1
|
Yuan X, Chen J, Shi D, Song J, Wang P, Cheng D, Yang C, Qiu X, Zhai C. Advanced esophageal cancer with bone metastases: Prognostic biomarkers and palliative treatment. Heliyon 2024; 10:e23510. [PMID: 38170113 PMCID: PMC10758821 DOI: 10.1016/j.heliyon.2023.e23510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Esophageal cancer (EC) is a common and devastating tumor of the upper digestive tract. Unfortunately, by the time any symptoms have manifested, the disease has often progressed to an advanced stage and is accompanied by macro- and micrometastases, including in the bones. The treatment of esophageal cancer with bone metastases remains clinically challenging, given the poor prognosis associated with this condition. Effective prognostic biomarkers can help medical staff choose the appropriate operation and treatment plan, that is for most beneficial for making patients. Current treatments for esophageal cancer with bone metastases include pain-relieving drugs, surgical therapy, radiotherapy (RT), chemotherapy (CT, including molecular-targeted drug therapy), endocrine therapy (ET), bisphosphonates (BPs) and interventional therapy. Of these robust measures, radiotherapy has emerged as a particularly promising therapy for bone metastases from esophageal cancer. Substantial progress has been made in radiation therapy techniques since the discovery of X-rays by Roentgen in 1895. In its palliative capacity, the key goals of radiotherapy are to relieve the patients' bone pain and debilitate effects, including relieving spinal cord compression, correcting the spinal deformity and restoring spinal stability. However, it is worth mentioning that RT for esophageal cancer has various side effects. Currently, the available studies focused exclusively on radiotherapy for ECBM are too small to draw any definitive conclusions, and each of these studies has significant limitations. In this review, in addition to the epidemiology described at the beginning, we will explore the current prognostic biomarkers and radiotherapy for esophageal cancer, with a particular focus on those with bone metastases.
Collapse
Affiliation(s)
- Xiaofeng Yuan
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Chen
- Department of Orthopedics, Yixing People's Hospital, Yixing, China
| | - Dingsen Shi
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiaxun Song
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Pu Wang
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dong Cheng
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Cheng Yang
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xubin Qiu
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Chenjun Zhai
- Department of Orthopedics, Yixing People's Hospital, Yixing, China
| |
Collapse
|
2
|
Choudhary M, Katare P, Deshpande M, Chaudhari N, Rajpoot K, Jain A, Tekade RK. Dendrimers in targeted drug delivery: design, development, and modern applications. PROGRESS AND PROSPECT OF NANOCARRIERS 2024:181-240. [DOI: 10.1016/b978-0-12-819979-4.00004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Mercanoglu G, Alcın G, Ozturkmen Y, Cermik T. Formulation and In-vivo Characterization of 177Lu-tin-colloid as a Radiosynovectomy Agent. Curr Radiopharm 2024; 17:68-76. [PMID: 37937551 DOI: 10.2174/0118744710252994231024064842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/29/2023] [Accepted: 09/07/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Arthritis is an inflammatory disorder that affects one or more joints of the body for various reasons, including autoimmune disorders, trauma, or infection. In many cases, traditional long-term treatment with various drug combinations (NSAIDs, diseasemodifying antirheumatic drugs, systemic corticosteroids, etc.) can provide relief, but many joints require additional local treatment. Radiosynovectomy (RSV) is an alternative method to current treatment options. Both the global supply shortage of 90Y in recent years and the increasing use of 177Lu-labeled radiopharmaceuticals in the field of nuclear medicine have made it possible to develop 177Lu-labeled microparticles and test them in small groups as RSV agents. This study aimed to develop the 177Lu labeled tin colloid formulation and demonstrate its invivo characterization. MATERIALS AND METHODS Particle size, shape, and labelling efficiency of the four formulations developed were determined. The formula with the highest labelling efficiency was selected for further studies. The quality of the formulation was evaluated based on radionuclidic, radiochemical, and microbial purity. In-vitro stability was evaluated by determining the labelling efficiency. In-vitro stability was tested in PBS and synovial fluid. The biological characterization was assessed using SPECT/CT after injecting the formulation into the normal knee joints of the rabbits. RESULTS Aggregated colloidal particles were spherical with a particle size of <5 μm. Labelling efficiency and radiochemical purity were >95 and 97.65% (Rf=0.2), respectively. The formulation was stable in vitro for up to 72 hours, both in PBS and synovial fluid. The formulation was homogeneously distributed in the joint at 0 and 1 hour after injection, and radioactivity- related involvement and inguinal lymph node involvement due to possible leakage were not detected in the late period. No pyrogenic/allergic side effects were observed during this period. CONCLUSION 177Lu-tin-colloid was successfully prepared under optimized reaction conditions with high binding efficiency and radiochemical purity. The radiolabeled colloid was found to be stable in-vitro both in PBS and synovial fluid at room temperature. Serial PCET/CT images revealed that the activity was completely retained within the synovial cavity, with no activity leakage out of the joint until 48 hours after the injection. With the support of the results from further clinical studies, it may be possible for the formulation to enter clinical use.
Collapse
Affiliation(s)
- Guldem Mercanoglu
- Department of Pharmacology, Hamidiye Pharmacy Faculty, University of Health Sciences, Istanbul, Turkey
| | - Goksel Alcın
- Department of Nuclear Medicine, University of Health Sciences, Istanbul Research and Training Hospital, Istanbul, Turkey
| | - Yusuf Ozturkmen
- Department of Orthopaedics and Traumatology, Istanbul Research and Training Hospital, University of Health Sciences, Istanbul, Turkey
| | - Tevfik Cermik
- Department of Nuclear Medicine, University of Health Sciences, Istanbul Research and Training Hospital, Istanbul, Turkey
| |
Collapse
|
4
|
Trencsényi G, Enyedi KN, Mező G, Halmos G, Képes Z. NGR-Based Radiopharmaceuticals for Angiogenesis Imaging: A Preclinical Review. Int J Mol Sci 2023; 24:12675. [PMID: 37628856 PMCID: PMC10454655 DOI: 10.3390/ijms241612675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Angiogenesis plays a crucial role in tumour progression and metastatic spread; therefore, the development of specific vectors targeting angiogenesis has attracted the attention of several researchers. Since angiogenesis-associated aminopeptidase N (APN/CD13) is highly expressed on the surface of activated endothelial cells of new blood vessels and a wide range of tumour cells, it holds great promise for imaging and therapy in the field of cancer medicine. The selective binding capability of asparagine-glycine-arginine (NGR) motif containing molecules to APN/CD13 makes radiolabelled NGR peptides promising radiopharmaceuticals for the non-invasive, real-time imaging of APN/CD13 overexpressing malignancies at the molecular level. Preclinical small animal model systems are major keystones for the evaluation of the in vivo imaging behaviour of radiolabelled NGR derivatives. Based on existing literature data, several positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radioisotopes have been applied so far for the labelling of tumour vasculature homing NGR sequences such as Gallium-68 (68Ga), Copper-64 (64Cu), Technetium-99m (99mTc), Lutetium-177 (177Lu), Rhenium-188 (188Re), or Bismuth-213 (213Bi). Herein, a comprehensive overview is provided of the recent preclinical experiences with radiolabelled imaging probes targeting angiogenesis.
Collapse
Affiliation(s)
- György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| | - Kata Nóra Enyedi
- ELKH-ELTE Research Group of Peptide Chemistry, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary; (K.N.E.); (G.M.)
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Gábor Mező
- ELKH-ELTE Research Group of Peptide Chemistry, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary; (K.N.E.); (G.M.)
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| |
Collapse
|
5
|
Polyak A, Képes Z, Trencsényi G. Implant Imaging: Perspectives of Nuclear Imaging in Implant, Biomaterial, and Stem Cell Research. Bioengineering (Basel) 2023; 10:bioengineering10050521. [PMID: 37237591 DOI: 10.3390/bioengineering10050521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Until now, very few efforts have been made to specifically trace, monitor, and visualize implantations, artificial organs, and bioengineered scaffolds for tissue engineering in vivo. While mainly X-Ray, CT, and MRI methods have been used for this purpose, the applications of more sensitive, quantitative, specific, radiotracer-based nuclear imaging techniques remain a challenge. As the need for biomaterials increases, so does the need for research tools to evaluate host responses. PET (positron emission tomography) and SPECT (single photon emission computer tomography) techniques are promising tools for the clinical translation of such regenerative medicine and tissue engineering efforts. These tracer-based methods offer unique and inevitable support, providing specific, quantitative, visual, non-invasive feedback on implanted biomaterials, devices, or transplanted cells. PET and SPECT can improve and accelerate these studies through biocompatibility, inertivity, and immune-response evaluations over long investigational periods at high sensitivities with low limits of detection. The wide range of radiopharmaceuticals, the newly developed specific bacteria, and the inflammation of specific or fibrosis-specific tracers as well as labeled individual nanomaterials can represent new, valuable tools for implant research. This review aims to summarize the opportunities of nuclear-imaging-supported implant research, including bone, fibrosis, bacteria, nanoparticle, and cell imaging, as well as the latest cutting-edge pretargeting methods.
Collapse
Affiliation(s)
- Andras Polyak
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| |
Collapse
|
6
|
Krol V, Koers LMG, McNeil S, Hoehr C, Radchenko V. Cyclotron production of 103Pd using a liquid target. Nucl Med Biol 2023; 118-119:108328. [PMID: 36822066 DOI: 10.1016/j.nucmedbio.2023.108328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
INTRODUCTION In this work, we present the first feasibility study on the production of the medically important radionuclide 103Pd via the 103Rh(p,n)103Pd reaction by cyclotron irradiation of a liquid target. Using a liquid target removes the time consuming and complex dissolution process of rhodium post-irradiation due to its chemically inactive nature and thereby will improve the accessibility of this radioisotope. METHODS Liquid targets made from Rh(NO3)3·×H2O salt dissolved in de-ionized water were irradiated using a 12 MeV beam at the TR13 cyclotron at TRIUMF, Vancouver. RESULTS A maximum EOB activity of 1.03 ± 0.05 MBq was achieved with the tested conditions, sufficient for basic radiochemistry studies. An effective separation method using anion exchange chromatography is reported using 1 M HNO3 as an eluent for rhodium (90.1 ± 2.1 % recovery) and a 1:1 mixture of 0.5 M NH3 + NH4Cl palladium eluent (103.8 ± 2.3 % recovery). The solution showed good in-target pressure stability. However, the production efficiency decreased significantly with higher solution concentrations and irradiation lengths which puts into question the scaling potential of this method. CONCLUSION This proof-of-concept study has demonstrated the potential for using liquid targets as complementary production method of 103Pd for research purposes. The liquid target route faces several scaling challenges but can nonetheless improve the availability of 103Pd and consequently aid in widening its utility for radiopharmaceuticals.
