1
|
Kim S, Pajarillo E, Digman A, Ajayi I, Son DS, Aschner M, Lee E. Role of dopaminergic RE1-silencing transcription factor (REST) in manganese-induced behavioral deficits and dysregulating dopaminergic and serotonergic neurotransmission in mice. Neurotoxicology 2025; 108:57-68. [PMID: 40057281 DOI: 10.1016/j.neuro.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
Chronic exposure to elevated levels of manganese (Mn) induces manganism, a neurological disorder, exhibiting symptoms resembling Parkinson's disease (PD). Mn is well known to dysregulate dopaminergic (DAergic) function, while the repressor element-1 silencing transcription factor (REST) induces protection against Mn-induced toxicity and several neurodegenerative diseases, including PD and Alzheimer's disease. In the present study, we investigated if DAergic REST plays a role in Mn-induced neurotoxicity by assessing behavioral deficits and alteration of neurotransmitter levels using high-performance liquid chromatography with electrochemical detector (HPLC-ECD), and microdialysis between DAergic-specific REST-deleted (REST cKO) mice and REST loxP mice as wild-type (WT) controls. Mice were exposed to Mn (330 μg, daily intranasal instillation for 3 weeks), followed by assessment of locomotor activity and novel object recognition, and subsequent brain dissection. Neurotransmitters, including DA, serotonin (5-HT), norepinephrine (NE), and glutamate, were analyzed in different brain regions, such as the striatum, midbrain, cortex, hippocampus, and cerebellum. After Mn exposure, extracellular DA levels in the striatum were measured by HPLC-microdialysis. The results showed that DAergic REST deletion exacerbated Mn-induced behavioral deficits and decreased DA levels in the nigrostriatal regions of WT mice. REST cKO increased DA turnover rates (DOPAC/DA and HVA/DA) by 10-fold in the nigrostriatal regions, showing lesser effects in other brain regions. Mn decreased extracellular DA levels, as measured by microdialysis, in the striatum in both genotypes. Mn decreased cortical NE levels in both genotypes and further exacerbated in REST cKO, while Mn decreased nigrostriatal NE levels only in REST cKO mice. REST cKO reduced 5-HT levels in all brain regions tested compared to WT mice. Mn increased glutamate and GABA levels in the striatum and midbrain, while these Mn effects were not altered by REST cKO. Taken together, our findings demonstrate that DAergic REST deficiency exacerbates Mn-induced motor and cognitive deficits along with dysregulation of neurotransmitters, mainly DA, 5-HT, and NE, suggesting that DAergic REST is important in Mn-induced dysregulation of monoaminergic neurotransmission.
Collapse
Affiliation(s)
- Sanghoon Kim
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Edward Pajarillo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Alexis Digman
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Itunu Ajayi
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA.
| |
Collapse
|
2
|
Beaudin SA, Gorman S, Schilpp N, Woodfin D, Strupp BJ, Smith DR. Sensorimotor dysfunction due to developmental manganese exposure is less severe in adult female than male rats and partially improved by acute methylphenidate treatment. Neurotoxicol Teratol 2024; 102:107330. [PMID: 38307398 DOI: 10.1016/j.ntt.2024.107330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Epidemiological studies have reported associations between elevated manganese (Mn) exposure and poorer psychomotor performance in children. Our studies in adult male rats have established that this relationship is causal and that prolonged methylphenidate (MPH) treatment is efficacious in treating this area of dysfunction. However, it is unclear if sensitivity to these Mn deficits differs between females and males, and whether existing pharmacological therapies are efficacious in improving sensorimotor dysfunction in females. To address these questions, we used our rat model of childhood environmental Mn exposure and the Montoya staircase test to determine whether 1) there are sex differences in the lasting sensorimotor dysfunction caused by developmental Mn exposure, and 2) MPH treatment is efficacious in ameliorating the sensorimotor deficits in females. Female and male neonates were treated orally with Mn (50 mg Mn/kg/d) from postnatal day 1 to 21 and evaluated for skilled forelimb sensorimotor performance as adults. Subsequently, the efficacy of acute oral MPH treatment (doses of 0, 0.5, and 3.0 mg MPH/kg/d) was assessed in females using a within-subject MPH treatment design. Developmental postnatal Mn exposure produced lasting sensorimotor reaching and grasping deficits that were milder in females than in males. Acute MPH treatment of Mn-exposed females with the 0.5 mg/kg/d dose attenuated the reaching dysfunction without alleviating grasping dysfunction. These findings show sex-based variations in sensitivity to the sensorimotor impairment caused by developmental Mn exposure, and they are consistent with prior studies showing less vulnerability of females to Mn-induced dysfunction in other functional domains, possibly due to the protective effects of estrogen. Given our previous work showing the efficacy of MPH treatment to alleviate Mn-induced inattention, impulsiveness, and sensorimotor dysfunctions in adult male rats, they also highlight the need for further research into sex-based differences in cognitive and behavioral areas of brain function, and the efficacy of therapeutics in treating behavioral dysfunction in females. Supported by NIEHS R01ES028369.
Collapse
Affiliation(s)
- Stephane A Beaudin
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Samantha Gorman
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Naomi Schilpp
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - David Woodfin
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Barbara J Strupp
- Division of Nutritional Sciences, and Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
3
|
Schildroth S, Kordas K, White RF, Friedman A, Placidi D, Smith D, Lucchini RG, Wright RO, Horton M, Claus Henn B. An Industry-Relevant Metal Mixture, Iron Status, and Reported Attention-Related Behaviors in Italian Adolescents. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:27008. [PMID: 38363634 PMCID: PMC10871126 DOI: 10.1289/ehp12988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Exposure to environmental metals has been consistently associated with attention and behavioral deficits in children, and these associations may be modified by coexposure to other metals or iron (Fe) status. However, few studies have investigated Fe status as a modifier of a metal mixture, particularly with respect to attention-related behaviors. METHODS We used cross-sectional data from the Public Health Impact of Metals Exposure study, which included 707 adolescents (10-14 years of age) from Brescia, Italy. Manganese, chromium, and copper were quantified in hair samples, and lead was quantified in whole blood, using inductively coupled plasma mass spectrometry. Concentrations of Fe status markers (ferritin, hemoglobin, transferrin) were measured using immunoassays or luminescence assays. Attention-related behaviors were assessed using the Conners Rating Scales Self-Report Scale-Long Form, Parent Rating Scales Revised-Short Form, and Teacher Rating Scales Revised-Short Form. We employed Bayesian kernel machine regression to examine associations of the metal mixture with these outcomes and evaluate Fe status as a modifier. RESULTS Higher concentrations of the metals and ferritin were jointly associated with worse self-reported attention-related behaviors: metals and ferritin set to their 90th percentiles were associated with 3.0% [β = 0.03 ; 95% credible interval (CrI): - 0.01 , 0.06], 4.1% (β = 0.04 ; 95% CrI: 0.00, 0.08), and 4.1% (β = 0.04 ; 95% CrI: 0.00, 0.08) higher T -scores for self-reported attention deficit/hyperactivity disorder (ADHD) index, inattention, and hyperactivity, respectively, compared with when metals and ferritin were set to their 50th percentiles. These associations were driven by hair manganese, which exhibited nonlinear associations with all self-reported scales. There was no evidence that Fe status modified the neurotoxicity of the metal mixture. The metal mixture was not materially associated with any parent-reported or teacher-reported scale. CONCLUSIONS The overall metal mixture, driven by manganese, was adversely associated with self-reported attention-related behavior. These findings suggest that exposure to multiple environmental metals impacts adolescent neurodevelopment, which has significant public health implications. https://doi.org/10.1289/EHP12988.
Collapse
Affiliation(s)
- Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, New York, USA
| | - Roberta F. White
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
- Department of Neurology, Boston University, Boston, Massachusetts, USA
| | - Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Donatella Placidi
- Department of Occupational Health, University of Brescia, Brescia, Italy
| | - Donald Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Roberto G. Lucchini
- Department of Occupational Health, University of Brescia, Brescia, Italy
- Department of Environmental Health Sciences, Florida International University, Miami, Florida, USA
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Vorhees CV, Williams MT. Tests for learning and memory in rodent regulatory studies. Curr Res Toxicol 2024; 6:100151. [PMID: 38304257 PMCID: PMC10832385 DOI: 10.1016/j.crtox.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
For decades, regulatory guidelines for safety assessment in rodents for drugs, chemicals, pesticides, and food additives with developmental neurotoxic potential have recommended a single test of learning and memory (L&M). In recent years some agencies have requested two such tests. Given the importance of higher cognitive function to health, and the fact that different types of L&M are mediated by different brain regions assessing higher functions represents a step forward in providing better evidence-based protection against adverse brain effects. Given the myriad of tests available for assessing L&M in rodents this leads to the question of which tests best fit regulatory guidelines. To address this question, we begin by describing the central role of two types of L&M essential to all mammalian species and the regions/networks that mediate them. We suggest that the tests recommended possess characteristics that make them well suited to the needs in regulatory safety studies. By brain region, these are (1) the hippocampus and entorhinal cortex for spatial navigation, which assesses explicit L&M for reference and episodic memory and (2) the striatum and related structures for egocentric navigation, which assesses implicit or procedural memory and path integration. Of the tests available, we suggest that in this context, the evidence supports the use of water mazes, specifically, the Morris water maze (MWM) for spatial L&M and the Cincinnati water maze (CWM) for egocentric/procedural L&M. We review the evidentiary basis for these tests, describe their use, and explain procedures that optimize their sensitivity.
