1
|
Xie W, Liu H, Lin Q, Lian L, Liang B. Association of non-high-density lipoprotein to high-density lipoprotein ratio (NHHR) with prognosis in cancer survivors: a population-based study in the United States. Front Nutr 2024; 11:1430835. [PMID: 39296499 PMCID: PMC11409846 DOI: 10.3389/fnut.2024.1430835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/08/2024] [Indexed: 09/21/2024] Open
Abstract
Background Patients with cancer frequently exhibit alterations in serum lipid profiles associated with chemotherapy. It has been reported that lipid distribution in cancer correlates with tumor progression. However, the prognostic value of serum lipid biomarkers in cancer survivors remains a subject of debate. We aim to explore the relationship between non-high-density lipoprotein to high-density lipoprotein ratio (NHHR) and the prognosis of cancer survivors. Methods In this study, we analyzed cancer survivor data from the National Health and Nutrition Examination Survey (NHANES) from 1999-2000 to 2017-2018. The study included prospective cohorts that included total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-C) levels as well as mortality data. Weighted multivariate cox regression models, competing risk models and restricted cubic spline (RCS) models were applied to investigate the association between NHHR and cancer survival. Subgroup and sensitivity analyses were performed to test the robustness of the results. Results This study involved 4,177 participants, representing about 19.6 million U.S. adults. After adjustment for various factors, the lower NHHR group (≤1.64) had a 31% (HR 1.31; 95% CI [1.11,1.54], p = 0.001) higher risk of death from any cause compared to the higher NHHR group. The link between NHHR and mortality remained stable across most subgroups, with notable interactions for smoking (p = 0.006) and diabetes status (p = 0.046). A J-shaped pattern was observed between NHHR and all-cause mortality, significantly among obesity-related cancer survivors (overall association test p-value = 0.0068, non-linear association test p-value = 0.0016). However, a non-significant negative correlation was observed for cancer-specific mortality (overall association test p-value = 0.48, non-linear association test p-value = 0.66). Considering the competitive risk of heart disease and cancer-specific mortality, there is no difference between the high and low NHHR groups, while the low NHHR group showed an increased risk of non-specific causes of death (p < 0.001). Conclusion The results of this study suggest that NHHR is an important indicator that is strongly associated with all-cause mortality in cancer survivors, and that this relationship may be influenced by the interaction of diabetes and smoking status. This finding may provide important information for future research and patient management.
Collapse
Affiliation(s)
- Wenxia Xie
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huizhuo Liu
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiaoxin Lin
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liyou Lian
- Department of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bin Liang
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Izuegbuna OO, Olawumi HO, Agodirin OS, Olatoke SA. Lipid Profile and Atherogenic Risk Assessment in Nigerian Breast Cancer Patients - A Cross-Sectional Study. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:582-591. [PMID: 38805002 DOI: 10.1080/27697061.2024.2353289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/30/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND The lipid profile and atherogenic risk indices in Nigerian breast cancer patients are largely unknown. This study evaluated the lipid profile and atherogenic risk indices of breast cancer patients in Nigeria. METHODS This study involved 45 primarily diagnosed breast cancer patients and 50 normal control subjects. Total cholesterol, triglyceride, and High-density lipoprotein cholesterol (HDL-C) were measured. Low-density lipoprotein cholesterol (LDL-C) was calculated according to Friedewald formula. Atherogenic index of plasma (AIP), Atherogenic coefficient (AC), TC/HDL-C (Castelli I) and LDL-C/HDL-C (Castelli II) risk indices were all calculated. The Framingham risk assessment was calculated and categorized. RESULTS The study group had significantly higher triglycerides (TG), and atherogenic indices than the control group (p < 0.001), while HDL-Cholesterol (HDL-C) was significantly lower in the study group (p < 0.001). Total cholesterol and LDL-Cholesterol (LDL-C) had a significant positive correlation with age (r = 0.283, p < 0.018; r = 0.272, p < 0.023); TG was significantly positively correlated with systolic and diastolic blood pressure (r = 0.320. p < 0.007; r = 0.334, p < 0.005); HDL-C had a significant negative correlation with BMI, systolic and diastolic blood pressure (r = -0.252, p < 0.035; r = -0.29, p < 0.015; r = -0.329, p < 0.005). The lipid ratios (TC/HDL-C, LDL-C/HDL-C) were significantly positively correlated with body mass index (BMI), systolic and diastolic blood pressure. The Framingham Risk Score showed that only 2 subjects in the study group (4.4%) were at a high risk of having a cardiovascular event. CONCLUSION Breast cancer patients have a higher prevalence of dyslipidaemia, and cardiovascular risk than the normal population.
Collapse
Affiliation(s)
- Ogochukwu O Izuegbuna
- Department of Haematology and Blood Transfusion, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Hannah O Olawumi
- Department of Haematology and Blood Transfusion, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Olayide S Agodirin
- Department of Surgery, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Samuel A Olatoke
- Department of Surgery, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| |
Collapse
|
3
|
Cui J, Zhang R, Li L. The relationship between lipoproteins and the risk of esophageal cancer: a Mendelian randomization study. Front Nutr 2024; 11:1432289. [PMID: 39246397 PMCID: PMC11377315 DOI: 10.3389/fnut.2024.1432289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024] Open
Abstract
Backgrounds and aims Esophageal cancer (EC) causes approximately 508,000 deaths annually, making it a significant cause of cancer-related mortality. While previous studies have suggested an association between lipoprotein levels and EC risk, the causal relationship remains unexplored. This study aims to investigate the causal link between lipoproteins and EC using Mendelian randomization (MR). Methods and findings This study employed MR to determine the causal effect between lipoproteins and EC risk, with body mass index (BMI) used as a confounder in multivariable MR (MVMR) analysis. Sensitivity analyses were conducted to assess the reliability of the results. Univariable MR (UVMR) analysis indicated that low-density lipoprotein (LDL) had a significant inverse association with EC risk (p = 0.03; OR = 0.89; 95%CI, 0.73-0.98), while high-density lipoprotein (HDL) and triglycerides showed no significant association. In the synthesis of findings across diverse datasets, LDL maintained a notable inverse association with the likelihood of EC (p < 0.001; OR = 0.89; 95%CI, 0.84-0.94). Triglyceride levels indicated a potential trend toward an adverse correlation with EC susceptibility (p = 0.03; OR = -0.94; 95%CI, 0.89-0.99), whereas HDL levels did not establish a definitive causal link with the occurrence of EC. MVMR analysis, adjusting for BMI, confirmed these findings. Conclusion LDL exhibits a clear inverse causal relationship with EC risk, regardless of BMI adjustment. No causal effects were observed for HDL in relation to EC risk. Meanwhile, there is a small but statistically significant causal relationship between triglycerides and EC risk.
Collapse
Affiliation(s)
- Jiale Cui
- School of Basic Medical of Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rong Zhang
- The Gynecology and Obstetrics Department, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Lei Li
- The Radiotherapy Department, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
4
|
Szász I, Koroknai V, Várvölgyi T, Pál L, Szűcs S, Pikó P, Emri G, Janka E, Szabó IL, Ádány R, Balázs M. Identification of Plasma Lipid Alterations Associated with Melanoma Metastasis. Int J Mol Sci 2024; 25:4251. [PMID: 38673837 PMCID: PMC11050015 DOI: 10.3390/ijms25084251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to apply a state-of-the-art quantitative lipidomic profiling platform to uncover lipid alterations predictive of melanoma progression. Our study included 151 melanoma patients; of these, 83 were without metastasis and 68 with metastases. Plasma samples were analyzed using a targeted Lipidyzer™ platform, covering 13 lipid classes and over 1100 lipid species. Following quality control filters, 802 lipid species were included in the subsequent analyses. Total plasma lipid contents were significantly reduced in patients with metastasis. Specifically, levels of two out of the thirteen lipid classes (free fatty acids (FFAs) and lactosylceramides (LCERs)) were significantly decreased in patients with metastasis. Three lipids (CE(12:0), FFA(24:1), and TAG47:2-FA16:1) were identified as more effective predictors of melanoma metastasis than the well-known markers LDH and S100B. Furthermore, the predictive value substantially improved upon combining the lipid markers. We observed an increase in the cumulative levels of five lysophosphatidylcholines (LPC(16:0); LPC(18:0); LPC(18:1); LPC(18:2); LPC(20:4)), each individually associated with an elevated risk of lymph node metastasis but not cutaneous or distant metastasis. Additionally, seventeen lipid molecules were linked to patient survival, four of which (CE(12:0), CE(14:0), CE(15:0), SM(14:0)) overlapped with the lipid panel predicting metastasis. This study represents the first comprehensive investigation of the plasma lipidome of melanoma patients to date. Our findings suggest that plasma lipid profiles may serve as important biomarkers for predicting clinical outcomes of melanoma patients, including the presence of metastasis, and may also serve as indicators of patient survival.
Collapse
Affiliation(s)
- István Szász
- HUN-REN-UD Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (I.S.); (R.Á.)
| | - Viktória Koroknai
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| | - Tünde Várvölgyi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (G.E.); (E.J.); (I.L.S.)
| | - László Pál
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| | - Sándor Szűcs
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| | - Péter Pikó
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (G.E.); (E.J.); (I.L.S.)
| | - Eszter Janka
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (G.E.); (E.J.); (I.L.S.)
| | - Imre Lőrinc Szabó
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (G.E.); (E.J.); (I.L.S.)
| | - Róza Ádány
- HUN-REN-UD Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (I.S.); (R.Á.)
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| | - Margit Balázs
- HUN-REN-UD Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (I.S.); (R.Á.)
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| |
Collapse
|
5
|
Teng T, Shi H, Fan Y, Guo P, Zhang J, Qiu X, Feng J, Huang H. Metabolic responses to the occurrence and chemotherapy of pancreatic cancer: biomarker identification and prognosis prediction. Sci Rep 2024; 14:6938. [PMID: 38521793 PMCID: PMC10960848 DOI: 10.1038/s41598-024-56737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
As the most malignant tumor, the prognosis of pancreatic cancer is not ideal even in the small number of patients who can undergo radical surgery. As a highly heterogeneous tumor, chemotherapy resistance is a major factor leading to decreased efficacy and postoperative recurrence of pancreatic cancer. In this study, nuclear magnetic resonance (NMR)-based metabolomics was applied to identify serum metabolic characteristics of pancreatic ductal adenocarcinoma (PDAC) and screen the potential biomarkers for its diagnosis. Metabolic changes of patients with different CA19-9 levels during postoperative chemotherapy were also monitored and compared to identify the differential metabolites that may affect the efficacy of chemotherapy. Finally, 19 potential serum biomarkers were screened to serve the diagnosis of PDAC, and significant metabolic differences between the two CA19-9 stratifications of PDAC were involved in energy metabolism, lipid metabolism, amino acid metabolism, and citric acid metabolism. Enrichment analysis of metabolic pathways revealed six shared pathways by PDAC and chemotherapy such as alanine, aspartate and glutamate metabolism, arginine biosynthesis, glutamine and glutamate metabolism, citrate cycle, pyruvate metabolism, and glycogolysis/gluconeogeneis. The similarity between the metabolic characteristics of PDAC and the metabolic responses to chemotherapy provided a reference for clinical prediction of benefits of postoperative chemotherapy in PDAC patients.
Collapse
Affiliation(s)
- Tianhong Teng
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Han Shi
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yanying Fan
- Fuzhou Children Hospital of Fujian Province, Fuzhou, Fujian, China
| | - Pengfei Guo
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Jin Zhang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xinyu Qiu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China.
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
6
|
Sabnis N, Raut S, Nagarajan B, Kapic A, Dossou AS, Lothstein L, Fudala R, Bunnell BA, Lacko AG. A Spontaneous Assembling Lipopeptide Nanoconjugate Transporting the Anthracycline Drug N-Benzyladriamycin-14-valerate for Personalized Therapy of Ewing Sarcoma. Bioconjug Chem 2024; 35:187-202. [PMID: 38318778 DOI: 10.1021/acs.bioconjchem.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
To meet the current need for a tumor-selective, targeted therapy regimen associated with reduced toxicity, our laboratory has developed a spontaneously assembled nanostructure that resembles high-density lipoproteins (HDLs). These myristoyl-5A (MYR-5A) nanotransporters are designed to safely transport lipophilic pharmaceuticals, including a novel anthracycline drug (N-benzyladriamycin-14-valerate (AD198)). This formulation has been found to enhance the therapeutic efficacy and reduced toxicity of drugs in preclinical studies of 2D and 3D models of Ewing sarcoma (EWS) and cardiomyocytes. Our findings indicate that the MYR-5A/AD198 nanocomplex delivers its payload selectively to cancer cells via the scavenger receptor type B1 (SR-B1), thus providing a solid proof of concept for the development of an improved and highly effective, potentially personalized therapy for EWS while protecting against treatment-associated cardiotoxicity.
Collapse
Affiliation(s)
- Nirupama Sabnis
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Sangram Raut
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Bhavani Nagarajan
- North Texas Research Eye Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Ammar Kapic
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Akpedje Serena Dossou
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Leonard Lothstein
- Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee 38103, United States
| | - Rafal Fudala
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Bruce A Bunnell
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Andras G Lacko
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| |
Collapse
|
7
|
Zvintzou E, Xepapadaki E, Skroubis G, Mparnia V, Giannatou K, Benabdellah K, Kypreos KE. High-Density Lipoprotein in Metabolic Disorders and Beyond: An Exciting New World Full of Challenges and Opportunities. Pharmaceuticals (Basel) 2023; 16:855. [PMID: 37375802 DOI: 10.3390/ph16060855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
High-density lipoprotein (HDL) is an enigmatic member of the plasma lipid and lipoprotein transport system, best known for its ability to promote the reverse cholesterol efflux and the unloading of excess cholesterol from peripheral tissues. More recently, data in experimental mice and humans suggest that HDL may play important novel roles in other physiological processes associated with various metabolic disorders. Important parameters in the HDL functions are its apolipoprotein and lipid content, further reinforcing the principle that HDL structure defines its functionality. Thus, based on current evidence, low levels of HDL-cholesterol (HDL-C) or dysfunctional HDL particles contribute to the development of metabolic diseases such as morbid obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease. Interestingly, low levels of HDL-C and dysfunctional HDL particles are observed in patients with multiple myeloma and other types of cancer. Therefore, adjusting HDL-C levels within the optimal range and improving HDL particle functionality is expected to benefit such pathological conditions. The failure of previous clinical trials testing various HDL-C-raising pharmaceuticals does not preclude a significant role for HDL in the treatment of atherosclerosis and related metabolic disorders. Those trials were designed on the principle of "the more the better", ignoring the U-shape relationship between HDL-C levels and morbidity and mortality. Thus, many of these pharmaceuticals should be retested in appropriately designed clinical trials. Novel gene-editing-based pharmaceuticals aiming at altering the apolipoprotein composition of HDL are expected to revolutionize the treatment strategies, improving the functionality of dysfunctional HDL.
Collapse
Affiliation(s)
- Evangelia Zvintzou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Eva Xepapadaki
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - George Skroubis
- Morbid Obesity Unit, Department of Surgery, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Victoria Mparnia
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Katerina Giannatou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Karim Benabdellah
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Avda. de la Ilustración 114, 18016 Granada, Spain
| | - Kyriakos E Kypreos
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| |
Collapse
|
8
|
de Lima-Souza RA, Scarini JF, Lavareze L, Emerick C, Crescencio LR, Domingues RR, Paes Leme AF, Mariz BALA, Bastos DC, Machado RA, Tincani AJ, Del Negro A, Chone CT, Kowalski LP, Egal ESA, Altemani A, Mariano FV. Discovery proteomics reveals potential protein signature associated with malignant phenotype acquisition in pleomorphic adenoma. Oral Dis 2023; 29:1017-1027. [PMID: 34902207 DOI: 10.1111/odi.14102] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To analyze the proteomic profile of salivary pleomorphic adenoma (PA) and carcinoma ex pleomorphic adenoma (CXPA) samples and correlate them with the malignant transformation of the PA. MATERIALS AND METHODS Thirty samples (10 PA, 16 CXPA, and 4 residual PA) were microdissected and submitted to liquid chromatography-tandem mass spectrometry (LC-MS/MS). The proteomic data and protein identification were analyzed through LC-MS/MS spectra using the MaxQuant software. RESULTS The proteomic analysis identified and quantified a total of 240 proteins in which 135 were found in PA, residual PA, and CXPA. The shared proteins were divided into six subgroups, and the proteins that showed statistically significant differences (p > 0.05) and fold-change > or <2.5 in one subgroup to another subgroup were included. Seven proteins (Apolipoprotein A-I-APOA1, haptoglobin-HP, protein of the synaptonemal complex 1-SYCP1, anion transport protein of band 3-SLC4A1, subunit μ1 of AP-1 complex-AP1M1, beta subunit of hemoglobin-HBB, and dermcidin-DCD) were classified as potential protein signatures, being HP, AP1M1, and HBB with higher abundance for PA to residual PA, APOA1 with higher abundance for PA to CXPA, SLC4A1 with lower abundance in the PA to CXPA, SYCP1with lower abundance for residual PA to CXPA, and DCD with higher abundance in the CXPA with epithelial differentiation to myoepithelial differentiation. CONCLUSIONS In this work, we demonstrated the comparative proteomic profiling of PA, residual PA, and CXPA, and seven were proposed as protein signatures, some of which may be associated with the malignant phenotype acquisition.
Collapse
Affiliation(s)
- Reydson Alcides de Lima-Souza
- Oral Diagnosis Department, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Brazil
- Pathology Department, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - João Figueira Scarini
- Oral Diagnosis Department, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Brazil
- Pathology Department, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Luccas Lavareze
- Oral Diagnosis Department, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Brazil
- Pathology Department, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Carolina Emerick
- Oral Diagnosis Department, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Brazil
- Pathology Department, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Lívia Ramalho Crescencio
- Oral Diagnosis Department, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Brazil
- Pathology Department, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Romênia Ramos Domingues
- Mass Spectrometry Laboratory, Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Adriana Franco Paes Leme
- Mass Spectrometry Laboratory, Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | | | - Débora Campanella Bastos
- Morphology Department, Piracicaba Dental School, State University of Campinas, (UNICAMP), Piracicaba, Brazil
| | - Renato Assis Machado
- Oral Diagnosis Department, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Brazil
- Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo (HRAC/USP), Bauru, Brazil
| | - Alfio José Tincani
- Surgery Department, Head and Neck Surgery, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - André Del Negro
- Surgery Department, Head and Neck Surgery, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Carlos Takahiro Chone
- Ophthalmology and Otorhinolaryngology Department, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Luiz Paulo Kowalski
- Head and Neck Surgery and Otorhinolaryngology Department, Hospital do Câncer A.C. Camargo, São Paulo, Brazil
| | - Erika Said Abu Egal
- Pathology Department, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
- Pathology Department, School of Medicine, University of Utah (UU), Salt Lake City, Utah, USA
| | - Albina Altemani
- Pathology Department, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Fernanda Viviane Mariano
- Pathology Department, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
9
|
Huang Y, Xiao X, Sadeghi F, Feychting M, Hammar N, Fang F, Zhang Z, Liu Q. Blood metabolic biomarkers and the risk of head and neck cancer: An epidemiological study in the Swedish AMORIS Cohort. Cancer Lett 2023; 557:216091. [PMID: 36764441 DOI: 10.1016/j.canlet.2023.216091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Multiple studies have investigated the role of carbohydrate and lipid metabolism on the risk of head and neck cancer (HNC), with however conflicting results. We performed a study of 561,388 individuals of the Swedish AMORIS Cohort with blood test results on nine biomarkers for carbohydrate, lipid, and apolipoprotein metabolism during 1985-1996. We examined the associations of these biomarkers with the future risk of HNC through 2020 and demonstrated the temporal changes of these biomarkers during the decades before cancer diagnosis. We found that there was a positive association between blood level of glucose, total cholesterol (TC), triglycerides (TG), and Apoprotein A-I (ApoA-I) and the risk of HNC. Per standard deviation increase, the hazard ratio (HR) was 1.05 (95% confidence interval [CI] 1.02-1.09) for glucose, 1.09 (95% CI 1.05-1.13) for TC, 1.13 (95% CI 1.08-1.17) for TG, and 1.11 (95% CI 1.04-1.19) for ApoA-I. The associations were primarily noted for squamous cell carcinoma but not adenocarcinoma. Compared to controls, patients with HNC, primarily squamous cell carcinoma, showed constantly higher levels of glucose, TC, TG, and ApoA-I during the 30 years before diagnosis. In conclusion, findings of the study add new and high-quality evidence to the early involvement of carbohydrate and lipid metabolism in the oncogenesis of human cancer.
Collapse
Affiliation(s)
- Yi Huang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, China
| | - Fatemeh Sadeghi
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Feychting
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Niklas Hammar
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhe Zhang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, China.
| | - Qianwei Liu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Dai L, Li S, Hao Q, Zhou R, Zhou H, Lei W, Kang H, Wu H, Li Y, Ma X. Low-density lipoprotein: a versatile nanoscale platform for targeted delivery. NANOSCALE ADVANCES 2023; 5:1011-1022. [PMID: 36798503 PMCID: PMC9926902 DOI: 10.1039/d2na00883a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Low-density lipoprotein (LDL) is a small lipoprotein that plays a vital role in controlling lipid metabolism. LDL has a delicate nanostructure with unique physicochemical properties: superior payload capacity, long residence time in circulation, excellent biocompatibility, smaller size, and natural targeting. In recent decades, the superiority and feasibility of LDL particles as targeted delivery carriers have attracted much attention. In this review, we introduce the structure, composition, advantages, defects, and reconstruction of LDL delivery systems, summarize their research status and progress in targeted diagnosis and therapy, and finally look forward to the clinical application of LDL as an effective delivery vehicle.
Collapse
Affiliation(s)
- Luyao Dai
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Shuaijun Li
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Qian Hao
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Ruina Zhou
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Hui Zhou
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Wenxi Lei
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
| | - Hao Wu
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis Sacramento CA 95817 USA
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis Sacramento CA 95817 USA
| | - Xiaobin Ma
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
| |
Collapse
|
11
|
Gan C, Zhang Y, Liang F, Guo X, Zhong Z. Effects of APOE gene ε4 allele on serum lipid profiles and risk of cardiovascular disease and tumorigenesis in southern Chinese population. World J Surg Oncol 2022; 20:280. [PMID: 36057714 PMCID: PMC9440530 DOI: 10.1186/s12957-022-02748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022] Open
Abstract
Background Human apolipoprotein E (APOE) polymorphisms are attributable to the presence of three common alleles, namely, ε2, ε3, and ε4, which generate six genotypes, viz, E2/E2, E2/E3, E3/E3, E3/E4, E4/E4, and E2/E4. APOE polymorphisms are associated with all types of tumors and cardiovascular diseases (CVD). However, the relationship between the type of APOE polymorphisms and tumorigenesis remains debatable. Therefore, we aimed to investigate the role of APOE polymorphisms on the tumor with or without CVD in southern China. Methods A total of 1438 participants were categorized into 4 groups: 409 patients with tumor, 369 patients with CVD, 338 patients with both tumor and CVD, and 322 controls. APOE polymorphisms were determined by genotyping assay. The factors influencing tumor patients with or without CVD were also analyzed by logistic regression analysis. Results The present study involved different types of solid tumors. Lung cancer was the most common cancer (20.2%, 151/747), followed by colorectal (17%, 127/747), esophageal (9.8%, 73/747), and liver (8.7%, 65/747) cancers. E3/E3 was the most frequent genotype, and ɛ3 was the greatest allele frequency in our study population. The frequencies of the E3/E3, E3/E4, E2/E3, E2/E4, E4/E4, and E2/E2 genotypes in tumor patients were 76.97% (575/747), 14.19% (106/747), 6.83% (51/747), 1.2% (9/747), 0.4% (3/747), and 0.4% (3/747), respectively. Tumor patients carrying ε3 with or without CVD showed higher levels of TG, TC, and LDL-C and lower levels of HDL-C compared to the controls carrying ε3. On the other hand, the tumor patients carrying ε4 with or without CVD showed higher levels of TG and LDL-C and lower levels of HDL-C (all P < 0.05). The frequency of APOE ε4 allele and the E3/E4 genotype was relatively greater in tumor or CVD patients (P < 0.001). In addition, ε4 allele acted as an independent risk factor for tumor patients group (P = 0.037, adjusted OR = 1.92, 95% CI 1.04–3.55) and tumor + CVD patients group (P = 0.012, adjusted OR = 2.53, 95% CI 1.22–5.23). Conclusions Individuals carrying ε4 are at a higher risk of tumor with or without CVD, and APOE polymorphisms affect the serum lipid profiles.
Collapse
Affiliation(s)
- Caiyan Gan
- Center for Precision Medicine, Meizhou People's Hospital, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China.,Guangdong Provincial Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China
| | - Yinmei Zhang
- Center for Precision Medicine, Meizhou People's Hospital, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China.,Guangdong Provincial Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China
| | - Fei Liang
- Data Center, Meizhou People's Hospital, Meizhou, China
| | - Xuemin Guo
- Center for Precision Medicine, Meizhou People's Hospital, Meizhou, China. .,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China. .,Guangdong Provincial Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China.
| | - Zhixiong Zhong
- Center for Precision Medicine, Meizhou People's Hospital, Meizhou, China. .,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China. .,Guangdong Provincial Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China.
| |
Collapse
|
12
|
Pan SY, Zhang Y, Song XL, Lin ZH, Yu Q, Tai HC, Luo G, Wang XY, Zhu PL, Sun N, Chu ZS, Yu ZL, Ko KM, Zhang Y. Schisandrae Fructus oil-induced elevation in serum triglyceride and lipoprotein concentrations associated with physiologic hepatomegaly in mice. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.335694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Pedersen S, Hansen JB, Maltesen RG, Szejniuk WM, Andreassen T, Falkmer U, Kristensen SR. Identifying metabolic alterations in newly diagnosed small cell lung cancer patients. Metabol Open 2021; 12:100127. [PMID: 34585134 PMCID: PMC8455369 DOI: 10.1016/j.metop.2021.100127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is a malignant disease with poor prognosis. At the time of diagnosis most patients are already in a metastatic stage. Current diagnosis is based on imaging, histopathology, and immunohistochemistry, but no blood-based biomarkers have yet proven to be clinically successful for diagnosis and screening. The precise mechanisms of SCLC are not fully understood, however, several genetic mutations, protein and metabolic aberrations have been described. We aim at identifying metabolite alterations related to SCLC and to expand our knowledge relating to this aggressive cancer. METHODS A total of 30 serum samples of patients with SCLC, collected at the time of diagnosis, and 25 samples of healthy controls were included in this study. The samples were analyzed with nuclear magnetic resonance spectroscopy. Multivariate, univariate and pathways analyses were performed. RESULTS Several metabolites were identified to be altered in the pre-treatment serum samples of small-cell lung cancer patients compared to healthy individuals. Metabolites involved in tricarboxylic acid cycle (succinate: fold change (FC) = 2.4, p = 0.068), lipid metabolism (LDL triglyceride: FC = 1.3, p = 0.001; LDL-1 triglyceride: FC = 1.3, p = 0.012; LDL-2 triglyceride: FC = 1.4, p = 0.009; LDL-6 triglyceride: FC = 1.5, p < 0.001; LDL-4 cholesterol: FC = 0.5, p = 0.007; HDL-3 free cholesterol: FC = 0.7, p = 0.002; HDL-4 cholesterol FC = 0.8, p < 0.001; HDL-4 apolipoprotein-A1: FC = 0.8, p = 0.005; HDL-4 apolipoprotein-A2: FC ≥ 0.7, p ≤ 0.001), amino acids (glutamic acid: FC = 1.7, p < 0.001; glutamine: FC = 0.9, p = 0.007, leucine: FC = 0.8, p < 0.001; isoleucine: FC = 0.8, p = 0.016; valine: FC = 0.9, p = 0.032; lysine: FC = 0.8, p = 0.004; methionine: FC = 0.8, p < 0.001; tyrosine: FC = 0.7, p = 0.002; creatine: FC = 0.9, p = 0.030), and ketone body metabolism (3-hydroxybutyric acid FC = 2.5, p < 0.001; acetone FC = 1.6, p < 0.001), among other, were found deranged in SCLC. CONCLUSIONS This study provides novel insight into the metabolic disturbances in pre-treatment SCLC patients, expanding our molecular understanding of this malignant disease.
Collapse
Affiliation(s)
- Shona Pedersen
- Department of Basic Medical Science, College of Medicine, Qatar University, QU Health, Doha, Qatar
| | | | - Raluca Georgiana Maltesen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute of Medical Research, Westmead, 2145, Australia
| | - Weronika Maria Szejniuk
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Oncology, Aalborg University Hospital, Aalborg, Denmark
| | - Trygve Andreassen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ursula Falkmer
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Oncology, Aalborg University Hospital, Aalborg, Denmark
| | - Søren Risom Kristensen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
14
|
Luo F, Zeng KM, Cao JX, Zhou T, Lin SX, Ma WJ, Yang YP, Zhang ZH, Lu FT, Huang Y, Zhao HY, Zhang L. Predictive value of a reduction in the level of high-density lipoprotein-cholesterol in patients with non-small-cell lung cancer undergoing radical resection and adjuvant chemotherapy: a retrospective observational study. Lipids Health Dis 2021; 20:109. [PMID: 34544437 PMCID: PMC8454045 DOI: 10.1186/s12944-021-01538-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/31/2021] [Indexed: 12/25/2022] Open
Abstract
Background Cancer patients often exhibit chemotherapy-associated changes in serum lipid profiles, however, their prognostic value before and after adjuvant chemotherapy on survival among non-small-cell lung cancer (NSCLC) patients is unknown. Methods NSCLC patients undergoing radical resection and subsequent adjuvant chemotherapy from 2013 to 2017 at Sun Yat-sen University Cancer Center were retrospectively reviewed. Fasted serum lipid levels were measured before and after chemotherapy. The optimal lipid cut-off values at baseline and fluctuation were determined using X-tile™. The fluctuations in serum lipid levels and disease-free survival (DFS) were assessed. Results Serum cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C), triglyceride, apolipoprotein (Apo) A-I, and ApoB all significantly increased after adjuvant chemotherapy. X-tile determined 1.52 mmol/L of HDL-C and 0.74 g/L of ApoB as the optimal cut-off values before chemotherapy. