 FKRP-related (11.1%), and LGMD R12 anoctamin5-related (7.1%). If we consider identified variants, then all but five were small-scale variants. One large gene deletion was identified in the LAMA2 gene and two deletions in each of CAPN3 and SGCG. We performed comparison our result with other published studies. The results obtained in the Czech LGMD population clearly differ from the outcome of other LGMD populations in two aspects-we have a more significant proportion of patients with LGMD R1 calpain3-related and a smaller proportion of LGMD R2 dysferlin-related.
Collapse
Affiliation(s)
- Jana Zídková
- Centre of Molecular Biology and Genetics, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Tereza Kramářová
- Centre of Molecular Biology and Genetics, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Johana Kopčilová
- Centre of Molecular Biology and Genetics, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Kamila Réblová
- Centre of Molecular Biology and Genetics, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Jana Haberlová
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Praha, Czech Republic
| | - Radim Mazanec
- Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Stanislav Voháňka
- Department of Neurology, University Hospital Brno, Brno, Czech Republic
| | - Andrea Gřegořová
- Department of Medical Genetics, University Hospital Ostrava, Ostrava, Czech Republic
| | - Martina Langová
- Department of Medical Genetics, Thomayer University Hospital, Praha, Czech Republic
| | - Tomáš Honzík
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Praha, Czech Republic
| | - Jana Šoukalová
- Institute of Medical Genetics and Genomics, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Hana Ošlejšková
- Department of Child Neurology, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Pavla Solařová
- Department of Medical Genetics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Emílie Vyhnálková
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Lenka Fajkusová
- Centre of Molecular Biology and Genetics, University Hospital Brno and Masaryk University, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Ivanova A, Smirnikhina S, Lavrov A. Dysferlinopathies: clinical and genetic variability. Clin Genet 2022; 102:465-473. [PMID: 36029111 DOI: 10.1111/cge.14216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Abstract
Dysferlinopathies are a clinically heterogeneous group of diseases caused by mutations in the DYSF gene encoding the dysferlin protein. Dysferlin is mostly expressed in muscle tissues and is localized in the sarcolemma, where it performs its main function of resealing and maintaining of the integrity of the cell membrane. At least four forms of dysferlinopathies have been described: Miyoshi myopathy, limb-girdle muscular dystrophy type 2B, distal myopathy with anterior tibial onset, and isolated hyperCKemia. Here we review the clinical features of different forms of dysferlinopathies and attempt to identify genotype-phenotype correlations. Because of the great clinical variability and rarety of the disease and mutations little is known, how different phenotypes develop as a result of different mutations. However missense mutations seem to induce more severe disease than LoF, which is typical for many muscle dystrophies. The role of several specific mutations and possible gene modifiers is also discussed in the paper.
Collapse
Affiliation(s)
- Alisa Ivanova
- Research Centre for Medical Genetics, Moskvorechye 1, Moscow, Russia
| | | | - Alexander Lavrov
- Research Centre for Medical Genetics, Moskvorechye 1, Moscow, Russia
| |
Collapse
|
3
|
Chen L, Tang F, Gao H, Zhang X, Li X, Xiao D. CAPN3: A muscle‑specific calpain with an important role in the pathogenesis of diseases (Review). Int J Mol Med 2021; 48:203. [PMID: 34549305 PMCID: PMC8480384 DOI: 10.3892/ijmm.2021.5036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/10/2021] [Indexed: 01/14/2023] Open
Abstract
Calpains are a family of Ca2+‑dependent cysteine proteases that participate in various cellular processes. Calpain 3 (CAPN3) is a classical calpain with unique N‑terminus and insertion sequence 1 and 2 domains that confer characteristics such as rapid autolysis, Ca2+‑independent activation and Na+ activation of the protease. CAPN3 is the only muscle‑specific calpain that has important roles in the promotion of calcium release from skeletal muscle fibers, calcium uptake of sarcoplasmic reticulum, muscle formation and muscle remodeling. Studies have indicated that recessive mutations in CAPN3 cause limb‑girdle muscular dystrophy (MD) type 2A and other types of MD; eosinophilic myositis, melanoma and epilepsy are also closely related to CAPN3. In the present review, the characteristics of CAPN3, its biological functions and roles in the pathogenesis of a number of disorders are discussed.
Collapse
Affiliation(s)
- Lin Chen
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fajuan Tang
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hu Gao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoyan Zhang
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xihong Li
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dongqiong Xiao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
4
|
Muratori C, Silkuniene G, Mollica PA, Pakhomov AG, Pakhomova ON. The role of ESCRT-III and Annexin V in the repair of cell membrane permeabilization by the nanosecond pulsed electric field. Bioelectrochemistry 2021; 140:107837. [PMID: 34004548 DOI: 10.1016/j.bioelechem.2021.107837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/25/2023]
Abstract
Exposure of living cells to intense nanosecond pulsed electric field (nsPEF) increases membrane permeability to small solutes, presumably by the formation of nanometer-size membrane lesions. Mechanisms responsible for the restoration of membrane integrity over the course of minutes after nsPEF have not been identified. This study explored if ESCRT-III and Annexin V calcium-dependent repair mechanisms, which play critical role in resealing large membrane lesions, are also activated by electroporation and contribute to the membrane resealing. The extent of membrane damage and the time course of resealing were monitored by the time-lapse imaging of propidium (Pr) uptake in human cervical carcinoma (HeLa) cells exposed to trains of 300-ns PEF. The removal of the extracellular Ca2+ slowed down the resealing, although did not prevent it. Recruitment of CHMP4B protein, a component of ESCRT-III complex, to the electroporated plasma membrane was not observed, thus providing no evidence for possible contribution of the macro-vesicle shedding mechanism. In contrast, silencing the AnxA5 gene impaired resealing and reduced the viability of nsPEF-treated cells. We conclude that Annexin V but not ESCRT-III was involved in the repair of HeLa cells permeabilized by 300-ns stimuli, but it was not the only and perhaps not the main repair mechanism.
Collapse
Affiliation(s)
- Claudia Muratori
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Giedre Silkuniene
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; Institute for Digestive Research, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Peter A Mollica
- Department of Medical Diagnostics and Translational Sciences, Old Dominion University, Norfolk, VA, USA
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Olga N Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA.
| |
Collapse
|
5
|
Defective membrane repair machinery impairs survival of invasive cancer cells. Sci Rep 2020; 10:21821. [PMID: 33311633 PMCID: PMC7733495 DOI: 10.1038/s41598-020-77902-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/17/2020] [Indexed: 11/08/2022] Open
Abstract
Cancer cells are able to reach distant tissues by migration and invasion processes. Enhanced ability to cope with physical stresses leading to cell membrane damages may offer to cancer cells high survival rate during metastasis. Consequently, down-regulation of the membrane repair machinery may lead to metastasis inhibition. We show that migration of MDA-MB-231 cells on collagen I fibrils induces disruptions of plasma membrane and pullout of membrane fragments in the wake of cells. These cells are able to reseal membrane damages thanks to annexins (Anx) that are highly expressed in invasive cancer cells. In vitro membrane repair assays reveal that MDA-MB-231 cells respond heterogeneously to membrane injury and some of them possess a very efficient repair machinery. Finally, we show that silencing of AnxA5 and AnxA6 leads to the death of migrating MDA-MB-231 cells due to major defect of the membrane repair machinery. Disturbance of the membrane repair process may therefore provide a new avenue for inhibiting cancer metastasis.
Collapse
|
6
|
González-Mera L, Ravenscroft G, Cabrera-Serrano M, Ermolova N, Domínguez-González C, Arteche-López A, Soltanzadeh P, Evesson F, Navas C, Mavillard F, Clayton J, Rodrigo P, Servián-Morilla E, Cooper ST, Waddell L, Reardon K, Corbett A, Hernandez-Laín A, Sanchez A, Esteban Perez J, Paradas-Lopez C, Rivas-Infante E, Spencer M, Laing N, Olivé M. Heterozygous CAPN3 missense variants causing autosomal-dominant calpainopathy in seven unrelated families. Neuropathol Appl Neurobiol 2020; 47:283-296. [PMID: 32896923 DOI: 10.1111/nan.12663] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/03/2020] [Accepted: 08/22/2020] [Indexed: 01/05/2023]
Abstract
AIMS Recessive variants in CAPN3 gene are the cause of the commonest form of autosomal recessive limb girdle muscle dystrophy. However, two distinct in-frame deletions in CAPN3 (NM_000070.3:c.643_663del21 and c.598_621del15) and more recently, Gly445Arg and Arg572Pro substitutions have been linked to autosomal dominant (AD) forms of calpainopathy. We report 21 affected individuals from seven unrelated families presenting with an autosomal dominant form of muscular dystrophy associated with five different heterozygous missense variants in CAPN. METHODS We have used massively parallel gene sequencing (MPS) to determine the genetic basis of a dominant form of limb girdle muscular dystrophy in affected individuals from seven unrelated families. RESULTS The c.700G> A, [p.(Gly234Arg)], c.1327T> C [p.(Ser443Pro], c.1333G> A [p.(Gly445Arg)], c.1661A> C [p.(Tyr554Ser)] and c.1706T> C [p.(Phe569Ser)] CAPN3 variants were identified. Affected individuals presented in young adulthood with progressive proximal and axial weakness, waddling walking and scapular winging or with isolated hyperCKaemia. Muscle imaging showed fatty replacement of paraspinal muscles, variable degrees of involvement of the gluteal muscles, and the posterior compartment of the thigh and minor changes at the mid-leg level. Muscle biopsies revealed mild myopathic changes. Western blot analysis revealed a clear reduction in calpain 3 in skeletal muscle relative to controls. Protein modelling of these variants on the predicted structure of calpain 3 revealed that all variants are located in proximity to the calmodulin-binding site and are predicted to interfere with proteolytic activation. CONCLUSIONS We expand the genotypic spectrum of CAPN3-associated muscular dystrophy due to autosomal dominant missense variants.