Collapse
Affiliation(s)
- Charles V. Vorhees
- Corresponding author at: Div. of Neurology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA.
| | | |
Collapse
|
5
|
Turck D, Bohn T, Castenmiller J, de Henauw S, Hirsch‐Ernst K, Knutsen HK, Maciuk A, Mangelsdorf I, McArdle HJ, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Bornhorst J, Cubadda F, Dopter A, FitzGerald R, de Sesmaisons Lecarré A, das Neves Ferreira P, Fabiani L, Horvath Z, Matijević L, Naska A. Scientific opinion on the tolerable upper intake level for manganese. EFSA J 2023; 21:e8413. [PMID: 38075631 PMCID: PMC10704406 DOI: 10.2903/j.efsa.2023.8413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024] Open
Abstract
Following a request from the European Commission (EC), the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver a scientific opinion on the tolerable upper intake level (UL) for manganese. Systematic reviews of the literature of human and animal data were conducted to assess evidence regarding excess manganese intake (including authorised manganese salts) and the priority adverse health effect, i.e. manganese-induced neurotoxicity. Available human and animal studies support neurotoxicity as a critical effect, however, data are not sufficient and suitable to characterise a dose-response relationship and identify a reference point for manganese-induced neurotoxicity. In the absence of adequate data to establish an UL, estimated background dietary intakes (i.e. manganese intakes from natural dietary sources only) observed among high consumers (95th percentile) were used to provide an indication of the highest level of intake where there is reasonable confidence on the absence of adverse effects. A safe level of intake of 8 mg/day was established for adults ≥ 18 years (including pregnant and lactating women) and ranged between 2 and 7 mg/day for other population groups. The application of the safe level of intake is more limited than an UL because the intake level at which the risk of adverse effects starts to increase is not defined.
Collapse
|
6
|
Schildroth S, Bauer JA, Friedman A, Austin C, Coull BA, Placidi D, White RF, Smith D, Wright RO, Lucchini RG, Arora M, Horton M, Claus Henn B. Early life manganese exposure and reported attention-related behaviors in Italian adolescents. Environ Epidemiol 2023; 7:e274. [PMID: 38912396 PMCID: PMC11189689 DOI: 10.1097/ee9.0000000000000274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/19/2023] [Indexed: 06/25/2024] Open
Abstract
Background Manganese (Mn) is an essential nutrient and neurotoxicant, and the neurodevelopmental effects of Mn may depend on exposure timing. Less research has quantitatively compared the impact of Mn exposure on neurodevelopment across exposure periods. Methods We used data from 125 Italian adolescents (10-14 years) from the Public Health Impact of Metals Exposure Study to estimate prospective associations of Mn in three early life exposure periods with adolescent attention-related behaviors. Mn was quantified in deciduous teeth using laser ablation-inductively coupled plasma-mass spectrometry to represent prenatal (2nd trimester-birth), postnatal (birth ~1.5 years), and childhood (~1.5-6 years) exposure. Attention-related behavior was evaluated using the Conners Behavior Rating Scales in adolescence. We used multivariable linear regression models to quantify associations between Mn in each exposure period, and multiple informant models to compare associations across exposure periods. Results Median tooth Mn levels (normalized to calcium) were 0.4 area under the curve (AUC) 55Mn:43Ca × 104, 0.1 AUC 55Mn:43Ca × 104, and 0.0006 55Mn:43Ca for the prenatal, postnatal, and childhood periods. A doubling in prenatal tooth Mn levels was associated with 5.3% (95% confidence intervals [CI] = -10.3%, 0.0%) lower (i.e., better) teacher-reported inattention scores, whereas a doubling in postnatal tooth Mn levels was associated with 4.5% (95% CI = -9.3%, 0.6%) and 4.6% (95% CI = -9.5%, 0.6%) lower parent-reported inattention and attention deficit/hyperactivity disorder index scores, respectively. Childhood Mn was not beneficially associated with reported attention-related behaviors. Conclusion Protective associations in the prenatal and postnatal periods suggest Mn is beneficial for attention-related behavior, but not in the childhood period.
Collapse
Affiliation(s)
- Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Julia Anglen Bauer
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| | - Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Brent A. Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Donatella Placidi
- Department of Occupational Health, University of Brescia, Brescia, Italy
| | - Roberta F. White
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
- Department of Neurology, Boston University, Boston, Massachusetts
| | - Donald Smith
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Roberto G. Lucchini
- Department of Environmental Health Sciences, Florida International University, Miami, Florida
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| |
Collapse
|
7
|
Gomes-Silva AP, Cunha de Medeiros PD, Silva LN, Da Silva Araújo Santiago M, Perobelli JE. Exposure to manganese during sertoli cell formation and proliferation disturbs early testicular development in rats. Reprod Toxicol 2023; 120:108447. [PMID: 37499885 DOI: 10.1016/j.reprotox.2023.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Manganese (Mn) is a metal and important micronutrient. However, exposure to supraphysiological levels of Mn, which occur through fungicides, atmospheric emissions, drainages, and spills, has been related to health risks, including morphometric changes in the male reproductive organs and impairment on gametogenesis and sperm quality, impacting the fertile ability of adult animals. Despite the relevance of the fetal/perinatal period for toxicological studies on Mn, previous data only deal with the physical and neurological development of the offspring, without mentioning their reproductive development. The present study investigated whether exposure to Mn during fetal/perinatal phase, specifically during the period of formation and proliferation of Sertoli cells, impairs the reproductive development of male offspring in early postnatal life. Therefore, pregnant Wistar rats were randomly distributed into 3 experimental groups: Ctl (received saline solution), Mn-9 (received 9 mg/kg of MnCl2), and Mn-90 (received 90 mg/kg of MnCl2). The female rats received the experimental treatment by gavage from gestational day 13 to lactational day 15, i.e., postnatal day (PND) 15 of the pups. Oxidative damage to the genetic material of germ and Sertoli cells, together with a decrease in connexin 43 immunolabeling were observed in the testis of male pups evaluated at PND 15. In addition, an increase in the seminiferous tubules presenting slight epithelium vacuolization and cells with eosinophilic cytoplasm were observed, without apparent epididymal changes. In conclusion, it was demonstrated that Mn perturbed the initial testicular development by altering Sertoli cell integrity through oxidative insult, which may compromise the spermatogenesis in the long-term.
Collapse
Affiliation(s)
- Ana Priscila Gomes-Silva
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, 11070-100 Santos, SP, Brazil
| | - Paloma da Cunha de Medeiros
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, 11070-100 Santos, SP, Brazil
| | - Laís Nogueira Silva
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, 11070-100 Santos, SP, Brazil
| | - Marcella Da Silva Araújo Santiago
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, 11070-100 Santos, SP, Brazil
| | - Juliana Elaine Perobelli
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, 11070-100 Santos, SP, Brazil.
| |
Collapse
|
8
|
Schildroth S, Friedman A, White RF, Kordas K, Placidi D, Bauer JA, Webster TF, Coull BA, Cagna G, Wright RO, Smith D, Lucchini RG, Horton M, Claus Henn B. Associations of an industry-relevant metal mixture with verbal learning and memory in Italian adolescents: The modifying role of iron status. ENVIRONMENTAL RESEARCH 2023; 224:115457. [PMID: 36773645 PMCID: PMC10117691 DOI: 10.1016/j.envres.2023.115457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Biomarker concentrations of metals are associated with neurodevelopment, and these associations may be modified by nutritional status (e.g., iron deficiency). No prior study on associations of metal mixtures with neurodevelopment has assessed effect modification by iron status. OBJECTIVES We aimed to quantify associations of an industry-relevant metal mixture with verbal learning and memory among adolescents, and to investigate the modifying role of iron status on those associations. METHODS We used cross-sectional data from 383 Italian adolescents (10-14 years) living in proximity to ferroalloy industry. Verbal learning and memory was assessed using the California Verbal Learning Test for Children (CVLT-C), and metals were quantified in hair (manganese, copper, chromium) or blood (lead) using inductively coupled plasma mass spectrometry. Serum ferritin, a proxy for iron status, was measured using immunoassays. Covariate-adjusted associations of the metal mixture with CVLT subtests were estimated using Bayesian Kernel Machine Regression, and modification of the mixture associations by ferritin was examined. RESULTS Compared to the 50th percentile of the metal mixture, the 90th percentile was associated with a 0.12 standard deviation [SD] (95% CI = -0.27, 0.50), 0.16 SD (95% CI = -0.11, 0.44), and 0.11 SD (95% CI = -0.20, 0.43) increase in the number of words recalled for trial 5, long delay free, and long delay cued recall, respectively. For an increase from its 25th to 75th percentiles, copper was beneficially associated the recall trials when other metals were fixed at their 50th percentiles (for example, trial 5 recall: β = 0.31, 95% CI = 0.14, 0.48). The association between copper and trial 5 recall was stronger at the 75th percentile of ferritin, compared to the 25th or 50th percentiles. CONCLUSIONS In this metal mixture, copper was beneficially associated with neurodevelopment, which was more apparent at higher ferritin concentrations. These findings suggest that metal associations with neurodevelopment may depend on iron status, which has important public health implications.
Collapse
Affiliation(s)
- Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston MA, USA.
| | - Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston MA, USA
| | - Roberta F White
- Department of Environmental Health, Boston University School of Public Health, Boston MA, USA; Department of Neurology, Boston University, Boston MA, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, USA
| | - Donatella Placidi
- Department of Occupational Health, University of Brescia, Brescia, Italy
| | - Julia A Bauer
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, Boston MA, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston MA, USA
| | - Giuseppa Cagna
- Department of Occupational Health, University of Brescia, Brescia, Italy
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Donald Smith
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz CA, USA
| | - Roberto G Lucchini
- Department of Occupational Health, University of Brescia, Brescia, Italy; Department of Environmental Health Sciences, Florida International University, Miami FL, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston MA, USA
| |
Collapse
|
9
|
Liu XF, Lu JJ, Li Y, Yang XY, Qiang JW. Ferrous sulfate reverses cerebral metabolic abnormality induced by minimal hepatic encephalopathy. Metab Brain Dis 2023; 38:1613-1620. [PMID: 36917427 DOI: 10.1007/s11011-023-01198-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/03/2023] [Indexed: 03/16/2023]
Abstract
Orally administered ferrous iron was previously reported to significantly improve the cognition and locomotion of patients with minimal hepatic encephalopathy (MHE). However, the metabolic mechanisms of the therapeutic effect of ferrous iron are unknown. In this study, MHE was induced in rats by partial portal vein ligation (PPVL), and was treated with ferrous sulfate. The Morris water maze was used to evaluate the cognitive condition of the rats. The metabolites observed by NMR and validated by liquid chromatography-mass spectrometry were defined as the key affected metabolites. The enzyme activities and trace element contents in the rat brains were also investigated. The Mn content was found to be increased but the ferrous iron content decreased in the cortex and striatum in MHE. Decreased oxoglutarate dehydrogenase activity and increased glutamine synthetase (GS) and pyruvate carboxylase (PC) activity were observed in the cortex of MHE rats. Decreased pyruvate dehydrogenase activity and increased GS and PC activity were observed in the striatum of MHE rats. The levels of BCAAs and taurine were significantly decreased, and the contents of GABA, lactate, arginine, aspartate, carnosine, citrulline, cysteine, glutamate, glutamine, glycine, methionine, ornithine, proline, threonine and tyrosine were significantly increased. These metabolic abnormalities described above were restored after treatment with ferrous sulfate. Pathway enrichment analysis suggested that urea cycle, aspartate metabolism, arginine and proline metabolism, glycine and serine metabolism, and glutamate metabolism were the major metabolic abnormalities in MHE rats, but these processes could be restored and cognitive impairment could be improved by ferrous sulfate administration.
Collapse
Affiliation(s)
- Xue-Fei Liu
- Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Jing-Jing Lu
- Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Ying Li
- Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| | - Xiu-Ying Yang
- Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Jin-Wei Qiang
- Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
10
|
Pitzer EM, Sugimoto C, Regan SL, Gudelsky GA, Williams MT, Vorhees CV. Developmental deltamethrin: Sex-specific hippocampal effects in Sprague Dawley rats. Curr Res Toxicol 2022; 3:100093. [PMID: 36393872 PMCID: PMC9661443 DOI: 10.1016/j.crtox.2022.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Pyrethroid pesticides are widely used and can cause long-term effects after early exposure. Epidemiological and animal studies reveal associations between pyrethroid exposure and altered cognition following prenatal and/or neonatal exposure. However, little is known about the cellular effects of such exposure. Sprague Dawley rats were gavaged with 0 or 1.0 mg/kg deltamethrin (DLM), a Type II pyrethroid, in corn oil (dose volume 5 mL/kg) once per day from postnatal day (P) 3-20 and assessed shortly after dosing ended or as adults. No effects of DLM exposure were found on striatal dopaminergic markers, nor on AMPA receptor subunits or on NMDA-NR1. However, DLM increased NMDA-NR2A and decreased NMDA-NR2B levels in the hippocampus, in males but not females. Additionally, adult hippocampal CA1 long-term potentiation was increased in DLM-treated males but not females. Potassium stimulated extracellular glutamate release in the hippocampus was not affected using in vivo microdialysis. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) showed increased apoptotic cells in the dentate gyrus of male rats, in the absence of changes in cleaved caspase-3 at P21. Proinflammatory cytokines interferon gamma trended up in striatum, interleukin-1β trended down in nucleus accumbens, IL-13 trended up in hippocampus, and keratinocyte chemoattractant/human growth-regulated oncogene (KC/GRO or CXCL1) was significantly increased in the hippocampus in male DLM-treated rats on P20. The data point to the developing hippocampus as a susceptible region to DLM-induced adverse effects.
Collapse
Affiliation(s)
- Emily M. Pitzer
- Dept. of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Chiho Sugimoto
- Dept. of Physiology, Michigan State University, 766 Service Rd. 5401 Interdisciplinary Science and Technology Building, East Lansing, MI 48824, USA
| | - Samantha L. Regan
- Dept. of Human Genetics, University of Michigan Medical Center, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI 48109-5618, USA
| | - Gary A. Gudelsky
- College of Pharmacy, Div. of Pharmaceutical Sciences, 3212 Medical Sciences Building, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Michael T. Williams
- Dept. of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Charles V. Vorhees
- Dept. of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
11
|
Guan R, Wang T, Dong X, Du K, Li J, Zhao F, Xu J, Li B, Zheng G, Shen X, Cao B, Wang J, Aschner M, Liu M, Chen R. Effects of co-exposure to lead and manganese on learning and memory deficits. J Environ Sci (China) 2022; 121:65-76. [PMID: 35654517 PMCID: PMC9163452 DOI: 10.1016/j.jes.2021.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 06/15/2023]
Abstract
Lead (Pb) and manganese (Mn) are common neurotoxins. However, individuals are subject to co-exposures in real life, and it is therefore important to study these metals in combination. Weaning Sprague-Dawley rats were given ad libitum access to drinking water solutions containing Pb (100 mg/L), Mn (2.5 mg/mL) or a mixture, and each treatment had its own minocycline (50 mg/(kg•day)) supplement group. The results showed a significant difference in spatial memory and induction levels of hippocampal long-term potentiation (LTP) in all exposure groups when compared with controls. The combined-exposure group exhibited the most pronounced effect when compared with each of the single-metal exposure groups. Microglia displayed activation at day 3 after exposure alone or in combination, while astrocytes showed activation at day 5, accompanied by decreased expression levels of GLAST, GLT-1, and GS. Furthermore, the levels of glutamate in the synaptic cleft increased significantly. When microglial activation was inhibited by minocycline, the activation of astrocytes and the expression of GLAST, GLT-1, and GS were both reversed. In addition, upon minocycline treatment, hippocampal LTP impairment and cognitive injury were significantly alleviated in each of the exposure groups. These results suggest that combined exposure to Pb and Mn can cause greater effects on cognition and synaptic plasticity when compared to single-metal exposure groups. The reason may involve abnormal activation of microglia leading to excessive regulation of astrocytes, resulting in glutamate reuptake dysfunction in astrocytes and leading to perturbed cognition and synaptic plasticity.
Collapse
Affiliation(s)
- Ruili Guan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Tao Wang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoru Dong
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Kejun Du
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Juan Li
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Fang Zhao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jie Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Bin Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Gang Zheng
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Xuefeng Shen
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Baohua Cao
- School of Nursing, Fourth Military Medical University, Xi'an 710032, China
| | - Jing Wang
- School of Nursing, Fourth Military Medical University, Xi'an 710032, China
| | - Michael Aschner
- School of Nursing, Fourth Military Medical University, Xi'an 710032, China; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; IM Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mingchao Liu
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China; School of Nursing, Fourth Military Medical University, Xi'an 710032, China.
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
12
|
Mo J, Liu X, Huang Y, He R, Zhang Y, Huang H. Developmental origins of adult diseases. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:450-470. [PMID: 37724166 PMCID: PMC10388800 DOI: 10.1515/mr-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/11/2022] [Indexed: 09/20/2023]
Abstract
The occurrence and mechanisms of developmental adult diseases have gradually attracted attention in recent years. Exposure of gametes and embryos to adverse environments, especially during plastic development, can alter the expression of certain tissue-specific genes, leading to increased susceptibility to certain diseases in adulthood, such as diabetes, cardiovascular disease, neuropsychiatric, and reproductive system diseases, etc. The occurrence of chronic disease in adulthood is partly due to genetic factors, and the remaining risk is partly due to environmental-dependent epigenetic information alteration, including DNA methylation, histone modifications, and noncoding RNAs. Changes in this epigenetic information potentially damage our health, which has also been supported by numerous epidemiological and animal studies in recent years. Environmental factors functionally affect embryo development through epimutation, transmitting diseases to offspring and even later generations. This review mainly elaborated on the concept of developmental origins of adult diseases, and revealed the epigenetic mechanisms underlying these events, discussed the theoretical basis for the prevention and treatment of related diseases.
