1
|
Dong J, Zhang W, Chen Q, Zha L. Identification of a Missense Mutation in the FLNC Gene from a Chinese Family with Restrictive Cardiomyopathy. J Multidiscip Healthc 2024; 17:5363-5373. [PMID: 39582878 PMCID: PMC11585995 DOI: 10.2147/jmdh.s494831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
Objective Restrictive cardiomyopathy (RCM) is a heterogenous cardiomyopathy with various causes, and genetic variants take an important part of the pathogenesis. Whole-exome sequencing (WES) is effective to discover genes that cause genetic diseases. By using WES, we attempted to identify the genetic cause of an RCM family and clarify the clinical diagnosis of the patient and then provide a personalized treatment plan. Materials and Methods Blood samples were obtained from the proband and his healthy parents. WES and Sanger sequencing were performed to identify the possible pathogenic gene. Co-segregation analysis was conducted for candidate variants, and the allele frequency was checked in databases including Ensembl, Exome Aggregation Consortium (ExAC) and Human Gene Mutation Database (HGMD). Furthermore, the potential effect of variant was predicted using various-free software such as SIFT, Polyphen-2 and Mutation Taster and the conservation was tested using multiple sequence alignments by ClustalX. Results The proband was a 20 years old boy with severe heart failure symptoms including dyspnea, massive ascites, edema of both lower limbs and chest congestion. Echocardiography showed significant biatrial enlargement, normal left ventricular wall thickness and preserved systolic function of both ventricles. A missense mutation in FLNC (c.6451G>A, p.G2151S), encoded filamin-C was detected in proband by WES and Sanger sequencing, while it was not be found in his parents, we supposed that the FLNC mutation (c.6451G>A, p.G2151S) may be a de-novo mutation. Through multiple functional predictions, we found that it is a deleterious mutation and the mutation in filamin-C could alter its structure and normal function, contributing to RCM. Conclusion Here, an FLNC missense mutation (c.6451G>A, p.G2151S) known to be pathogenic in hypertrophic cardiomyopathy, was found to be associated with RCM, indicating the genetic overlap among cardiomyopathies. This study provides insights into Phenotype-Genotype Correlations of RCM in patients with FLNC mutations.
Collapse
Affiliation(s)
- Jiangtao Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Wenjuan Zhang
- Department of Geriatrics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Qianwen Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Department of Pediatric Cardiology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, People’s Republic of China
| | - Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
2
|
Wang Q, Sun P, Yu M, Xie Z, Yu J, Liu X, Hong D, Lv H, Deng J, Yuan Y, Wang Z, Zhang W. Mutational and clinical spectrum of myofibrillar myopathy in one center from China. J Neuromuscul Dis 2024; 11:1247-1259. [PMID: 39973468 DOI: 10.1177/22143602241289220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Myofibrillar myopathy (MFM) is a heterogeneous group of neuromuscular disorders characterized by degeneration of Z-disk and disintegration of myofibrils. OBJECTIVE: We aimed to analyze the mutational spectrum and phenotypic features of MFM in China. METHODS We used targeted next generation sequencing (NGS) to identify causative mutations in 39 MFM patients with confirmed myopathological diagnosis. RESULTS The results showed that variants were found in six MFM-associated genes, including DES, FLNC, BAG3, MYOT, TTN and DNAJB6, in 28 (71.7%), 3 (7.7%), 3 (7.7%), 1 (2.6%), 3 (7.7%), and 1 (2.6%), respectively. Of the total 26 variants identified, 19 were reported previously and 7 were novel variants. Missense variant (80.0%) was the most common mutant type of DES. P209L was the hotspot mutation of BAG3 while no obvious hotspot mutation was found of DES. Clinically, distal and proximal weakness were observed in 64.1% and 35.9% patients. Arrythmia and peripheral neuropathy were the most common combined symptoms of desminopathy and BAG3opathy, respectively. Pathologically, rimmed vacuoles (RVs) were present in different genetic type of MFM. Giant axonal nerve fiber was found in BAG3-releated MFM patient. CONLUSION We concluded that MFM showed a highly variable genetic spectrum, with DES as the most frequent causative gene followed by FLNC, BAG3 and TTN. This study expanded the genotypic and phenotypic spectrum of MFM among Chinese cohort.
Collapse
Affiliation(s)
- Qi Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Peng Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jiaxi Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Xiujuan Liu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
3
|
Shin JW, Kim KH, Lee Y, Choi DE, Lee JM. Personalized allele-specific CRISPR-Cas9 strategies for myofibrillar myopathy 6. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.03.24302252. [PMID: 38352343 PMCID: PMC10863003 DOI: 10.1101/2024.02.03.24302252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Myofibrillar myopathy 6 (MFM6) is a rare childhood-onset myopathy characterized by myofibrillar disintegration, muscle weakness, and cardiomyopathy. The genetic cause of MFM6 is p.Pro209Leu mutation (rs121918312-T) in the BAG3 gene, which generates the disease outcomes in a dominant fashion. Since the consequences of the BAG3 mutation are strong and rapidly progressing, most MFM6 patients are due to de novo mutation. There are no effective treatments for MFM6 despite its well-known genetic cause. Given p.Pro209Leu mutation is dominant, regenerative medicine approaches employing orthologous stem cells in which mutant BAG3 is inactivated offer a promising avenue. Here, we developed personalized allele-specific CRISPR-Cas9 strategies capitalizing on PAM-altering SNP and PAM-proximal SNP. In order to identify the disease chromosome carrying the de novo mutation in our two affected individuals, haplotype phasing through cloning-sequencing was performed. Based on the sequence differences between mutant and normal BAG3, we developed personalized allele-specific CRISPR-Cas9 strategies to selectively inactivate the mutant allele 1) by preventing the transcription of the mutant BAG3 and 2) by inducing nonsense-mediated decay (NMD) of mutant BAG3 mRNA. Subsequent experimental validation in patient-derived induced pluripotent stem cell (iPSC) lines showed complete allele specificities of our CRISPR-Cas9 strategies and molecular consequences attributable to inactivated mutant BAG3. In addition, mutant allele-specific CRISPR-Cas9 targeting did not alter the characteristics of iPSC or the capacity to differentiate into cardiomyocytes. Together, our data demonstrate the feasibility and potential of personalized allele-specific CRISPR-Cas9 approaches to selectively inactivate the mutant BAG3 to generate cell resources for regenerative medicine approaches for MFM6.
Collapse
Affiliation(s)
- Jun Wan Shin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Kyung-Hee Kim
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Yukyeong Lee
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Doo Eun Choi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Jong-Min Lee
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Bordini BJ, Walsh RD, Basel D, Deshmukh T. Attaining Diagnostic Excellence: How the Structure and Function of a Rare Disease Service Contribute to Ending the Diagnostic Odyssey. Med Clin North Am 2024; 108:1-14. [PMID: 37951644 DOI: 10.1016/j.mcna.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Patients with rare or otherwise undiagnosed disorders frequently find themselves on a diagnostic odyssey, the often-prolonged journey toward diagnosis that can be characterized by significant physical, emotional, and financial hardship, as well as by diagnostic errors and delays. The wider availability of clinical exome sequencing has helped end many diagnostic odysseys, though diagnostic success rates of around 35% for exome sequencing leave many patients undiagnosed. Diagnostic yields can be improved via the implementation of advanced genetic testing modalities, though both these modalities and exome sequencing perform significantly better when paired with high-quality phenotypic data. Diagnostic centers of excellence can improve outcomes for patients on a diagnostic odyssey by providing a process and environment that address shortfalls in diagnostic access while providing high-quality phenotyping. Features of successful undiagnosed and rare disease evaluation teams are discussed and an illustrative case is provided.
Collapse
Affiliation(s)
- Brett J Bordini
- Department of Pediatrics, Division of Hospital Medicine, Nelson Service for Undiagnosed and Rare Diseases, Medical College of Wisconsin.
| | - Ryan D Walsh
- Department of Neurology, Medical College of Wisconsin; Eye Institute - Froedtert Hospital, 925 North 87th Street, Milwaukee, WI 53226, USA
| | - Donald Basel
- Department of Pediatrics, Section Chief, Division of Medical Genetics, Medical College of Wisconsin, 9000 West Wisconsin Avenue MC716, Milwaukee, WI 53226, USA
| | - Tejaswini Deshmukh
- Department of Radiology, Division of Pediatric Radiology, Medical College of Wisconsin; Department of Pediatric Imaging, 9000 West Wisconsin Avenue, Milwaukee, WI 53226, USA
| |
Collapse
|
5
|
Nagatomo R, Higuchi Y, Takei J, Nakamura T, Hashiguchi H, Takashima H. [A case of myofibrillary myopathy due to Bcl2-Associated Athanogene 3 (BAG3) mutation complicated by peripheral neuropathy]. Rinsho Shinkeigaku 2023; 63:836-842. [PMID: 37989284 DOI: 10.5692/clinicalneurol.cn-001915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
A 19-year-old female, normal at birth, grew up without neck movement when getting up. She needed a handrail to climb stairs since the age of 10 years old, and walked slowly since the age of 16 years old. Neurological examination revealed loss of deep tendon reflexes, decreased vibratory sensation, weakness of distal muscles of the lower extremities, and weakness of mainly cervical trunk muscles suspected to be due to myopathy. Nerve conduction studies suggested axonal polyneuropathy, and needle EMG showed short duration MUP, myotonic discharge, and rimmed vacuoles on muscle biopsy. Genetic analysis revealed a previously reported pathological mutation (p.P209L, heterozygous) in Bcl2-Associated Athanogene 3 (BAG3), and a diagnosis of MFM6 was made. P209L is a poor prognosis myopathy that develops in childhood and is associated with cardiomyopathy. P209L is a solitary myopathy associated with axonal neuropathy and characterized by apex foot contracture and weak neck to trunk flexion. This disease is suspected in young-onset neuromyopathy.
Collapse
Affiliation(s)
- Risa Nagatomo
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Jun Takei
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Tomonori Nakamura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Hiroaki Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences
| |
Collapse
|
6
|
Wacker J, Di Bernardo S, Lobrinus JA, Jungbluth H, Gautel M, Beghetti M, Fluss J. Successful heart transplant in a child with congenital core myopathy and delayed-onset restrictive cardiomyopathy due to recessive mutations in the titin (TTN) gene. Pediatr Transplant 2023; 27:e14561. [PMID: 37345726 DOI: 10.1111/petr.14561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Mutations in the TTN gene, encoding the muscle filament titin, are a major cause of inherited dilated cardiomyopathy. Early-onset skeletal muscle disorders due to recessive TTN mutations have recently been described, sometimes associated with cardiomyopathies. CASE DESCRIPTION We report the case of a boy with congenital core myopathy due to compound heterozygosity for TTN variants. He presented in infancy with rapidly evolving restrictive cardiomyopathy, requiring heart transplantation at the age of 5 years with favorable long-term cardiac and neuromuscular outcome. CONCLUSION Heart transplantation may have a role in selected patients with TTN-related congenital myopathy with disproportionally severe cardiac presentation compared to skeletal and respiratory muscle involvement.