Collapse
Affiliation(s)
- Viktoria Krol
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada; The University of Edinburgh, Edinburgh EH9 3FD, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - Lucas Mues Gennant Koers
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada; FH-Aachen - University of Applied Science, Aachen 52066, Germany
| | - Scott McNeil
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Cornelia Hoehr
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada; University of Victoria, Victoria V8P 5C2, Canada.
| | - Valery Radchenko
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada; University of British Columbia, Vancouver V6T 1Z4, Canada.
| |
Collapse
|
7
|
Therapeutic Performance Evaluation of 213Bi-Labelled Aminopeptidase N (APN/CD13)-Affine NGR-Motif ([ 213Bi]Bi-DOTAGA-cKNGRE) in Experimental Tumour Model: A Treasured Tailor for Oncology. Pharmaceutics 2023; 15:pharmaceutics15020491. [PMID: 36839813 PMCID: PMC9968005 DOI: 10.3390/pharmaceutics15020491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Since NGR-tripeptides (asparagine-glycine-arginine) selectively target neoangiogenesis-associated Aminopeptidase N (APN/CD13) on cancer cells, we aimed to evaluate the in vivo tumour targeting capability of radiolabelled, NGR-containing, ANP/CD13-selective [213Bi]Bi-DOTAGA-cKNGRE in CD13pos. HT1080 fibrosarcoma-bearing severe combined immunodeficient CB17 mice. 10 ± 1 days after cancer cell inoculation, positron emission tomography (PET) was performed applying [68Ga]Ga-DOTAGA-cKNGRE for tumour verification. On the 7th, 8th, 10th and 12th days the treated group of tumourous mice were intraperitoneally administered with 4.68 ± 0.10 MBq [213Bi]Bi-DOTAGA-cKNGRE, while the untreated tumour-bearing animals received 150 μL saline solution. In addition to body weight (BW) and tumour volume measurements, ex vivo biodistribution studies were conducted 30 and 90 min postinjection (pi.). The following quantitative standardised uptake values (SUV) confirmed the detectability of the HT1080 tumours: SUVmean and SUVmax: 0.37 ± 0.09 and 0.86 ± 0.14, respectively. Although no significant difference (p ≤ 0.05) was encountered between the BW of the treated and untreated mice, their tumour volumes measured on the 9th, 10th and 12th days differed significantly (p ≤ 0.01). Relatively higher [213Bi]Bi-DOTAGA-cKNGRE accumulation of the HT1080 neoplasms (%ID/g: 0.80 ± 0.16) compared with the other organs at 90 min time point yields better tumour-to-background ratios. Therefore, the therapeutic application of APN/CD13-affine [213Bi]Bi-DOTAGA- cKNGRE seems to be promising in receptor-positive fibrosarcoma treatment.
Collapse
|
8
|
Kumar N, Guleria M, Chakraborty A, Amirdhanayagam J, Bannore TU, Damle A, Sarma HD, Das T. Synthesis and evaluation of [
177
Lu]Lu‐labeled porphyrin loaded PAMAM dendrimer: Impact on tumor uptake and pharmacokinetics. Drug Dev Res 2022; 83:1777-1790. [DOI: 10.1002/ddr.21996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/14/2022] [Accepted: 08/26/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Naveen Kumar
- Radiopharmaceuticals Division Bhabha Atomic Research Centre Mumbai Maharashtra India
- Department of Chemical Sciences Homi Bhabha National Institute Mumbai Maharashtra India
| | - Mohini Guleria
- Radiopharmaceuticals Division Bhabha Atomic Research Centre Mumbai Maharashtra India
- Department of Chemical Sciences Homi Bhabha National Institute Mumbai Maharashtra India
| | - Avik Chakraborty
- Radiation Medicine Centre Bhabha Atomic Research Centre Mumbai Maharashtra India
| | | | | | - Archana Damle
- Radiation Medicine Centre Bhabha Atomic Research Centre Mumbai Maharashtra India
| | - Haladhar D. Sarma
- Radiation Biology and Health Sciences Division Bhabha Atomic Research Centre Mumbai Maharashtra India
| | - Tapas Das
- Radiopharmaceuticals Division Bhabha Atomic Research Centre Mumbai Maharashtra India
- Department of Chemical Sciences Homi Bhabha National Institute Mumbai Maharashtra India
| |
Collapse
|
9
|
Sadler AWE, Hogan L, Fraser B, Rendina LM. Cutting edge rare earth radiometals: prospects for cancer theranostics. EJNMMI Radiopharm Chem 2022; 7:21. [PMID: 36018527 PMCID: PMC9418400 DOI: 10.1186/s41181-022-00173-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background With recent advances in novel approaches to cancer therapy and imaging, the application of theranostic techniques in personalised medicine has emerged as a very promising avenue of research inquiry in recent years. Interest has been directed towards the theranostic potential of Rare Earth radiometals due to their closely related chemical properties which allow for their facile and interchangeable incorporation into identical bifunctional chelators or targeting biomolecules for use in a diverse range of cancer imaging and therapeutic applications without additional modification, i.e. a “one-size-fits-all” approach. This review will focus on recent progress and innovations in the area of Rare Earth radionuclides for theranostic applications by providing a detailed snapshot of their current state of production by means of nuclear reactions, subsequent promising theranostic capabilities in the clinic, as well as a discussion of factors that have impacted upon their progress through the theranostic drug development pipeline. Main body In light of this interest, a great deal of research has also been focussed towards certain under-utilised Rare Earth radionuclides with diverse and favourable decay characteristics which span the broad spectrum of most cancer imaging and therapeutic applications, with potential nuclides suitable for α-therapy (149Tb), β−-therapy (47Sc, 161Tb, 166Ho, 153Sm, 169Er, 149Pm, 143Pr, 170Tm), Auger electron (AE) therapy (161Tb, 135La, 165Er), positron emission tomography (43Sc, 44Sc, 149Tb, 152Tb, 132La, 133La), and single photon emission computed tomography (47Sc, 155Tb, 152Tb, 161Tb, 166Ho, 153Sm, 149Pm, 170Tm). For a number of the aforementioned radionuclides, their progression from ‘bench to bedside’ has been hamstrung by lack of availability due to production and purification methods requiring further optimisation. Conclusions In order to exploit the potential of these radionuclides, reliable and economical production and purification methods that provide the desired radionuclides in high yield and purity are required. With more reactors around the world being decommissioned in future, solutions to radionuclide production issues will likely be found in a greater focus on linear accelerator and cyclotron infrastructure and production methods, as well as mass separation methods. Recent progress towards the optimisation of these and other radionuclide production and purification methods has increased the feasibility of utilising Rare Earth radiometals in both preclinical and clinical settings, thereby placing them at the forefront of radiometals research for cancer theranostics.
Collapse
Affiliation(s)
| | - Leena Hogan
- ANSTO Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW, 2232, Australia
| | - Benjamin Fraser
- ANSTO Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW, 2232, Australia
| | - Louis M Rendina
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
10
|
Almeamar H, Cullen L, Murphy DJ, Crowley RK, Toumpanakis C, Welin S, O'Shea D, O'Toole D. Real-world efficacy of lutetium peptide receptor radionuclide therapy in patients with neuroendocrine tumours. J Neuroendocrinol 2022; 34:e13138. [PMID: 35485450 DOI: 10.1111/jne.13138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022]
Abstract
Lutetium peptide receptor radio nuclide therapy (Lu-PRRT) is an effective treatment for progressive, metastatic, somatostatin-receptor-positive, well-differentiated neuroendocrine tumours (WD-NETs). Here, we report a single centre experience of real-world efficacy, long-term side effects, and challenges of this treatment. This was a retrospective analysis. All patients linked with our centre who had Lu-PRRT were included. Clinicopathological data were analysed using descriptive statistics, Kaplan-Meier, and Cox regression. A total of 45 patients had Lu-PRRT, of those 30 (67%) were males, and 13 (29%) were more than 65 years old. The primary site was small intestine in 30 (67%) patients, pancreas in seven (16%) patients, and lung in three (7%) patients. The tumor was grade 1 in 15 (35%) patients, grade 2 in 22 (48%) patients, and grade 3 in six (13%) patients. A total of 41 (91%) patients had liver metastasis, and 20 (44%) patients had carcinoid syndrome. Lu-PRRT was the second-line therapy in all patients. Krenning's score was 4 in 36 (80%) patients and 3 in nine (20%) patients. The median waiting time to start Lu-PRRT therapy was 87 days. The median follow-up was 41 months. A total of 23 (51%) patients had a partial response, 18 (40%) patients had stable disease, and four (9%) patients had progression. None of the patients had a complete response. The median progression-free survival (PFS) was 38 months (95% CI: 25.8-50.1). The median overall survival (OS) was not reached. Nine patients died during follow-up (death from any cause). Prior treatment with targeted therapies or high dose somatostatin analogues were negative predictors of Lu-PRRT outcome (p-values of < .001 and < .045, respectively). There were two serious haematological toxicities, one patient developed acute myeloid leukaemia (AML), and the other developed chronic myeloid leukaemia (CML). Lu-PRRT is an effective second-line treatment for metastatic WD-NETs. The effect of targeted therapies on Lu-PRRT outcome was significant and needs to be clarified in further studies.