Collapse
Affiliation(s)
- Jiaying Mo
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xuanqi Liu
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yutong Huang
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Renke He
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yu Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Hefeng Huang
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| |
Collapse
|
13
|
Nadig APR, Huwaimel B, Alobaida A, Khafagy ES, Alotaibi HF, Moin A, Lila ASA, Suman, M S, Krishna KL. Manganese chloride (MnCl 2) induced novel model of Parkinson's disease in adult Zebrafish; Involvement of oxidative stress, neuroinflammation and apoptosis pathway. Biomed Pharmacother 2022; 155:113697. [PMID: 36137406 DOI: 10.1016/j.biopha.2022.113697] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder imposing a severe health and socioeconomic burden worldwide. Existing pharmacological approaches for developing PD are poorly developed and do not represent all the characteristics of disease pathology. Developing cost-effective, reliable Zebrafish (ZF) model will meet this gap. The present study was conceived to develop a reliable PD model in the ZF using manganese chloride (MnCl2). Here, we report that chronic exposure to 2 mM MnCl2 for 21 days produced non-motor and motor PD-like symptoms in adult ZF. Compared with control fish, MnCl2-treated fish showed reduced locomotory activity, indicating a deficit in motor function. In the light-dark box test, MnCl2-treated fish exhibited anxiety and depression-like behavior. MnCl2-treated fish exhibited a less olfactory preference for amino acids, indicating olfactory dysfunction. These behavioral symptoms were associated with decreased dopamine and increased DOPAC levels. Furthermore, oxidative stress-mediated apoptotic pathway, decreased brain derived neurotropic factor (BDNF) and increased pro-inflammatory cytokines levels were observed upon chronic exposure to MnCl2 in the brain of ZF. Thus, MnCl2-induced PD in ZF can be a cost-effective PD model in the drug discovery process. Moreover, this model could be potentially utilized to investigate the molecular pathways underlying the multifaceted pathophysiology which leads to PD using relatively inexpensive species. MnCl2 being heavy metal may have other side effects in addition to neurotoxicity. Our model recapitulates most of the hallmarks of PD, but not all pathological processes are involved. Future studies are required to recapitulate the complete pathophysiology of PD.
Collapse
Affiliation(s)
- Abhishek P R Nadig
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore 570 015. India
| | - Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Ahmed Alobaida
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint AbdulRahman University, Riyadh 11671, Saudi Arabia
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Amr Selim Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Suman
- Department of Dravyaguna, Govt. Ayurvedic Medical College & Hospital, New Sayyajirao Road, Mysuru 570 001, India
| | - Sahyadri M
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore 570 015. India
| | - K L Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore 570 015. India.
| |
Collapse
|
14
|
Williams MT, Sugimoto C, Regan SL, Pitzer EM, Fritz AL, Sertorio M, Mascia AE, Vatner RE, Perentesis JP, Vorhees CV. Cognitive and behavioral effects of whole brain conventional or high dose rate (FLASH) proton irradiation in a neonatal Sprague Dawley rat model. PLoS One 2022; 17:e0274007. [PMID: 36112695 PMCID: PMC9481014 DOI: 10.1371/journal.pone.0274007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Recent studies suggest that ultra-high dose rates of proton radiation (>40 Gy/s; FLASH) confer less toxicity to exposed healthy tissue and reduce cognitive decline compared with conventional radiation dose rates (~1 Gy/s), but further preclinical data are required to demonstrate this sparing effect. In this study, postnatal day 11 (P11) rats were treated with whole brain irradiation with protons at a total dose of 0, 5, or 8 Gy, comparing a conventional dose rate of 1 Gy/s vs. a FLASH dose rate of 100 Gy/s. Beginning on P64, rats were tested for locomotor activity, acoustic and tactile startle responses (ASR, TSR) with or without prepulses, novel object recognition (NOR; 4-object version), striatal dependent egocentric learning ([configuration A] Cincinnati water maze (CWM-A)), prefrontal dependent working memory (radial water maze (RWM)), hippocampal dependent spatial learning (Morris water maze (MWM)), amygdala dependent conditioned freezing, and the mirror image CWM [configuration B (CWM-B)]. All groups had deficits in the CWM-A procedure. Weight reductions, decreased center ambulation in the open-field, increased latency on day-1 of RWM, and deficits in CWM-B were observed in all irradiated groups, except the 5 Gy FLASH group. ASR and TSR were reduced in the 8 Gy FLASH group and day-2 latencies in the RWM were increased in the FLASH groups compared with controls. There were no effects on prepulse trials of ASR or TSR, NOR, MWM, or conditioned freezing. The results suggest striatal and prefrontal cortex are sensitive regions at P11 to proton irradiation, with reduced toxicity from FLASH at 5 Gy.
Collapse
Affiliation(s)
- Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, OH, United States of America
- Cincinnati Children’s/University of Cincinnati Proton Therapy and Research Center, Cincinnati, OH, United States of America
- * E-mail:
| | - Chiho Sugimoto
- Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, OH, United States of America
| | - Samantha L. Regan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, OH, United States of America
| | - Emily M. Pitzer
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, OH, United States of America
| | - Adam L. Fritz
- Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, OH, United States of America
| | - Mathieu Sertorio
- Cincinnati Children’s/University of Cincinnati Proton Therapy and Research Center, Cincinnati, OH, United States of America
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Anthony E. Mascia
- Cincinnati Children’s/University of Cincinnati Proton Therapy and Research Center, Cincinnati, OH, United States of America
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Ralph E. Vatner
- Cincinnati Children’s/University of Cincinnati Proton Therapy and Research Center, Cincinnati, OH, United States of America
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - John P. Perentesis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Cincinnati Children’s/University of Cincinnati Proton Therapy and Research Center, Cincinnati, OH, United States of America
- Division of Oncology, Cincinnati Children’s Research Foundation, Cincinnati, OH, United States of America
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, OH, United States of America
- Cincinnati Children’s/University of Cincinnati Proton Therapy and Research Center, Cincinnati, OH, United States of America
| |
Collapse
|
15
|
Oshiro WM, McDaniel KL, Beasley TE, Moser V, Herr DW. Impacts of a perinatal exposure to manganese coupled with maternal stress in rats: Learning, memory and attentional function in exposed offspring. Neurotoxicol Teratol 2022; 91:107077. [PMID: 35189282 PMCID: PMC10578066 DOI: 10.1016/j.ntt.2022.107077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/07/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022]
Abstract
The developmental effects of chemicals that co-occur in vulnerable populations with elevated psychological stress are of increasing concern to the public. To investigate these concerns, we developed a rodent model of co-occurring perinatal manipulations and conducted a series of cognitive assessments in male and female offspring. Manganese (Mn), a neurodevelopmental toxicant when exceeding physiological requirements, was delivered in the drinking water (0, 2, or 4 mg Mn/mL) of rats from gestational day (GD) 7 to postnatal day (PND) 22. A variable perinatal stress paradigm was applied to half of the animals from GD13 to PND9. Novel object recognition (NOR), Morris water maze (MWM), differential reinforcement of low-rates procedure (DRL) and cued and uncued choice reaction time (CRT) tests were used to assess cognitive functions in offspring. Mn (4 mg/mL) and stress impaired NOR in adolescent males but facilitated NOR performance in females. However, when stress and Mn were combined these effects were attenuated in both sexes. During training for the DRL, Mn (2 mg/mL) facilitated, while stress impaired, lever press learning in both sexes. Few effects related to the treatments were found on DRL or MWM. During cued CRT, Mn (2 and 4 mg/mL) and stress reduced accuracy in males, while stress and Mn (2 mg/mL) increased anticipatory responding and slowed decision time in both sexes. Stress combined with Mn (2 mg/mL) improved cued accuracy and decision time, and Mn attenuated the effect of stress on anticipatory responding in both sexes. Stress slowed female movement time but when combined with Mn (4 mg/mL) the effect of stress was attenuated. During uncued CRT, except for decision time (which replicated effects observed with the cued task), no other effects of Mn or its combination with stress occurred. Females remained negatively affected by stress in most uncued CRT performance measures, while stressed improved male uncued accuracy. Taken together these data do not support increased cognitive impairment produced by Mn when combined with stress. However, the effects of perinatal stress alone, on these cognitive functions may hinder the detection of effects due to chemical exposures and underscores the need to consider the psychological health and wellbeing of the mother and her environment in risk assessment for developmental neurotoxicity of chemicals.
Collapse
Affiliation(s)
- W M Oshiro
- Public Health & Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States of America.
| | - K L McDaniel
- Public Health & Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States of America
| | - T E Beasley
- Public Health & Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States of America
| | - V Moser
- Retired, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States of America
| | - D W Herr
- Public Health & Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States of America
| |
Collapse
|
16
|
Impacts of a perinatal exposure to manganese coupled with maternal stress in rats: Maternal somatic measures and the postnatal growth and development of rat offspring. Neurotoxicol Teratol 2021; 90:107061. [PMID: 34971732 DOI: 10.1016/j.ntt.2021.107061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022]
Abstract
Psychological stress experienced by the mother during pregnancy has been associated with emotional and cognitive disorders in children such as depression and anxiety. Socioeconomically disadvantaged populations are vulnerable to adverse life experiences and can also be disproportionally exposed to environmental contaminants. To better understand the neurodevelopmental impacts of an environmental toxicant coupled with elevated psychological stress, we exposed pregnant rats to a series of perinatal stressors. Manganese (Mn), a neurotoxicant at excessive concentrations was delivered through drinking water (0, 2, or 4 mg/mL) from gestational day (GD) 7 to postnatal day (PND) 22. A variable stress paradigm was applied to half of the animals from GD13 to PND9. Measurements of somatic development and behavior were examined in the offspring at different developmental stages. No evidence of overt maternal toxicity was observed although the 4 mg/mL Mn-exposed dams gained less body weight during gestation compared to the other dams. Stress also reduced gestational maternal weight gain. Daily fluid consumption normalized for body weight was decreased in the Mn-exposed dams in a dose-dependent manner but was not altered by the stress paradigm. Maternal stress and/or Mn exposure did not affect litter size or viability, but pup weight was significantly reduced in the 4 mg/mL Mn-exposed groups on PNDs 9 through 34 when compared to the other offspring groups. The efficacy of the manipulations to increase maternal stress levels was determined using serum corticosterone as a biomarker. The baseline concentration was established prior to treatment (GD7) and levels were low and similar in all treatment groups. Corticosterone levels were elevated in the perinatal-stress groups compared to the no-stress groups, regardless of Mn exposure, on subsequent time points (GD16, PND9), but were only significantly different on GD16. An analysis of tissue concentrations revealed Mn was elevated similarly in the brain and blood of offspring at PND2 and at PND22 in a significant dose-dependent pattern. Dams also showed a dose-dependent increase in Mn concentrations in the brain and blood; the addition of stress increased the Mn concentrations in the maternal blood but not the brain. Perinatal stress did not alter the effects of Mn on the maternal or offspring somatic endpoints described here.