Collapse
Affiliation(s)
- Julie Wacker
- Pediatric Cardiology Unit, University Hospitals of Geneva, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Centre Universitaire Romand de Cardiologie et Chirurgie Cardiaque Pédiatrique, University Hospitals of Geneva, Geneva, Switzerland
| | - Stefano Di Bernardo
- Centre Universitaire Romand de Cardiologie et Chirurgie Cardiaque Pédiatrique, University Hospitals of Geneva, Geneva, Switzerland
- Pediatric Cardiology, Department of Pediatrics, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London BHF Centre of Research Excellence, London, UK
| | - Mathias Gautel
- Randall Centre for Cell and Molecular Biophysics, King's College London BHF Centre of Research Excellence, London, UK
| | - Maurice Beghetti
- Pediatric Cardiology Unit, University Hospitals of Geneva, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Centre Universitaire Romand de Cardiologie et Chirurgie Cardiaque Pédiatrique, University Hospitals of Geneva, Geneva, Switzerland
| | - Joel Fluss
- Pediatric Neurology Unit, University Hospitals of Geneva, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Tedesco B, Vendredy L, Timmerman V, Poletti A. The chaperone-assisted selective autophagy complex dynamics and dysfunctions. Autophagy 2023:1-23. [PMID: 36594740 DOI: 10.1080/15548627.2022.2160564] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Each protein must be synthesized with the correct amino acid sequence, folded into its native structure, and transported to a relevant subcellular location and protein complex. If any of these steps fail, the cell has the capacity to break down aberrant proteins to maintain protein homeostasis (also called proteostasis). All cells possess a set of well-characterized protein quality control systems to minimize protein misfolding and the damage it might cause. Autophagy, a conserved pathway for the degradation of long-lived proteins, aggregates, and damaged organelles, was initially characterized as a bulk degradation pathway. However, it is now clear that autophagy also contributes to intracellular homeostasis by selectively degrading cargo material. One of the pathways involved in the selective removal of damaged and misfolded proteins is chaperone-assisted selective autophagy (CASA). The CASA complex is composed of three main proteins (HSPA, HSPB8 and BAG3), essential to maintain protein homeostasis in muscle and neuronal cells. A failure in the CASA complex, caused by mutations in the respective coding genes, can lead to (cardio)myopathies and neurodegenerative diseases. Here, we summarize our current understanding of the CASA complex and its dynamics. We also briefly discuss how CASA complex proteins are involved in disease and may represent an interesting therapeutic target.Abbreviation ALP: autophagy lysosomal pathway; ALS: amyotrophic lateral sclerosis; AMOTL1: angiomotin like 1; ARP2/3: actin related protein 2/3; BAG: BAG cochaperone; BAG3: BAG cochaperone 3; CASA: chaperone-assisted selective autophagy; CMA: chaperone-mediated autophagy; DNAJ/HSP40: DnaJ heat shock protein family (Hsp40); DRiPs: defective ribosomal products; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK1/HRI: eukaryotic translation initiation factor 2 alpha kinase 1; GABARAP: GABA type A receptor-associated protein; HDAC6: histone deacetylase 6; HSP: heat shock protein; HSPA/HSP70: heat shock protein family A (Hsp70); HSP90: heat shock protein 90; HSPB8: heat shock protein family B (small) member 8; IPV: isoleucine-proline-valine; ISR: integrated stress response; KEAP1: kelch like ECH associated protein 1; LAMP2A: lysosomal associated membrane protein 2A; LATS1: large tumor suppressor kinase 1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOC: microtubule organizing center; MTOR: mechanistic target of rapamycin kinase; NFKB/NF-κB: nuclear factor kappa B; NFE2L2: NFE2 like bZIP transcription factor 2; PLCG/PLCγ: phospholipase C gamma; polyQ: polyglutamine; PQC: protein quality control; PxxP: proline-rich; RAN translation: repeat-associated non-AUG translation; SG: stress granule; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; STUB1/CHIP: STIP1 homology and U-box containing protein 1; STK: serine/threonine kinase; SYNPO: synaptopodin; TBP: TATA-box binding protein; TARDBP/TDP-43: TAR DNA binding protein; TFEB: transcription factor EB; TPR: tetratricopeptide repeats; TSC1: TSC complex subunit 1; UBA: ubiquitin associated; UPS: ubiquitin-proteasome system; WW: tryptophan-tryptophan; WWTR1: WW domain containing transcription regulator 1; YAP1: Yes1 associated transcriptional regulator.
Collapse
Affiliation(s)
- Barbara Tedesco
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2027, Università degli studi di Milano, Milan, Italy.,Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Leen Vendredy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Angelo Poletti
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2027, Università degli studi di Milano, Milan, Italy
| |
Collapse
|
8
|
Qu H, Feldman AM, Hakonarson H. Genetics of BAG3: A Paradigm for Developing Precision Therapies for Dilated Cardiomyopathies. J Am Heart Assoc 2022; 11:e027373. [PMID: 36382946 PMCID: PMC9851466 DOI: 10.1161/jaha.122.027373] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022]
Abstract
Nonischemic dilated cardiomyopathy is a common form of heart muscle disease in which genetic factors play a critical etiological role. In this regard, both rare disease-causing mutations and common disease-susceptible variants, in the Bcl-2-associated athanogene 3 (BAG3) gene have been reported, highlighting the critical role of BAG3 in cardiomyocytes and in the development of dilated cardiomyopathy. The phenotypic effects of the BAG3 mutations help investigators understand the structure and function of the BAG3 gene. Indeed, we report herein that all of the known pathogenic/likely pathogenic variants affect at least 1 of 3 protein functional domains, ie, the WW domain, the second IPV (Ile-Pro-Val) domain, or the BAG domain, whereas none of the missense nontruncating pathogenic/likely pathogenic variants affect the proline-rich repeat (PXXP) domain. A common variant, p.Cys151Arg, associated with reduced susceptibility to dilated cardiomyopathy demonstrated a significant difference in allele frequencies among diverse human populations, suggesting evolutionary selective pressure. As BAG3-related therapies for heart failure move from the laboratory to the clinic, the ability to provide precision medicine will depend in large part on having a thorough understanding of the potential effects of both common and uncommon genetic variants on these target proteins. The current review article provides a roadmap that investigators can utilize to determine the potential interactions between a patient's genotype, their phenotype, and their response to therapeutic interventions with both gene delivery and small molecules.
Collapse
Affiliation(s)
- Hui‐Qi Qu
- The Center for Applied Genomics, Children’s Hospital of PhiladelphiaPhiladelphiaPA
| | - Arthur M. Feldman
- Department of Medicine, Division of CardiologyThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
- The Center for Neurovirology and Gene EditingThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children’s Hospital of PhiladelphiaPhiladelphiaPA
- Department of Pediatrics, The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA
- Division of Human GeneticsChildren’s Hospital of PhiladelphiaPhiladelphiaPA
- Division of Pulmonary MedicineChildren’s Hospital of PhiladelphiaPhiladelphiaPA
- Faculty of MedicineUniversity of IcelandReykjavikIceland
| |
Collapse
|
9
|
The Role of Small Heat Shock Proteins in Protein Misfolding Associated Motoneuron Diseases. Int J Mol Sci 2022; 23:ijms231911759. [PMID: 36233058 PMCID: PMC9569637 DOI: 10.3390/ijms231911759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Motoneuron diseases (MNDs) are neurodegenerative conditions associated with death of upper and/or lower motoneurons (MNs). Proteostasis alteration is a pathogenic mechanism involved in many MNDs and is due to the excessive presence of misfolded and aggregated proteins. Protein misfolding may be the product of gene mutations, or due to defects in the translation process, or to stress agents; all these conditions may alter the native conformation of proteins making them prone to aggregate. Alternatively, mutations in members of the protein quality control (PQC) system may determine a loss of function of the proteostasis network. This causes an impairment in the capability to handle and remove aberrant or damaged proteins. The PQC system consists of the degradative pathways, which are the autophagy and the proteasome, and a network of chaperones and co-chaperones. Among these components, Heat Shock Protein 70 represents the main factor in substrate triage to folding, refolding, or degradation, and it is assisted in this task by a subclass of the chaperone network, the small heat shock protein (sHSPs/HSPBs) family. HSPBs take part in proteostasis by bridging misfolded and aggregated proteins to the HSP70 machinery and to the degradative pathways, facilitating refolding or clearance of the potentially toxic proteins. Because of its activity against proteostasis alteration, the chaperone system plays a relevant role in the protection against proteotoxicity in MNDs. Here, we discuss the role of HSPBs in MNDs and which HSPBs may represent a valid target for therapeutic purposes.
Collapse
|
10
|
Wide Spectrum of Cardiac Phenotype in Myofibrillar Myopathy Associated With a Bcl-2-Associated Athanogene 3 Mutation: A Case Report and Literature Review. J Clin Neuromuscul Dis 2022; 24:49-54. [PMID: 36005473 DOI: 10.1097/cnd.0000000000000392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Myofibrillar myopathy is a clinically and genetically heterogeneous group of muscle disorders characterized by myofibrillar degeneration. Bcl-2-associated athanogene 3 (BAG3)-related myopathy is the rarest form of myofibrillar myopathy. Patients with BAG3-related myopathy present with early-onset and progressive muscle weakness, rigid spine, respiratory insufficiency, and cardiomyopathy. Notably, the heterozygous mutation (Pro209Leu) in BAG3 is commonly associated with rapidly progressive cardiomyopathy in childhood. We describe a male patient with the BAG3 (Pro209Leu) mutation. The patient presented at age 7 years with muscle weakness predominantly in the proximal lower limbs. Histologic findings revealed a mixture of severe neurogenic and myogenic changes. His motor symptoms progressed rapidly in the next decade, becoming wheelchair-dependent by age 17 years; however, at the age of 19 years, cardiomyopathy was not evident. This study reports a case of BAG3-related myopathy without cardiac involvement and further confirmed the wide phenotypic spectrum of BAG3-related myopathy.
Collapse
|
11
|
Jung SY, Yun HH, Lim JH, Lee DH, Seo SB, Baek JY, Lee J, Yoo K, Kim H, Kim HL, Lee JH. Hepatocyte-specific deletion of Bis causes senescence in the liver without deteriorating hepatic function. Biochem Biophys Res Commun 2022; 619:42-48. [PMID: 35732079 DOI: 10.1016/j.bbrc.2022.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
Bcl-2-interacting cell death suppressor (BIS), also called as BAG3, regulates numerous physiological processes, such as apoptosis, protein quality control, and senescence. Whole-body Bis-knockout (KO) mice exhibit early lethality following cardiac and skeletal muscle dysfunction. The first attempt to generate organ-specific knockout mice resulted in constitutive or inducible heart-specific Bis-knockout mice, which exhibited cardiac dilation and underwent premature death. Here, we generated hepatocyte-specific Bis-knockout (Bis-HKO) mice and found no abnormalities in metabolic function and survival. However, depletion of HSPB8 and accumulation of p62 indicated impaired autophagy in Bis-HKO livers. Interestingly, the number of peroxisomes wrapped by phagophore membranes increased as evidenced by transmission electron microscopy analysis, indicating defects in the progression of pexophagy. In addition, increased dihydroethidine intensities and histone H3 K9me3-positive nuclei indicated increased oxidative stress and senescence induction in Bis-HKO livers. Mechanistically, p27 was upregulated in Bis-HKO livers. In SNU368 hepatocellular carcinoma cells, BIS depletion led to p27 upregulation, and increase in histone H3 K9me3 levels and senescence-associated β-galactosidase staining; therefore, reproducing the in vivo senescence phenotype. Despite the observation of no metabolic abnormalities, BIS depletion led to defective autophagy, increased oxidative stress, and senescence in Bis-HKO livers. Collectively, our results suggest a role for BIS in maintaining liver regeneration potential under pathological conditions.