Collapse
Affiliation(s)
- Hussein Almeamar
- National Centre for Neuroendocrine Tumours, ENETS Centre of Excellence, St. Vincent's University Hospital, Dublin, Ireland
| | - Lisa Cullen
- National Centre for Neuroendocrine Tumours, ENETS Centre of Excellence, St. Vincent's University Hospital, Dublin, Ireland
| | - David J Murphy
- Department of Radiology, St. Vincent's University Hospital, Dublin, Ireland
- UCD School of Medicine, Dublin, Ireland
| | - Rachel K Crowley
- National Centre for Neuroendocrine Tumours, ENETS Centre of Excellence, St. Vincent's University Hospital, Dublin, Ireland
- UCD School of Medicine, Dublin, Ireland
| | | | - Staffan Welin
- Department of Endocrine Oncology, ENETS Centre of Excellence, Uppsala University Hospital, Uppsala, Sweden
| | - Donal O'Shea
- National Centre for Neuroendocrine Tumours, ENETS Centre of Excellence, St. Vincent's University Hospital, Dublin, Ireland
- UCD School of Medicine, Dublin, Ireland
| | - Dermot O'Toole
- National Centre for Neuroendocrine Tumours, ENETS Centre of Excellence, St. Vincent's University Hospital, Dublin, Ireland
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Holik HA, Ibrahim FM, Elaine AA, Putra BD, Achmad A, Kartamihardja AHS. The Chemical Scaffold of Theranostic Radiopharmaceuticals: Radionuclide, Bifunctional Chelator, and Pharmacokinetics Modifying Linker. Molecules 2022; 27:3062. [PMID: 35630536 PMCID: PMC9143622 DOI: 10.3390/molecules27103062] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Therapeutic radiopharmaceuticals have been researched extensively in the last decade as a result of the growing research interest in personalized medicine to improve diagnostic accuracy and intensify intensive therapy while limiting side effects. Radiometal-based drugs are of substantial interest because of their greater versatility for clinical translation compared to non-metal radionuclides. This paper comprehensively discusses various components commonly used as chemical scaffolds to build radiopharmaceutical agents, i.e., radionuclides, pharmacokinetic-modifying linkers, and chelators, whose characteristics are explained and can be used as a guide for the researcher.
Collapse
Affiliation(s)
- Holis Abdul Holik
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Faisal Maulana Ibrahim
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Angela Alysia Elaine
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Bernap Dwi Putra
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Arifudin Achmad
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung 40161, Indonesia; (A.A.); (A.H.S.K.)
- Oncology and Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia
| | - Achmad Hussein Sundawa Kartamihardja
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung 40161, Indonesia; (A.A.); (A.H.S.K.)
| |
Collapse
|
12
|
Melis DR, Burgoyne AR, Ooms M, Gasser G. Bifunctional chelators for radiorhenium: past, present and future outlook. RSC Med Chem 2022; 13:217-245. [PMID: 35434629 PMCID: PMC8942221 DOI: 10.1039/d1md00364j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/14/2022] [Indexed: 01/16/2023] Open
Abstract
Targeted radionuclide therapy (TRNT) is an ever-expanding field of nuclear medicine that provides a personalised approach to cancer treatment while limiting toxicity to normal tissues. It involves the radiolabelling of a biological targeting vector with an appropriate therapeutic radionuclide, often facilitated by the use of a bifunctional chelator (BFC) to stably link the two entities. The radioisotopes of rhenium, 186Re (t 1/2 = 90 h, 1.07 MeV β-, 137 keV γ (9%)) and 188Re (t 1/2 = 16.9 h, 2.12 MeV β-, 155 keV γ (15%)), are particularly attractive for radiotherapy because of their convenient and high-abundance β--particle emissions as well as their imageable γ-emissions and chemical similarity to technetium. As a transition metal element with multiple oxidation states and coordination numbers accessible for complexation, there is great opportunity available when it comes to developing novel BFCs for rhenium. The purpose of this review is to provide a recap on some of the past successes and failings, as well as show some more current efforts in the design of BFCs for 186/188Re. Future use of these radionuclides for radiotherapy depends on their cost-effective availability and this will also be discussed. Finally, bioconjugation strategies for radiolabelling biomolecules with 186/188Re will be touched upon.
Collapse
Affiliation(s)
- Diana R Melis
- SCK CEN, Belgian Nuclear Research Centre Boeretang 200 BE-2400 Mol Belgium +1 865 341 1413 +32 14 33 32 83
- Chimie ParisTech, Laboratory for Inorganic Chemical Biology, PSL University F-75005 Paris France www.gassergroup.com +33 1 44 27 56 02
| | - Andrew R Burgoyne
- SCK CEN, Belgian Nuclear Research Centre Boeretang 200 BE-2400 Mol Belgium +1 865 341 1413 +32 14 33 32 83
| | - Maarten Ooms
- SCK CEN, Belgian Nuclear Research Centre Boeretang 200 BE-2400 Mol Belgium +1 865 341 1413 +32 14 33 32 83
| | - Gilles Gasser
- Chimie ParisTech, Laboratory for Inorganic Chemical Biology, PSL University F-75005 Paris France www.gassergroup.com +33 1 44 27 56 02
| |
Collapse
|
13
|
Bartoli F, Eckelman WC, Boyd M, Mairs RJ, Erba PA. Principles of Molecular Targeting for Radionuclide Therapy. NUCLEAR ONCOLOGY 2022:41-93. [DOI: 10.1007/978-3-031-05494-5_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Deep K, Wanage G, Loharkar S, Das T, Basu S, Banerjee S. Estimation of Absorbed Doses of Indigenously Produced "Direct-route" Lutetium-177-Labeled DOTA-TATE PRRT in Normal Organs and Tumor Lesions in Patients of Metastatic Neuroendocrine Tumors: Comparison with No-Carrier-Added [ 177Lu]Lu-DOTA-TATE and the Trend with Multiple Cycles. Cancer Biother Radiopharm 2021; 37:214-225. [PMID: 34910891 DOI: 10.1089/cbr.2021.0340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Lutetium-177-labeled somatostatin analogue, [177Lu]Lu-DOTA-TATE is most commonly used across the world for peptide receptor radionuclide therapy (PRRT) of neuroendocrine tumors (NETs). The primary objective of this study was to estimate the absorbed doses in organs and tumor lesions in NET patients treated with indigenously produced "direct-route" [177Lu]Lu-labeled DOTA-TATE and impact of multiple treatment cycles on absorbed doses, and compare with those treated with no-carrier-added [177Lu]Lu-labeled DOTA-TATE. Materials and Methods: Sixty patients of NET were enrolled in this prospective study. These patients received up to 6 cycles of PRRT with [177Lu]Lu-DOTA-TATE (total 232 cycles) at 10- to 12-week intervals between the two successive therapy cycles. The patients were administered 5.55-7.4 GBq (150-200 mCi) of [177Lu]Lu-DOTA-TATE in 100 mL of normal saline over a period of 30 min. Postadministration whole-body planar scintigraphy were acquired at five time points 0.5 (prevoid), 2, 12, 24, and 72 h (postvoid) and one SPECT scan at 24 h (postvoid). Number of disintegrations was determined from time-activity curves generated by drawing regions of interests (ROIs) on the images. Tumor masses were derived from computed tomography (CT) data. The absorbed doses for normal organs and tumor lesions were calculated using OLINDA 2.1.1 software. The same were also estimated in a group of 22 patients who were treated with no-carrier-added [177Lu]Lu-labeled DOTA-TATE. Results: The mean absorbed organ doses (mean ± SD) in Gy/GBq received by normal organs were as follows: kidneys 0.64 ± 0.21, liver 0.10 ± 0.05, spleen 0.88 ± 0.35, bone marrow 0.04 ± 0.02, urinary bladder 0.26 ± 0.06, heart wall 0.04 ± 0.02, and whole-body 0.06 ± 0.02. Tumor dosimetry was performed in a total of 410 tumor lesions, the mean absorbed dose to the tumor lesions was 4.79 ± 4.23 Gy/GBq. Large variations were observed in absorbed doses received by these lesions (range: 0.15-21.26 Gy/GBq). With no-carrier-added [177Lu]Lu-DOTA-TATE, the mean absorbed organ doses (mean ± SD) in Gy/GBq received by normal organs were as follows: kidneys 0.76 ± 0.16, liver 0.10 ± 0.05, spleen 1.14 ± 0.31, bone marrow 0.05 ± 0.02, urinary bladder 0.27 ± 0.05, heart wall 0.06 ± 0.02, whole-body 0.07 ± 0.02, and tumor dose 5.87 ± 5.74. Conclusions: There was no statistically significant difference in the dosimetry data of patients treated with no-carrier-added (indirect route) [177Lu]Lu-labeled DOTA-TATE and the dosimetry data of patients treated with [177Lu]Lu-labeled with DOTA-TATE formulated using 177Lu produced through "Direct-route" and were comparable with the data reported.
Collapse
Affiliation(s)
- Kamal Deep
- Health Physics Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Gaurav Wanage
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Sarvesh Loharkar
- Homi Bhabha National Institute, Mumbai, India.,Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Tapas Das
- Homi Bhabha National Institute, Mumbai, India.,Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sandip Basu
- Homi Bhabha National Institute, Mumbai, India.,Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Sharmila Banerjee
- Homi Bhabha National Institute, Mumbai, India.,Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
15
|
Filippov A, Bonjoc KJC, Chea J, Bowles N, Poku E, Chaudhry A. Role of theranostics in thoracic oncology. J Thorac Dis 2020; 12:5140-5146. [PMID: 33145091 PMCID: PMC7578517 DOI: 10.21037/jtd-2019-pitd-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Theranostics is a re-emerging field of medicine that aims to create targeted agents that can be used for diagnostic and/or therapeutic indications. In the past, theranostics has been used to treat neoplasms, such as thyroid cancer and neuroblastomas. More recently, theranostics has seen a resurgence with advent of new therapeutic antibodies and small molecules which can be transformed into Theranostic agents through radioconjugating with a radioactive isotope. Positron emitting radioisotopes can be used for diagnostic purposes while alpha- and beta-emitting radioisotopes can be used for therapy. The technique of radiolabeling an existing therapeutic agent (small molecule or antibody) leverages the existing qualities of that drug, and potentiates therapeutic effect by conjugating it with a cytotoxic-energy bearing radioisotope (e.g., 131-iodine, 177-lutetium). Theranostics have been used for a few decades now, starting with 131-iodine for therapy of autoimmune thyroiditis (Graves’ disease, Hashimoto’s thyroiditis) as well as for thyroid cancer. Additionally, 131-iodine-meta-iodobenzylguanidine (131-I-MIBG) initially had been used for gastroenteropancreatic neuroendocrine (carcinoid) tumors. However, recently clinical trials have start enrolling patients to evaluate efficacy of 131-I-MIBG in patients with small cell carcinoma of the lung. In the era of precision medicine and personalized targeted therapeutics, Theranostics can play a key pivotal in improving diagnostic and therapeutic specificity by increasing potency of these targeted small molecules and antibodies with radioisotopes. In this review, we will review various clinically relevant Theranostics agent and their utility in thoracic disorders, notably within oncology.