Collapse
Affiliation(s)
- L González-Mera
- Neuropathology Unit, Department of Pathology, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - G Ravenscroft
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - M Cabrera-Serrano
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, WA, Australia.,Neurology Department, Hospital Universitario Virgen del Rocío, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocıo/CSIC, Universidad de Sevilla, Sevilla, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - N Ermolova
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - C Domínguez-González
- Neuromuscular Unit, Department of Neurology, Hospital Universitario 12 de Octubre, Research Institute imas12, Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - A Arteche-López
- Department of Genetic, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - P Soltanzadeh
- Departments of Neurology and Physiology, David Geffen School of Medicine, UCLA, University of California, Los Angeles, CA, USA
| | - F Evesson
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW, Australia.,The Children's Medical Research Institute, Westmead, NSW, Australia
| | - C Navas
- Neuropathology Unit, Department of Pathology, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - F Mavillard
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocıo/CSIC, Universidad de Sevilla, Sevilla, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - J Clayton
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - P Rodrigo
- Neuropathology Unit, Department of Pathology, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - E Servián-Morilla
- Neurology Department, Hospital Universitario Virgen del Rocío, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocıo/CSIC, Universidad de Sevilla, Sevilla, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - S T Cooper
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW, Australia.,The Children's Medical Research Institute, Westmead, NSW, Australia.,Discipline of Child and Adolescent Health, Faculty of Health and Medicine, University of Sydney, Westmead, NSW, Australia
| | - L Waddell
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW, Australia.,Discipline of Child and Adolescent Health, Faculty of Health and Medicine, University of Sydney, Westmead, NSW, Australia
| | - K Reardon
- St. Vincent's Melbourne Neuromuscular Diagnostic Laboratory, Department of Clinical Neurosciences and Neurological Research, St Vincent's Hospital, Melbourne, VIC, Australia
| | - A Corbett
- Department of Neurology, Concord General Repatriation Hospital, Sydney, NSW, Australia
| | - A Hernandez-Laín
- Department of Pathology, Neuropathology Unit. Hospital Universitario 12 de Octubre, Madrid, Spain
| | - A Sanchez
- Institut de Diagnòstic per la imatge (IDI), IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - J Esteban Perez
- Neuromuscular Unit, Department of Neurology, Hospital Universitario 12 de Octubre, Research Institute imas12, Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - C Paradas-Lopez
- Neurology Department, Hospital Universitario Virgen del Rocío, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocıo/CSIC, Universidad de Sevilla, Sevilla, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - E Rivas-Infante
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neuropathology, Hospital U. Virgen del Rocío/Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - M Spencer
- Department of Neurology, Neuromuscular Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - N Laing
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - M Olivé
- Neuropathology Unit, Department of Pathology, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
7
|
Hu Y, Mohassel P, Donkervoort S, Yun P, Bolduc V, Ezzo D, Dastgir J, Marshall JL, Lek M, MacArthur DG, Foley AR, Bönnemann CG. Identification of a Novel Deep Intronic Mutation in CAPN3 Presenting a Promising Target for Therapeutic Splice Modulation. J Neuromuscul Dis 2020; 6:475-483. [PMID: 31498126 DOI: 10.3233/jnd-190414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Calpainopathy, also known as limb girdle muscular dystrophy (LGMD) type 2A (LGMD2A) or LGMD R1 Calpain3-related, is one of the most common genetically characterized forms of limb-girdle muscular dystrophy with a wide range of phenotypic severity. We evaluated a consanguineous family with a clinical phenotype consistent with calpainopathy in whom conventional sequencing did not detect any mutations in the CAPN3 gene. Using whole exome sequencing paired with haplotype analysis, we identified a homozygous deep intronic single base pair deletion in CAPN3 (c.946-29delT). Familial segregation studies were consistent with recessive inheritance. Immunoblotting of muscle tissue from the patient showed complete absence of calpain 3. In silico analysis predicted the deletion to disrupt the branch point and subsequently alter splicing of exon 7. Studies of patient fibroblasts and muscle tissue confirmed altered splicing, resulting in an inclusion of a 389-bp intronic sequence upstream of exon 7, originating from a cryptic splice acceptor site in intron 6. This out-of-frame insertion results in a premature stop codon, leading to an apparent absence of protein likely due to degradation of the transcript via nonsense-mediated decay. We then designed phosphorodiamidate morpholino oligomers (PMOs) as splice modulators to block the new splice acceptor site. This approach successfully prevented the aberrant splicing - reverting the majority of the splice to the wildtype transcript. These results confirm the pathogenicity of this novel deep intronic mutation and provide a mutation-specific therapeutic strategy. Thus, deep intronic mutations in CAPN3 may be pathogenic and should be considered in the appropriate clinical setting. The identification of mutations which may be missed by traditional Sanger sequencing is essential as they may be excellent targets for individualized therapeutic strategies using RNA-directed splice modulation.
Collapse
Affiliation(s)
- Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Pomi Yun
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Véronique Bolduc
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Ezzo
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jahannaz Dastgir
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Department of Pediatric Neurology, Goryeb Children's Hospital, Morristown, NJ, USA
| | - Jamie L Marshall
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Monkol Lek
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Daniel G MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Rekik S, Sakka S, Ben Romdhan S, Farhat N, Baba Amer Y, Lehkim L, Authier FJ, Mhiri C. Novel Missense CAPN3 Mutation Responsible for Adult-Onset Limb Girdle Muscular Dystrophy with Calves Hypertrophy. J Mol Neurosci 2019; 69:563-569. [PMID: 31410652 DOI: 10.1007/s12031-019-01383-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/09/2019] [Indexed: 02/01/2023]
Abstract
CAPN3 gene encodes for calpain-3; this protein is a calcium-dependent intracellular protease. Deficiency of this enzyme leads to weakness of the proximal limb muscles and pelvic and shoulder girdles, the so-called limb-girdle muscular dystrophy type 2A (LGMD2A). Here, we reported the case of a Tunisian patient with LGMD2A associated with a novel missense mutation (c.T1681C/p.Y561H). A 61-year-old man, with consanguineous parents, was referred for gait difficulties and slowly progressive proximal weakness of the four limbs associated with moderate hypertrophy of the calves but his facial muscles were unaffected. Electromyography showed that the profile was myopathic pattern and creatine kinase (CK) level was high. Muscle biopsy processing included routine histological, immunohistochemical, and Western Blot reactions, using a panel of antibodies directed against dystrophin, dysferlin, calpain-3, sarcoglycan α, β, γ, and δ. For mutation analysis, we designed an NGS-based screening. Immunological analyses demonstrated a total deficiency in calpain-3 and δ-sarcoglycan, and a reduced expression of dysferlin. The genetic study yielded a homozygous missense mutation (c.T1681C) of the 13th exon of the CAPN3 gene. The mutation found in our patient (c.T1681C/p.Y561H) has not been previously reported. It is responsible for complete calpain-3 and δ-sarcoglycan deficiency and reduced dysferlin expression. The genetic study is mandatory in such cases with multiple-protein deficiency and ambiguous results of immune-histology and Western Blot studies.
Collapse
Affiliation(s)
- Sabrine Rekik
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease (LR-12-SP-19), University Hospital Habib Bourguiba, Sfax, Tunisia. .,Clinical Investigation Center (CIC), CHU Habib Bourguiba, Sfax, Tunisia.
| | - Salma Sakka
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease (LR-12-SP-19), University Hospital Habib Bourguiba, Sfax, Tunisia
| | - Sawssan Ben Romdhan
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease (LR-12-SP-19), University Hospital Habib Bourguiba, Sfax, Tunisia.,Clinical Investigation Center (CIC), CHU Habib Bourguiba, Sfax, Tunisia
| | - Nouha Farhat
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease (LR-12-SP-19), University Hospital Habib Bourguiba, Sfax, Tunisia
| | - Yasmine Baba Amer
- U955-IMRB, Team 10, Biology of the Neuromuscular System, Inserm, UPEC, Créteil, France
| | - Leila Lehkim
- Anatomopathology Laboratory, CHU Habib Bourguiba, Sfax, Tunisia
| | | | - Chokri Mhiri
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease (LR-12-SP-19), University Hospital Habib Bourguiba, Sfax, Tunisia.,Clinical Investigation Center (CIC), CHU Habib Bourguiba, Sfax, Tunisia
| |
Collapse
|
9
|
Nallamilli BRR, Chakravorty S, Kesari A, Tanner A, Ankala A, Schneider T, da Silva C, Beadling R, Alexander JJ, Askree SH, Whitt Z, Bean L, Collins C, Khadilkar S, Gaitonde P, Dastur R, Wicklund M, Mozaffar T, Harms M, Rufibach L, Mittal P, Hegde M. Genetic landscape and novel disease mechanisms from a large LGMD cohort of 4656 patients. Ann Clin Transl Neurol 2018; 5:1574-1587. [PMID: 30564623 PMCID: PMC6292381 DOI: 10.1002/acn3.649] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022] Open
Abstract
Objective Limb‐girdle muscular dystrophies (LGMDs), one of the most heterogeneous neuromuscular disorders (NMDs), involves predominantly proximal‐muscle weakness with >30 genes associated with different subtypes. The clinical‐genetic overlap among subtypes and with other NMDs complicate disease‐subtype identification lengthening diagnostic process, increases overall costs hindering treatment/clinical‐trial recruitment. Currently seven LGMD clinical trials are active but still no gene‐therapy‐related treatment is available. Till‐date no nation‐wide large‐scale LGMD sequencing program was performed. Our objectives were to understand LGMD genetic basis, different subtypes’ relative prevalence across US and investigate underlying disease mechanisms. Methods A total of 4656 patients with clinically suspected‐LGMD across US were recruited to conduct next‐generation sequencing (NGS)‐based gene‐panel testing during June‐2015 to June‐2017 in CLIA‐CAP‐certified Emory‐Genetics‐Laboratory. Thirty‐five LGMD‐subtypes‐associated or LGMD‐like other NMD‐associated genes were investigated. Main outcomes were diagnostic yield, gene‐variant spectrum, and LGMD subtypes’ prevalence in a large US LGMD‐suspected population. Results Molecular diagnosis was established in 27% (1259 cases; 95% CI, 26–29%) of the patients with major contributing genes to LGMD phenotypes being: CAPN3(17%), DYSF(16%), FKRP(9%) and ANO5(7%). We observed an increased prevalence of genetically confirmed late‐onset Pompe disease, DNAJB6‐associated LGMD subtype1E and CAPN3‐associated autosomal‐dominant LGMDs. Interestingly, we identified a high prevalence of patients with pathogenic variants in more than one LGMD gene suggesting possible synergistic heterozygosity/digenic/multigenic contribution to disease presentation/progression that needs consideration as a part of diagnostic modality. Interpretation Overall, this study has improved our understanding of the relative prevalence of different LGMD subtypes, their respective genetic etiology, and the changing paradigm of their inheritance modes and novel mechanisms that will allow for improved timely treatment, management, and enrolment of molecularly diagnosed individuals in clinical trials.