Collapse
Affiliation(s)
- Soon-Young Jung
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Ji Hee Lim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Dong-Hyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Sung Bin Seo
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Ji-Ye Baek
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Jeehan Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Kyunghyun Yoo
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Hyungmin Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
| |
Collapse
|
12
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
13
|
Zhan L, Lv L, Chen X, Xu X, Ni J. Ultrasound evaluation of diaphragm motion in BAG-3 myofibrillar myopathy: A case report. Medicine (Baltimore) 2022; 101:e28484. [PMID: 35029900 PMCID: PMC8735720 DOI: 10.1097/md.0000000000028484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022] Open
Abstract
RATIONALE Mutations in Bcl-2-associated athanogene-3 (BAG-3) can cause a rare subtype of myofibrillar myopathies (MFMs), characterized by progressive muscle weakness, cardiomyopathy, and severe respiratory insufficiency in childhood. Little is known about diaphragmatic function in BAG-3 MFM. To our knowledge, this is the first case report of detailed evaluation of diaphragmatic function with ultrasound in BAG-3 MFM. PATIENT CONCERN We describe the case of a 15-year-old girl who complained of fever and shortness of breath. Diaphragmatic sonography revealed bilateral diaphragmatic paralysis. Shortness of breath progressed to respiratory failure approximately 3 months later. DIAGNOSIS A neurologist was consulted and genetic sequencing identified a p.Pro209Leu mutation in BAG-3, yielding diagnosis of BAG-3 MFM leading to bilateral diaphragmatic paralysis. INTERVENTIONS Respiratory muscle training and long-term mechanical ventilation. OUTCOMES It is quite unfortunate for this patient to have a poor prognosis due to the lack of effective treatment for this genetic disorder. LESSONS This case provides more clinical information for this rare disease which may cause severe diaphragm pathological damage leading to respiratory failure in BAG3 MFM and a future study with a systematic evaluation of a greater number of patients will be necessary to characterize this population.
Collapse
Affiliation(s)
- Liqiong Zhan
- Department of Rehabilitation Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lan Lv
- Department of Rehabilitation Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xinyuan Chen
- Department of Rehabilitation Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiang Xu
- Department of Ultrasound Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun Ni
- Department of Rehabilitation Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
14
|
Lin H, Koren SA, Cvetojevic G, Girardi P, Johnson GV. The role of BAG3 in health and disease: A "Magic BAG of Tricks". J Cell Biochem 2022; 123:4-21. [PMID: 33987872 PMCID: PMC8590707 DOI: 10.1002/jcb.29952] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/25/2021] [Indexed: 01/03/2023]
Abstract
The multi-domain structure of Bcl-2-associated athanogene 3 (BAG3) facilitates its interaction with many different proteins that participate in regulating a variety of biological pathways. After revisiting the BAG3 literature published over the past ten years with Citespace software, we classified the BAG3 research into several clusters, including cancer, cardiomyopathy, neurodegeneration, and viral propagation. We then highlighted recent key findings in each cluster. To gain greater insight into the roles of BAG3, we analyzed five different published mass spectrometry data sets of proteins that co-immunoprecipitate with BAG3. These data gave us insight into universal, as well as cell-type-specific BAG3 interactors in cancer cells, cardiomyocytes, and neurons. Finally, we mapped variable BAG3 SNPs and also mutation data from previous publications to further explore the link between the domains and function of BAG3. We believe this review will provide a better understanding of BAG3 and direct future studies towards understanding BAG3 function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Heng Lin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Shon A. Koren
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Gregor Cvetojevic
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Peter Girardi
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Gail V.W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| |
Collapse
|
15
|
Höhfeld J, Benzing T, Bloch W, Fürst DO, Gehlert S, Hesse M, Hoffmann B, Hoppe T, Huesgen PF, Köhn M, Kolanus W, Merkel R, Niessen CM, Pokrzywa W, Rinschen MM, Wachten D, Warscheid B. Maintaining proteostasis under mechanical stress. EMBO Rep 2021; 22:e52507. [PMID: 34309183 PMCID: PMC8339670 DOI: 10.15252/embr.202152507] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cell survival, tissue integrity and organismal health depend on the ability to maintain functional protein networks even under conditions that threaten protein integrity. Protection against such stress conditions involves the adaptation of folding and degradation machineries, which help to preserve the protein network by facilitating the refolding or disposal of damaged proteins. In multicellular organisms, cells are permanently exposed to stress resulting from mechanical forces. Yet, for long time mechanical stress was not recognized as a primary stressor that perturbs protein structure and threatens proteome integrity. The identification and characterization of protein folding and degradation systems, which handle force-unfolded proteins, marks a turning point in this regard. It has become apparent that mechanical stress protection operates during cell differentiation, adhesion and migration and is essential for maintaining tissues such as skeletal muscle, heart and kidney as well as the immune system. Here, we provide an overview of recent advances in our understanding of mechanical stress protection.
Collapse
Affiliation(s)
- Jörg Höhfeld
- Institute for Cell BiologyRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports MedicineGerman Sport UniversityCologneGermany
| | - Dieter O Fürst
- Institute for Cell BiologyRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Sebastian Gehlert
- Institute of Cardiovascular Research and Sports MedicineGerman Sport UniversityCologneGermany
- Department for the Biosciences of SportsInstitute of Sports ScienceUniversity of HildesheimHildesheimGermany
| | - Michael Hesse
- Institute of Physiology I, Life & Brain CenterMedical FacultyRheinische Friedrich‐Wilhelms UniversityBonnGermany
| | - Bernd Hoffmann
- Institute of Biological Information Processing, IBI‐2: MechanobiologyForschungszentrum JülichJülichGermany
| | - Thorsten Hoppe
- Institute for GeneticsCologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) and CMMCUniversity of CologneCologneGermany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA3Forschungszentrum JülichJülichGermany
- CECADUniversity of CologneCologneGermany
| | - Maja Köhn
- Institute of Biology IIIFaculty of Biology, and Signalling Research Centres BIOSS and CIBSSAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Waldemar Kolanus
- LIMES‐InstituteRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Rudolf Merkel
- Institute of Biological Information Processing, IBI‐2: MechanobiologyForschungszentrum JülichJülichGermany
| | - Carien M Niessen
- Department of Dermatology and CECADUniversity of CologneCologneGermany
| | | | - Markus M Rinschen
- Department of Biomedicine and Aarhus Institute of Advanced StudiesAarhus UniversityAarhusDenmark
- Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Dagmar Wachten
- Institute of Innate ImmunityUniversity Hospital BonnBonnGermany
| | - Bettina Warscheid
- Institute of Biology IIFaculty of Biology, and Signalling Research Centres BIOSS and CIBSSAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| |
Collapse
|
16
|
Overexpression of human BAG3 P209L in mice causes restrictive cardiomyopathy. Nat Commun 2021; 12:3575. [PMID: 34117258 PMCID: PMC8196106 DOI: 10.1038/s41467-021-23858-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
An amino acid exchange (P209L) in the HSPB8 binding site of the human co-chaperone BAG3 gives rise to severe childhood cardiomyopathy. To phenocopy the disease in mice and gain insight into its mechanisms, we generated humanized transgenic mouse models. Expression of human BAG3P209L-eGFP in mice caused Z-disc disintegration and formation of protein aggregates. This was accompanied by massive fibrosis resulting in early-onset restrictive cardiomyopathy with increased mortality as observed in patients. RNA-Seq and proteomics revealed changes in the protein quality control system and increased autophagy in hearts from hBAG3P209L-eGFP mice. The mutation renders hBAG3P209L less soluble in vivo and induces protein aggregation, but does not abrogate hBAG3 binding properties. In conclusion, we report a mouse model mimicking the human disease. Our data suggest that the disease mechanism is due to accumulation of hBAG3P209L and mouse Bag3, causing sequestering of components of the protein quality control system and autophagy machinery leading to sarcomere disruption. An amino acid exchange (P209L) in the human co-chaperone BAG3 gives rise to severe childhood restrictive cardiomyopathy. Here the authors describe humanized transgenic mouse models which phenocopy the disease and provide insight into the pathogenic mechanisms.
Collapse
|
17
|
Histopathological changes of myocytes in restrictive cardiomyopathy. Med Mol Morphol 2021; 54:289-295. [PMID: 34057638 DOI: 10.1007/s00795-021-00293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Restrictive cardiomyopathy (RCM) is a rare primary myocardial disease, and its pathological features are yet to be determined. Restrictive cardiomyopathy with MHY7 mutation was diagnosed in a 65-year-old Japanese woman. Electron microscopy of a myocardial biopsy revealed electron-dense materials resulting from focal myocyte degeneration and necrosis as well as tubular structures and pseudo-inclusion bodies in some nuclei. These features may be associated with the pathogenesis of RCM.
Collapse
|
18
|
BAG3 Myopathy Presenting With Prominent Neuropathic Phenotype and No Cardiac or Respiratory Involvement: A Case Report and Literature Review. J Clin Neuromuscul Dis 2021; 21:230-239. [PMID: 32453099 DOI: 10.1097/cnd.0000000000000300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bcl-2-associated athanogene 3 (BAG3) myopathy is a rare myofibrillar myopathy characterized by toe walking and clumsiness in the first decade with rapid progression to cardiomyopathy and restrictive lung disease in the second decade. Most patients (18 patients) have the c.626C >T (p.Pro209Leu) mutation. We describe BAG3 myopathy due to p.Pro209Leu in a 13-year-old girl with initial prominent neuropathic phenotype and no cardiac or respiratory involvement. Parents reported toe walking and clumsiness since 3 years old. Examination at the age of 13 years showed findings suggestive of Charcot-Marie-Tooth disease. Nerve conduction studies revealed demyelinating polyneuropathy. Next-generation sequencing panel for inherited neuropathies was unrevealing. Whole exome sequencing identified a de novo mutation in BAG3. Muscle biopsy confirmed myofibrillar myopathy. No cardiac involvement or symptoms of respiratory involvement at the age of 14 years. This case emphasizes the phenotypic variability of BAG3 myopathy and the importance of thorough electrophysiological examination and muscle pathology for establishing a precise diagnosis.
Collapse
|
19
|
The Role of Z-disc Proteins in Myopathy and Cardiomyopathy. Int J Mol Sci 2021; 22:ijms22063058. [PMID: 33802723 PMCID: PMC8002584 DOI: 10.3390/ijms22063058] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts.
Collapse
|
20
|
Qian FY, Guo YD, Zu J, Zhang JH, Zheng YM, Abdoulaye IA, Pan ZH, Xie CM, Gao HC, Zhang ZJ. A novel recessive mutation affecting DNAJB6a causes myofibrillar myopathy. Acta Neuropathol Commun 2021; 9:23. [PMID: 33557929 PMCID: PMC7869515 DOI: 10.1186/s40478-020-01046-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/02/2020] [Indexed: 11/10/2022] Open
Abstract
Mutations in the DNAJB6 gene have been identified as rare causes of myofibrillar myopathies. However, the underlying pathophysiologica mechanisms remain elusive. DNAJB6 has two known isoforms, including the nuclear isoform DNAJB6a and the cytoplasmic isoform DNAJB6b, which was thought to be the pathogenic isoform. Here, we report a novel recessive mutation c.695_699del (p. Val 232 Gly fs*7) in the DNAJB6 gene, associated with an apparently recessively inherited late onset distal myofibrillar myopathy in a Chinese family. Notably, the novel mutation localizes to exon 9 and uniquely encodes DNAJB6a. We further identified that this mutation decreases the mRNA and protein levels of DNAJB6a and results in an age-dependent recessive toxic effect on skeletal muscle in knock-in mice. Moreover, the mutant DNAJB6a showed a dose-dependent anti-aggregation effect on polyglutamine-containing proteins in vitro. Taking together, these findings reveal the pathogenic role of DNAJB6a insufficiency in myofibrillar myopathies and expand upon the molecular spectrum of DNAJB6 mutations.