Collapse
Affiliation(s)
- Aleksandr Filippov
- Department of Diagnostic and Interventional Radiology, City of Hope National Medical Center, Duarte, CA, USA
| | - Kimberley-Jane C Bonjoc
- Department of Diagnostic and Interventional Radiology, City of Hope National Medical Center, Duarte, CA, USA
| | - Junie Chea
- Department of Diagnostic and Interventional Radiology, City of Hope National Medical Center, Duarte, CA, USA
| | - Nicole Bowles
- Department of Diagnostic and Interventional Radiology, City of Hope National Medical Center, Duarte, CA, USA
| | - Erasmus Poku
- Department of Diagnostic and Interventional Radiology, City of Hope National Medical Center, Duarte, CA, USA
| | - Ammar Chaudhry
- Department of Diagnostic and Interventional Radiology, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
16
|
Tan HY, Yeong CH, Wong YH, McKenzie M, Kasbollah A, Md Shah MN, Perkins AC. Neutron-activated theranostic radionuclides for nuclear medicine. Nucl Med Biol 2020; 90-91:55-68. [PMID: 33039974 DOI: 10.1016/j.nucmedbio.2020.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/08/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Theranostics in nuclear medicine refers to personalized patient management that involves targeted therapy and diagnostic imaging using a single or combination of radionuclide (s). The radionuclides emit both alpha (α) or beta (β-) particles and gamma (γ) rays which possess therapeutic and diagnostic capabilities, respectively. However, the production of these radionuclides often faces difficulties due to high cost, complexity of preparation methods and that the products are often sourced far from the healthcare facilities, hence losing activity due to radioactive decay during transportation. Subject to the availability of a nuclear reactor within an accessible distance from healthcare facilities, neutron activation is the most practical and cost-effective route to produce radionuclides suitable for theranostic purposes. Holmium-166 (166Ho), Lutetium-177 (177Lu), Rhenium-186 (186Re), Rhenium-188 (188Re) and Samarium-153 (153Sm) are some of the most promising neutron-activated radionuclides that are currently in clinical practice and undergoing clinical research for theranostic applications. The aim of this paper is to review the physical characteristics, current clinical applications and future prospects of these neutron activated radionuclides in theranostics. The production, physical properties, validated clinical applications and clinical studies for each neutron-activated radionuclide suitable for theranostic use in nuclear medicine are reviewed in this paper.
Collapse
Affiliation(s)
- Hun Yee Tan
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Chai Hong Yeong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Yin How Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Molly McKenzie
- School of Life Sciences, University of Dundee, DD1 4HN, United Kingdom
| | - Azahari Kasbollah
- Medical Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor, Malaysia
| | - Mohamad Nazri Md Shah
- Department of Biomedical Imaging, University of Malaya Medical Centre, 59100 Kuala Lumpur, Malaysia
| | - Alan Christopher Perkins
- Radiological Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| |
Collapse
|
17
|
Basu S, Parghane RV, Kamaldeep, Chakrabarty S. Peptide Receptor Radionuclide Therapy of Neuroendocrine Tumors. Semin Nucl Med 2020; 50:447-464. [PMID: 32768008 DOI: 10.1053/j.semnuclmed.2020.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Peptide receptor radionuclide therapy (PRRT), over the years, has evolved as an important modality in the therapeutic armamentarium of advanced, metastatic or inoperable, progressive Neuroendocrine Neoplasms (NENs). This review deliberates on the basic understanding and applied clinical aspects of PRRT in NENs, with special reference to (1) tumor biology and receptor characteristics, (2) molecular PET-CT imaging (in particular the invaluable role of dual-tracer PET with [68Ga]-DOTA-TATE/NOC and [18F]-FDG for exploring tumor biology in continuum and individualizing treatment decision making) and NEN theranostics, (3) relevant radiochemistry of different therapeutic radionuclides (both beta emitting 177Lu-DOTATATE and 90Y-DOTATATE and alpha emitting 225Ac-DOTATATE), and (4) related dosimetric considerations. Successful clinical management of the NENs would require multifactorial considerations, and all the aforementioned points pertaining to the disease process and available logistics are key considerations for state-of-the-art clinical practice and delivering personalized care in this group of patients. Emphasis has been placed on relatively intriguing areas such as (1) NET grade 3 of WHO 2017 classification (ie, Ki-67>20% but well-differentiation features), (2) "Neoadjuvant PRRT," (3) combining chemotherapy and PRRT, (4) 'Sandwich Chemo-PRRT', (5) duo-PRRT and tandem PRRT, (6) resistant functioning disease with nuances in clinical management and how one can advocate PRRT rationally in such clinical settings and individualize the management in a patient specific manner. Relevant clinical management issues related to some difficult case scenarios, which the Nuclear Medicine attending physician should be aware of to run an efficient clinical PRRT services, are described.
Collapse
Affiliation(s)
- Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe, Mumbai, India; Homi Bhabha National Institute, Mumbai, India.
| | - Rahul V Parghane
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe, Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Kamaldeep
- Homi Bhabha National Institute, Mumbai, India; Health Physics Division, Bhabha Atomic Research Centre Mumbai, India
| | - Sudipta Chakrabarty
- Homi Bhabha National Institute, Mumbai, India; Radiochemicals Section, Radiopharmaceuticals Division, Bhabha Atomic Research Centre Mumbai, India
| |
Collapse
|
18
|
Guerra Liberal FDC, O'Sullivan JM, McMahon SJ, Prise KM. Targeted Alpha Therapy: Current Clinical Applications. Cancer Biother Radiopharm 2020; 35:404-417. [PMID: 32552031 DOI: 10.1089/cbr.2020.3576] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
α-Emitting radionuclides have been approved for cancer treatment since 2013, with increasing degrees of success. Despite this clinical utility, little is known regarding the mechanisms of action of α particles in this setting, and accurate assessments of the dosimetry underpinning their effectiveness are lacking. However, targeted alpha therapy (TAT) is gaining more attention as new targets, synthetic chemistry approaches, and α particle emitters are identified, constructed, developed, and realized. From a radiobiological perspective, α particles are more effective at killing cells compared to low linear energy transfer radiation. Also, from these direct effects, it is now evident from preclinical and clinical data that α emitters are capable of both producing effects in nonirradiated bystander cells and stimulating the immune system, extending the biological effects of TAT beyond the range of α particles. The short range of α particles makes them a potent tool to irradiate single-cell lesions or treat solid tumors by minimizing unwanted irradiation of normal tissue surrounding the cancer cells, assuming a high specificity of the radiopharmaceutical and good stability of its chemical bonds. Clinical approval of 223RaCl2 in 2013 was a major milestone in the widespread application of TAT as a safe and effective strategy for cancer treatment. In addition, 225Ac-prostate specific membrane antigen treatment benefit in metastatic castrate-resistant prostate cancer patients, refractory to standard therapies, is another game-changing piece in the short history of TAT clinical application. Clinical applications of TAT are growing with different radionuclides and combination therapies, and in different clinical settings. Despite the remarkable advances in TAT dosimetry and imaging, it has not yet been used to its full potential. Labeled 227Th and 225Ac appear to be promising candidates and could represent the next generation of agents able to extend patient survival in several clinical scenarios.
Collapse
Affiliation(s)
- Francisco D C Guerra Liberal
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom.,Faculdade de Ciências e Tenclonogia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Joe M O'Sullivan
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom.,Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Stephen J McMahon
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Kevin M Prise
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
19
|
Ambade R, Chakravarty R, Bahadur J, Ganjave B, Sen D, Chakraborty S, Dash A. Mechanochemically synthesized mesoporous alumina: An advanced sorbent for post-processing concentration of 131I for cancer therapy. J Chromatogr A 2020; 1612:460614. [PMID: 31668869 DOI: 10.1016/j.chroma.2019.460614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/18/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022]
Abstract
High radioactive concentration of 131I in the form of 131I[NaI] solution is essential for preparation of large-dose therapeutic capsules used in the management of thyroid cancer. In this communication, we report the synthesis of mesoporous alumina sorbent (surface area = 292 ± 28 m2/g, mean pore diameter = 6.8 ± 0.7 nm) by a novel solid state mechanochemical approach and its utilization in post-processing concentration of 131I. The overall yield of 131I after the concentration procedure was >90% and 131I[NaI] solution could be obtained with appreciably high (1.7 TBq/mL) radioactive concentration, suitable for use in nuclear medicine. The promising results obtained in this study would stimulate greater utilization of this new class of sorbents in sample preparations by solid phase extraction procedures for societal benefits.