Collapse
Affiliation(s)
| | | | - Akanchha Kesari
- Emory University Department of Human Genetics Atlanta Georgia 30322.,EGL Genetics-Eurofins Tucker Atlanta Georgia 30084
| | - Alice Tanner
- Emory University Department of Human Genetics Atlanta Georgia 30322.,EGL Genetics-Eurofins Tucker Atlanta Georgia 30084
| | - Arunkanth Ankala
- Emory University Department of Human Genetics Atlanta Georgia 30322.,EGL Genetics-Eurofins Tucker Atlanta Georgia 30084
| | | | | | | | - John J Alexander
- Emory University Department of Human Genetics Atlanta Georgia 30322.,EGL Genetics-Eurofins Tucker Atlanta Georgia 30084
| | - Syed Hussain Askree
- Emory University Department of Human Genetics Atlanta Georgia 30322.,EGL Genetics-Eurofins Tucker Atlanta Georgia 30084
| | - Zachary Whitt
- Emory University Department of Human Genetics Atlanta Georgia 30322.,Augusta University Augusta Georgia 30912
| | - Lora Bean
- Emory University Department of Human Genetics Atlanta Georgia 30322.,EGL Genetics-Eurofins Tucker Atlanta Georgia 30084
| | - Christin Collins
- Emory University Department of Human Genetics Atlanta Georgia 30322
| | - Satish Khadilkar
- Department of Neurology Bombay Hospital Mumbai Maharashtra India.,Department of Neurology Sir J J Group of Hospitals Grant Medical College Mumbai Maharashtra India
| | - Pradnya Gaitonde
- Centre for Advanced Molecular Diagnostics in Neuromuscular Disorders (CAMDND) 400022 Mumbai India
| | - Rashna Dastur
- Centre for Advanced Molecular Diagnostics in Neuromuscular Disorders (CAMDND) 400022 Mumbai India
| | - Matthew Wicklund
- Neurology The University of Colorado at Denver - Anschutz Medical Campus Aurora Colorado 80045
| | - Tahseen Mozaffar
- Neurology University of California, Irvine Orange California 92868
| | - Matthew Harms
- Department of Neurology Columbia University New York New York 10032
| | | | | | - Madhuri Hegde
- Emory University Department of Human Genetics Atlanta Georgia 30322
| |
Collapse
|
10
|
Khadilkar SV, Faldu HD, Patil SB, Singh R. Limb-girdle Muscular Dystrophies in India: A Review. Ann Indian Acad Neurol 2017; 20:87-95. [PMID: 28615891 PMCID: PMC5470147 DOI: 10.4103/aian.aian_81_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Limb-girdle muscular dystrophies (LGMDs) are common in India. Information on LGMDs has been gradually evolving in the recent years. This information is scattered in case series and case studies. The aim of this study is to collate available Indian information on LGMDs and put it in perspective. PubMed search using keywords such as limb-girdle muscular dystrophies in India, sarcoglycanopathies, dysferlinopathy, calpainopathy, and GNE myopathy was carried out. The published information on LGMDs in Indian context suggests that dysferlinopathy, calpainopathy, sarcoglycanopathies, and other myopathies such as GNE myopathy are frequently seen in India. Besides these, anecdotal reports of many other forms are available, some with genetic support and others showing immunocytochemical defects. The genotypic information on LGMDs is gradually evolving and founder mutations have been detected in selected populations. Further multicenter studies are necessary to document the incidence and prevalence of these common conditions in India.
Collapse
Affiliation(s)
| | - Hinaben Dayalal Faldu
- Department of Neurology, Grant Government Medical College and J. J. Hospital, Mumbai, Maharashtra, India
| | - Sarika Bapuso Patil
- Department of Neurology, Grant Government Medical College and J. J. Hospital, Mumbai, Maharashtra, India
| | - Rakesh Singh
- Department of Neurology, Grant Government Medical College and J. J. Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
11
|
Vissing J, Barresi R, Witting N, Van Ghelue M, Gammelgaard L, Bindoff LA, Straub V, Lochmüller H, Hudson J, Wahl CM, Arnardottir S, Dahlbom K, Jonsrud C, Duno M. A heterozygous 21-bp deletion inCAPN3causes dominantly inherited limb girdle muscular dystrophy. Brain 2016; 139:2154-63. [DOI: 10.1093/brain/aww133] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/30/2016] [Indexed: 01/20/2023] Open
|
12
|
Izumi R, Niihori T, Takahashi T, Suzuki N, Tateyama M, Watanabe C, Sugie K, Nakanishi H, Sobue G, Kato M, Warita H, Aoki Y, Aoki M. Genetic profile for suspected dysferlinopathy identified by targeted next-generation sequencing. NEUROLOGY-GENETICS 2015; 1:e36. [PMID: 27066573 PMCID: PMC4811388 DOI: 10.1212/nxg.0000000000000036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/26/2015] [Indexed: 11/29/2022]
Abstract
Objective: To investigate the genetic causes of suspected dysferlinopathy and to reveal the genetic profile for myopathies with dysferlin deficiency. Methods: Using next-generation sequencing, we analyzed 42 myopathy-associated genes, including DYSF, in 64 patients who were clinically or pathologically suspected of having dysferlinopathy. Putative pathogenic mutations were confirmed by Sanger sequencing. In addition, copy-number variations in DYSF were investigated using multiplex ligation-dependent probe amplification. We also analyzed the genetic profile for 90 patients with myopathy with dysferlin deficiency, as indicated by muscle specimen immunohistochemistry, including patients from a previous cohort. Results: We identified putative pathogenic mutations in 38 patients (59% of all investigated patients). Twenty-three patients had DYSF mutations, including 6 novel mutations. The remaining 16 patients, including a single patient who also carried the DYSF mutation, harbored putative pathogenic mutations in other genes. The genetic profile for 90 patients with dysferlin deficiency revealed that 70% had DYSF mutations (n = 63), 10% had CAPN3 mutations (n = 9), 2% had CAV3 mutations (n = 2), 3% had mutations in other genes (in single patients), and 16% did not have any identified mutations (n = 14). Conclusions: This study clarified the heterogeneous genetic profile for myopathies with dysferlin deficiency. Our results demonstrate the importance of a comprehensive analysis of related genes in improving the genetic diagnosis of dysferlinopathy as one of the most common subtypes of limb-girdle muscular dystrophy. Unresolved diagnoses should be investigated using whole-genome or whole-exome sequencing.
Collapse
Affiliation(s)
- Rumiko Izumi
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Niihori
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiaki Takahashi
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Suzuki
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Maki Tateyama
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chigusa Watanabe
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuma Sugie
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirotaka Nakanishi
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaaki Kato
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Warita
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoko Aoki
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Aoki
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
13
|
Dorobek M, Ryniewicz B, Kabzińska D, Fidziańska A, Styczyńska M, Hausmanowa-Petrusewicz I. The Frequency of c.550delA Mutation of the CANP3 Gene in the Polish LGMD2A Population. Genet Test Mol Biomarkers 2015; 19:637-40. [DOI: 10.1089/gtmb.2015.0131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Małgorzata Dorobek
- Department of Neurology, Central Clinical Hospital of the Ministry of Interior in Warsaw, Warsaw, Poland
| | | | - Dagmara Kabzińska
- Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Fidziańska
- Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Maria Styczyńska
- Department of Neurology, Central Clinical Hospital of the Ministry of Interior in Warsaw, Warsaw, Poland
- Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
14
|
Fanin M, Angelini C. Protein and genetic diagnosis of limb girdle muscular dystrophy type 2A: The yield and the pitfalls. Muscle Nerve 2015; 52:163-73. [PMID: 25900067 DOI: 10.1002/mus.24682] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2015] [Indexed: 12/20/2022]
Abstract
Limb girdle muscular dystrophy type 2A (LGMD2A) is the most frequent form of LGMD worldwide. Comprehensive clinical assessment and laboratory testing is essential for diagnosis of LGMD2A. Muscle immunoblot analysis of calpain-3 is the most useful tool to direct genetic testing, as detection of calpain-3 deficiency has high diagnostic value. However, calpain-3 immunoblot testing lacks sensitivity in about 30% of cases due to gene mutations that inactivate the enzyme. The best diagnostic strategy should be determined on a case-by-case basis, depending on which tissues are available, and which molecular and/or genetic methods are adopted. In this work we survey the current knowledge, advantages, limitations, and pitfalls of protein testing and mutation detection in LGMD2A and provide an update of genetic epidemiology.