Collapse
|
21
|
A family with adult-onset myofibrillar myopathy with BAG3 mutation (P470S) presenting with axonal polyneuropathy. Neuromuscul Disord 2020; 30:727-731. [PMID: 32859500 DOI: 10.1016/j.nmd.2020.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 06/05/2020] [Accepted: 07/28/2020] [Indexed: 11/22/2022]
Abstract
We report a family with adult-onset myofibrillar myopathy with BAG3 mutation who presented peroneal weakness and axonal polyneuropathy, mimicking axonal Charcot-Marie-Tooth disease. The male proband noticed difficulty in tiptoeing at age 34. At age 42, the examination showed muscle weakness and atrophy in distal lower extremities with diminished patellar and Achilles tendon reflexes. Thermal and vibration sensations were also impaired in both feet. The serum CK level was 659 U/L. On muscle imaging, predominant semitendinosus muscle atrophy coexisted with atrophies in the quadriceps, gastrocnemius and lumbar paraspinal muscles. The muscle biopsy showed myofibrillar myopathy with fiber type grouping. His 68-year-old mother also had suffered from distal leg weakness and sensory impairment since her forties. A heterozygous mutation in BAG3 (P470S) was identified in both patients. Clinical features of myofibrillar myopathy with axonal polyneuropathy were consistent with BAG3-related myopathy. Our patients showed remarkably mild presentations without cardiomyopathy, unlike the majorities of previously reported cases.
Collapse
|
22
|
Corti O, Blomgren K, Poletti A, Beart PM. Autophagy in neurodegeneration: New insights underpinning therapy for neurological diseases. J Neurochem 2020; 154:354-371. [PMID: 32149395 DOI: 10.1111/jnc.15002] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022]
Abstract
In autophagy long-lived proteins, protein aggregates or damaged organelles are engulfed by vesicles called autophagosomes prior to lysosomal degradation. Autophagy dysfunction is a hallmark of several neurodegenerative diseases in which misfolded proteins or dysfunctional mitochondria accumulate. Excessive autophagy can also exacerbate brain injury under certain conditions. In this review, we provide specific examples to illustrate the critical role played by autophagy in pathological conditions affecting the brain and discuss potential therapeutic implications. We show how a singular type of autophagy-dependent cell death termed autosis has attracted attention as a promising target for improving outcomes in perinatal asphyxia and hypoxic-ischaemic injury to the immature brain. We provide evidence that autophagy inhibition may be protective against radiotherapy-induced damage to the young brain. We describe a specialized form of macroautophagy of therapeutic relevance for motoneuron and neuromuscular diseases, known as chaperone-assisted selective autophagy, in which heat shock protein B8 is used to deliver aberrant proteins to autophagosomes. We summarize studies pinpointing mitophagy mediated by the serine/threonine kinase PINK1 and the ubiquitin-protein ligase Parkin as a mechanism potentially relevant to Parkinson's disease, despite debate over the physiological conditions in which it is activated in organisms. Finally, with the example of the autophagy-inducing agent rilmenidine and its discrepant effects in cell culture and mouse models of motor neuron disorders, we illustrate the importance of considering aspects such a disease stage and aggressiveness, type of insult and load of damaged or toxic cellular components, when choosing the appropriate drug, timepoint and duration of treatment.
Collapse
Affiliation(s)
- Olga Corti
- Institut National de la Santé et de la Recherche Médicale, Paris, France.,Centre National de la Recherche Scientifique, Paris, France.,Sorbonne Universités, Paris, France.,Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Paediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Philip M Beart
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Vic, Australia.,Department of Pharmacology, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
23
|
Bordini BJ, Kliegman RM, Basel D, Nocton JJ. Undiagnosed and Rare Diseases in Perinatal Medicine: Lessons in Context and Cognitive Diagnostic Error. Clin Perinatol 2020; 47:1-14. [PMID: 32000918 DOI: 10.1016/j.clp.2019.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Critically ill neonates experience high rates of morbidity and mortality. Major diagnostic errors are identified in up to 20% of autopsied neonatal intensive care unit deaths. Neonates with undiagnosed or rare congenital disorders may mimic critically ill neonates with more common acquired conditions. The context of the diagnostic evaluation can introduce unique biases that increase the likelihood of diagnostic error. Herein is presented a framework for understanding diagnostic errors in perinatal medicine, and individual, team, and systems-based solutions for improving diagnosis learned through the implementation and administration of an undiagnosed and rare disease program.
Collapse
Affiliation(s)
- Brett J Bordini
- Department of Pediatrics, Section of Hospital Medicine, Nelson Service for Undiagnosed and Rare Diseases, Children's Hospital of Wisconsin, Medical College of Wisconsin, 999 North 92nd Street, Suite C560, Milwaukee, WI 53226, USA.
| | - Robert M Kliegman
- Department of Pediatrics, Nelson Service for Undiagnosed and Rare Diseases, Children's Hospital of Wisconsin, Medical College of Wisconsin, 999 North 92nd Street, Suite C560, Milwaukee, WI 53226, USA
| | - Donald Basel
- Department of Pediatrics, Nelson Service for Undiagnosed and Rare Diseases, Children's Hospital of Wisconsin, Medical College of Wisconsin, 999 North 92nd Street, Suite C560, Milwaukee, WI 53226, USA
| | - James J Nocton
- Department of Pediatrics, Section of Rheumatology, Nelson Service for Undiagnosed and Rare Diseases, Children's Hospital of Wisconsin, Medical College of Wisconsin, 999 North 92nd Street, Suite C465, Milwaukee, WI 53226, USA
| |
Collapse
|
24
|
Neuromuscular Diseases Due to Chaperone Mutations: A Review and Some New Results. Int J Mol Sci 2020; 21:ijms21041409. [PMID: 32093037 PMCID: PMC7073051 DOI: 10.3390/ijms21041409] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle and the nervous system depend on efficient protein quality control, and they express chaperones and cochaperones at high levels to maintain protein homeostasis. Mutations in many of these proteins cause neuromuscular diseases, myopathies, and hereditary motor and sensorimotor neuropathies. In this review, we cover mutations in DNAJB6, DNAJB2, αB-crystallin (CRYAB, HSPB5), HSPB1, HSPB3, HSPB8, and BAG3, and discuss the molecular mechanisms by which they cause neuromuscular disease. In addition, previously unpublished results are presented, showing downstream effects of BAG3 p.P209L on DNAJB6 turnover and localization.
Collapse
|
25
|
Robertson R, Conte TC, Dicaire MJ, Rymar VV, Sadikot AF, Bryson-Richardson RJ, Lavoie JN, O'Ferrall E, Young JC, Brais B. BAG3 P215L/KO Mice as a Model of BAG3 P209L Myofibrillar Myopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:554-562. [PMID: 31953038 DOI: 10.1016/j.ajpath.2019.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
Abstract
BCL-2-associated athanogene 3 (BAG3) is a co-chaperone to heat shock proteins important in degrading misfolded proteins through chaperone-assisted selective autophagy. The recurrent dominant BAG3-P209L mutation results in a severe childhood-onset myofibrillar myopathy (MFM) associated with progressive muscle weakness, cardiomyopathy, and respiratory failure. Because a homozygous knock-in (KI) strain for the mP215L mutation homologous to the human P209L mutation did not have a gross phenotype, compound heterozygote knockout (KO) and KI mP215L mice were generated to establish whether further reduction in BAG3 expression would lead to a phenotype. The KI/KO mice have a significant decrease in voluntary movement compared with wild-type and KI/KI mice in the open field starting at 7 months. The KI/KI and KI/KO mice both have significantly smaller muscle fiber cross-sectional area. However, only the KI/KO mice have clear skeletal muscle histologic changes in MFM. As in patient muscle, there are increased levels of BAG3-interacting proteins, such as p62, heat shock protein B8, and αB-crystallin. The KI/KO mP215L strain is the first murine model of BAG3 myopathy that resembles the human skeletal muscle pathologic features. The results support the hypothesis that the pathologic development of MFM requires a significant decrease in BAG3 protein level and not only a gain of function caused by the dominant missense mutation.
Collapse
Affiliation(s)
- Rebecca Robertson
- Neurogenetics of Motion Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Talita C Conte
- Neurogenetics of Motion Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Marie-Josée Dicaire
- Neurogenetics of Motion Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Vladimir V Rymar
- Cone Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Abbas F Sadikot
- Cone Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Josée N Lavoie
- Centre de Recherche sur le Cancer, l'Université Laval, Québec, Quebec, Canada; Oncology Axis, Centre de Recherche du Centre Hospitalier Universitaire (CHU), Québec-Université Laval, Québec, Quebec, Canada; Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, l'Université Laval, Québec, Quebec, Canada
| | - Erin O'Ferrall
- Rare Neurological Diseases Group, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jason C Young
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Bernard Brais
- Neurogenetics of Motion Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
26
|
Fu J, Ma M, Song J, Pang M, Li G, Zhang J. BAG3 p.Pro209Ser mutation identified in a Chinese family with Charcot-Marie-Tooth disease. J Neurol 2019; 267:1080-1085. [PMID: 31853710 DOI: 10.1007/s00415-019-09680-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/18/2022]
Abstract
Bcl2-associated athanogene 3 (BAG3) gene mutations cause dilated cardiomyopathy and myofibrillar myopathy. Recently, a novel c.625C>T (p.Pro209Ser) mutation in BAG3 was reported to cause axonal Charcot-Marie-Tooth (CMT) disease in three families. Here, we describe two patients with adult-onset and moderate CMT in a Chinese family. Nerve conduction velocity studies revealed an axonal sensorimotor neuropathy, which was supported by sural nerve biopsy. Lower limb magnetic resonance imaging (MRI) revealed fatty infiltration more severe in the soleus and deep posterior compartment muscles than in the medial gastrocnemius and anterior compartment muscles. Whole exome sequencing identified the same c.625C>T (p.Pro209Ser) mutation in BAG3, which co-segregated with the CMT disease in this family. This study further enforces the association between BAG3 gene and CMT disease, indicating that BAG3 should be considered in the genetic testing for CMT. The p.Pro209Ser mutation with different ethnic origins might be another hotspot mutation of BAG3. MRI is helpful to detect accurate extent of muscle involvement.
Collapse
Affiliation(s)
- Jun Fu
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Henan University, No. 7, Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Mingming Ma
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Henan University, No. 7, Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Jia Song
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Henan University, No. 7, Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Mi Pang
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Henan University, No. 7, Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Gang Li
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Henan University, No. 7, Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Jiewen Zhang
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Henan University, No. 7, Weiwu Road, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
27
|
Klimek C, Jahnke R, Wördehoff J, Kathage B, Stadel D, Behrends C, Hergovich A, Höhfeld J. The Hippo network kinase STK38 contributes to protein homeostasis by inhibiting BAG3-mediated autophagy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:1556-1566. [PMID: 31326538 PMCID: PMC6692498 DOI: 10.1016/j.bbamcr.2019.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/18/2019] [Accepted: 07/14/2019] [Indexed: 12/31/2022]
Abstract
Chaperone-assisted selective autophagy (CASA) initiated by the cochaperone Bcl2-associated athanogene 3 (BAG3) represents an important mechanism for the disposal of misfolded and damaged proteins in mammalian cells. Under mechanical stress, the cochaperone cooperates with the small heat shock protein HSPB8 and the cytoskeleton-associated protein SYNPO2 to degrade force-unfolded forms of the actin-crosslinking protein filamin. This is essential for muscle maintenance in flies, fish, mice and men. Here, we identify the serine/threonine protein kinase 38 (STK38), which is part of the Hippo signaling network, as a novel interactor of BAG3. STK38 was previously shown to facilitate cytoskeleton assembly and to promote mitophagy as well as starvation and detachment induced autophagy. Significantly, our study reveals that STK38 exerts an inhibitory activity on BAG3-mediated autophagy. Inhibition relies on a disruption of the functional interplay of BAG3 with HSPB8 and SYNPO2 upon binding of STK38 to the cochaperone. Of note, STK38 attenuates CASA independently of its kinase activity, whereas previously established regulatory functions of STK38 involve target phosphorylation. The ability to exert different modes of regulation on central protein homeostasis (proteostasis) machineries apparently allows STK38 to coordinate the execution of diverse macroautophagy pathways and to balance cytoskeleton assembly and degradation.