Collapse
Affiliation(s)
- Rajwardhan Ambade
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| | - Jitendra Bahadur
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Bharat Ganjave
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Debasis Sen
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
20
|
Bhardwaj R, Wolterbeek HT, Denkova AG, Serra-Crespo P. Radionuclide generator-based production of therapeutic 177Lu from its long-lived isomer 177mLu. EJNMMI Radiopharm Chem 2019; 4:13. [PMID: 31659496 PMCID: PMC6629729 DOI: 10.1186/s41181-019-0064-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/11/2019] [Indexed: 12/16/2022] Open
Abstract
Background In this work, a lutetium-177 (177Lu) production method based on the separation of nuclear isomers, 177mLu & 177Lu, is reported. The 177mLu-177Lu separation is performed by combining the use of DOTA & DOTA-labelled peptide (DOTATATE) and liquid-liquid extraction. Methods The 177mLu cations were complexed with DOTA & DOTATATE and kept at 77 K for periods of time to allow 177Lu production. The freed 177Lu ions produced via internal conversion of 177mLu were then extracted in dihexyl ether using 0.01 M di-(2-ethylhexyl) phosphoric acid (DEHPA) at room temperature. The liquid-liquid extractions were performed periodically for a period up to 35 days. Results A maximum 177Lu/177mLu activity ratio of 3500 ± 500 was achieved with [177mLu]Lu-DOTA complex, in comparison to 177Lu/177mLu activity ratios of 1086 ± 40 realized using [177mLu]Lu-DOTATATE complex. The 177Lu-177mLu separation was found to be affected by the molar ratio of lutetium and DOTA. A 177Lu/177mLu activity ratio up to 3500 ± 500 was achieved with excess DOTA in comparison to 177Lu/177mLu activity ratio 1500 ± 600 obtained when lutetium and DOTA were present in molar ratio of 1:1. Further, the 177Lu ion extraction efficiency, decreases from 95 ± 4% to 58 ± 2% in the presence of excess DOTA. Conclusion The reported method resulted in a 177Lu/ 177mLu activity ratio up to 3500 after the separation. This ratio is close to the lower end of 177Lu/177mLu activity ratios, attained currently during the direct route 177Lu production for clinical applications (i.e. 4000–10,000). This study forms the basis for further extending the liquid-liquid extraction based 177mLu-177Lu separation in order to lead to a commercial 177mLu/177Lu radionuclide generator. Electronic supplementary material The online version of this article (10.1186/s41181-019-0064-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rupali Bhardwaj
- Applied Radiation and Isotopes, Department of Radiation Science and Technology, Faculty of Applied Sciences, Technical University Delft, Mekelweg 15, 2629 JB, Delft, The Netherlands.,Catalysis Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Hubert Th Wolterbeek
- Applied Radiation and Isotopes, Department of Radiation Science and Technology, Faculty of Applied Sciences, Technical University Delft, Mekelweg 15, 2629 JB, Delft, The Netherlands
| | - Antonia G Denkova
- Applied Radiation and Isotopes, Department of Radiation Science and Technology, Faculty of Applied Sciences, Technical University Delft, Mekelweg 15, 2629 JB, Delft, The Netherlands
| | - Pablo Serra-Crespo
- Applied Radiation and Isotopes, Department of Radiation Science and Technology, Faculty of Applied Sciences, Technical University Delft, Mekelweg 15, 2629 JB, Delft, The Netherlands.
| |
Collapse
|
21
|
Şekerci M, Özdoğan H, Kaplan A. An investigation of effects of level density models and gamma ray strength functions on cross-section calculations for the production of 90Y, 153Sm, 169Er, 177Lu and 186Re therapeutic radioisotopes via (n,γ) reactions. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2019-3123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
One of the methods used to treat different cancer diseases is the employment of therapeutic radioisotopes. Therefore, many clinical, theoretical and experimental studies are being carried out on those radioisotopes. In this study, the effects of level density models and gamma ray strength functions on the theoretical production cross-section calculations for the therapeutic radioisotopes 90Y, 153Sm, 169Er, 177Lu and 186Re in the (n,γ) route have been investigated. TALYS 1.9 code has been used by employing different level density models and gamma ray strength functions. The theoretically obtained data were compared with the experimental data taken from the literature. The results are presented graphically for better interpretation.
Collapse
Affiliation(s)
- Mert Şekerci
- Department of Physics , Süleyman Demirel University , 32260 Isparta , Turkey
| | - Hasan Özdoğan
- Department of Biophysics , Akdeniz University , 07070 Antalya , Turkey
| | - Abdullah Kaplan
- Department of Physics , Süleyman Demirel University , 32260 Isparta , Turkey
| |
Collapse
|
22
|
Mishiro K, Hanaoka H, Yamaguchi A, Ogawa K. Radiotheranostics with radiolanthanides: Design, development strategies, and medical applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Radiochemical processing of nuclear-reactor-produced radiolanthanides for medical applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Uccelli L, Martini P, Cittanti C, Carnevale A, Missiroli L, Giganti M, Bartolomei M, Boschi A. Therapeutic Radiometals: Worldwide Scientific Literature Trend Analysis (2008⁻2018). Molecules 2019; 24:molecules24030640. [PMID: 30759753 PMCID: PMC6385165 DOI: 10.3390/molecules24030640] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 11/21/2022] Open
Abstract
Academic journals have published a large number of papers in the therapeutic nuclear medicine (NM) research field in the last 10 years. Despite this, a literature analysis has never before been made to point out the research interest in therapeutic radionuclides (RNs). For this reason, the present study aims specifically to analyze the research output on therapeutic radiometals from 2008 to 2018, with intent to quantify and identify global trends in scientific literature and emphasize the interdisciplinary nature of this research field. The data search targeted conventional (131I, 90Y, 177Lu, 188Re, 186Re, 153Sm, 89Sr, 186Er) and emergent (67Cu, 47Sc, 223Ra, 166Ho, 161Tb, 149Tb, 212Pb/212Bi, 225Ac, 213Bi, 211At, 117mSn) RNs. Starting from this time frame, authors have analyzed and interpreted this scientific trend quantitatively first, and qualitatively after.
Collapse
Affiliation(s)
- Licia Uccelli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Ludovico Ariosto, 35-44121 Ferrara, Italy.
- Nuclear Medicine Unit, University Hospital, Via Aldo Moro, 8-44124 Ferrara, Italy.
| | - Petra Martini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Ludovico Ariosto, 35-44121 Ferrara, Italy.
- Legnaro National Laboratories, Italian National Institute for Nuclear Physics (LNL-INFN), Viale dell'Università, 2, 35020 Legnaro (PD), Italy.
| | - Corrado Cittanti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Ludovico Ariosto, 35-44121 Ferrara, Italy.
- Nuclear Medicine Unit, University Hospital, Via Aldo Moro, 8-44124 Ferrara, Italy.
| | - Aldo Carnevale
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Ludovico Ariosto, 35-44121 Ferrara, Italy.
- Radiology University Unit, University Hospital, Via Aldo Moro, 8-44124 Ferrara, Italy.
| | - Loretta Missiroli
- Bibliometric and Databases Unit, Research Office, University of Ferrara, Via Ludovico Ariosto, 35-44121 Ferrara, Italy.
| | - Melchiore Giganti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Ludovico Ariosto, 35-44121 Ferrara, Italy.
- Radiology University Unit, University Hospital, Via Aldo Moro, 8-44124 Ferrara, Italy.
| | - Mirco Bartolomei
- Nuclear Medicine Unit, University Hospital, Via Aldo Moro, 8-44124 Ferrara, Italy.
| | - Alessandra Boschi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Ludovico Ariosto, 35-44121 Ferrara, Italy.
| |
Collapse
|
25
|
Dash A, Das T, Knapp FFR. Targeted Radionuclide Therapy of Painful Bone Metastases: Past Developments, Current Status, Recent Advances and Future Directions. Curr Med Chem 2019; 27:3187-3249. [PMID: 30714520 DOI: 10.2174/0929867326666190201142814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/29/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
Bone pain arising from secondary skeletal malignancy constitutes one of the most common types of chronic pain among patients with cancer which can lead to rapid deterioration of the quality of life. Radionuclide therapy using bone-seeking radiopharmaceuticals based on the concept of localization of the agent at bone metastases sites to deliver focal cytotoxic levels of radiation emerged as an effective treatment modality for the palliation of symptomatic bone metastases. Bone-seeking radiopharmaceuticals not only provide palliative benefit but also improve clinical outcomes in terms of overall and progression-free survival. There is a steadily expanding list of therapeutic radionuclides which are used or can potentially be used in either ionic form or in combination with carrier molecules for the management of bone metastases. This article offers a narrative review of the armamentarium of bone-targeting radiopharmaceuticals based on currently approved investigational and potentially useful radionuclides and examines their efficacy for the treatment of painful skeletal metastases. In addition, the article also highlights the processes, opportunities, and challenges involved in the development of bone-seeking radiopharmaceuticals. Radium-223 is the first agent in this class to show an overall survival advantage in Castration-Resistant Prostate Cancer (CRPC) patients with bone metastases. This review summarizes recent advances, current clinical practice using radiopharmaceuticals for bone pain palliation, and the expected future prospects in this field.
Collapse
Affiliation(s)
- Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Tapas Das
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Furn F Russ Knapp
- Medical Isotopes Program, Isotope Development Group, MS 6229, Bldg. 4501, Oak Ridge National Laboratory, PO Box 2008, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States
| |
Collapse
|
26
|
Kumar C, Sharma R, Vats K, Mallia MB, Das T, Sarma HD, Dash A. Comparison of the efficacy of 177Lu-EDTMP, 177Lu-DOTMP and 188Re-HEDP towards bone osteosarcoma: an in vitro study. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6283-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Kumar C, Sharma R, Das T, Korde A, Sarma H, Banerjee S, Dash A. 177Lu-DOTMP induces G2/M cell cycle arrest and apoptosis in MG63 cell line. J Labelled Comp Radiopharm 2018; 61:837-846. [DOI: 10.1002/jlcr.3651] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/16/2018] [Accepted: 05/29/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Chandan Kumar
- Radiopharmaceuticals Division; Bhabha Atomic Research Centre; Mumbai India
| | - Rohit Sharma
- Radiopharmaceuticals Division; Bhabha Atomic Research Centre; Mumbai India
| | - Tapas Das
- Radiopharmaceuticals Division; Bhabha Atomic Research Centre; Mumbai India
| | - Aruna Korde
- Radiopharmaceuticals Division; Bhabha Atomic Research Centre; Mumbai India
| | - Haladhar Sarma
- Radiation Biology & Health Sciences Division; Bhabha Atomic Research Centre; Mumbai India
| | - Sharmila Banerjee
- Radiation Medicine Centre; Bhabha Atomic Research Centre; Mumbai India
| | - Ashutosh Dash
- Radiopharmaceuticals Division; Bhabha Atomic Research Centre; Mumbai India
| |
Collapse
|
28
|
Production, quality control, biodistribution and imaging studies of 177Lu-PSMA-617 in breast adenocarcinoma model. RADIOCHIM ACTA 2018. [DOI: 10.1515/ract-2017-2874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abstract
177Lu-PSMA-617 therapeutic agent was prepared successfully under optimized condition of pH=4.5, molar ratio of metal to ligand 1:10, temperature of 95°C and 40 min reaction time. 177LuCl3 was obtained with specific activity of 70–80 GBq/mg by the thermal neutron irradiation (5×1013 n cm−2 s−1) of the enriched Lu2O3 (52% 176Lu) samples. The radionuclidic purity of 177LuCl3 (>99%) was checked by a HPGe detector. The radiochemical purities of 177LuCl3 solution and 177Lu-PSMA-617 compound (>98%) were checked by ITLC and HPLC techniques and stability studies were assayed in the presence of human serum. Biodistribution and imaging assessments in the breast adenocarcinoma-bearing mice showed a major accumulation of activity in the tumor and kidneys tissues, as the expression site of PSMA molecule and the main route of excretion, respectively.
Collapse
|
29
|
Shinto AS, Mallia MB, Kameswaran M, Kamaleshwaran KK, Joseph J, Radhakrishnan ER, Upadhyay IV, Subramaniam R, Sairam M, Banerjee S, Dash A. Clinical utility of 188Rhenium-hydroxyethylidene-1,1-diphosphonate as a bone pain palliative in multiple malignancies. World J Nucl Med 2018; 17:228-235. [PMID: 30505219 PMCID: PMC6216741 DOI: 10.4103/wjnm.wjnm_68_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
188Rhenium-hydroxyethylidene-1,1-diphosphonate (188Re-HEDP) is a clinically established radiopharmaceutical for bone pain palliation of patients with metastatic bone cancer. Herein, the effectiveness of 188Re-HEDP for the palliation of painful bone metastases was investigated in an uncontrolled initial trial in 48 patients with different types of advanced cancers. A group of 48 patients with painful bone metastases of lung, prostate, breast, renal, and bladder cancer was treated with 2.96–4.44 GBq of 188Re-HEDP. The overall response rate in this group of patients was 89.5%, and their mean visual analog scale score showed a reduction from 9.1 to 5.3 (P < 0.003) after 1 week posttherapy. The patients did not report serious adverse effects either during intravenous administration or within 24 h postadministration of 188Re-HEDP. Flare reaction was observed in 54.2% of patients between day 1 and day 3. There was no correlation between flare reaction and response to therapy (P < 0.05). Although bone marrow suppression was observed in patients receiving higher doses of 188Re-HEDP, it did not result in any significant clinical problems. The present study confirmed the clinical utility and cost-effectiveness of 188Re-HEDP for palliation of painful bone metastases from various types of cancer in developing countries.
Collapse
Affiliation(s)
- Ajit S Shinto
- Department of Nuclear Medicine and PET/CT, Kovai Medical Center and Hospital Limited, Coimbatore, Tamil Nadu, India
| | - Madhava B Mallia
- Division of Radiopharmaceuticals, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Mythili Kameswaran
- Division of Radiopharmaceuticals, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - K K Kamaleshwaran
- Department of Nuclear Medicine and PET/CT, Kovai Medical Center and Hospital Limited, Coimbatore, Tamil Nadu, India
| | - Jephy Joseph
- Department of Nuclear Medicine and PET/CT, Kovai Medical Center and Hospital Limited, Coimbatore, Tamil Nadu, India
| | - E R Radhakrishnan
- Department of Nuclear Medicine and PET/CT, Kovai Medical Center and Hospital Limited, Coimbatore, Tamil Nadu, India
| | - Indira V Upadhyay
- Department of Nuclear Medicine and PET/CT, Kovai Medical Center and Hospital Limited, Coimbatore, Tamil Nadu, India
| | - R Subramaniam
- Department of Radiation Oncology, Kovai Medical Center and Hospital Limited, Coimbatore, Tamil Nadu, India
| | - Madhu Sairam
- Department of Radiation Oncology, Kovai Medical Center and Hospital Limited, Coimbatore, Tamil Nadu, India
| | - Sharmila Banerjee
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Ashutosh Dash
- Division of Radiopharmaceuticals, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
30
|
Fan Y, Sun W, Shi X. Design and Biomedical Applications of Poly(amidoamine)‐Dendrimer‐Based Hybrid Nanoarchitectures. SMALL METHODS 2017; 1. [DOI: 10.1002/smtd.201700224] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractDendrimers, especially poly(amidoamine) (PAMAM) dendrimers, possess unique properties such as 3D architecture, monodispersity, highly branched macromolecular characteristics, and tunable terminal functionalities. These properties allow them to be used for controlled synthesis and assembly of hybrid nanoarchitectures with a range of properties suitable for biomedical applications. Here, the recent advances in the design of different PAMAM‐dendrimer‐based hybrid nanoarchitectures for various biomedical applications, in particular for molecular imaging, nonviral gene delivery, and theranostics, are summarized and discussed; future perspectives are also briefly illustrated.
Collapse
Affiliation(s)
- Yu Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Wenjie Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
- CQM‐Centro de Química da Madeira Universidade da Madeira Campus da Penteada 9000‐390 Funchal Portugal
| |
Collapse
|
31
|
Ghosh S, Das T, Sarma HD, Dash A. Preparation and Evaluation of 177Lu-Labeled Gemcitabine: An Effort Toward Developing Radiolabeled Chemotherapeutics for Targeted Therapy Applications. Cancer Biother Radiopharm 2017; 32:239-246. [PMID: 28876087 DOI: 10.1089/cbr.2017.2255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Gemcitabine, a nucleoside analogue, is used as a chemotherapeutic drug for the treatment of a wide variety of cancers. Therefore, radiolabeled gemcitabine may have potential as a radiotherapeutic agent for the treatment of various types of cancers. In the present work, an attempt has been made to radiolabel gemcitabine with 177Lu and study the preliminary biological behavior of 177Lu-labeled gemcitabine in tumor-bearing animal model. EXPERIMENTAL Gemcitabine was coupled with p-NCS-benzyl-DOTA, a bifunctional chelating agent, to facilitate radiolabeling with 177Lu. The p-NCS-benzyl-DOTA-gemcitabine conjugate was radiolabeled with 177Lu, produced in-house and characterized by high-performance liquid chromatography. Tumor targeting potential of the radiolabeled agent was determined by biodistribution studies in Swiss mice bearing fibrosarcoma tumors. RESULTS 177Lu-gemcitabine was prepared with a radiochemical purity of 95.7% ± 0.3% under the optimized reaction conditions. The radiolabeled agent showed adequate in vitro stability in normal saline as well as in human blood serum. Preliminary biological studies revealed rapid and significant accumulation of the radiotracer in the tumorous lesions along with fast clearance of activity from blood and other vital organs/tissue. Although tumor uptake gradually reduced with time, tumor to blood and tumor to muscle ratios were improved due to the comparatively faster clearance of activity from the nontarget organs/tissue. CONCLUSION The present study demonstrates the preliminary potential of 177Lu-gemcitabine for targeted radiotherapy. However, further studies are warranted to assess its potential for radiotherapeutic applications.
Collapse
Affiliation(s)
- Subhajit Ghosh
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Mumbai, India .,2 Homi Bhabha National Institute , Anushaktinagar, Mumbai, India
| | - Tapas Das
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Mumbai, India .,2 Homi Bhabha National Institute , Anushaktinagar, Mumbai, India
| | - Haladhar D Sarma
- 3 Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre , Mumbai, India
| | - Ashutosh Dash
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Mumbai, India .,2 Homi Bhabha National Institute , Anushaktinagar, Mumbai, India
| |
Collapse
|
32
|
Steiner J, Leinwander P. Using the Health Physics Student Volunteer Program for a Research Project Sponsored by the Medical Section of the Health Physics Society. HEALTH PHYSICS 2017; 112:352-356. [PMID: 28234694 DOI: 10.1097/hp.0000000000000632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The Health Physics Society (HPS) Medical Health Physics Section (MHPS) received a request to research data on radiation safety guidance related to the death of patients who have recently received therapeutic doses of sealed or unsealed therapy sources. The MHPS elected to use student volunteers to perform this research. The purpose of this manuscript is to describe and provide a template for the process used by the MHPS to develop a student volunteer program. To implement the student volunteer program, the MHPS collaborated with the HPS Student Support Committee to develop a research proposal and a student volunteer selection process. The research proposal was sent to HPS student members in a call for volunteers. Two student volunteers were chosen based on predetermined qualifications to complete the work effort outlined in the research proposal. This project progressed with the use of milestones and culminated with the students presenting their findings at the annual HPS meeting. The students received HPS student travel awards to present at the conference. This work effort proved to be extremely beneficial to all parties involved.
Collapse
Affiliation(s)
- Joseph Steiner
- *Medical Physics Program, Department of Physics and Astronomy, Louisiana State University; †Environmental Health and Safety, University of California Davis Health System
| | | |
Collapse
|
33
|
Das T, Shinto A, Kamaleshwaran KK, Sarma HD, Mohammed SK, Mitra A, Lad S, Rajan M, Banerjee S. Radiochemical studies, pre-clinical investigation and preliminary clinical evaluation of 170 Tm-EDTMP prepared using in-house freeze-dried EDTMP kit. Appl Radiat Isot 2017; 122:7-13. [DOI: 10.1016/j.apradiso.2016.12.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/03/2016] [Accepted: 12/31/2016] [Indexed: 10/20/2022]
|
34
|
Radiopharmaceuticals for metastatic bone pain palliation: available options in the clinical domain and their comparisons. Clin Exp Metastasis 2016; 34:1-10. [DOI: 10.1007/s10585-016-9831-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
|
35
|
Compartmental and dosimetric studies of anti-CD20 labeled with 188Re. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-4703-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Pillai MRA, Nanabala R, Joy A, Sasikumar A, Russ Knapp FF. Radiolabeled enzyme inhibitors and binding agents targeting PSMA: Effective theranostic tools for imaging and therapy of prostate cancer. Nucl Med Biol 2016; 43:692-720. [PMID: 27589333 DOI: 10.1016/j.nucmedbio.2016.08.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 12/14/2022]
Abstract
Because of the broad incidence, morbidity and mortality associated with prostate-derived cancer, the development of more effective new technologies continues to be an important goal for the accurate detection and treatment of localized prostate cancer, lymphatic involvement and metastases. Prostate-specific membrane antigen (PSMA; Glycoprotein II) is expressed in high levels on prostate-derived cells and is an important target for visualization and treatment of prostate cancer. Radiolabeled peptide targeting technologies have rapidly evolved over the last decade and have focused on the successful development of radiolabeled small molecules that act as inhibitors to the binding of the N-acetyl-l-aspartyl-l-glutamate (NAAG) substrate to the PSMA molecule. A number of radiolabeled PSMA inhibitors have been described in the literature and labeled with SPECT, PET and therapeutic radionuclides. Clinical studies with these agents have demonstrated the improved potential of PSMA-targeted PET imaging agents to detect metastatic prostate cancer in comparison with conventional imaging technologies. Although many of these agents have been evaluated in humans, by far the most extensive clinical literature has described use of the 68Ga and 177Lu agents. This review describes the design and development of these agents, with a focus on the broad clinical introduction of PSMA targeting motifs labeled with 68Ga for PET-CT imaging and 177Lu for therapy. In particular, because of availability from the long-lived 68Ge (T1/2=270days)/68Ga (T1/2=68min) generator system and increasing availability of PET-CT, the 68Ga-labeled PSMA targeted agent is receiving widespread interest and is one of the fastest growing radiopharmaceuticals for PET-CT imaging.