Collapse
Affiliation(s)
- Marina Fanin
- Department of Neurosciences, Biomedical Campus "Pietro d'Abano," via Giuseppe Orus 2B, 35129, Padova, Italy
| | | |
Collapse
|
15
|
Carmeille R, Degrelle SA, Plawinski L, Bouvet F, Gounou C, Evain-Brion D, Brisson AR, Bouter A. Annexin-A5 promotes membrane resealing in human trophoblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2033-44. [PMID: 25595530 DOI: 10.1016/j.bbamcr.2014.12.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/25/2014] [Accepted: 12/27/2014] [Indexed: 01/12/2023]
Abstract
Annexin-A5 (AnxA5) is the smallest member of the annexins, a group of soluble proteins that bind to membranes containing negatively-charged phospholipids, principally phosphatidylserine, in a Ca(2+)-dependent manner. AnxA5 presents unique properties of binding and self-assembling on membrane surfaces, forming highly ordered two-dimensional (2D) arrays. We showed previously that AnxA5 plays a central role in the machinery of cell membrane repair of murine perivascular cells, promoting the resealing of membrane damages via the formation of 2D protein arrays at membrane disrupted sites and preventing the extension of membrane ruptures. As the placenta is one of the richest source of AnxA5 in humans, we investigated whether AnxA5 was involved in membrane repair in this organ. We addressed this question at the level of human trophoblasts, either mononucleated cytotrophoblasts or multinucleated syncytiotrophoblasts, in choriocarcinoma cells and primary trophoblasts. Using established procedure of laser irradiation and fluorescence microscopy, we observed that both human cytotrophoblasts and syncytiotrophoblasts repair efficiently a μm²-size disruption. Compared to wild-type cells, AnxA5-deficient trophoblasts exhibit severe defect of membrane repair. Through specifically binding to the disrupted site as early as a few seconds after membrane wounding, AnxA5 promotes membrane resealing of injured human trophoblasts. In addition, we observed that a large membrane area containing the disrupted site was released in the extracellular milieu. We propose mechanisms ensuring membrane resealing and subsequent lesion removal in human trophoblasts. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- Romain Carmeille
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France
| | - Séverine A Degrelle
- Fondation PremUP, Paris, F-75006, France; INSERM, U1139, Paris, F-75006, France; Université Paris Descartes, UMR-S1139 Sorbonne Pris Cité, Paris, F-75006, France
| | - Laurent Plawinski
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France
| | - Flora Bouvet
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France
| | - Céline Gounou
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France
| | - Danièle Evain-Brion
- Fondation PremUP, Paris, F-75006, France; INSERM, U1139, Paris, F-75006, France; Université Paris Descartes, UMR-S1139 Sorbonne Pris Cité, Paris, F-75006, France
| | - Alain R Brisson
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France
| | - Anthony Bouter
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France.
| |
Collapse
|
16
|
Stehlíková K, Skálová D, Zídková J, Mrázová L, Vondráček P, Mazanec R, Voháňka S, Haberlová J, Hermanová M, Zámečník J, Souček O, Ošlejšková H, Dvořáčková N, Solařová P, Fajkusová L. Autosomal recessive limb-girdle muscular dystrophies in the Czech Republic. BMC Neurol 2014; 14:154. [PMID: 25135358 PMCID: PMC4145250 DOI: 10.1186/s12883-014-0154-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/21/2014] [Indexed: 01/21/2023] Open
Abstract
Background Autosomal recessive limb-girdle muscular dystrophies (LGMD2) include a number of disorders with heterogeneous etiology that cause predominantly weakness and wasting of the shoulder and pelvic girdle muscles. In this study, we determined the frequency of LGMD subtypes within a cohort of Czech LGMD2 patients using mutational analysis of the CAPN3, FKRP, SGCA, and ANO5 genes. Methods PCR-sequencing analysis; sequence capture and targeted resequencing. Results Mutations of the CAPN3 gene are the most common cause of LGMD2, and mutations in this gene were identified in 71 patients in a set of 218 Czech probands with a suspicion of LGMD2. Totally, we detected 37 different mutations of which 12 have been described only in Czech LGMD2A patients. The mutation c.550delA is the most frequent among our LGMD2A probands and was detected in 47.1% of CAPN3 mutant alleles. The frequency of particular forms of LGMD2 was 32.6% for LGMD2A (71 probands), 4.1% for LGMD2I (9 probands), 2.8% for LGMD2D (6 probands), and 1.4% for LGMD2L (3 probands). Further, we present the first results of a new approach established in the Czech Republic for diagnosis of neuromuscular diseases: sequence capture and targeted resequencing. Using this approach, we identified patients with mutations in the DYSF and SGCB genes. Conclusions We characterised a cohort of Czech LGMD2 patients on the basis of mutation analysis of genes associated with the most common forms of LGMD2 in the European population and subsequently compared the occurrence of particular forms of LGMD2 among countries on the basis of our results and published studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lenka Fajkusová
- Centre of Molecular Biology and Gene Therapy, University Hospital Brno, Černopolní 9, Brno, 613 00, Czech Republic.
| |
Collapse
|
17
|
Jaka O, Azpitarte M, Paisán-Ruiz C, Zulaika M, Casas-Fraile L, Sanz R, Trevisiol N, Levy N, Bartoli M, Krahn M, López de Munain A, Sáenz A. Entire CAPN3
gene deletion in a patient with limb-girdle muscular dystrophy type 2A. Muscle Nerve 2014; 50:448-53. [DOI: 10.1002/mus.24263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Oihane Jaka
- Neurosciences Area, Biodonostia Institute; Hospital Universitario Donostia; 20014 San Sebastián Spain
| | - Margarita Azpitarte
- Neurosciences Area, Biodonostia Institute; Hospital Universitario Donostia; 20014 San Sebastián Spain
| | - Coro Paisán-Ruiz
- Department of Neurology, Psychiatry, Genetics and Genomic Sciences; Icahn School of Medicine at Mount Sinai; New York New York USA
| | - Miren Zulaika
- Neurosciences Area, Biodonostia Institute; Hospital Universitario Donostia; 20014 San Sebastián Spain
| | - Leire Casas-Fraile
- Neurosciences Area, Biodonostia Institute; Hospital Universitario Donostia; 20014 San Sebastián Spain
| | - Raúl Sanz
- Molecular Diagnostic Unit; Secugen Madrid Spain
| | - Nathalie Trevisiol
- Aix Marseille Université; INSERM, GMGF UMR-S 910, and APHM, Hôpital Timone Enfants, Département de Génétique Médicale et de Biologie Cellulaire; Marseille France
| | - Nicolas Levy
- Aix Marseille Université; INSERM, GMGF UMR-S 910, and APHM, Hôpital Timone Enfants, Département de Génétique Médicale et de Biologie Cellulaire; Marseille France
| | - Marc Bartoli
- Aix Marseille Université; INSERM, GMGF UMR-S 910, and APHM, Hôpital Timone Enfants, Département de Génétique Médicale et de Biologie Cellulaire; Marseille France
| | - Martin Krahn
- Aix Marseille Université; INSERM, GMGF UMR-S 910, and APHM, Hôpital Timone Enfants, Département de Génétique Médicale et de Biologie Cellulaire; Marseille France
| | | | - Amets Sáenz
- Neurosciences Area, Biodonostia Institute; Hospital Universitario Donostia; 20014 San Sebastián Spain
| |
Collapse
|
18
|
Gallardo E, de Luna N, Diaz-Manera J, Rojas-García R, Gonzalez-Quereda L, Flix B, de Morrée A, van der Maarel S, Illa I. Comparison of dysferlin expression in human skeletal muscle with that in monocytes for the diagnosis of dysferlin myopathy. PLoS One 2011; 6:e29061. [PMID: 22194990 PMCID: PMC3241698 DOI: 10.1371/journal.pone.0029061] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 11/20/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Dysferlinopathies are caused by mutations in the dysferlin gene (DYSF). Diagnosis is complex due to the high clinical variability of the disease and because dysferlin expression in the muscle biopsy may be secondarily reduced due to a primary defect in some other gene. Dysferlin is also expressed in peripheral blood monocytes (PBM). Studying dysferlin in monocytes is used for the diagnosis of dysferlin myopathies. The aim of the study was to determine whether dysferlin expression in PBM correlates with that in skeletal muscle. METHODOLOGY/PRINCIPAL FINDINGS Using western-blot (WB) we quantified dysferlin expression in PBM from 21 pathological controls with other myopathies in whom mutations in DYSF were excluded and from 17 patients who had dysferlinopathy and two mutations in DYSF. Results were compared with protein expression in muscle by WB and immunohistochemistry (IH). We found a good correlation between skeletal muscle and monocytes using WB. However, IH results were misleading because abnormal expression of dysferlin was also observed in 13/21 pathological controls. CONCLUSIONS/SIGNIFICANCE The analysis of dysferlin protein expression in PBM is helpful when: 1) the skeletal muscle IH pattern is abnormal or 2) when muscle WB can not be performed either because muscle sample is lacking or insufficient or because the muscle biopsy is taken from a muscle at an end-stage and it mainly consists of fat and fibrotic tissue.
Collapse
Affiliation(s)
- Eduard Gallardo
- Servei de Neurologia, Laboratori de Malalties Neuromusculars, Hospital de la Santa Creu i Sant Pau i Institut de Recerca de HSCSP, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Noemi de Luna
- Servei de Neurologia, Laboratori de Malalties Neuromusculars, Hospital de la Santa Creu i Sant Pau i Institut de Recerca de HSCSP, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Jordi Diaz-Manera
- Servei de Neurologia, Laboratori de Malalties Neuromusculars, Hospital de la Santa Creu i Sant Pau i Institut de Recerca de HSCSP, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Ricardo Rojas-García
- Servei de Neurologia, Laboratori de Malalties Neuromusculars, Hospital de la Santa Creu i Sant Pau i Institut de Recerca de HSCSP, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Lidia Gonzalez-Quereda
- Servei de Genètica, Hospital de la Santa Creu i Sant Pau i Institut de Recerca de HSCSP, Universitat Autònoma and Centro de Investigación en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Bàrbara Flix
- Servei de Neurologia, Laboratori de Malalties Neuromusculars, Hospital de la Santa Creu i Sant Pau i Institut de Recerca de HSCSP, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Antoine de Morrée
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Isabel Illa
- Servei de Neurologia, Laboratori de Malalties Neuromusculars, Hospital de la Santa Creu i Sant Pau i Institut de Recerca de HSCSP, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- * E-mail:
| |
Collapse
|
19
|
Barresi R. From proteins to genes: immunoanalysis in the diagnosis of muscular dystrophies. Skelet Muscle 2011; 1:24. [PMID: 21798100 PMCID: PMC3156647 DOI: 10.1186/2044-5040-1-24] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 06/24/2011] [Indexed: 12/23/2022] Open
Abstract
Muscular dystrophies are a large heterogeneous group of inherited diseases that cause progressive muscle weakness and permanent muscle damage. Very few muscular dystrophies show sufficient specific clinical features to allow a definite diagnosis. Because of the currently limited capacity to screen for numerous genes simultaneously, muscle biopsy is a time and cost-effective test for many of these disorders. Protein analysis interpreted in correlation with the clinical phenotype is a useful way of directing genetic testing in many types of muscular dystrophies. Immunohistochemistry and western blot are complementary techniques used to gather quantitative and qualitative information on the expression of proteins involved in this group of diseases. Immunoanalysis has a major diagnostic application mostly in recessive conditions where the absence of labelling for a particular protein is likely to indicate a defect in that gene. However, abnormalities in protein expression can vary from absence to very subtle reduction. It is good practice to test muscle biopsies with antibodies for several proteins simultaneously and to interpret the results in context. Indeed, there is a degree of direct or functional association between many of these proteins that is reflected by the presence of specific secondary abnormalities that are of value, especially when the diagnosis is not straightforward.
Collapse
Affiliation(s)
- Rita Barresi
- NCG Diagnostic & Advisory Service for Rare Neuromuscular Diseases, Muscle Immunoanalysis Unit, Dental Hospital, Richardson Road, Newcastle upon Tyne, UK.
| |
Collapse
|
20
|
Sorimachi H, Hata S, Ono Y. Expanding members and roles of the calpain superfamily and their genetically modified animals. Exp Anim 2011; 59:549-66. [PMID: 21030783 DOI: 10.1538/expanim.59.549] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Calpains are intracellular Ca²(+)-dependent cysteine proteases (Clan CA, family C02, EC 3.4.22.17) found in almost all eukaryotes and some bacteria. Calpains display limited proteolytic activity at neutral pH, proteolysing substrates to transform and modulate their structures and activities, and are therefore called "modulator proteases". The human genome has 15 genes that encode a calpain-like protease domain, generating diverse calpain homologues that possess combinations of several functional domains such as Ca²(+)-binding domains and Zn-finger domains. The importance of the physiological roles of calpains is reflected in the fact that particular defects in calpain functionality cause a variety of deficiencies in many different organisms, including lethality, muscular dystrophies, lissencephaly, and tumorigenesis. In this review, the unique characteristics of this distinctive protease superfamily are introduced in terms of genetically modified animals, some of which are animal models of calpain deficiency diseases.
Collapse
Affiliation(s)
- Hiroyuki Sorimachi
- Calpain Project, The Tokyo Metropolitan Institute of Medical Science (Rinshoken), Japan
| | | | | |
Collapse
|
21
|
Gallardo E, Saenz A, Illa I. Limb-girdle muscular dystrophy 2A. HANDBOOK OF CLINICAL NEUROLOGY 2011; 101:97-110. [PMID: 21496626 DOI: 10.1016/b978-0-08-045031-5.00006-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Limb-girdle muscular dystrophy type 2A (LGMD2A) is caused by mutations in the gene CAPN3 located in the chromosome region 15q15.1-q21.1. To date more than 300 mutations have been described. This gene encodes for a 94-kDa nonlysosomal calcium-dependent cysteine protease and its function in skeletal muscle is not fully understood. It seems that calpain-3 has an unusual zymogenic activation that involves, among other substrates, cytoskeletal proteins. Calpain-3 is thought to interact with titin and dysferlin. Calpain-3 deficiency produces abnormal sarcomeres that lead eventually to muscle fiber death. Hip adductors and gluteus maximus are the earliest clinically affected muscles. No clinical differences have been reported depending on the type of mutation in the CAPN3 gene. The muscle biopsy shows variability of fiber size, interstitial fibrosis, internal nuclei, lobulated fibers, and, in some cases, presence of eosinophils. Recent gene expression profiling studies have shown upregulation of interleukin-32 and immunoglobulin genes, which may explain the eosinophilic infiltration. Two mouse knockout models of CAPN3 have been characterized. There are no curative treatments for this disease. However, experimental therapeutics using mouse models conclude that adeno-associated virus (AAV) vectors seem to be one of the best approaches because of their efficiency and persistency of gene transfer.
Collapse
Affiliation(s)
- Eduard Gallardo
- Department of Neurology and Laboratory of Experimental Neurology, Hospital de la Santa Creu i Sant Pau and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | | |
Collapse
|
22
|
Abstract
Dysferlin is a sarcolemmal protein that plays an important role in patching defects in skeletal membrane by regulating vesicle fusion with the sarcolemma. Mutations in the dysferlin gene can lead to a variety of clinical phenotypes. Affected individuals usually present with early involvement of the posterior calf muscles (Miyoshi myopathy) in their teens or early twenties, but can present with proximal greater than distal weakness similar to other limb-girdle muscular dystrophies (LGMD2B), with anterior tibial weakness, an axial myopathy (e.g., rigid spine syndrome or hyperkyphosis resembling bent spine syndrome), or any combination of the above. Muscle biopsies may be quite inflammatory, often resulting in a misdiagnosis as polymyositis. Unfortunately, there are no medical therapies available at this time.
Collapse
|
23
|
Rosales XQ, Gastier-Foster JM, Lewis S, Vinod M, Thrush DL, Astbury C, Pyatt R, Reshmi S, Sahenk Z, Mendell JR. Novel diagnostic features of dysferlinopathies. Muscle Nerve 2010; 42:14-21. [PMID: 20544924 PMCID: PMC3025537 DOI: 10.1002/mus.21650] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Reports of dysferlinopathy have suggested a clinically heterogeneous group of patients. We identified specific novel molecular and phenotypic features that help distinguish dysferlinopathies from other forms of limb-girdle muscular dystrophy (LGMD). A detailed history, physical exam, and protein and mutation analysis of genomic DNA was done for all subjects. Five of 21 confirmed DYSF gene mutations were not previously reported. A distinct "bulge" of the deltoid muscle in combination with other findings was a striking feature in all patients. Six subjects had atypical calf enlargement, and 3 of these exhibited a paradoxical pattern of dysferlin expression: severely reduced by direct immunofluorescence with overexpression on Western blots. Six patients showed amyloid deposits in muscle that extended these findings to new domains of the dysferlin gene, including the C2G domain. Correlative studies showed colocalization of amyloid with deposition of dysferlin. The present data further serve to guide clinicians facing the expensive task of molecular characterization of patients with an LGMD phenotype.
Collapse
Affiliation(s)
- Xiomara Q. Rosales
- Neuromuscular Center, Columbus, OH
- Department of Pediatrics, Neurology, and Center for Gene Therapy, Columbus, OH
- The Research Institute at Nationwide Children's Hospital, and The Ohio State University, Columbus, OH
| | - Julie M. Gastier-Foster
- Department of Pediatrics, Neurology, and Center for Gene Therapy, Columbus, OH
- The Research Institute at Nationwide Children's Hospital, and The Ohio State University, Columbus, OH
| | - Sarah Lewis
- Neuromuscular Center, Columbus, OH
- Department of Pediatrics, Neurology, and Center for Gene Therapy, Columbus, OH
| | - Malik Vinod
- Neuromuscular Center, Columbus, OH
- Department of Pediatrics, Neurology, and Center for Gene Therapy, Columbus, OH
| | - Devon L. Thrush
- Department of Pediatrics, Neurology, and Center for Gene Therapy, Columbus, OH
- The Research Institute at Nationwide Children's Hospital, and The Ohio State University, Columbus, OH
| | - Caroline Astbury
- Department of Pediatrics, Neurology, and Center for Gene Therapy, Columbus, OH
- The Research Institute at Nationwide Children's Hospital, and The Ohio State University, Columbus, OH
| | - Robert Pyatt
- Department of Pediatrics, Neurology, and Center for Gene Therapy, Columbus, OH
- The Research Institute at Nationwide Children's Hospital, and The Ohio State University, Columbus, OH
| | - Shalini Reshmi
- Department of Pediatrics, Neurology, and Center for Gene Therapy, Columbus, OH
- The Research Institute at Nationwide Children's Hospital, and The Ohio State University, Columbus, OH
| | - Zarife Sahenk
- Neuromuscular Center, Columbus, OH
- Department of Pediatrics, Neurology, and Center for Gene Therapy, Columbus, OH
- The Research Institute at Nationwide Children's Hospital, and The Ohio State University, Columbus, OH
| | - Jerry R. Mendell
- Neuromuscular Center, Columbus, OH
- Department of Pediatrics, Neurology, and Center for Gene Therapy, Columbus, OH
- The Research Institute at Nationwide Children's Hospital, and The Ohio State University, Columbus, OH
| |
Collapse
|
24
|
Glover LE, Newton K, Krishnan G, Bronson R, Boyle A, Krivickas LS, Brown RH. Dysferlin overexpression in skeletal muscle produces a progressive myopathy. Ann Neurol 2010; 67:384-93. [PMID: 20373350 DOI: 10.1002/ana.21926] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The dose-response effects of dysferlin transgenesis were analyzed to determine if the dysferlin-deficient myopathies are good candidates for gene replacement therapy. METHODS We have generated 3 lines of transgenic mice, expressing low, mid, and high levels of full-length human dysferlin from a muscle-specific promoter. Transgenic skeletal muscle was analyzed and scored for morphological and functional deficits. RESULTS Overexpression of dysferlin in mice resulted in a striking phenotype of kyphosis, irregular gait, and reduced muscle mass and strength. Moreover, protein dosage correlated with phenotype severity. In contrast to dysferlin-null skeletal muscle, no evidence of sarcolemmal impairment was revealed. Rather, increased levels of Ca(2+)-regulated, dysferlin-binding proteins and endoplasmic reticulum stress chaperone proteins were observed in muscle lysates from transgenic mice as compared with controls. INTERPRETATION Expression levels of dysferlin are important for appropriate function without deleterious or cytotoxic effects. As a corollary, we propose that future endeavors in gene replacement for correction of dysferlinopathy should be tailored to take account of this.
Collapse
Affiliation(s)
- Louise E Glover
- Day Neuromuscular Research Laboratory, Massachusetts General Hospital, Charlestown, MA
| | | | | | | | | | | | | |
Collapse
|
25
|
Sedlácková J, Vondrácek P, Hermanová M, Zámecník J, Hrubá Z, Haberlová J, Kraus J, Maríková T, Hedvicáková P, Vohánka S, Fajkusová L. Point mutations in Czech DMD/BMD patients and their phenotypic outcome. Neuromuscul Disord 2009; 19:749-53. [PMID: 19783145 DOI: 10.1016/j.nmd.2009.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/31/2009] [Accepted: 08/24/2009] [Indexed: 11/08/2022]
Abstract
Duchenne and Becker muscular dystrophies (DMD/BMD) are associated with mutations in the DMD gene. We determined the mutation status of 47 patients with dystrophinopathy without deletion or duplication in the DMD gene by screening performed by reverse transcription-PCR, protein truncation test, and DNA sequencing. We describe three patients with a mutation creating a premature termination codon (p.E55X, p.E1110X, and p.S3497PfsX2) but with a mild phenotype, which present three different ways of rescuing the DMD phenotype. In one patient we detected the insertion of a repetitive sequence AluYa5 in intron 56, which led to skipping of exon 57. Further, using quantitative analysis of DMD mRNA carrying various mutated alleles, we examine levels of mRNA degradation due to nonsense mediated mRNA decay. The quantity of dystrophin mRNA is different depending on the presence of a mutation leading to a premature termination codon, and position of the analysed mRNA region with respect to its 5' end or 3' end. Average relative amounts of DMD mRNAs carrying a premature termination codon is 48% and 17%, when using primers amplifying the 5' and 3' cDNA regions, respectively.
Collapse
Affiliation(s)
- Jana Sedlácková
- Centre of Molecular Biology and Gene Therapy, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fanin M, Nascimbeni AC, Tasca E, Angelini C. How to tackle the diagnosis of limb-girdle muscular dystrophy 2A. Eur J Hum Genet 2009; 17:598-603. [PMID: 18854869 PMCID: PMC2986267 DOI: 10.1038/ejhg.2008.193] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 08/29/2008] [Accepted: 09/04/2008] [Indexed: 11/09/2022] Open
Abstract
Limb-girdle muscular dystrophy (LGMD) 2A (calpainopathy) is the most frequent form of LGMD in many European countries. The increasing demand for a molecular diagnosis makes the identification of strategies to improve gene mutation detection crucial. We conducted both a quantitative analysis of calpain-3 protein in 519 muscles from patients with unclassified LGMD, unclassified myopathy and hyperCKemia, and a functional assay of calpain-3 autolytic activity in 108 cases with LGMD and normal protein quantity. Subsequently, screening of CAPN3 gene mutations was performed using allele-specific tests and simplified SSCP analysis. We diagnosed a total of 94 LGMD2A patients, carrying 66 different mutations (six are newly identified). The probability of diagnosing calpainopathy was very high in patients showing either a quantitative (80%) or a functional calpain-3 protein defect (88%). Our data show a high predictive value for reduced-absent calpain-3 or lost autolytic activity. These biochemical assays are powerful tools for otherwise laborious genetic screening of cases with a high probability of being primary calpainopathy. Our multistep diagnostic approach is rational and highly effective. This strategy has improved the detection rate of the disease and our extension of screening to presymptomatic phenotypes (hyperCKemia) has allowed us to obtain early diagnoses, which has important consequences for patient care and genetic counseling.
Collapse
Affiliation(s)
- Marina Fanin
- Department of Neurosciences, University of Padova, Venetian Institute of Molecular Medicine, Padova, Italy.
| | | | | | | |
Collapse
|
27
|
Identification and characterisation of human dysferlin transcript variants: implications for dysferlin mutational screening and isoforms. Hum Genet 2009; 125:413-20. [PMID: 19221801 DOI: 10.1007/s00439-009-0632-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 01/26/2009] [Indexed: 10/21/2022]
Abstract
In conducting dysferlin mutational screening using blood mRNA instead of genomic DNA, we identified the occurrence of alternative splicing involving novel dysferlin exons, i.e. exons 5a and 40a, in addition to previously reported alternative splicing of exon 17. Further study employing long range RT-PCR and subcloning revealed a total of fourteen dysferlin transcripts with maintained dysferlin reading frame. The study also characterised the differences in relative frequencies of the dysferlin transcripts in skeletal muscle and blood. The findings have potential implications for molecular diagnosis of dysferlinopathy and the identification of dysferlin isoforms.
Collapse
|
28
|
Kramerova I, Kudryashova E, Wu B, Ottenheijm C, Granzier H, Spencer MJ. Novel role of calpain-3 in the triad-associated protein complex regulating calcium release in skeletal muscle. Hum Mol Genet 2008; 17:3271-80. [PMID: 18676612 PMCID: PMC2566524 DOI: 10.1093/hmg/ddn223] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 07/30/2008] [Indexed: 02/02/2023] Open
Abstract
Calpain-3 (CAPN3) is a non-lysosomal cysteine protease that is necessary for normal muscle function, as mutations in CAPN3 result in an autosomal recessive form of limb girdle muscular dystrophy type 2A. To elucidate the biological roles of CAPN3 in skeletal muscle, we performed a search for potential substrates and interacting partners. By yeast-two-hybrid analysis we identified the glycolytic enzyme aldolase A (AldoA) as a binding partner of CAPN3. In co-expression studies CAPN3 degraded AldoA; however, no accumulation of AldoA was observed in total extracts from CAPN3-deficient muscles suggesting that AldoA is not an in vivo substrate of CAPN3. Instead, we found CAPN3 to be necessary for recruitment of AldoA to one specific location, namely the triads, which are structural components of muscle responsible for calcium transport and excitation-contraction coupling. Both aldolase and CAPN3 are present in the triad-enriched fraction and are able to interact with ryanodine receptors (RyR) that form major calcium release channels. Levels of triad-associated AldoA and RyR were decreased in CAPN3-deficient muscles compared with wild-type. Consistent with these observations we found calcium release to be significantly reduced in fibers from CAPN3-deficient muscles. Together, these data suggest that CAPN3 is necessary for the structural integrity of the triad-associated protein complex and that impairment of calcium transport is a phenotypic feature of CAPN3-deficient muscle.
Collapse
Affiliation(s)
- Irina Kramerova
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Elena Kudryashova
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Benjamin Wu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Coen Ottenheijm
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85724, USA
| | - Henk Granzier
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85724, USA
| | - Melissa J. Spencer
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
29
|
Blázquez L, Azpitarte M, Sáenz A, Goicoechea M, Otaegui D, Ferrer X, Illa I, Gutierrez-Rivas E, Vilchez JJ, López de Munain A. Characterization of novel CAPN3 isoforms in white blood cells: an alternative approach for limb-girdle muscular dystrophy 2A diagnosis. Neurogenetics 2008; 9:173-82. [PMID: 18563459 DOI: 10.1007/s10048-008-0129-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 03/26/2008] [Indexed: 10/21/2022]
Abstract
Limb-girdle muscular dystrophy type 2A (LGMD2A) is an autosomal recessive disorder caused by mutations in the CAPN3 gene. Its definitive diagnosis is laborious, since the clinical phenotype is often similar to other types of muscular dystrophy and since the CAPN3 gene encompasses a large genomic region with more than 300 pathogenic mutations described to date. In fact, it is estimated that nearly 25% of the cases with a phenotype suggestive of LGMD2A do not have mutations in the CAPN3 gene and that, in up to 22% of the cases, only one mutation is identified. In the present work, we have characterised CAPN3 messenger RNA (mRNA) expression in peripheral blood, and we have performed a retrospective diagnostic study with 26 LGMD2A patients, sequencing a transcript of CAPN3 present in white blood cells (WBCs). The 25% of the mutations presented in this paper (7/28) act modifying pre-mRNA splicing of the CAPN3 transcript, including the first deep-intronic mutation described to date in the CAPN3 gene. Our results determine that the sequencing of CAPN3 transcripts present in WBCs could be applied as a new approach for LGMD2A diagnosis. This method improves and simplifies diagnosis, since it combines the advantages of mRNA analysis in a more accessible and rapidly regenerated tissue. However, the lack of exon 15 in the CAPN3 isoforms present in blood, and the presence of mRNA degradation make it necessary to combine mRNA and DNA analyses in some specific cases.
Collapse
Affiliation(s)
- L Blázquez
- Experimental Unit, Hospital Donostia, San Sebastián, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
cDNA analyses of CAPN3 enhance mutation detection and reveal a low prevalence of LGMD2A patients in Denmark. Eur J Hum Genet 2008; 16:935-40. [PMID: 18337726 DOI: 10.1038/ejhg.2008.47] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Calpainopathy or limb-girdle muscular dystrophy type 2A (LGMD2A) is generally recognized as the most prevalent form of recessive LGMD and is caused by mutations in the CAPN3 gene. Out of a cohort of 119 patients fulfilling clinical criteria for LGMD2, referred to our neuromuscular clinic, 46 were suspected to have LGMD2A, based on western blot results. Four of these patients were shown to have LGMD2I upon molecular analysis, whereas 16 of the remaining 42 patients harbored mutations in CAPN3 by both direct genomic sequencing and cDNA analyses. In 10 patients, we identified both mutant alleles. In three other, only one heterozygous mutation could be identified on the genomic level; however, CAPN3 cDNA analyses demonstrated homozygosity for the mutant allele, indicating the presence of an unidentified allele that somehow compromise correct CAPN3 RNA processing. In the three remaining patients, only a single heterozygous mutation could be identified both at the genomic level and on full-length CAPN3 cDNA. All three patients exhibited a highly abnormal western blot for calpain-3 and clinical characteristics of LGMD2A. Only three of the genetically confirmed LGMD2A patients were of Danish origin, indicating a five- to sixfold lower prevalence in Denmark compared to other European countries. A total of 16 different CAPN3 mutations were identified, of which 5 were novel. The present study demonstrates the value of cDNA analysis for CAPN3 in LGMD2A patients and indicates that calpainopathy is an uncommon cause of LGMD in the Denmark.
Collapse
|
31
|
Vondracek P, Hermanova M, Vodickova K, Fajkusova L, Blakely EL, He L, Turnbull DM, Taylor RW, Tajsharghi H. An unusual case of congenital muscular dystrophy with normal serum CK level, external ophtalmoplegia, and white matter changes on brain MRI. Eur J Paediatr Neurol 2007; 11:381-4. [PMID: 17395506 DOI: 10.1016/j.ejpn.2007.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 11/23/2022]
Abstract
We report a sporadic case of congenital muscular dystrophy (CMD) in a 13-year-old girl with early manifestation of muscle weakness and hypotonia, severe contractures, bulbar syndrome, progressive external ophtalmoplegia, and white matter changes on magnetic resonance imaging (MRI) of the brain, but no mental defect. Serum creatine kinase (CK) level was normal. Muscle biopsy revealed a dystrophic picture with a prominent inflammatory infiltrate mimicking inflammatory myopathy-typical histological findings in CMD. Immunostaining showed normal expression of merosin, alpha and beta-dystroglycans. Mutation analyses of calpain3, dysferlin, and SEPN1 genes were negative. An electron microscopy revealed the accumulation of abnormally enlarged mitochondria located under the sarcolemma. Measurement of respiratory chain enzyme activities did not reveal any biochemical defect and mitochondrial genetic studies, including sequencing of the entire mitochondrial genome, were unremarkable. Phenotypic presentation of our patient is very unusual and differs considerably from other CMD variants.
Collapse
Affiliation(s)
- Petr Vondracek
- Department of Pediatric Neurology, University Hospital and Masaryk University, Brno, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lo HP, Cooper ST, Evesson FJ, Seto JT, Chiotis M, Tay V, Compton AG, Cairns AG, Corbett A, MacArthur DG, Yang N, Reardon K, North KN. Limb-girdle muscular dystrophy: diagnostic evaluation, frequency and clues to pathogenesis. Neuromuscul Disord 2007; 18:34-44. [PMID: 17897828 DOI: 10.1016/j.nmd.2007.08.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 07/23/2007] [Accepted: 08/17/2007] [Indexed: 11/19/2022]
Abstract
We characterized the frequency of limb-girdle muscular dystrophy (LGMD) subtypes in a cohort of 76 Australian muscular dystrophy patients using protein and DNA sequence analysis. Calpainopathies (8%) and dysferlinopathies (5%) are the most common causes of LGMD in Australia. In contrast to European populations, cases of LGMD2I (due to mutations in FKRP) are rare in Australasia (3%). We have identified a cohort of patients in whom all common disease candidates have been excluded, providing a valuable resource for identification of new disease genes. Cytoplasmic localization of dysferlin correlates with fiber regeneration in a subset of muscular dystrophy patients. In addition, we have identified a group of patients with unidentified forms of LGMD and with markedly abnormal dysferlin localization that does not correlate with fiber regeneration. This pattern is mimicked in primary caveolinopathy, suggesting a subset of these patients may also possess mutations within proteins required for membrane targeting of dysferlin.
Collapse
Affiliation(s)
- Harriet P Lo
- Institute for Neuromuscular Research, The Children's Hospital at Westmead, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The muscular dystrophies are a heterogeneous group of inherited disorders, defined by progressive muscle weakness and atrophy. Following the discovery of dystrophin, remarkable progress has been made in defining the molecular properties of proteins involved in the various dystrophies. This has underlined the importance of the dystrophin-associated protein complex as a cell membrane scaffold, providing structural stability to muscle cells (McNeil PL, Khakee R. Disruptions of muscle fiber plasma membranes. Role in exercise-induced damage. Am J Pathol 1992;140:1097-1109). While the dystrophies linked to loss of function of dystrophin and its associated proteins are caused by diminished membrane integrity, it is now believed that a new class of dystrophies arises because of a diminished capacity for rapid muscle membrane repair after injury. Dysferlin is the first identified member of a putative muscle-specific repair complex that permits rapid resealing of membranes disrupted by mechanical stress. Membrane resealing is a function conserved by most cells and is mediated by a mechanism closely resembling regulated, Ca2+-dependent exocytosis. A primary role for dysferlin in this pathway, as a Ca2+-regulated fusogen, has been suggested, and a number of candidate partner proteins have been identified. This review outlines the current understanding of the role of dysferlin in membrane repair and the evolving picture of dysferlin-related signaling pathways in muscle cell physiology and pathology.
Collapse
Affiliation(s)
- Louise Glover
- Day Neuromuscular Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | |
Collapse
|
34
|
Abstract
The limb-girdle muscular dystrophy type 2A (LGMD2A) is a recessively inherited disease caused by a mutation of the calpain 3 gene (CAPN3), and is considered one of the most prevalent subtypes of limb-girdle muscular dystrophy (LGMD). In this study, we aimed to identify CAPN3 mutations and to characterize the phenotype of Korean patients with LGMD2A. Among 35 patients with LGMD, four patients, who showed calpain 3 deficiency on western blot analysis, were analyzed in this study. Total RNA extracted from frozen muscle tissue was amplified by reverse transcriptase polymerase chain reaction (RT-PCR) using six primer pairs covering all coding sequences of CAPN3, and direct sequencing was performed. Clinical and pathological features of the patients were also reviewed. We found four different mutations in five alleles from three patients. Of the pathogenic mutations identified, two were novel (c.2125T>C and c.2355-2357delTTC), and the others had been reported elsewhere (c.440G>C, c.1076C>T). All patients showed a high CK level with predominant proximal leg weakness, and the onset was in their childhood except for one patient. Among two novel CAPN3 mutations, one was a missense mutation (c.2125T>C [p.709Ser>Pro]), and the other was a small in-frame deletion causing omission of a single amino acid (c.2355-2357delTTC [p.786delPhe]). The clinical features of our patients were generally compatible with the characteristics of LGMD2A patients described in the previous studies.
Collapse
Affiliation(s)
- Jin-Hong Shin
- Department of Neurology, Pusan National University School of Medicine, Busan, Korea
| | - Hyang-Suk Kim
- Medical Research Institute, Pusan National University School of Medicine, Busan, Korea
| | - Chang-Hoon Lee
- Medical Research Institute, Pusan National University School of Medicine, Busan, Korea
- Department of Pathology, Pusan National University School of Medicine, Busan, Korea
| | - Cheol-Min Kim
- Department of Pathology, Pusan National University School of Medicine, Busan, Korea
- Department of Biochemistry, Pusan National University School of Medicine, Busan, Korea
| | - Kyu-Hyun Park
- Department of Neurology, Pusan National University School of Medicine, Busan, Korea
- Medical Research Institute, Pusan National University School of Medicine, Busan, Korea
| | - Dae-Seong Kim
- Department of Neurology, Pusan National University School of Medicine, Busan, Korea
- Medical Research Institute, Pusan National University School of Medicine, Busan, Korea
| |
Collapse
|
35
|
Stehlíková K, Zapletalová E, Sedlácková J, Hermanová M, Vondrácek P, Maríková T, Mazanec R, Zámecník J, Vohánka S, Fajkus J, Fajkusová L. Quantitative analysis of CAPN3 transcripts in LGMD2A patients: Involvement of nonsense-mediated mRNA decay. Neuromuscul Disord 2007; 17:143-7. [PMID: 17157502 DOI: 10.1016/j.nmd.2006.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 09/06/2006] [Accepted: 10/11/2006] [Indexed: 11/16/2022]
Abstract
Limb girdle muscular dystrophy type 2A (LGMD2A) is caused by single or small nucleotide changes widespread along the CAPN3 gene, which encodes the muscle-specific proteolytic enzyme calpain-3. About 356 unique allelic variants of CAPN3 have been identified to date. We performed analysis of the CAPN3 gene in LGMD2A patients at both the mRNA level using reverse transcription-PCR, and at the DNA level using PCR and denaturing high performance liquid chromatography. In four patients, we detected homozygous occurrence of a missense mutation or an in-frame deletion at the mRNA level although the DNA was heterozygous for this mutation in conjunction with a frame-shift mutation. The relationship observed in 12 patients between the quantity of CAPN3 mRNA, determined using real-time PCR, and the genotype leads us to propose that CAPN3 mRNAs which contain frame-shift mutations are degraded by nonsense-mediated mRNA decay. Our results illustrate the importance of DNA analysis for reliable establishment of mutation status, and provide a new insight into the process of mRNA decay in cells of LGMD2A patients.
Collapse
Affiliation(s)
- Kristýna Stehlíková
- University Hospital Brno, Centre of Molecular Biology and Gene Therapy, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Calpains, particularly conventional dimeric calpains, have claimed to be involved in the cell degeneration processes that characterize numerous disease conditions linked to dysfunctions of cellular Ca2+ homeostasis. The evidence supporting their involvement has traditionally been indirect and circumstantial, but recent work has added more solid evidence supporting the role of ubiquitous dimeric calpains in the process of neurodegeneration. The only disease condition in which a calpain defect has been conclusively involved concerns an atypical monomeric calpain: the muscle specific calpain-3, also known as p94. Inactivating defects in its gene cause a muscular dystrophy termed LGMD-2A. The molecular mechanism by which the absence of the proteolytic activity of calpain-3 causes the dystrophic process is unknown. Another atypical calpain, which has been characterized recently as a Ca2(+)-dependent protease, calpain 10, appears To be involved in the etiology of type 2 diabetes. The involvement has been inferred essentially from genetic evidence. Also in the case of type 2 diabetes the molecular mechanisms that could link the disease to calpain 10 are unknown.
Collapse
Affiliation(s)
- I Bertipaglia
- Department of Biochemistry, University of Padova, Italy
| | | |
Collapse
|
37
|
De Luna N, Freixas A, Gallano P, Caselles L, Rojas-García R, Paradas C, Nogales G, Dominguez-Perles R, Gonzalez-Quereda L, Vílchez JJ, Márquez C, Bautista J, Guerrero A, Salazar JA, Pou A, Illa I, Gallardo E. Dysferlin expression in monocytes: A source of mRNA for mutation analysis. Neuromuscul Disord 2007; 17:69-76. [PMID: 17070050 DOI: 10.1016/j.nmd.2006.09.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 07/28/2006] [Accepted: 09/08/2006] [Indexed: 10/24/2022]
Abstract
Dysferlin protein is expressed in peripheral blood monocytes. The genomic analysis of the DYSF gene has proved to be time consuming because it has 55 exons. We designed a mutational screening strategy based on cDNA from monocytes to find out whether the mutational analysis could be performed in mRNA from a source less invasive than the muscle biopsy. We studied 34 patients from 23 families diagnosed with dysferlinopathy. The diagnosis was based on clinical findings and on the absence of protein expression using either immunohistochemistry or Western blot of skeletal muscle and/or monocytes. We identified 28 different mutations, 13 of which were novel. The DYSF mutations in both alleles were found in 30 patients and only in one allele in four. The results were confirmed using genomic DNA in 26/34 patients. This is the first report to furnish evidence of reliable mutational analysis using monocytes cDNA and constitutes a good alternative to genomic DNA analysis.
Collapse
Affiliation(s)
- N De Luna
- Servei de Neurologia i Laboratori de Neurologia Experimental, Hospital de la Santa Creu i Sant Pau i Institut de Recerca de HSCSP, Universitat Autònoma, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kramerova I, Kudryashova E, Wu B, Spencer MJ. Regulation of the M-cadherin-beta-catenin complex by calpain 3 during terminal stages of myogenic differentiation. Mol Cell Biol 2006; 26:8437-47. [PMID: 16982691 PMCID: PMC1636794 DOI: 10.1128/mcb.01296-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 08/10/2006] [Accepted: 09/04/2006] [Indexed: 11/20/2022] Open
Abstract
The cysteine protease calpain 3 (CAPN3) is essential for normal muscle function, since mutations in CAPN3 cause limb girdle muscular dystrophy type 2A. Previously, we showed that myoblasts isolated from CAPN3 knockout (C3KO) mice were able to fuse to myotubes; however, sarcomere formation was disrupted. In this study we further characterized morphological and biochemical features of C3KO myotubes in order to elucidate a role for CAPN3 during myogenesis. We showed that cell cycle withdrawal occurred normally in C3KO cultures, but C3KO myotubes have an increased number of myonuclei per myotube. We found that CAPN3 acts during myogenesis to specifically control levels of membrane-associated but not cytoplasmic beta-catenin and M-cadherin. CAPN3 was able to cleave both proteins, and in the absence of CAPN3, M-cadherin and beta-catenin abnormally accumulated at the membranes of myotubes. Given the role of M-cadherin in myoblast fusion, this finding suggests that the excessive myonuclear index of C3KO myotubes was due to enhanced fusion. Postfusion events, such as beta1D integrin expression and myofibrillogenesis, were suppressed in C3KO myotubes. These data suggest that the persistence of fusion observed in C3KO cells inhibits subsequent steps of differentiation, such as integrin complex rearrangements and sarcomere assembly.
Collapse
Affiliation(s)
- Irina Kramerova
- Department of Neurology, David Geffen School of Medicine, Neuroscience Research Building, University of California at Los Angeles, Los Angeles, CA 90095-7334, USA.
| | | | | | | |
Collapse
|
39
|
Abstract
Calpain 3 is a 94-kDa calcium-dependent cysteine protease mainly expressed in skeletal muscle. In this tissue, it localizes at several regions of the sarcomere through binding to the giant protein, titin. Loss-of-function mutations in the calpain 3 gene have been associated with limb-girdle muscular dystrophy type 2A (LGMD2A), a common form of muscular dystrophy found world wide. Recently, significant progress has been made in understanding the mode of regulation and the possible function of calpain 3 in muscle. It is now well accepted that it has an unusual zymogenic activation and that cytoskeletal proteins are one class of its substrates. Through the absence of cleavage of these substrates, calpain 3 deficiency leads to abnormal sarcomeres, impairment of muscle contractile capacity, and death of the muscle fibers. These data indicate a role for calpain 3 as a chef d'orchestre in sarcomere remodeling and suggest a new category of LGMD2 pathological mechanisms.
Collapse
|
40
|
Kramerova I, Beckmann JS, Spencer MJ. Molecular and cellular basis of calpainopathy (limb girdle muscular dystrophy type 2A). Biochim Biophys Acta Mol Basis Dis 2006; 1772:128-44. [PMID: 16934440 DOI: 10.1016/j.bbadis.2006.07.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 07/07/2006] [Accepted: 07/13/2006] [Indexed: 11/28/2022]
Abstract
Limb girdle muscular dystrophy type 2A results from mutations in the gene encoding the calpain 3 protease. Mutations in this disease are inherited in an autosomal recessive fashion and result in progressive proximal skeletal muscle wasting but no cardiac abnormalities. Calpain 3 has been shown to proteolytically cleave a wide variety of cytoskeletal and myofibrillar proteins and to act upstream of the ubiquitin-proteasome pathway. In this review, we summarize the known biochemical and physiological features of calpain 3 and hypothesize why mutations result in disease.
Collapse
Affiliation(s)
- Irina Kramerova
- Department of Neurology and Pediatrics and UCLA Duchenne Muscular Dystrophy Research Center, University of California, Los Angeles, Neuroscience Research Building, 635 Young Dr. South, Los Angeles, CA 90095-7334, USA
| | | | | |
Collapse
|
41
|
Hermanová M, Zapletalová E, Sedlácková J, Chrobáková T, Letocha O, Kroupová I, Zámecník J, Vondrácek P, Mazanec R, Maríková T, Vohánka S, Fajkusová L. Analysis of histopathologic and molecular pathologic findings in Czech LGMD2A patients. Muscle Nerve 2006; 33:424-32. [PMID: 16372320 DOI: 10.1002/mus.20480] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Limb-girdle muscular dystrophy type 2A (LGMD2A) is an autosomal-recessive disorder characterized by selective atrophy and progressive weakness of proximal girdle muscles. LGMD2A, the most prevalent form of LGMD, is caused by mutations in the CAPN3 gene that encodes the skeletal muscle-specific member of the calpain family, calpain-3 (p 94). We examined the histopathologic and molecular pathologic findings in 14 Czech LGMD2A patients. Analysis of the CAPN3 gene was performed at the mRNA level, using reverse transcription-polymerase chain reaction (RT-PCR) and sequencing, and/or DNA level, using PCR and denaturing high-performance liquid chromatography (DHPLC). Our results confirm that mutation 550 delA is the most frequent CAPN3 defect in Czech LGMD2A patients (9 alleles of 28). Furthermore, we established that, in a patient with the 550 delA/R490W genotype, mRNA carrying frameshift mutation 550 delA was not detected, probably due to its degradation by nonsense-mediated mRNA decay. In muscle biopsies of two LGMD2A patients, a neurogenic pattern simulating a neurogenic lesion was observed. Immunoblot analysis revealed the deficiency of p 94 in all genetically confirmed cases of LGMD2A, and secondary dysferlin deficiency was demonstrated on muscle membranes in 6 patients using immunofluorescence. Thus, we find a combination of DNA and mRNA mutational analysis to be useful in the diagnosis of LGMD2A. Moreover, our study expands the spectrum of calpainopathies to cases that simulate a neurogenic lesion in muscle biopsies, and the knowledge of possible secondary deficiencies of muscular proteins also contributes to a diagnosis of LGMD2A.
Collapse
Affiliation(s)
- Markéta Hermanová
- Department of Pathology, University Hospital Brno, Jihlavská 20, 625 00, Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The diagnostic muscle biopsy has seen the use of virtually every histologic technique in existence over the past 50 years. Since the 1960s, enzyme histochemistry has become the chief technique in evaluating muscle biopsies. However, the increasing knowledge of cellular constituents and associated connective tissue of the myofiber coupled with the increasing availability of a broad diversity of antibodies to these proteins promises to bring the diagnosis of muscle disease to the same state of dependency upon immunohistochemistry as in the contemporary pathologic diagnosis of neoplasia. Immunohistochemistry may be used for both the identification of normal antigenic constituents in skeletal muscle and their loss, accumulation, or maldistribution in corresponding myopathies, sometimes with small biopsies or lacking frozen tissue, in paraffin sections. Three broad categories of muscle diseases will be characterized in terms of diagnostic antibodies in current use: dystrophic, congenital/structural, and inflammatory myopathies.
Collapse
Affiliation(s)
- Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| | | |
Collapse
|
43
|
Sáenz A, Leturcq F, Cobo AM, Poza JJ, Ferrer X, Otaegui D, Camaño P, Urtasun M, Vílchez J, Gutiérrez-Rivas E, Emparanza J, Merlini L, Paisán C, Goicoechea M, Blázquez L, Eymard B, Lochmuller H, Walter M, Bonnemann C, Figarella-Branger D, Kaplan JC, Urtizberea JA, Martí-Massó JF, López de Munain A. LGMD2A: genotype-phenotype correlations based on a large mutational survey on the calpain 3 gene. ACTA ACUST UNITED AC 2005; 128:732-42. [PMID: 15689361 DOI: 10.1093/brain/awh408] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We present here the clinical, molecular and biochemical findings from 238 limb-girdle muscular dystrophy type 2A (LGMD2A) patients, representing approximately 50% (238 out of 484) of the suspected calpainopathy cases referred for the molecular study of the calpain 3 (CAPN3) gene. The mean age at onset of LGMD2A patients was approximately 14 years, and the first symptoms occurred between 6 and 18 years of age in 71% of patients. The mean age at which the patients became wheelchair bound was 32.2 years, with 84% requiring the use of a wheelchair between the age of 21 and 40 years. There was no correlation between the age at onset and the time at which the patient became wheelchair bound, nor between the sex of the patient and the risk of becoming wheelchair bound. Of the cases where the CAPN3 gene was not affected, approximately 20% were diagnosed as LGMD2I muscular dystrophy, while facioscapulohumeral muscular dystrophy (FSHD) was uncommon in this sample. We identified 105 different mutations in the CAPN3 gene of which 50 have not been described previously. These were distributed throughout the coding region of the gene, although some exons remained free of mutations. The most frequent mutation was 2362AG-->TCATCT (exon 22), which was present in 30.7% of the chromosomes analysed (146 chromosomes). Other recurrent mutations described were N50S, 550DeltaA, G222R, IVS6-1G-->A, A483D, IVS17+1G-->T, 2069-2070DeltaAC, R748Q and R748X, each of which was found in >5 chromosomes. The type of mutation in the CAPN3 gene does not appear to be a risk factor for becoming dependent on a wheelchair at a determined age. However, in the cases with two null mutations, there were significantly fewer patients that were able to walk than in the group of patients with at least one missense mutation. Despite the fact that the results of phenotyping and western blot might be biased due to multiple referral centres, producing a diagnosis on the basis of the classical phenotype is neither sufficiently sensitive (86.7%) nor specific (69.3%), although western blot proved to be even less sensitive (52.5%) yet more specific (87.8%). In this case LGMD2I was a relevant cause of false-positive diagnoses. Considering both the clinical phenotype and the biochemical information together, the probability of correctly diagnosing a calpainopathy is very high (90.8%). However, if one of the analyses is lacking, the probability varies from 78.3 to 73.7% depending on the information available. When both tests are negative, the probability that the sample comes from a patient with LGMD2A was 12.2%.
Collapse
Affiliation(s)
- A Sáenz
- Unidad Experimental, Hospital Donostia, San Sebastián, Basque Country, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|