Collapse
Affiliation(s)
- Christina Klimek
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Ricarda Jahnke
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Judith Wördehoff
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Barbara Kathage
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Daniela Stadel
- Institute of Biochemistry II, Goethe University Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology, Ludwig-Maximilians-University Munich, Feodor-Lynen Strasse 17, 81377 München, Germany
| | | | - Jörg Höhfeld
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| |
Collapse
|
28
|
Dilated Cardiomyopathy Due to BLC2-Associated Athanogene 3 (BAG3) Mutations. J Am Coll Cardiol 2019; 72:2471-2481. [PMID: 30442290 DOI: 10.1016/j.jacc.2018.08.2181] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND The BAG3 (BLC2-associated athanogene 3) gene codes for an antiapoptotic protein located on the sarcomere Z-disc. Mutations in BAG3 are associated with dilated cardiomyopathy (DCM), but only a small number of cases have been reported to date, and the natural history of BAG3 cardiomyopathy is poorly understood. OBJECTIVES This study sought to describe the phenotype and prognosis of BAG3 mutations in a large multicenter DCM cohort. METHODS The study cohort comprised 129 individuals with a BAG3 mutation (62% males, 35.1 ± 15.0 years of age) followed at 18 European centers. Localization of BAG3 in cardiac tissue was analyzed in patients with truncating BAG3 mutations using immunohistochemistry. RESULTS At first evaluation, 57.4% of patients had DCM. After a median follow-up of 38 months (interquartile range: 7 to 95 months), 68.4% of patients had DCM and 26.1% who were initially phenotype-negative developed DCM. Disease penetrance in individuals >40 years of age was 80% at last evaluation, and there was a trend towards an earlier onset of DCM in men (age 34.6 ± 13.2 years vs. 40.7 ± 12.2 years; p = 0.053). The incidence of adverse cardiac events (death, left ventricular assist device, heart transplantation, and sustained ventricular arrhythmia) was 5.1% per year among individuals with DCM. Male sex, decreased left ventricular ejection fraction. and increased left ventricular end-diastolic diameter were associated with adverse cardiac events. Myocardial tissue from patients with a BAG3 mutation showed myofibril disarray and a relocation of BAG3 protein in the sarcomeric Z-disc. CONCLUSIONS DCM caused by mutations in BAG3 is characterized by high penetrance in carriers >40 years of age and a high risk of progressive heart failure. Male sex, decreased left ventricular ejection fraction, and enlarged left ventricular end-diastolic diameter are associated with adverse outcomes in patients with BAG3 mutations.
Collapse
|
29
|
Arbustini E, Di Toro A, Giuliani L, Favalli V, Narula N, Grasso M. Cardiac Phenotypes in Hereditary Muscle Disorders: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 72:2485-2506. [PMID: 30442292 DOI: 10.1016/j.jacc.2018.08.2182] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/20/2018] [Accepted: 08/10/2018] [Indexed: 01/05/2023]
Abstract
Hereditary muscular diseases commonly involve the heart. Cardiac manifestations encompass a spectrum of phenotypes, including both cardiomyopathies and rhythm disorders. Common biomarkers suggesting cardiomuscular diseases include increased circulating creatine kinase and/or lactic acid levels or disease-specific metabolic indicators. Cardiac and extra-cardiac traits, imaging tests, family studies, and genetic testing provide precise diagnoses. Cardiac phenotypes are mainly dilated and hypokinetic in dystrophinopathies, Emery-Dreifuss muscular dystrophies, and limb girdle muscular dystrophies; hypertrophic in Friedreich ataxia, mitochondrial diseases, glycogen storage diseases, and fatty acid oxidation disorders; and restrictive in myofibrillar myopathies. Left ventricular noncompaction is variably associated with the different myopathies. Conduction defects and arrhythmias constitute a major phenotype in myotonic dystrophies and skeletal muscle channelopathies. Although the actual cardiac management is rarely based on the cause, the cardiac phenotypes need precise characterization because they are often the only or the predominant manifestations and the prognostic determinants of many hereditary muscle disorders.
Collapse
Affiliation(s)
- Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy.
| | - Alessandro Di Toro
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| | - Lorenzo Giuliani
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| | | | - Nupoor Narula
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy; Division of Cardiology, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York
| | - Maurizia Grasso
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
30
|
Myopathy associated BAG3 mutations lead to protein aggregation by stalling Hsp70 networks. Nat Commun 2018; 9:5342. [PMID: 30559338 PMCID: PMC6297355 DOI: 10.1038/s41467-018-07718-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/16/2018] [Indexed: 02/03/2023] Open
Abstract
BAG3 is a multi-domain hub that connects two classes of chaperones, small heat shock proteins (sHSPs) via two isoleucine-proline-valine (IPV) motifs and Hsp70 via a BAG domain. Mutations in either the IPV or BAG domain of BAG3 cause a dominant form of myopathy, characterized by protein aggregation in both skeletal and cardiac muscle tissues. Surprisingly, for both disease mutants, impaired chaperone binding is not sufficient to explain disease phenotypes. Recombinant mutants are correctly folded, show unaffected Hsp70 binding but are impaired in stimulating Hsp70-dependent client processing. As a consequence, the mutant BAG3 proteins become the node for a dominant gain of function causing aggregation of itself, Hsp70, Hsp70 clients and tiered interactors within the BAG3 interactome. Importantly, genetic and pharmaceutical interference with Hsp70 binding completely reverses stress-induced protein aggregation for both BAG3 mutations. Thus, the gain of function effects of BAG3 mutants act as Achilles heel of the HSP70 machinery.
Collapse
|
31
|
Carvalho AADS, Lacene E, Brochier G, Labasse C, Madelaine A, Silva VGD, Corazzini R, Papadopoulos K, Behin A, Laforêt P, Stojkovic T, Eymard B, Fardeau M, Romero N. Genetic Mutations and Demographic, Clinical, and Morphological Aspects of Myofibrillar Myopathy in a French Cohort. Genet Test Mol Biomarkers 2018; 22:374-383. [PMID: 29924655 DOI: 10.1089/gtmb.2018.0004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Protein aggregate myopathies (PAM) represent a group of familial or sporadic neuromuscular conditions with marked clinical and genetic heterogeneity that occur in children and adults. Familial PAM includes myofibrillar myopathies defined by the presence of desmin-positive protein aggregates and degenerative intermyofibrillar network changes. PAM is often caused by dysfunctional genes, such as DES, PLEC 1, CRYAB, FLNC, MYOT, ZASP, BAG3, FHL1, and DNAJB6. OBJECTIVE To retrospectively analyze genetic mutations and demographic, clinical, and morphological aspects of PAM in a French population. METHODS Forty-eight PAM patients (29 men, 19 women) were divided into two groups, those with genetically (GIM) and nongenetically identified (NGIM) mutations associated with myofibrillar myopathy. RESULTS Age of myopathy onset ranged from 13 to 68 years. GIM group mutations (81.25%) included DES (14), ZASP (8), FLNC (4), MYOT (4), BAG3 (1), CRYAB (2), and DNAJB6 (6). The MYOT subgroup displayed a significantly older onset age (p = 0.029). Autosomal dominant inheritance was found in 74.3% of GIM and 44.4% of NGIM subjects. Overall, 22.9% had Maghrebian heritage, 72.9% Caucasian, and 4.2% Asian. The most common clinical sign was distal muscle weakness (66%) followed by simultaneous distal and proximal weakness in 49%. Eleven patients had contractures, one had a rigid spine, and five had respiratory dysfunction. GIM subjects had greater cardiac involvement (51.7%) versus the NGIM group (33.3%). The average serum creatine kinase level was 393 U/L in GIM and 382 U/L in NGIM subjects. Morphological analysis showed significant differences among GIM subgroups, including the number of vacuoles and regenerated fibers (ZASP), group atrophy (ZASP), and rubbed out fibers (MYOT). Ultrastructural findings showed significant differences in intranuclear rods, Z-disc thickness, and intranuclear inclusions between gene mutation subgroups. Paracrystalline inclusions were present in three patients (DNAJB6). The most frequent mutation in was in DES, followed by ZASP. CONCLUSIONS GIM and NGIM PAM subjects showed similar results, suggesting that any unknown genes, which cause this disease have characteristics similar to those already described. Considering the complexity of clinical, morphological, and genetic data related to PAM, particularly myofibrillar myopathies, physicians should be careful when diagnosing patients with sporadic PAM.
Collapse
Affiliation(s)
- Alzira Alves de Siqueira Carvalho
- 1 Laboratório de Doenças Neuromusculares da Faculdade de Medicina do ABC , Departamento de Neurociências, Santo André, Brazil .,2 Laboratoire de Pathologie Musculaire Risler, Groupe Hospitalier Pitié-Salpêtrière , Paris, France
| | - Emmanuele Lacene
- 2 Laboratoire de Pathologie Musculaire Risler, Groupe Hospitalier Pitié-Salpêtrière , Paris, France
| | - Guy Brochier
- 2 Laboratoire de Pathologie Musculaire Risler, Groupe Hospitalier Pitié-Salpêtrière , Paris, France
| | - Clémance Labasse
- 2 Laboratoire de Pathologie Musculaire Risler, Groupe Hospitalier Pitié-Salpêtrière , Paris, France
| | - Angeline Madelaine
- 2 Laboratoire de Pathologie Musculaire Risler, Groupe Hospitalier Pitié-Salpêtrière , Paris, France
| | - Vinicius Gomes da Silva
- 3 Laboratório de Doenças Neuromusculares da Faculdade de Medicina do ABC , Departamento de Neurociências, Santo André, Brazil
| | - Roseli Corazzini
- 3 Laboratório de Doenças Neuromusculares da Faculdade de Medicina do ABC , Departamento de Neurociências, Santo André, Brazil
| | - Konstantinos Papadopoulos
- 4 Centre de Référence de Pathologie Neuromusculaire Paris-Est, Groupe Hospitalier Pitié-Salpêtrière , Institut de Myologie, Paris, France
| | - Anthony Behin
- 4 Centre de Référence de Pathologie Neuromusculaire Paris-Est, Groupe Hospitalier Pitié-Salpêtrière , Institut de Myologie, Paris, France
| | - Pascal Laforêt
- 4 Centre de Référence de Pathologie Neuromusculaire Paris-Est, Groupe Hospitalier Pitié-Salpêtrière , Institut de Myologie, Paris, France
| | - Tania Stojkovic
- 4 Centre de Référence de Pathologie Neuromusculaire Paris-Est, Groupe Hospitalier Pitié-Salpêtrière , Institut de Myologie, Paris, France
| | - Bruno Eymard
- 4 Centre de Référence de Pathologie Neuromusculaire Paris-Est, Groupe Hospitalier Pitié-Salpêtrière , Institut de Myologie, Paris, France
| | - Michel Fardeau
- 2 Laboratoire de Pathologie Musculaire Risler, Groupe Hospitalier Pitié-Salpêtrière , Paris, France
| | - Norma Romero
- 2 Laboratoire de Pathologie Musculaire Risler, Groupe Hospitalier Pitié-Salpêtrière , Paris, France
| |
Collapse
|
32
|
Andersen AG, Fornander F, Schrøder HD, Krag T, Straub V, Duno M, Vissing J. BAG3 myopathy is not always associated with cardiomyopathy. Neuromuscul Disord 2018; 28:798-801. [DOI: 10.1016/j.nmd.2018.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/03/2018] [Accepted: 06/30/2018] [Indexed: 02/05/2023]
|
33
|
Kim SJ, Nam SH, Kanwal S, Nam DE, Yoo DH, Chae JH, Suh YL, Chung KW, Choi BO. BAG3 mutation in a patient with atypical phenotypes of myofibrillar myopathy and Charcot-Marie-Tooth disease. Genes Genomics 2018; 40:1269-1277. [PMID: 30145633 DOI: 10.1007/s13258-018-0721-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
Bcl2-associated athanogene 3 (BAG3) mutations have been reported to cause the myofibrillar myopathy (MFM) which shows progressive limb muscle weakness, respiratory failure, and cardiomyopathy. Myopathy patients with BAG3 mutation are very rare. We described a patient showing atypical phenotypes. We aimed to find the genetic cause of Korean patients with sensory motor polyneuropathy, myopathy and rigid spine. We performed whole exome sequencing (WES) with 423 patients with sensory motor polyneuropathy. We found BAG3 mutation in one patient with neuropathy, myopathy and rigid spine syndrome, and performed electrophysiological study, whole body MRI and muscle biopsy on the patient. A de novo heterozygous p.Pro209Leu (c.626C>T) mutation in BAG3 was identified in a female myopathy. She first noticed a gait disturbance and spinal rigidity at the age of 11, and serum creatine kinase levels were elevated ninefolds than normal. She showed an axonal sensory-motor polyneuropathy like Charcot-Marie-Tooth disease (CMT), myopathy, rigid spine and respiratory dysfunction; however, she did not show any cardiomyopathy, which is a common symptom in BAG3 mutation. Lower limb MRI and whole spine MRI showed bilateral symmetric fatty atrophy of muscles at the lower limb and paraspinal muscles. When we track traceable MRI 1 year later, the muscle damage progressed slowly. As far as our knowledge, this is the first Korean patient with BAG3 mutation. We described a BAG3 mutation patient with atypical phenotype of CMT and myopathy, and those are expected to broaden the clinical spectrum of the disease and help to diagnose it.