Collapse
Affiliation(s)
| | - Raviteja Nanabala
- KIMS DDNMRC PET Scans, KIMS Hospital, Trivandrum, Kerala, India, 691601
| | - Ajith Joy
- Molecular Group of Companies, Puthuvype, Ernakulam, Kerala, 682508, India
| | - Arun Sasikumar
- KIMS DDNMRC PET Scans, KIMS Hospital, Trivandrum, Kerala, India, 691601
| | - Furn F Russ Knapp
- Emeritus, Medical Radioisotope Program, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 37830
| |
Collapse
|
37
|
Chakraborty S, Chakravarty R, Shetty P, Vimalnath KV, Sen IB, Dash A. Prospects of medium specific activity177Lu in targeted therapy of prostate cancer using177Lu-labeled PSMA inhibitor. J Labelled Comp Radiopharm 2016; 59:364-71. [DOI: 10.1002/jlcr.3414] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/21/2016] [Accepted: 05/15/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Sudipta Chakraborty
- Isotope Production and Applications Division; Bhabha Atomic Research Centre; Mumbai India
| | - Rubel Chakravarty
- Isotope Production and Applications Division; Bhabha Atomic Research Centre; Mumbai India
| | - Priyalata Shetty
- Isotope Production and Applications Division; Bhabha Atomic Research Centre; Mumbai India
| | - K. V. Vimalnath
- Isotope Production and Applications Division; Bhabha Atomic Research Centre; Mumbai India
| | - Ishita B. Sen
- Department of Nuclear Medicine; Fortis Memorial Research Institute; Gurgaon India
| | - Ashutosh Dash
- Isotope Production and Applications Division; Bhabha Atomic Research Centre; Mumbai India
| |
Collapse
|
38
|
Chakravarty R, Chakraborty S, Sarma HD, Nair KVV, Rajeswari A, Dash A. (90) Y/(177) Lu-labelled Cetuximab immunoconjugates: radiochemistry optimization to clinical dose formulation. J Labelled Comp Radiopharm 2016; 59:354-63. [PMID: 27264196 DOI: 10.1002/jlcr.3413] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/05/2016] [Accepted: 05/10/2016] [Indexed: 11/06/2022]
Abstract
Radiolabelled monoclonal antibodies (mAbs) are increasingly being utilized in cancer theranostics, which is a significant move toward tailored treatment for individual patients. Cetuximab is a recombinant, human-mouse chimeric IgG1 mAb that binds to the epidermal growth factor receptor with high affinity. We have optimized a protocol for formulation of clinically relevant doses (~2.22 GBq) of (90) Y-labelled Cetuximab and (177) Lu-labelled Cetuximab by conjugation of the mAb with a suitable bifunctional chelator, N-[(R)-2-amino-3-(paraisothiocyanato-phenyl)propyl]-trans-(S,S)-cyclohexane-1,2-diamine-N,N,N',N″,N″-pentaacetic acid (CHX-A″-DTPA). The radioimmunoconjugates demonstrated reasonably high specific activity (1.26 ± 0.27 GBq/mg for (90) Y-CHX-A″-DTPA-Cetuximab and 1.14 ± 0.15 GBq/mg for (177) Lu-CHX-A″-DTPA-Cetuximab), high radiochemical purity (>95%) and appreciable in vitro stability under physiological conditions. Preliminary biodistribution studies with both (90) Y-CHX-A″-DTPA-Cetuximab and (177) Lu-CHX-A″-DTPA-Cetuximab in Swiss mice bearing fibrosarcoma tumours demonstrated significant tumour uptake at 24-h post-injection (p.i.) (~16%ID/g) with good tumour-to-background contrast. The results of the biodistribution studies were further corroborated by ex vivo Cerenkov luminescence imaging after administration of (90) Y-CHX-A″-DTPA-Cetuximab in tumour-bearing mice. The tumour uptake at 24 h p.i. was significantly reduced with excess unlabelled Cetuximab, suggesting that the uptake was receptor mediated. The results of this study hold promise, and this strategy should be further explored for clinical translation.
Collapse
Affiliation(s)
- Rubel Chakravarty
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Sudipta Chakraborty
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - K V Vimalnath Nair
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Ardhi Rajeswari
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Ashutosh Dash
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| |
Collapse
|
39
|
Palliative treatment of metastatic bone pain with radiopharmaceuticals: A perspective beyond Strontium-89 and Samarium-153. Appl Radiat Isot 2016; 110:87-99. [DOI: 10.1016/j.apradiso.2016.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/04/2015] [Accepted: 01/04/2016] [Indexed: 11/22/2022]
|
40
|
Clinical translation of (177)Lu-labeled PSMA-617: Initial experience in prostate cancer patients. Nucl Med Biol 2016; 43:296-302. [PMID: 27150032 DOI: 10.1016/j.nucmedbio.2016.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 11/23/2022]
Abstract
OBJECTIVE PSMA-617 is reported to exhibit very high binding affinity towards PSMA receptors, over-expressed on prostate cancer cells and therefore, (177)Lu-labeled PSMA-617 is expected to play a pivotal role in the clinical management of patients suffering from ca prostate. The objective of the present study is to formulate the patient dose of (177)Lu-labeled PSMA-617, pre-clinical studies in animal model and clinical investigation in limited number of prostate cancer patients as well evaluating its potential for theranostic application. EXPERIMENTAL Patient dose of 7.4 GBq (200 mCi) of (177)Lu-labeled PSMA-617 was prepared by incubating 100 μg of PSMA-617 with (177)LuCl3 at 95 °C for 15 minutes. Radiochemical purity as well as in-vitro stability of the preparation was determined by PC and HPLC methods. The pharmacokinetic behavior and in-vivo distribution of the agent were studied by carrying out biodistribution studies in normal male Wistar rats. Preliminary clinical investigation was performed in 7 patients suffering from prostate cancer. RESULTS The complex was prepared with >98% radiochemical purity under the optimized reaction protocols and the preparation exhibited adequate in-vitro stability. Biodistribution studies revealed no significant uptake in any of the major organ/tissue along with major clearance through renal pathway. Clinical studies showed similar distribution in lesions and physiologic areas of uptake as seen in diagnostic (68)Ga-PSMA-11 PET scans performed earlier. CONCLUSION Preliminary clinical studies indicated the promising potential of the agent for theranostic applications. However, further investigations in large pool of patients are warranted to establish the theranostic potential of the agent.
Collapse
|
41
|
Yeong CH, Cheng MH, Ng KH. Therapeutic radionuclides in nuclear medicine: current and future prospects. J Zhejiang Univ Sci B 2015; 15:845-63. [PMID: 25294374 DOI: 10.1631/jzus.b1400131] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The potential use of radionuclides in therapy has been recognized for many decades. A number of radionuclides, such as iodine-131 ((131)I), phosphorous-32 ((32)P), strontium-90 ((90)Sr), and yttrium-90 ((90)Y), have been used successfully for the treatment of many benign and malignant disorders. Recently, the rapid growth of this branch of nuclear medicine has been stimulated by the introduction of a number of new radionuclides and radiopharmaceuticals for the treatment of metastatic bone pain and neuroendocrine and other malignant or non-malignant tumours. Today, the field of radionuclide therapy is enjoying an exciting phase and is poised for greater growth and development in the coming years. For example, in Asia, the high prevalence of thyroid and liver diseases has prompted many novel developments and clinical trials using targeted radionuclide therapy. This paper reviews the characteristics and clinical applications of the commonly available therapeutic radionuclides, as well as the problems and issues involved in translating novel radionuclides into clinical therapies.
Collapse
Affiliation(s)
- Chai-Hong Yeong
- Department of Biomedical Imaging & University of Malaya Research Imaging Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; Department of Nuclear Medicine, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | | | | |
Collapse
|
42
|
Zhao L, Zhu J, Cheng Y, Xiong Z, Tang Y, Guo L, Shi X, Zhao J. Chlorotoxin-Conjugated Multifunctional Dendrimers Labeled with Radionuclide 131I for Single Photon Emission Computed Tomography Imaging and Radiotherapy of Gliomas. ACS APPLIED MATERIALS & INTERFACES 2015; 7:19798-19808. [PMID: 26291070 DOI: 10.1021/acsami.5b05836] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chlorotoxin-conjugated multifunctional dendrimers labeled with radionuclide 131I were synthesized and utilized for targeted single photon emission computed tomography (SPECT) imaging and radiotherapy of cancer. In this study, generation five amine-terminated poly(amidoamine) dendrimers were used as a platform to be sequentially conjugated with polyethylene glycol (PEG), targeting agent chlorotoxin (CTX), and 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO). This was followed by acetylation of the remaining dendrimer terminal amines and radiolabeling with 131I to form the targeted theranostic dendrimeric nanoplatform. We show that the dendrimer platform possessing approximately 7.7 CTX and 21.1 HPAO moieties on each dendrimer displays excellent cytocompatibility in a given concentration range (0-20 μM) and can specifically target cancer cells overexpressing matrix metallopeptidase 2 (MMP2) due to the attached CTX. With the attached HPAO moiety having the phenol group, the dendrimer platform can be effectively labeled with radioactive 131I with good stability and high radiochemical purity. Importantly, the 131I labeling renders the dendrimer platform with an ability to be used for targeted SPECT imaging and radiotherapy of an MMP2-overexpressing glioma model in vivo. The developed radiolabeled multifunctional dendrimeric nanoplatform may hold great promise to be used for targeted theranostics of human gliomas.
Collapse
Affiliation(s)
- Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, People's Republic of China
| | - Jingyi Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, People's Republic of China
| | - Yongjun Cheng
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, People's Republic of China
| | - Zhijuan Xiong
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Yueqin Tang
- Experiment Center, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, People's Republic of China
| | - Lilei Guo
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, People's Republic of China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, People's Republic of China
| |
Collapse
|
43
|
Guleria M, Das T, Sarma HD, Banerjee S. Synthesis and bioevaluation of a 177Lu-labeled unsymmetrical cationic porphyrin derivative as a tumor targeting agent. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-4276-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Shinto AS, Kamaleshwaran KK, Chakraborty S, Vyshakh K, Thirumalaisamy SG, Karthik S, Nagaprabhu VN, Vimalnath KV, Das T, Banerjee S. Radiosynovectomy of Painful Synovitis of Knee Joints Due to Rheumatoid Arthritis by Intra-Articular Administration of (177)Lu-Labeled Hydroxyapatite Particulates: First Human Study and Initial Indian Experience. World J Nucl Med 2015; 14:81-8. [PMID: 26097417 PMCID: PMC4455177 DOI: 10.4103/1450-1147.153908] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The aim of this study is to assess the effectiveness of Radiosynovectomy (RSV) using 177Lu-labeled hydroxyapatite (177Lu-HA) in the treatment of painful synovitis and recurrent joint effusion of knee joints in rheumatoid arthritis (RA). Ten patients, diagnosed with RA and suffering from chronic painful resistant synovitis of the knee joints were referred for RSV. The joints were treated with 333 ± 46 MBq of 177Lu-HA particles administered intra-articularly. Monitoring of activity distribution was performed by static imaging of knee joint and whole-body gamma imaging. The patients were evaluated clinically before RSV and at 6 months after the treatment by considering the pain improvement from baseline values in terms of a 100-point visual analog scale (VAS), the improvement of knee flexibility and the pain remission during the night. RSV response was classified as poor (VAS < 25), fair (VAS ≥ 25-50), good (VAS ≥ 50-75) and excellent (VAS ≥ 75), with excellent and good results considered to be success, while fair and poor as failure and also by range of motion. Three phase bone scan (BS) was repeated after 6 months and changes in the second phase of BS3 were assessed visually, using a four-degree scale and in the third phase, semiquantitatively with J/B ratio to see the response. Biochemical analysis of C-reactive protein (CRP) and fibrinogen was repeated after 48 h, 4 and 24 weeks. In all 10 patients, no leakage of administered activity to nontarget organs was visible in the whole-body scan. Static scans of the joint at 1 month revealed complete retention of 177Lu-HA in the joints. All patients showed decreased joint swelling and pains, resulting in increased joint motion after 6 months. The percentage of VAS improvement from baseline values was 79.5 ± 20.0% 6 months after RS and found to be significantly related to patients' age (P = 0.01) and duration of the disease (P = 0.03). Knees with Steinbrocker's Grades 0 and I responded better than those with more advanced changes (Steinbrocker's Grades III and IV) in terms of VAS improvement (75% vs. 45.8%) (P < 0.001). The overall success rate (VAS ≥ 50) was 80%. Remission of pain during the night was achieved in 100%, and knee flexibility was improved in 80%. The changes in the blood pool phase before RSV were 3.2 ± 0.7 and after the therapy 1.4 ± 0.7 (P < 0.001). The J/B ratio was: Before RSV 2.4 ± 0.3; after treatment 1.0 ± 0.2 (P < 0.05). CRP concentration 4 and 24 weeks after the therapy was significantly lower than before treatment. The fibrinogen level was not different before and after RSV. RSV side-effects assessed for the whole follow-up period were minor and not significant. RSV with 177Lu-HA was safe and effective in patients with knee joint chronic painful synovitis of rheumatoid origin. It exhibited significant therapeutic effect after 6 months follow-up period with no significant side-effects. The preliminary investigations reveal that 177Lu-labeled HA particles hold considerable promise as a cost-effective agent for RSV. More elaborate and controlled clinical trials are necessary to evaluate the therapeutic efficacy and safety of the agent compared with the treatment with other radionuclides and glucocorticosteroids.
Collapse
Affiliation(s)
- Ajit S Shinto
- Department of Nuclear Medicine, KMCH, Coimbatore, Tamil Nadu, India
| | | | - Sudipta Chakraborty
- Department of Isotopes Applications and Radiopharmaceuticals Division, BARC, Mumbai, Maharashtra, India
| | - K Vyshakh
- Department of Nuclear Medicine, KMCH, Coimbatore, Tamil Nadu, India
| | | | - S Karthik
- Department of S.K. Global Ortho and Trauma Centre, Coimbatore, Tamil Nadu, India
| | - V N Nagaprabhu
- Department of Rheumatology, PSGIMSR, Coimbatore, Tamil Nadu, India
| | - K V Vimalnath
- Department of Isotopes Applications and Radiopharmaceuticals Division, BARC, Mumbai, Maharashtra, India
| | - Tapas Das
- Department of Isotopes Applications and Radiopharmaceuticals Division, BARC, Mumbai, Maharashtra, India
| | - Sharmila Banerjee
- Department of Isotopes Applications and Radiopharmaceuticals Division, BARC, Mumbai, Maharashtra, India
| |
Collapse
|
45
|
Dash A, Chakraborty S, Pillai MRA, Knapp FFR. Peptide receptor radionuclide therapy: an overview. Cancer Biother Radiopharm 2015; 30:47-71. [PMID: 25710506 DOI: 10.1089/cbr.2014.1741] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) is a site-directed targeted therapeutic strategy that specifically uses radiolabeled peptides as biological targeting vectors designed to deliver cytotoxic levels of radiation dose to cancer cells, which overexpress specific receptors. Interest in PRRT has steadily grown because of the advantages of targeting cellular receptors in vivo with high sensitivity as well as specificity and treatment at the molecular level. Recent advances in molecular biology have not only stimulated advances in PRRT in a sustainable manner but have also pushed the field significantly forward to several unexplored possibilities. Recent decades have witnessed unprecedented endeavors for developing radiolabeled receptor-binding somatostatin analogs for the treatment of neuroendocrine tumors, which have played an important role in the evolution of PRRT and paved the way for the development of other receptor-targeting peptides. Several peptides targeting a variety of receptors have been identified, demonstrating their potential to catalyze breakthroughs in PRRT. In this review, the authors discuss several of these peptides and their analogs with regard to their applications and potential in radionuclide therapy. The advancement in the availability of combinatorial peptide libraries for peptide designing and screening provides the capability of regulating immunogenicity and chemical manipulability. Moreover, the availability of a wide range of bifunctional chelating agents opens up the scope of convenient radiolabeling. For these reasons, it would be possible to envision a future where the scope of PRRT can be tailored for patient-specific application. While PRRT lies at the interface between many disciplines, this technology is inextricably linked to the availability of the therapeutic radionuclides of required quality and activity levels and hence their production is also reviewed.
Collapse
Affiliation(s)
- Ashutosh Dash
- 1 Isotope Production and Applications Division, Bhabha Atomic Research Centre , Mumbai, India
| | | | | | | |
Collapse
|
46
|
Das T, Sarma HD, Shinto A, Kamaleshwaran KK, Banerjee S. Formulation, Preclinical Evaluation, and Preliminary Clinical Investigation of an In-House Freeze-Dried EDTMP Kit Suitable for the Preparation of 177Lu-EDTMP. Cancer Biother Radiopharm 2014; 29:412-21. [DOI: 10.1089/cbr.2014.1664] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tapas Das
- Radiopharmaceuticals Chemistry Section, Radiochemistry and Isotope Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Haladhar D. Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ajit Shinto
- Department of Nuclear Medicine and PET, Kovai Medical Centre and Hospital, Coimbatore, India
| | | | - Sharmila Banerjee
- Radiopharmaceuticals Chemistry Section, Radiochemistry and Isotope Group, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
47
|
Das T, Banerjee S. Formulation of patient dose of ¹⁷⁷Lu-DOTA-TATE in hospital radiopharmacy in India: preparation using in situ methodology vis-a-vis freeze-dried kit. Cancer Biother Radiopharm 2014; 29:301-2. [PMID: 25203147 DOI: 10.1089/cbr.2014.1646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Tapas Das
- Radiopharmaceuticals Chemistry Section, Radiochemistry and Isotope Group, Bhabha Atomic Research Centre , Trombay, Mumbai, India
| | | |
Collapse
|
48
|
Aspects of yield and specific activity of (n,γ) produced 177Lu used in targeted radionuclide therapy. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3240-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
On the practical aspects of large-scale production of 177Lu for peptide receptor radionuclide therapy using direct neutron activation of 176Lu in a medium flux research reactor: the Indian experience. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3169-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Elgqvist J, Frost S, Pouget JP, Albertsson P. The potential and hurdles of targeted alpha therapy - clinical trials and beyond. Front Oncol 2014; 3:324. [PMID: 24459634 PMCID: PMC3890691 DOI: 10.3389/fonc.2013.00324] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 12/19/2013] [Indexed: 01/23/2023] Open
Abstract
This article presents a general discussion on what has been achieved so far and on the possible future developments of targeted alpha (α)-particle therapy (TAT). Clinical applications and potential benefits of TAT are addressed as well as the drawbacks, such as the limited availability of relevant radionuclides. Alpha-particles have a particular advantage in targeted therapy because of their high potency and specificity. These features are due to their densely ionizing track structure and short path length. The most important consequence, and the major difference compared with the more widely used β−-particle emitters, is that single targeted cancer cells can be killed by self-irradiation with α-particles. Several clinical trials on TAT have been reported, completed, or are on-going: four using 213Bi, two with 211At, two with 225Ac, and one with 212Pb/212Bi. Important and conceptual proof-of-principle of the therapeutic advantages of α-particle therapy has come from clinical studies with 223Ra-dichloride therapy, showing clear benefits in castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Jörgen Elgqvist
- IRCM, Institut de Recherche en Cancérologie de Montpellier , Montpellier , France ; INSERM, U896 , Montpellier , France ; Université Montpellier 1 , Montpellier , France ; Institut Régional de Cancérologie de Montpellier , Montpellier , France
| | - Sofia Frost
- Fred Hutchinson Cancer Research Center , Seattle, WA , USA
| | - Jean-Pierre Pouget
- IRCM, Institut de Recherche en Cancérologie de Montpellier , Montpellier , France ; INSERM, U896 , Montpellier , France ; Université Montpellier 1 , Montpellier , France ; Institut Régional de Cancérologie de Montpellier , Montpellier , France
| | - Per Albertsson
- Department of Oncology, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|