Collapse
|
17
|
Raj V, Nair A, Thekkuveettil A. Manganese exposure during early larval stages of C. elegans causes learning disability in the adult stage. Biochem Biophys Res Commun 2021; 568:89-94. [PMID: 34198165 DOI: 10.1016/j.bbrc.2021.06.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 11/29/2022]
Abstract
Manganese (Mn), even though an essential trace element, causes neurotoxicity in excess. In adults, over-exposure to Mn causes clinical manifestations, including dystonia, progressive bradykinesia, disturbance of gait, slurring, and stuttering of speech. These symptoms are mainly because of Mn-associated oxidative stress and degeneration of dopamine neurons in the central nervous system. Children with excessive Mn exposure often show learning disabilities but rarely show symptoms associated with dopaminergic neuron dysfunction. It is unclear why Mn exposure shows distinctive clinical outcomes in developing brains versus adult brains. Studies on nematode C. elegans have demonstrated that it is an excellent model to elucidate Mn-associated toxicity in the nervous system. In this study, we chronically exposed Mn to L1 larval stage of the worms to understand the effects on dopamine neurons and cognitive development. The worms showed modified behavior to exogenous dopamine compared to the control. The dopamine neurons showed resistance to neurodegeneration on repeated Mn exposure during the adult stage. As observed in mammalian systems, these worms showed significantly low olfactory adaptive learning and memory. This study shows that C. elegans alters adaptive developmental plasticity during Mn overexposure, modifying its sensitivity towards the metal ion and leads to remodeling in its innate learning behavior.
Collapse
Affiliation(s)
- Vishnu Raj
- Division of Molecular Medicine, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695012, India
| | - Agrima Nair
- Division of Molecular Medicine, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695012, India
| | - Anoopkumar Thekkuveettil
- Division of Molecular Medicine, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695012, India.
| |
Collapse
|
18
|
Shu H, Guo Z, Chen X, Qi S, Xiong X, Xia S, Huang Q, Lan L, Gong J, Huang S, Yang B, Tan G. Intracerebral Transplantation of Neural Stem Cells Restores Manganese-Induced Cognitive Deficits in Mice. Aging Dis 2021; 12:371-385. [PMID: 33815871 PMCID: PMC7990353 DOI: 10.14336/ad.2020.0717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/17/2020] [Indexed: 11/15/2022] Open
Abstract
Manganese (Mn) is a potent neurotoxin known to cause long-lasting structural damage and progressive cognitive deficits in the brain. However, new therapeutic approaches are urgently needed since current treatments only target symptoms of Mn exposure. Recent studies have suggested a potential role for multipotent neural stem cells (NSCs) in the etiology of Mn-induced cognitive deficits. In this study, we evaluated the effect of direct intracerebral transplantation of NSCs on cognitive function of mice chronically exposed to MnCl2, and further explored the distribution of transplanted NSCs in brain tissues. NSCs were isolated and bilaterally injected into the hippocampal regions or lateral ventricles of Mn-exposed mice. The results showed that many transplanted cells migrated far away from the injection sites and survived in vivo in the Mn-exposed mouse brain, implying enhanced neurogenesis in the host brain. We found that NSCs transplanted into either the hippocampal regions or the lateral ventricles significantly improved spatial learning and memory function of the Mn-exposed mice in the Morris water maze. Immunofluorescence analyses indicated that some surviving NSCs differentiated into neurons or glial cells, which may have become functionally integrated into the impaired local circuits, providing a possible cellular basis for the improvement of cognitive function in NSC-transplanted mice. Taken together, our findings confirm the Mn-induced impairment of neurogenesis in the brain and underscore the potential of treating Mn exposure by NSC transplantation, providing a practical therapeutic strategy against this type of neurotoxicity.
Collapse
Affiliation(s)
- Huijuan Shu
- 1Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Collaborative Innovation Center for Biomedicine & Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,2Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.,3China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China
| | - Zhongxin Guo
- 1Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Collaborative Innovation Center for Biomedicine & Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,2Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.,3China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China
| | - Xiangren Chen
- 1Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Collaborative Innovation Center for Biomedicine & Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,2Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.,3China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China
| | - Shuya Qi
- 1Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Collaborative Innovation Center for Biomedicine & Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,2Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Xinxin Xiong
- 1Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Collaborative Innovation Center for Biomedicine & Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,2Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Shuang Xia
- 1Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Collaborative Innovation Center for Biomedicine & Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,2Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.,3China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China
| | - Qingyun Huang
- 1Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Collaborative Innovation Center for Biomedicine & Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,2Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Ling Lan
- 1Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Collaborative Innovation Center for Biomedicine & Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,2Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiangu Gong
- 1Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Collaborative Innovation Center for Biomedicine & Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,2Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Shaoming Huang
- 1Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Collaborative Innovation Center for Biomedicine & Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,2Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Boning Yang
- 1Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Collaborative Innovation Center for Biomedicine & Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,2Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Guohe Tan
- 1Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Collaborative Innovation Center for Biomedicine & Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China.,2Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.,3China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China
| |
Collapse
|
19
|
Whole brain proton irradiation in adult Sprague Dawley rats produces dose dependent and non-dependent cognitive, behavioral, and dopaminergic effects. Sci Rep 2020; 10:21584. [PMID: 33299021 PMCID: PMC7726106 DOI: 10.1038/s41598-020-78128-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Proton radiotherapy causes less off-target effects than X-rays but is not without effect. To reduce adverse effects of proton radiotherapy, a model of cognitive deficits from conventional proton exposure is needed. We developed a model emphasizing multiple cognitive outcomes. Adult male rats (10/group) received a single dose of 0, 11, 14, 17, or 20 Gy irradiation (the 20 Gy group was not used because 50% died). Rats were tested once/week for 5 weeks post-irradiation for activity, coordination, and startle. Cognitive assessment began 6-weeks post-irradiation with novel object recognition (NOR), egocentric learning, allocentric learning, reference memory, and proximal cue learning. Proton exposure had the largest effect on activity and prepulse inhibition of startle 1-week post-irradiation that dissipated each week. 6-weeks post-irradiation, there were no effects on NOR, however proton exposure impaired egocentric (Cincinnati water maze) and allocentric learning and caused reference memory deficits (Morris water maze), but did not affect proximal cue learning or swimming performance. Proton groups also had reduced striatal levels of the dopamine transporter, tyrosine hydroxylase, and the dopamine receptor D1, effects consistent with egocentric learning deficits. This new model will facilitate investigations of different proton dose rates and drugs to ameliorate the cognitive sequelae of proton radiotherapy.
Collapse
|
20
|
Ma Z, Liu K, Li XR, Wang C, Liu C, Yan DY, Deng Y, Liu W, Xu B. Alpha-synuclein is involved in manganese-induced spatial memory and synaptic plasticity impairments via TrkB/Akt/Fyn-mediated phosphorylation of NMDA receptors. Cell Death Dis 2020; 11:834. [PMID: 33033239 PMCID: PMC7545185 DOI: 10.1038/s41419-020-03051-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Manganese (Mn) overexposure produces long-term cognitive deficits and reduces brain-derived neurotrophic factor (BDNF) in the hippocampus. However, it remains elusive whether Mn-dependent enhanced alpha-synuclein (α-Syn) expression, suggesting a multifaceted mode of neuronal toxicities, accounts for interference with BDNF/TrkB signaling. In this study, we used C57BL/6J WT and α-Syn knockout (KO) mice to establish a model of manganism and found that Mn-induced impairments in spatial memory and synaptic plasticity were related to the α-Syn protein. In addition, consistent with the long-term potentiation (LTP) impairments that were observed, α-Syn KO relieved Mn-induced degradation of PSD95, phosphorylated CaMKIIα, and downregulated SynGAP protein levels. We transfected HT22 cells with lentivirus (LV)-α-Syn shRNA, followed by BDNF and Mn stimulation. In vitro experiments indicated that α-Syn selectively interacted with TrkB receptors and inhibited BDNF/TrkB signaling, leading to phosphorylation and downregulation of GluN2B. The binding of α-Syn to TrkB and Fyn-mediated phosphorylation of GluN2B were negatively regulated by BDNF. Together, these findings indicate that Mn-dependent enhanced α-Syn expression contributes to further exacerbate BDNF protein-level reduction and to inhibit TrkB/Akt/Fyn signaling, thereby disturbing Fyn-mediated phosphorylation of the NMDA receptor GluN2B subunit at tyrosine. In KO α-Syn mice treated with Mn, spatial memory and LTP impairments were less pronounced than in WT mice. However, the same robust neuronal death was observed as a result of Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Zhuo Ma
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning Province, People's Republic of China
| | - Kuan Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning Province, People's Republic of China
| | - Xin-Ru Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning Province, People's Republic of China
| | - Can Wang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning Province, People's Republic of China
| | - Chang Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning Province, People's Republic of China
| | - Dong-Ying Yan
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning Province, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning Province, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning Province, People's Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning Province, People's Republic of China.
| |
Collapse
|
21
|
Taylor CA, Tuschl K, Nicolai MM, Bornhorst J, Gubert P, Varão AM, Aschner M, Smith DR, Mukhopadhyay S. Maintaining Translational Relevance in Animal Models of Manganese Neurotoxicity. J Nutr 2020; 150:1360-1369. [PMID: 32211802 PMCID: PMC7269748 DOI: 10.1093/jn/nxaa066] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/06/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Manganese is an essential metal, but elevated brain Mn concentrations produce a parkinsonian-like movement disorder in adults and fine motor, attentional, cognitive, and intellectual deficits in children. Human Mn neurotoxicity occurs owing to elevated exposure from occupational or environmental sources, defective excretion (e.g., due to cirrhosis), or loss-of-function mutations in the Mn transporters solute carrier family 30 member 10 or solute carrier family 39 member 14. Animal models are essential to study Mn neurotoxicity, but in order to be translationally relevant, such models should utilize environmentally relevant Mn exposure regimens that reproduce changes in brain Mn concentrations and neurological function evident in human patients. Here, we provide guidelines for Mn exposure in mice, rats, nematodes, and zebrafish so that brain Mn concentrations and neurobehavioral sequelae remain directly relatable to the human phenotype.
Collapse
Affiliation(s)
- Cherish A Taylor
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Karin Tuschl
- Department of Cell and Developmental Biology, University College London, London, United Kingdom,Department of Developmental Neurobiology, King's College London, London, United Kingdom,Address correspondence to KT (e-mail: )
| | - Merle M Nicolai
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Priscila Gubert
- Department of Biochemistry, Laboratory of Immunopathology Keizo Asami-LIKA, Federal University of Pernambuco, Recife, Pernambuco, Brazil,Postgraduate Program in Pure and Applied Chemistry, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Alexandre M Varão
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA,Address correspondence to SM (e-mail: )
| |
Collapse
|
22
|
Zimmermann Prado Rodrigues G, Staudt LBM, Moreira MG, Dos Santos TG, de Souza MS, Lúcio CJ, Panizzon J, Kayser JM, Simões LAR, Ziulkoski AL, Bonan CD, de Oliveira DL, Gehlen G. Histopathological, genotoxic, and behavioral damages induced by manganese (II) in adult zebrafish. CHEMOSPHERE 2020; 244:125550. [PMID: 32050344 DOI: 10.1016/j.chemosphere.2019.125550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Manganese is a metal often found as an environmental pollutant and very associated with neurological disorders when in high concentrations. However, little is known about the effects that this contaminant can cause when in environmentally relevant concentrations and occurrence, that is, much lower than those commonly studied. So, the aim of the study was to evaluate the effects that environmentally relevant concentrations of this metal would cause in different zebrafish organs (brain, liver, and blood). Acute 96-h and chronic 30-day exposures were performed using the manganese chloride salt as a pollutant. Behavioral alterations of anxiogenic type were observed in the animals after chronic exposures to 4.0 mg L-1 MnCl2, which traveled a greater distance at the bottom of the aquarium. This may be associated with neuronal damages in the telencephalic region responsible for motor and cognitive activity of the fish, observed in animals from the same exposure. In addition, hepatic histopathological damage as vacuolization of hepatocytes and genotoxic damage, identified by comet assay and micronucleus test, was also observed after acute and chronic exposure, especially at the highest pollutant concentrations (8.0 and 16.0 mg L-1 in acute exposure, and 4.0 mg L-1 in chronic exposure. The study reinforces the risk that environmental pollutants pose to the ecosystem, even in low concentrations.
Collapse
Affiliation(s)
| | | | | | - Thainá Garbino Dos Santos
- Post Graduation Program in Biological Sciences, Biochemistry, Federal University of Rio Grande do Sul, Brazil
| | | | | | - Jenifer Panizzon
- Bacherol's Degree in Biological Science, Feevale University, Brazil
| | | | | | - Ana Luiza Ziulkoski
- Post Graduation Program in Environmental Quality, Feevale University, Brazil
| | - Carla Denise Bonan
- Post Graduation Program in Cellular and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul, Brazil
| | - Diogo Losch de Oliveira
- Post Graduation Program in Biological Sciences, Biochemistry, Federal University of Rio Grande do Sul, Brazil
| | - Günther Gehlen
- Post Graduation Program in Environmental Quality, Feevale University, Brazil.
| |
Collapse
|
23
|
Interactions between iron and manganese in neurotoxicity. Arch Toxicol 2020; 94:725-734. [PMID: 32180038 DOI: 10.1007/s00204-020-02652-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/27/2020] [Indexed: 12/31/2022]
Abstract
The essential and naturally occurring transition metal manganese (Mn) is present in the soil, water, air, and various foods. Manganese can accumulate in the brain if the Mn intake or exposure is excessive and this can result in neurotoxic effects. Manganese is important for the proper activation of different metabolic and antioxidant enzymes. There are numerous Mn importers and exporters. However, the exact transport mechanism for Mn is not fully understood. On the other hand, iron (Fe) is another well-known essential metal, which has redox activity in addition to chemical characteristics resembling those of Mn. Existing data show that interactions occur between Fe and Mn due to certain similarities regarding their mechanisms of the absorption and the transport. It has been disclosed that Mn-specific transporters, together with Fe transporters, regulate the Mn distribution in the brain and other peripheral tissues. In PC12 cells, a significant increase of transferrin receptor (TfR) mRNA expression was linked to Mn exposure and accompanied by elevated Fe uptake. In both humans and animals, there is a strong relationship between Fe and Mn metabolism. In the present review, special attention is paid to the interaction between Mn and Fe. In particular, Fe and Mn distribution, as well as the potential molecular mechanisms of Mn-induced neurotoxicity in cases of Fe deficiency, are discussed.
Collapse
|
24
|
Pitzer EM, Sugimoto C, Gudelsky GA, Huff Adams CL, Williams MT, Vorhees CV. Deltamethrin Exposure Daily From Postnatal Day 3-20 in Sprague-Dawley Rats Causes Long-term Cognitive and Behavioral Deficits. Toxicol Sci 2019; 169:511-523. [PMID: 30850843 PMCID: PMC6542333 DOI: 10.1093/toxsci/kfz067] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pyrethroids are synthetic insecticides that act acutely on voltage gated sodium channels to prolong channel opening and depolarization. Epidemiological studies find that exposure to pyrethroids are associated with neurological and developmental abnormalities in children. The long-term effects of type II pyrethroids, such as deltamethrin (DLM), on development have received little attention. We exposed Sprague-Dawley rats to DLM by gavage at doses of 0, 0.25, 0.5, and 1.0 mg/kg/day from postnatal day (P) 3-20 in a split-litter design. Following behavioral testing as adults, monoamine levels, release, and mRNA were assessed via high performance liquid chromatography, microdialysis, and qPCR, respectively. Long-term potentiation (LTP) was assessed at P25-35. Developmental DLM exposure resulted in deficits in allocentric and egocentric learning and memory, increased startle reactivity, reduced conditioned contextual freezing, and attenuated MK-801 induced hyperactivity compared with controls. Startle and egocentric learning were preferentially affected in males. Deltamethrin-treated rats exhibited increased CA1 hippocampal LTP, decreased extracellular dopamine release by microdialysis, reduced dopamine D1 receptor mRNA expression in neostriatum, and decreased norepinephrine levels in the hippocampus. The data indicate that neonatal DLM exposure has adverse long-term effects on learning, memory, startle, glutamatergic function, LTP, and norepinephrine.
Collapse
Affiliation(s)
- Emily M Pitzer
- *Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
- Division of Neurology (MLC 7044), Cincinnati Children’s Research Foundation, Cincinnati, Ohio 45229
| | - Chiho Sugimoto
- *Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
- Division of Neurology (MLC 7044), Cincinnati Children’s Research Foundation, Cincinnati, Ohio 45229
| | - Gary A Gudelsky
- College of Pharmacy, University of Cincinnati, Cincinnati, Ohio 45267
| | | | - Michael T Williams
- *Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
- Division of Neurology (MLC 7044), Cincinnati Children’s Research Foundation, Cincinnati, Ohio 45229
| | - Charles V Vorhees
- *Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
- Division of Neurology (MLC 7044), Cincinnati Children’s Research Foundation, Cincinnati, Ohio 45229
| |
Collapse
|
25
|
Wu Y, Xu Y, Huang X, Ye D, Han M, Wang HL. Regulatory Roles of Histone Deacetylases 1 and 2 in Pb-induced Neurotoxicity. Toxicol Sci 2019; 162:688-701. [PMID: 29301062 DOI: 10.1093/toxsci/kfx294] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lead (Pb) prevails among the environmental hazards against human health. Although increasing evidence highlights the epigenetic roles underlying the Pb-induced neurotoxicity, the exact mechanisms concerning histone acetylation and its causative agents are still at its infancy. In the present study, the roles of histone deacetylases 1 and 2 (HDAC1/2), as well as acetylation of Lys9 on histone H3 (Ac-H3K9), in Pb-induced neurotoxicity were investigated. Pb was administered to PC12 cells at 10 μM for 24 h. And Sprague Dawley rats were chronically exposed to Pb through drinking water containing 250 ppm Pb for 2 months. Owing to Pb exposure, it indicated that HDAC2 was up-regulated accompanied by Ac-H3K9 down-regulation. Meanwhile, chromatin immunoprecipitation assay revealed that the changes in HDAC2 were attributed to histone H3 Lys27 trimethylation occupancy on its promoter. Blockade of HDAC2 with either Trichostatin A or HDAC2-knocking down construct (shHDAC2) resulted in amelioration of neurite outgrowth deficits via increasing Ac-H3K9 levels. It implied that HDAC2 plays essential regulatory roles in Pb-induced neurotoxicity. And, coimmunoprecipitation trials revealed that HDAC2 colocalized with HDAC1, forming a so-called HDAC1/2 complex. Subsequently, it was shown that HDAC1/2 repression could markedly prevent neurite outgrowth impairment and rescue the spatial memory deficits caused by Pb exposure, unequivocally implicating this complex in the studied toxicological process. Furthermore, Notch2 maybe the functional target of the HDAC1/2 and Ac-H3K9 alterations. Our study provided insight into the precise roles of HDAC1/2 in Pb-induced neurotoxicity, and thereby provided a promising molecular target for medical intervention of neurological disorders with environmental etiology.
Collapse
Affiliation(s)
- Yulan Wu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Yi Xu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Xiyao Huang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Danlei Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Miaomiao Han
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Hui-Li Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| |
Collapse
|
26
|
Amos-Kroohs RM, Usach V, Piñero G, Vorhees CV, Vivot RM, Soto PA, Williams MT, Setton-Avruj P. Metal bashing: iron deficiency and manganese overexposure impact on peripheral nerves. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:99-112. [PMID: 30652531 PMCID: PMC6397089 DOI: 10.1080/15287394.2019.1566105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Iron (Fe) deficiency (FeD) and manganese (Mn) overexposure (MnOE) may result in several neurological alterations in the nervous system. Iron deficiency produces unique neurological deficits due to its elemental role in central nervous system (CNS) development and myelination, which might persist after normalization of Fe in the diet. Conversely, MnOE is associated with diverse neurocognitive deficits. Despite these well-known neurotoxic effects on the CNS, the influence of FeD and MnOE on the peripheral nervous system (PNS) remains poorly understood. The aim of the present investigation was to examine the effects of developmental FeD and MnOE or their combination on the sciatic nerve of young and adult rats. The parameters measured included divalent metal transporter 1 (DMT1), transferrin receptor (TfR), myelin basic protein (MBP) and peripheral myelin protein 22 (PMP22) expression, as well as Fe levels in the nerve. Our results showed that FeD produced a significant reduction in MBP and PMP22 content at P29, which persisted at P60 after Fe-sufficient diet replenishment regardless of Mn exposure levels. At P60 MnOE significantly increased sciatic nerve Fe content and DMT1 expression. However, the combination of FeD and MnOE produced no marked motor skill impairment. Evidence indicates that FeD appears to hinder developmental peripheral myelination, while MnOE may directly alter Fe homeostasis. Further studies are required to elucidate the interplay between these pathological conditions.
Collapse
Affiliation(s)
- Robyn M. Amos-Kroohs
- University of North Carolina at Chapel Hill, Nutrition Research Institute, Kannapolis, NC 28081
| | - Vanina Usach
- Departamento de Química Biológica, Facultad de Farmacia y Bíoquímica, Universidad de Buenos Aires. Instituto de Química y Físicoquímica Biológica (IQUIFIB), UBA-CONICET, Buenos Aires. Argentina
| | - Gonzalo Piñero
- Departamento de Química Biológica, Facultad de Farmacia y Bíoquímica, Universidad de Buenos Aires. Instituto de Química y Físicoquímica Biológica (IQUIFIB), UBA-CONICET, Buenos Aires. Argentina
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
- Cincinnati Children’s Research Foundation, Div. of Neurology, Cincinnati OH 45229
| | - Rocío Martinez Vivot
- Departamento de Química Biológica, Facultad de Farmacia y Bíoquímica, Universidad de Buenos Aires. Instituto de Química y Físicoquímica Biológica (IQUIFIB), UBA-CONICET, Buenos Aires. Argentina
| | - Paula A. Soto
- Departamento de Química Biológica, Facultad de Farmacia y Bíoquímica, Universidad de Buenos Aires. Instituto de Química y Físicoquímica Biológica (IQUIFIB), UBA-CONICET, Buenos Aires. Argentina
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
- Cincinnati Children’s Research Foundation, Div. of Neurology, Cincinnati OH 45229
| | - Patricia Setton-Avruj
- Departamento de Química Biológica, Facultad de Farmacia y Bíoquímica, Universidad de Buenos Aires. Instituto de Química y Físicoquímica Biológica (IQUIFIB), UBA-CONICET, Buenos Aires. Argentina
| |
Collapse
|
27
|
Bailey RA, Gutierrez A, Kyser TL, Hemmerle AM, Hufgard JR, Seroogy KB, Vorhees CV, Williams MT. Effects of Preweaning Manganese in Combination with Adult Striatal Dopamine Lesions on Monoamines, BDNF, TrkB, and Cognitive Function in Sprague-Dawley Rats. Neurotox Res 2019; 35:606-620. [PMID: 30612279 DOI: 10.1007/s12640-018-9992-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/19/2018] [Accepted: 12/18/2018] [Indexed: 01/25/2023]
Abstract
Manganese (Mn) is an essential nutrient especially during development, but Mn overexposure (MnOE) produces long-term cognitive deficits. Evidence of long-term changes in dopamine in the neostriatum was found in rats from developmental MnOE previously. To examine the relationship between MnOE and dopamine, we tested whether the effects of developmental MnOE would be exaggerated by dopamine reductions induced by 6-hydroxydopamine (6-OHDA) neostriatal infusion when the rats were adults. The experiment consisted of four groups of females and males: Vehicle/Sham, MnOE/Sham, Vehicle/6-OHDA, and MnOE/6-OHDA. Both MnOE/Sham and Vehicle/6-OHDA groups displayed egocentric and allocentric memory deficits, whereas MnOE+6-OHDA had additive effects on spatial memory in the Morris water maze and egocentric learning in the Cincinnati water maze. 6-OHDA reduced dopamine in the neostriatum and nucleus accumbens, reduced norepinephrine in the hippocampus, reduced TH+ cells and TrkB and TH expression in the substantia nigra pars compacta (SNpc), but increased TrkB in the neostriatum. MnOE alone had no effect on monoamines or TrkB in the neostriatum or hippocampus but reduced BDNF in the hippocampus. A number of sex differences were noted; however, only a few significant interactions were found for MnOE and/or 6-OHDA exposure. These data further implicate dopamine and BDNF in the cognitive deficits arising from developmental MnOE.
Collapse
Affiliation(s)
- Rebecca A Bailey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Arnold Gutierrez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Tara L Kyser
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Ann M Hemmerle
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jillian R Hufgard
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Kim B Seroogy
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Charles V Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Michael T Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
28
|
Gomes Silva AP, da Silva Araujo Santiago M, Maranho LA, de Oliveira RP, Constantino DHJ, Pereira CDS, da Silva RCB, Perobelli JE. Could male reproductive system be the main target of subchronic exposure to manganese in adult animals? Toxicology 2018; 409:1-12. [PMID: 29990519 DOI: 10.1016/j.tox.2018.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/28/2018] [Accepted: 07/05/2018] [Indexed: 01/28/2023]
Abstract
Manganese (Mn) is one of the most common chemical elements on Earth and an essential micronutrient in animal organism. However, in supraphysiological levels and long-term exposures, it is a potential toxicant. Although nervous system is the most studied in relation to Mn toxicity, other tissues can have their function impaired by Mn in high doses. The present study investigated the possible adverse effects of subchronic exposure to supraphysiologic level of Mn (5 mg/kg or 15 mg/kg, intraperitoneally) on reproductive, neurobehavioral, renal and hepatic parameters of male rats. For the first time, the vulnerability of these parameters to Mn was concomitantly investigated. While our results demonstrate that Mn treatments were not sufficient to produce a marked effect of neurotoxic, hepatotoxic or renal toxicity in adult rats, we found typical indicators of reproductive toxicity such as histopathological changes (major in testes and epididymis) and impaired sperm concentration and quality. Mn, under these experimental conditions, seems to exert reproductive toxicity by different testicular mechanisms, i.e. direct and indirect action on germ cells. On the other hand, exposure to Mn did not change the pattern of cognitive and emotional behaviors and the histological organization of kidneys of experimental rats. The liver showed a weight increasement and hidropic degeneration, probable due to the detoxification overload. In summary, for the first time it was demonstrated that adult male reproductive system was more sensitive to Mn toxicity than nervous, hepatic and renal systems, although nervous system is known as the main target tissue of this metal.
Collapse
Affiliation(s)
- Ana Priscila Gomes Silva
- Laboratório de Toxicologia Experimental-LATOEX, Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, Santos, SP, Brazil.
| | - Marcella da Silva Araujo Santiago
- Laboratório de Toxicologia Experimental-LATOEX, Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, Santos, SP, Brazil.
| | - Luciane Alves Maranho
- Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, Santos, SP, Brazil.
| | - Rodolpho Pereira de Oliveira
- Laboratório de Psicobiologia da Esquizofrenia, Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, Santos, SP, Brazil.
| | | | - Camilo Dias Seabra Pereira
- Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, Santos, SP, Brazil.
| | - Regina Cláudia Barbosa da Silva
- Laboratório de Psicobiologia da Esquizofrenia, Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, Santos, SP, Brazil.
| | - Juliana Elaine Perobelli
- Laboratório de Toxicologia Experimental-LATOEX, Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, Santos, SP, Brazil.
| |
Collapse
|
29
|
Sprowles JLN, Amos-Kroohs RM, Braun AA, Sugimoto C, Vorhees CV, Williams MT. Developmental manganese, lead, and barren cage exposure have adverse long-term neurocognitive, behavioral and monoamine effects in Sprague-Dawley rats. Neurotoxicol Teratol 2018; 67:50-64. [PMID: 29631003 DOI: 10.1016/j.ntt.2018.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/17/2022]
Abstract
Developmental stress, including low socioeconomic status (SES), can induce dysregulation of the hypothalamic-pituitary-adrenal axis and result in long-term changes in stress reactivity. Children in lower SES households experience more stress and are more likely to be exposed to environmental neurotoxins such as lead (Pb) and manganese (Mn) than children in higher SES households. Co-exposure to stress, Pb, and Mn during early development may increase the risk of central nervous system dysfunction compared with unexposed children. To investigate the potential interaction of these factors, Sprague-Dawley rats were bred, and litters born in-house were culled on postnatal day (P)1 to 6 males and 6 females. One male and female within each litter were assigned to one of the following groups: 0 (vehicle), 10 mg/kg Pb, 100 mg/kg Mn, or 10 mg/kg Pb + 100 mg/kg Mn (PbMn), water gavage, and handled only from P4-28 with half the litters reared in cages with standard bedding (29 litters) and half with no bedding (Barren; 27 litters). Mn and PbMn groups had decreased anxiety, reduced acoustic startle, initial open-field hypoactivity, increased activity following (+)-methamphetamine, deficits in egocentric learning in the Cincinnati water maze (CWM), and deficits in latent inhibition conditioning. Pb increased anxiety and reduced open-field activity. Barren-reared rats had decreased anxiety, CWM deficits, increased startle, and initial open-field hyperactivity. Mn, PbMn, Pb Barren-reared groups had impaired Morris water maze performance. Pb altered neostriatal serotonin and norepinephrine, Mn increased hippocampal serotonin in males, Mn + Barren-rearing increased neostriatal serotonin, and Barren-rearing decreased neostriatal dopamine in males. At the doses used here, most effects were in the Mn and PbMn groups. Few interactions between Mn, Pb, and rearing stress were found, indicating that the interaction of these three variables is not as impactful as hypothesized.
Collapse
Affiliation(s)
- Jenna L N Sprowles
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Rhodes College, Department of Psychology, 2000 North Parkway, Memphis, TN 38112, United States.
| | - Robyn M Amos-Kroohs
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Virginia Department of Forensic Science, 700 North Fifth St, Richmond, VA 23219, United States
| | - Amanda A Braun
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States
| | - Chiho Sugimoto
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States.
| | - Charles V Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States.
| | - Michael T Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States.
| |
Collapse
|
30
|
Parsons-White AB, Spitzer N. Environmentally relevant manganese overexposure alters neural cell morphology and differentiation in vitro. Toxicol In Vitro 2018; 50:22-28. [PMID: 29486219 DOI: 10.1016/j.tiv.2018.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/04/2018] [Accepted: 02/22/2018] [Indexed: 01/27/2023]
Abstract
Manganese (Mn) is a trace metal and micronutrient that is necessary for neurological function. Because of its ability to cross the blood brain barrier, excessive amounts of Mn are neurotoxic and can lead to a neurological disorder, manganism. Environmental overexposure to Mn correlates with impaired cognitive development in children. Though symptoms of manganism and overexposure are well defined, the changes in cellular mechanisms underlying these symptoms are not fully understood. We used cultured adult neural stem cells (NSCs) from young adult rats as an accessible model to investigate the effect of Mn on cellular mechanisms underlying neural differentiation. Concentrations of Mn below current EPA limits caused a dose- and time-dependent collapse of neurites and restructuring of cellular morphology. This effect was confirmed in B35 neuroblastoma cells. These findings indicate that Mn alters cytoskeleton dynamics during differentiation. In addition, Mn overexposure caused downregulation of DCX, a neuronal migration marker, and GFAP, a neural stem cell and astrocyte marker, in NSCs. We conclude that environmentally relevant concentrations of Mn impair cytoskeletal structure and morphology, and may impair differentiation in NSCs. These effects of Mn overexposure on brain cell function could underlie manganism and neurocognitive and developmental defects associated with environmental Mn overexposure.
Collapse
Affiliation(s)
- Amy B Parsons-White
- Department of Biological Sciences, Marshall University, 1 John Marshall Dr, Huntington, WV 25755, USA
| | - Nadja Spitzer
- Department of Biological Sciences, Marshall University, 1 John Marshall Dr, Huntington, WV 25755, USA.
| |
Collapse
|
31
|
Gutierrez A, Jablonski SA, Amos-Kroohs RM, Barnes AC, Williams MT, Vorhees CV. Effects of Housing on Methamphetamine-Induced Neurotoxicity and Spatial Learning and Memory. ACS Chem Neurosci 2017; 8:1479-1489. [PMID: 28287691 DOI: 10.1021/acschemneuro.6b00419] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Severe stress potentiates methamphetamine (MA) neurotoxicity. However, whether moderate stress increases or decreases the neurotoxic effects of MA is unknown. We assessed the effects of MA (4 × 10 mg/kg at 2 h intervals) in combination with prior barren-cage housing in adult male Sprague-Dawley rats on monoamines and glial fibrillary acid protein (GFAP) in one cohort and spatial learning and memory in the Morris water maze in another cohort. MA reduced dopamine (DA) and serotonin (5-HT) in the neostriatum and nucleus accumbens, 5-HT in the hippocampus, and increased GFAP in neostriatum and nucleus accumbens compared with saline controls. In neostriatum, barren-cage housing protected against MA-induced increases in GFAP, but it did not prevent DA and 5-HT reductions, although it did increase hippocampal norepinephrine. MA impaired spatial learning during acquisition, reversal, and shift phases and impaired reference memory on reversal and shift probe trials. Barren-cage housing enhanced performance during acquisition but not during reversal or shift or on probe trials. The data indicate that prior barren-cage housing moderates MA-induced neostriatal astrogliosis and initial spatial learning, but has no protective effect when the platform is smaller and relocated and therefore requires cognitive flexibility in relearning.
Collapse
Affiliation(s)
- Arnold Gutierrez
- Department of Pediatrics,
Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati Ohio 45229, United States
- University of Cincinnati College of Medicine, Cincinnati Ohio 45229, United States
| | - Sarah A. Jablonski
- Department of Pediatrics,
Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati Ohio 45229, United States
| | - Robyn M. Amos-Kroohs
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina 28081, United States
| | - Anna C. Barnes
- Department of Pediatrics,
Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati Ohio 45229, United States
- College
of Arts and Sciences, Cincinnati, University of Cincinnati, Cincinnati Ohio 45229, United States
| | - Michael T. Williams
- Department of Pediatrics,
Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati Ohio 45229, United States
- University of Cincinnati College of Medicine, Cincinnati Ohio 45229, United States
| | - Charles V. Vorhees
- Department of Pediatrics,
Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati Ohio 45229, United States
- University of Cincinnati College of Medicine, Cincinnati Ohio 45229, United States
| |
Collapse
|
32
|
Vorhees CV. Assessment of Learning, Memory, and Attention in Developmental Neurotoxicology Regulatory Testing: Commentary on essentiality of cognitive assessment for protecting child health. Neurotoxicol Teratol 2017; 61:135-137. [PMID: 28109771 DOI: 10.1016/j.ntt.2017.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 01/17/2017] [Indexed: 11/18/2022]
Abstract
This commentary is in response to the remarks of Drs. Christina Sobin, Mari Golub, and David Herr on the Special Issue of this Journal entitled "Assessment of Learning, Memory, and Attention in Developmental Neurotoxicology Regulatory Testing." I endorse the views expressed by Drs. Sobin, Golub, and Herr and add some discussion on a recent Organization for Economic Cooperation and Development (OECD) guideline, the Extended One Generation Reproductive Toxicology Guideline (OECD 446), in which testing for higher cognitive function (learning and memory) has been eliminated. The case against this decision is offered. It is noted that deficits in higher cognitive function are one of the hallmarks of human studies that find neurobehavioral toxicity in children after exposure to environmental agents such as lead, methylmercury, PCB, pesticides, and other environmental agents. It is noted that the OECD decision is at variance with the views of the scientific community in this field, including those of Drs. Sobin, Golub, and Herr. Why OECD took such action without the advice and consent of the field of developmental neurotoxicology is deeply concerning and potentially hazardous to children. I also endorse Dr. Herr's recommendation that in the future the Environmental Protection Agency negotiate study designs in advance with submitters as the Food and Drug Administration does to improve data quality for all neurobehavioral methods, and especially for tests of learning and memory that have not been adequately conducted in many past studies.
Collapse
Affiliation(s)
- Charles V Vorhees
- Div. of Neurology, Cincinnati Children's Research Foundation, 3333 Burnet Ave., MLC 7044, Cincinnati, OH 45229-3039, United States.
| |
Collapse
|