Collapse
Affiliation(s)
- Seung Ju Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Soo Hyun Nam
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Sumaira Kanwal
- Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Da Eun Nam
- Department of Biological Sciences, Kongju National University, 56 Gonjudaehak-ro, Gongju, 32588, South Korea
| | - Da Hye Yoo
- Department of Biological Sciences, Kongju National University, 56 Gonjudaehak-ro, Gongju, 32588, South Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, South Korea
| | - Yeon-Lim Suh
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, 56 Gonjudaehak-ro, Gongju, 32588, South Korea.
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea. .,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
| |
Collapse
|
34
|
Finsterer J, Zarrouk-Mahjoub S. BAG3-related myofibrillar myopathy requiring heart transplantation for restrictive cardiomyopathy. Mol Genet Metab Rep 2018; 15:65-66. [PMID: 30023292 PMCID: PMC6047054 DOI: 10.1016/j.ymgmr.2018.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 02/02/2023] Open
Affiliation(s)
| | - Sinda Zarrouk-Mahjoub
- University of Tunis El Manar, Genomics Platform, Pasteur Institute of Tunis, Tunisia
| |
Collapse
|
35
|
Ranek MJ, Stachowski MJ, Kirk JA, Willis MS. The role of heat shock proteins and co-chaperones in heart failure. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0530. [PMID: 29203715 DOI: 10.1098/rstb.2016.0530] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
The ongoing contractile and metabolic demands of the heart require a tight control over protein quality control, including the maintenance of protein folding, turnover and synthesis. In heart disease, increases in mechanical and oxidative stresses, post-translational modifications (e.g., phosphorylation), for example, decrease protein stability to favour misfolding in myocardial infarction, heart failure or ageing. These misfolded proteins are toxic to cardiomyocytes, directly contributing to the common accumulation found in human heart failure. One of the critical class of proteins involved in protecting the heart against these threats are molecular chaperones, including the heat shock protein70 (HSP70), HSP90 and co-chaperones CHIP (carboxy terminus of Hsp70-interacting protein, encoded by the Stub1 gene) and BAG-3 (BCL2-associated athanogene 3). Here, we review their emerging roles in the maintenance of cardiomyocytes in human and experimental models of heart failure, including their roles in facilitating the removal of misfolded and degraded proteins, inhibiting apoptosis and maintaining the structural integrity of the sarcomere and regulation of nuclear receptors. Furthermore, we discuss emerging evidence of increased expression of extracellular HSP70, HSP90 and BAG-3 in heart failure, with complementary independent roles from intracellular functions with important therapeutic and diagnostic considerations. While our understanding of these major HSPs in heart failure is incomplete, there is a clear potential role for therapeutic modulation of HSPs in heart failure with important contextual considerations to counteract the imbalance of protein damage and endogenous protein quality control systems.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- Mark J Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Marisa J Stachowski
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Chicago, IL 60302, USA
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Chicago, IL 60302, USA
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, CB#7525, Chapel Hill, NC 27599-7525, USA
| |
Collapse
|
36
|
Kiselev A, Vaz R, Knyazeva A, Khudiakov A, Tarnovskaya S, Liu J, Sergushichev A, Kazakov S, Frishman D, Smolina N, Pervunina T, Jorholt J, Sjoberg G, Vershinina T, Rudenko D, Arner A, Sejersen T, Lindstrand A, Kostareva A. De novo mutations in FLNC
leading to early-onset restrictive cardiomyopathy and congenital myopathy. Hum Mutat 2018; 39:1161-1172. [DOI: 10.1002/humu.23559] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Artem Kiselev
- Almazov National Medical Research Centre; Saint Petersburg Russia
| | - Raquel Vaz
- Department of Molecular Medicine and Surgery and Center for molecular medicine; Karolinska Institutet; Stockholm Sweden
| | | | | | - Svetlana Tarnovskaya
- Almazov National Medical Research Centre; Saint Petersburg Russia
- Peter the Great St.Petersburg Polytechnic University; Saint Petersburg Russia
| | - Jiao Liu
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | | | | | - Dmitrij Frishman
- Peter the Great St.Petersburg Polytechnic University; Saint Petersburg Russia
- Department of Bioinformatics; Technische Universität München; Wissenschaftszentrum Weihenstephan; Freising Germany
| | - Natalia Smolina
- Almazov National Medical Research Centre; Saint Petersburg Russia
- ITMO University; Saint Petersburg Russia
- Department of Women's and Children's Health and Center for Molecular Medicine; Karolinska Institute; Stockholm Sweden
| | | | - John Jorholt
- Department of Women's and Children's Health and Center for Molecular Medicine; Karolinska Institute; Stockholm Sweden
| | - Gunnar Sjoberg
- Department of Women's and Children's Health and Center for Molecular Medicine; Karolinska Institute; Stockholm Sweden
| | | | | | - Anders Arner
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - Thomas Sejersen
- Department of Women's and Children's Health and Center for Molecular Medicine; Karolinska Institute; Stockholm Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for molecular medicine; Karolinska Institutet; Stockholm Sweden
- Clinical Genetics; Karolinska University Laboratory; Karolinska University Hospital; Stockholm Sweden
| | - Anna Kostareva
- Almazov National Medical Research Centre; Saint Petersburg Russia
- Department of Women's and Children's Health and Center for Molecular Medicine; Karolinska Institute; Stockholm Sweden
| |
Collapse
|
37
|
Schänzer A, Rupp S, Gräf S, Zengeler D, Jux C, Akintürk H, Gulatz L, Mazhari N, Acker T, Van Coster R, Garvalov BK, Hahn A. Dysregulated autophagy in restrictive cardiomyopathy due to Pro209Leu mutation in BAG3. Mol Genet Metab 2018; 123:388-399. [PMID: 29338979 DOI: 10.1016/j.ymgme.2018.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/02/2018] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
Myofibrillary myopathies (MFM) are hereditary myopathies histologically characterized by degeneration of myofibrils and aggregation of proteins in striated muscle. Cardiomyopathy is common in MFM but the pathophysiological mechanisms are not well understood. The BAG3-Pro209Leu mutation is associated with early onset MFM and severe restrictive cardiomyopathy (RCM), often necessitating heart transplantation during childhood. We report on a young male patient with a BAG3-Pro209Leu mutation who underwent heart transplantation at eight years of age. Detailed morphological analyses of the explanted heart tissue showed intracytoplasmic inclusions, aggregation of BAG3 and desmin, disintegration of myofibers and Z-disk alterations. The presence of undegraded autophagosomes, seen by electron microscopy, as well as increased levels of p62, LC3-I and WIPI1, detected by immunohistochemistry and western blot analyses, indicated a dysregulation of autophagy. Parkin and PINK1, proteins involved in mitophagy, were slightly increased whereas mitochondrial OXPHOS activities were not altered. These findings indicate that altered autophagy plays a role in the pathogenesis and rapid progression of RCM in MFM caused by the BAG3-Pro209Leu mutation, which could have implications for future therapeutic strategies.
Collapse
Affiliation(s)
- A Schänzer
- Institute of Neuropathology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - S Rupp
- Pediatric Heart Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - S Gräf
- Institute of Neuropathology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - D Zengeler
- Center for Genomics and Transcriptomics (CeGat) GmbH, 72076 Tübingen, Germany
| | - C Jux
- Pediatric Heart Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - H Akintürk
- Pediatric Heart Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - L Gulatz
- Institute of Neuropathology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - N Mazhari
- Pediatric Heart Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - T Acker
- Institute of Neuropathology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - R Van Coster
- Division of Child Neurology, Department of Pediatrics, University Hospital Gent, 9000 Gent, Belgium
| | - B K Garvalov
- Institute of Neuropathology, Justus Liebig University Giessen, 35392 Giessen, Germany; Department of Microvascular Biology and Pathobiology, Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - A Hahn
- Department of Child Neurology, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
38
|
Guilbert SM, Lambert H, Rodrigue M, Fuchs M, Landry J, Lavoie JN. HSPB8 and BAG3 cooperate to promote spatial sequestration of ubiquitinated proteins and coordinate the cellular adaptive response to proteasome insufficiency. FASEB J 2018; 32:3518-3535. [DOI: 10.1096/fj.201700558rr] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Solenn M. Guilbert
- Centre de Recherche sur le Cancer de l'Université LavalUniversité LavalVille de QuébecQuebecCanada
- Oncologie, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec‐Université LavalUniversité LavalVille de QuébecQuebecCanada
| | - Herman Lambert
- Centre de Recherche sur le Cancer de l'Université LavalUniversité LavalVille de QuébecQuebecCanada
- Oncologie, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec‐Université LavalUniversité LavalVille de QuébecQuebecCanada
| | - Marc‐Antoine Rodrigue
- Centre de Recherche sur le Cancer de l'Université LavalUniversité LavalVille de QuébecQuebecCanada
- Oncologie, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec‐Université LavalUniversité LavalVille de QuébecQuebecCanada
| | - Margit Fuchs
- Centre de Recherche sur le Cancer de l'Université LavalUniversité LavalVille de QuébecQuebecCanada
- Oncologie, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec‐Université LavalUniversité LavalVille de QuébecQuebecCanada
| | - Jacques Landry
- Centre de Recherche sur le Cancer de l'Université LavalUniversité LavalVille de QuébecQuebecCanada
- Oncologie, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec‐Université LavalUniversité LavalVille de QuébecQuebecCanada
- Département de Biologie MoléculaireBiochimie Médicale et PathologieUniversité LavalVille de QuébecQuebecCanada
| | - Josée N. Lavoie
- Centre de Recherche sur le Cancer de l'Université LavalUniversité LavalVille de QuébecQuebecCanada
- Oncologie, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec‐Université LavalUniversité LavalVille de QuébecQuebecCanada
- Département de Biologie MoléculaireBiochimie Médicale et PathologieUniversité LavalVille de QuébecQuebecCanada
| |
Collapse
|
39
|
Myers VD, McClung JM, Wang J, Tahrir FG, Gupta MK, Gordon J, Kontos CH, Khalili K, Cheung JY, Feldman AM. The Multifunctional Protein BAG3: A Novel Therapeutic Target in Cardiovascular Disease. JACC Basic Transl Sci 2018; 3:122-131. [PMID: 29938246 PMCID: PMC6013050 DOI: 10.1016/j.jacbts.2017.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The B-cell lymphoma 2–associated anthanogene (BAG3) protein is expressed most prominently in the heart, the skeletal muscle, and in many forms of cancer. In the heart, it serves as a co-chaperone with heat shock proteins in facilitating autophagy; binds to B-cell lymphoma 2, resulting in inhibition of apoptosis; attaches actin to the Z disk, providing structural support for the sarcomere; and links the α-adrenergic receptor with the L-type Ca2+ channel. When BAG3 is overexpressed in cancer cells, it facilitates prosurvival pathways that lead to insensitivity to chemotherapy, metastasis, cell migration, and invasiveness. In contrast, in the heart, mutations in BAG3 have been associated with a variety of phenotypes, including both hypertrophic/restrictive and dilated cardiomyopathy. In murine skeletal muscle and vasculature, a mutation in BAG3 leads to critical limb ischemia after femoral artery ligation. An understanding of the biology of BAG3 is relevant because it may provide a therapeutic target in patients with both cardiac and skeletal muscle disease.
Collapse
Affiliation(s)
- Valerie D Myers
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Joseph M McClung
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - JuFang Wang
- Center for Translational Medicine, Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Farzaneh G Tahrir
- Department of Neuroscience, Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Manish K Gupta
- Department of Neuroscience, Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Jennifer Gordon
- Department of Neuroscience, Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Christopher H Kontos
- Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina
| | - Kamel Khalili
- Department of Neuroscience, Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Joseph Y Cheung
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine, Philadelphia, Pennsylvania.,Center for Translational Medicine, Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Arthur M Feldman
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
40
|
Bouhy D, Juneja M, Katona I, Holmgren A, Asselbergh B, De Winter V, Hochepied T, Goossens S, Haigh JJ, Libert C, Ceuterick-de Groote C, Irobi J, Weis J, Timmerman V. A knock-in/knock-out mouse model of HSPB8-associated distal hereditary motor neuropathy and myopathy reveals toxic gain-of-function of mutant Hspb8. Acta Neuropathol 2018; 135:131-148. [PMID: 28780615 PMCID: PMC5756276 DOI: 10.1007/s00401-017-1756-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022]
Abstract
Mutations in the small heat shock protein B8 gene (HSPB8/HSP22) have been associated with distal hereditary motor neuropathy, Charcot-Marie-Tooth disease, and recently distal myopathy. It is so far not clear how mutant HSPB8 induces the neuronal and muscular phenotypes and if a common pathogenesis lies behind these diseases. Growing evidence points towards a role of HSPB8 in chaperone-associated autophagy, which has been shown to be a determinant for the clearance of poly-glutamine aggregates in neurodegenerative diseases but also for the maintenance of skeletal muscle myofibrils. To test this hypothesis and better dissect the pathomechanism of mutant HSPB8, we generated a new transgenic mouse model leading to the expression of the mutant protein (knock-in lines) or the loss-of-function (functional knock-out lines) of the endogenous protein Hspb8. While the homozygous knock-in mice developed motor deficits associated with degeneration of peripheral nerves and severe muscle atrophy corroborating patient data, homozygous knock-out mice had locomotor performances equivalent to those of wild-type animals. The distal skeletal muscles of the post-symptomatic homozygous knock-in displayed Z-disk disorganisation, granulofilamentous material accumulation along with Hspb8, αB-crystallin (HSPB5/CRYAB), and desmin aggregates. The presence of the aggregates correlated with reduced markers of effective autophagy. The sciatic nerve of the homozygous knock-in mice was characterized by low autophagy potential in pre-symptomatic and Hspb8 aggregates in post-symptomatic animals. On the other hand, the sciatic nerve of the homozygous knock-out mice presented a normal morphology and their distal muscle displayed accumulation of abnormal mitochondria but intact myofiber and Z-line organisation. Our data, therefore, suggest that toxic gain-of-function of mutant Hspb8 aggregates is a major contributor to the peripheral neuropathy and the myopathy. In addition, mutant Hspb8 induces impairments in autophagy that may aggravate the phenotype.
Collapse
Affiliation(s)
- Delphine Bouhy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences and Institute Born Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
| | - Manisha Juneja
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences and Institute Born Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
| | - Istvan Katona
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Anne Holmgren
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences and Institute Born Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
| | - Bob Asselbergh
- VIB Center for Molecular Neurology, University of Antwerp, Antwerpen, Belgium
| | - Vicky De Winter
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences and Institute Born Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
| | - Tino Hochepied
- Transgenic Mouse Core Facility, VIB Inflammation Research Center, Gent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Gent, Belgium
| | - Steven Goossens
- Department of Biomedical Molecular Biology, Ghent University, Gent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
- VIB Inflammation Research Center, Ghent University, Gent, Belgium
| | - Jody J Haigh
- Department of Biomedical Molecular Biology, Ghent University, Gent, Belgium
- Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia
| | - Claude Libert
- VIB Inflammation Research Center, Ghent University, Gent, Belgium
| | - Chantal Ceuterick-de Groote
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge and Translational Neurosciences, University of Antwerp, Antwerpen, Belgium
| | - Joy Irobi
- Neurofunctional Genomics, Biomedical Research Institute (BIOMED), Hasselt University/Transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences and Institute Born Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium.
| |
Collapse
|
41
|
Silvestri NJ, Ismail H, Zimetbaum P, Raynor EM. Cardiac involvement in the muscular dystrophies. Muscle Nerve 2017; 57:707-715. [DOI: 10.1002/mus.26014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/30/2017] [Accepted: 11/07/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Nicholas J. Silvestri
- Department of Neurology; University at Buffalo Jacobs School of Medicine and Biomedical Sciences; 1010 Main St Buffalo New York 14202 USA
| | - Haisam Ismail
- Department of Cardiology; Harvard Medical School, Beth Israel Deaconess Medical Center; Boston Massachusetts USA
| | - Peter Zimetbaum
- Department of Cardiology; Harvard Medical School, Beth Israel Deaconess Medical Center; Boston Massachusetts USA
| | - Elizabeth M. Raynor
- Department of Neurology; Harvard Medical School, Beth Israel Deaconess Medical Center; Boston Massachusetts USA
| |
Collapse
|
42
|
Feingold B, Mahle WT, Auerbach S, Clemens P, Domenighetti AA, Jefferies JL, Judge DP, Lal AK, Markham LW, Parks WJ, Tsuda T, Wang PJ, Yoo SJ. Management of Cardiac Involvement Associated With Neuromuscular Diseases: A Scientific Statement From the American Heart Association. Circulation 2017; 136:e200-e231. [DOI: 10.1161/cir.0000000000000526] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Stürner E, Behl C. The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease. Front Mol Neurosci 2017; 10:177. [PMID: 28680391 PMCID: PMC5478690 DOI: 10.3389/fnmol.2017.00177] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/18/2017] [Indexed: 01/01/2023] Open
Abstract
In neurons, but also in all other cells the complex proteostasis network is monitored and tightly regulated by the cellular protein quality control (PQC) system. Beyond folding of newly synthesized polypeptides and their refolding upon misfolding the PQC also manages the disposal of aberrant proteins either by the ubiquitin-proteasome machinery or by the autophagic-lysosomal system. Aggregated proteins are primarily degraded by a process termed selective macroautophagy (or aggrephagy). One such recently discovered selective macroautophagy pathway is mediated by the multifunctional HSP70 co-chaperone BAG3 (BCL-2-associated athanogene 3). Under acute stress and during cellular aging, BAG3 in concert with the molecular chaperones HSP70 and HSPB8 as well as the ubiquitin receptor p62/SQSTM1 specifically targets aggregation-prone proteins to autophagic degradation. Thereby, BAG3-mediated selective macroautophagy represents a pivotal adaptive safeguarding and emergency system of the PQC which is activated under pathophysiological conditions to ensure cellular proteostasis. Interestingly, BAG3-mediated selective macroautophagy is also involved in the clearance of aggregated proteins associated with age-related neurodegenerative disorders, like Alzheimer’s disease (tau-protein), Huntington’s disease (mutated huntingtin/polyQ proteins), and amyotrophic lateral sclerosis (mutated SOD1). In addition, based on its initial description BAG3 is an anti-apoptotic protein that plays a decisive role in other widespread diseases, including cancer and myopathies. Therefore, in the search for novel therapeutic intervention avenues in neurodegeneration, myopathies and cancer BAG3 is a promising candidate.
Collapse
Affiliation(s)
- Elisabeth Stürner
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| |
Collapse
|
44
|
Brodehl A, Gaertner-Rommel A, Klauke B, Grewe SA, Schirmer I, Peterschröder A, Faber L, Vorgerd M, Gummert J, Anselmetti D, Schulz U, Paluszkiewicz L, Milting H. The novel αB-crystallin (CRYAB) mutation p.D109G causes restrictive cardiomyopathy. Hum Mutat 2017; 38:947-952. [PMID: 28493373 DOI: 10.1002/humu.23248] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 11/09/2022]
Abstract
Restrictive cardiomyopathy (RCM) is a rare heart disease characterized by diastolic dysfunction and atrial enlargement. The genetic etiology of RCM is not completely known. We identified by a next-generation sequencing panel the novel CRYAB missense mutation c.326A>G, p.D109G in a small family with RCM in combination with skeletal myopathy with an early onset of the disease. CRYAB encodes αB-crystallin, a member of the small heat shock protein family, which is highly expressed in cardiac and skeletal muscle. In addition to in silico prediction analysis, our structural analysis of explanted myocardial tissue of a mutation carrier as well as in vitro cell transfection experiments revealed abnormal protein aggregation of mutant αB-crystallin and desmin, supporting the deleterious effect of this novel mutation. In conclusion, CRYAB appears to be a novel RCM gene, which might have relevance for the molecular diagnosis and the genetic counseling of further affected families in the future.
Collapse
Affiliation(s)
- Andreas Brodehl
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| | - Anna Gaertner-Rommel
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| | - Bärbel Klauke
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| | - Simon Andre Grewe
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| | - Ilona Schirmer
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| | - Andreas Peterschröder
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Institute of Radiology, Nuclear Medicine and Molecular Imaging, Bad Oeynhausen, Germany
| | - Lothar Faber
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Clinic of Cardiology, Bad Oeynhausen, Germany
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Jan Gummert
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| | - Dario Anselmetti
- Bielefeld University and Bielefeld Institute for Nanoscience (BINAS), Faculty of Physics, Experimental Biophysics and Applied Nanoscience, Bielefeld, Germany
| | - Uwe Schulz
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| | - Lech Paluszkiewicz
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| | - Hendrik Milting
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| |
Collapse
|
45
|
Gómez J, Lorca R, Reguero JR, Morís C, Martín M, Tranche S, Alonso B, Iglesias S, Alvarez V, Díaz-Molina B, Avanzas P, Coto E. Screening of the Filamin C Gene in a Large Cohort of Hypertrophic Cardiomyopathy Patients. ACTA ACUST UNITED AC 2017; 10:CIRCGENETICS.116.001584. [PMID: 28356264 DOI: 10.1161/circgenetics.116.001584] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 01/11/2017] [Indexed: 01/26/2023]
Abstract
BACKGROUND Recent exome sequencing studies identified filamin C (FLNC) as a candidate gene for hypertrophic cardiomyopathy (HCM). Our aim was to determine the rate of FLNC candidate variants in a large cohort of HCM patients who were also sequenced for the main sarcomere genes. METHODS AND RESULTS A total of 448 HCM patients were next generation-sequenced (semiconductor chip technology) for the MYH7, MYBPC3, TNNT2, TNNI3, ACTC1, TNNC1, MYL2, MYL3, TPM1, and FLNC genes. We also sequenced 450 healthy controls from the same population. Based on the reported population frequencies, bioinformatic criteria, and familial segregation, we identified 20 FLNC candidate variants (13 new; 1 nonsense; and 19 missense) in 22 patients. Compared with the patients, only 1 of the control's missense variants was nonreported (P=0.007; Fisher exact probability test). Based on the familial segregation and the reported functional studies, 6 of the candidate variants (in 7 patients) were finally classified as likely pathogenic, 10 as variants of uncertain significance, and 4 as likely benign. CONCLUSIONS We provide a compelling evidence of the involvement of FLNC in the development of HCM. Most of the FLNC variants were associated with mild forms of HCM and a reduced penetrance, with few affected in the families to confirm the segregation. Our work, together with others who found FLNC variants among patients with dilated and restrictive cardiomyopathies, pointed to this gene as an important cause of structural cardiomyopathies.
Collapse
Affiliation(s)
- Juan Gómez
- From the Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain (J.G., R.L., J.R.R., C.M., M.M., B.A., S.I., V.A., B.D.-M., P.A., E.C.); Fundación Asturcor, Spain (J.R.R., C.M.); Departamento de Medicina, Universidad de Oviedo, Spain (C.M., E.C.); Centro Salud El Cristo, Oviedo, Spain (S.T.); and Red de Investigación Renal (REDINREN), Madrid, Spain (E.C.)
| | - Rebeca Lorca
- From the Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain (J.G., R.L., J.R.R., C.M., M.M., B.A., S.I., V.A., B.D.-M., P.A., E.C.); Fundación Asturcor, Spain (J.R.R., C.M.); Departamento de Medicina, Universidad de Oviedo, Spain (C.M., E.C.); Centro Salud El Cristo, Oviedo, Spain (S.T.); and Red de Investigación Renal (REDINREN), Madrid, Spain (E.C.)
| | - Julian R Reguero
- From the Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain (J.G., R.L., J.R.R., C.M., M.M., B.A., S.I., V.A., B.D.-M., P.A., E.C.); Fundación Asturcor, Spain (J.R.R., C.M.); Departamento de Medicina, Universidad de Oviedo, Spain (C.M., E.C.); Centro Salud El Cristo, Oviedo, Spain (S.T.); and Red de Investigación Renal (REDINREN), Madrid, Spain (E.C.)
| | - César Morís
- From the Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain (J.G., R.L., J.R.R., C.M., M.M., B.A., S.I., V.A., B.D.-M., P.A., E.C.); Fundación Asturcor, Spain (J.R.R., C.M.); Departamento de Medicina, Universidad de Oviedo, Spain (C.M., E.C.); Centro Salud El Cristo, Oviedo, Spain (S.T.); and Red de Investigación Renal (REDINREN), Madrid, Spain (E.C.)
| | - María Martín
- From the Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain (J.G., R.L., J.R.R., C.M., M.M., B.A., S.I., V.A., B.D.-M., P.A., E.C.); Fundación Asturcor, Spain (J.R.R., C.M.); Departamento de Medicina, Universidad de Oviedo, Spain (C.M., E.C.); Centro Salud El Cristo, Oviedo, Spain (S.T.); and Red de Investigación Renal (REDINREN), Madrid, Spain (E.C.)
| | - Salvador Tranche
- From the Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain (J.G., R.L., J.R.R., C.M., M.M., B.A., S.I., V.A., B.D.-M., P.A., E.C.); Fundación Asturcor, Spain (J.R.R., C.M.); Departamento de Medicina, Universidad de Oviedo, Spain (C.M., E.C.); Centro Salud El Cristo, Oviedo, Spain (S.T.); and Red de Investigación Renal (REDINREN), Madrid, Spain (E.C.)
| | - Belén Alonso
- From the Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain (J.G., R.L., J.R.R., C.M., M.M., B.A., S.I., V.A., B.D.-M., P.A., E.C.); Fundación Asturcor, Spain (J.R.R., C.M.); Departamento de Medicina, Universidad de Oviedo, Spain (C.M., E.C.); Centro Salud El Cristo, Oviedo, Spain (S.T.); and Red de Investigación Renal (REDINREN), Madrid, Spain (E.C.)
| | - Sara Iglesias
- From the Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain (J.G., R.L., J.R.R., C.M., M.M., B.A., S.I., V.A., B.D.-M., P.A., E.C.); Fundación Asturcor, Spain (J.R.R., C.M.); Departamento de Medicina, Universidad de Oviedo, Spain (C.M., E.C.); Centro Salud El Cristo, Oviedo, Spain (S.T.); and Red de Investigación Renal (REDINREN), Madrid, Spain (E.C.)
| | - Victoria Alvarez
- From the Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain (J.G., R.L., J.R.R., C.M., M.M., B.A., S.I., V.A., B.D.-M., P.A., E.C.); Fundación Asturcor, Spain (J.R.R., C.M.); Departamento de Medicina, Universidad de Oviedo, Spain (C.M., E.C.); Centro Salud El Cristo, Oviedo, Spain (S.T.); and Red de Investigación Renal (REDINREN), Madrid, Spain (E.C.)
| | - Beatriz Díaz-Molina
- From the Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain (J.G., R.L., J.R.R., C.M., M.M., B.A., S.I., V.A., B.D.-M., P.A., E.C.); Fundación Asturcor, Spain (J.R.R., C.M.); Departamento de Medicina, Universidad de Oviedo, Spain (C.M., E.C.); Centro Salud El Cristo, Oviedo, Spain (S.T.); and Red de Investigación Renal (REDINREN), Madrid, Spain (E.C.)
| | - Pablo Avanzas
- From the Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain (J.G., R.L., J.R.R., C.M., M.M., B.A., S.I., V.A., B.D.-M., P.A., E.C.); Fundación Asturcor, Spain (J.R.R., C.M.); Departamento de Medicina, Universidad de Oviedo, Spain (C.M., E.C.); Centro Salud El Cristo, Oviedo, Spain (S.T.); and Red de Investigación Renal (REDINREN), Madrid, Spain (E.C.)
| | - Eliecer Coto
- From the Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain (J.G., R.L., J.R.R., C.M., M.M., B.A., S.I., V.A., B.D.-M., P.A., E.C.); Fundación Asturcor, Spain (J.R.R., C.M.); Departamento de Medicina, Universidad de Oviedo, Spain (C.M., E.C.); Centro Salud El Cristo, Oviedo, Spain (S.T.); and Red de Investigación Renal (REDINREN), Madrid, Spain (E.C.).
| |
Collapse
|
46
|
Rigid spine syndrome associated with sensory-motor axonal neuropathy resembling Charcot-Marie-Tooth disease is characteristic of Bcl-2-associated athanogene-3
gene mutations even without cardiac involvement. Muscle Nerve 2017; 57:330-334. [DOI: 10.1002/mus.25631] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2017] [Indexed: 01/07/2023]
|
47
|
BIS overexpression does not affect the sensitivity of HEK 293T cells against apoptosis. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-017-0010-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Abstract
Differentiating Guillain-Barré syndrome (GBS) from inherited neuropathies and other acquired peripheral neuropathies requires understanding the atypical presentations of GBS and its variant forms, as well as historical and physical features suggestive of inherited neuropathies. GBS is typically characterized by the acute onset of ascending flaccid paralysis, areflexia, and dysesthesia secondary to peripheral nerve fiber demyelination. The disorder usually arises following a benign gastrointestinal or respiratory illness, is monophasic, reaches a nadir with several weeks, and responds to immunomodulatory therapy. Inherited neuropathies with onset before adulthood, whose presentation may mimic Guillain-Barré syndrome, are reviewed.
Collapse
Affiliation(s)
- Brett J Bordini
- Department of Pediatrics, Section of Hospital Medicine, Nelson Service for Undiagnosed and Rare Diseases, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Priya Monrad
- Department of Child and Adolescent Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
49
|
Vajsar J, Gonorazky HD, Dowling JJ. Myopathies and Myotonic Disorders. PEDIATRIC ELECTROMYOGRAPHY 2017:327-354. [DOI: 10.1007/978-3-319-61361-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
50
|
Kathage B, Gehlert S, Ulbricht A, Lüdecke L, Tapia VE, Orfanos Z, Wenzel D, Bloch W, Volkmer R, Fleischmann BK, Fürst DO, Höhfeld J. The cochaperone BAG3 coordinates protein synthesis and autophagy under mechanical strain through spatial regulation of mTORC1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:62-75. [PMID: 27756573 DOI: 10.1016/j.bbamcr.2016.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022]
Abstract
The cochaperone BAG3 is a central protein homeostasis factor in mechanically strained mammalian cells. It mediates the degradation of unfolded and damaged forms of the actin-crosslinker filamin through chaperone-assisted selective autophagy (CASA). In addition, BAG3 stimulates filamin transcription in order to compensate autophagic disposal and to maintain the actin cytoskeleton under strain. Here we demonstrate that BAG3 coordinates protein synthesis and autophagy through spatial regulation of the mammalian target of rapamycin complex 1 (mTORC1). The cochaperone utilizes its WW domain to contact a proline-rich motif in the tuberous sclerosis protein TSC1 that functions as an mTORC1 inhibitor in association with TSC2. Interaction with BAG3 results in a recruitment of TSC complexes to actin stress fibers, where the complexes act on a subpopulation of mTOR-positive vesicles associated with the cytoskeleton. Local inhibition of mTORC1 is essential to initiate autophagy at sites of filamin unfolding and damage. At the same time, BAG3-mediated sequestration of TSC1/TSC2 relieves mTORC1 inhibition in the remaining cytoplasm, which stimulates protein translation. In human muscle, an exercise-induced association of TSC1 with the cytoskeleton coincides with mTORC1 activation in the cytoplasm. The spatial regulation of mTORC1 exerted by BAG3 apparently provides the basis for a simultaneous induction of autophagy and protein synthesis to maintain the proteome under mechanical strain.
Collapse
Affiliation(s)
- Barbara Kathage
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Sebastian Gehlert
- German Sport University Cologne, Department of Molecular and Cellular Sport Medicine, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Anna Ulbricht
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Laura Lüdecke
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Victor E Tapia
- Department of Medicinal Immunology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Zacharias Orfanos
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life & Brain Center, University Clinic Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany
| | - Wilhelm Bloch
- German Sport University Cologne, Department of Molecular and Cellular Sport Medicine, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Rudolf Volkmer
- Department of Medicinal Immunology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life & Brain Center, University Clinic Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany
| | - Dieter O Fürst
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Jörg Höhfeld
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| |
Collapse
|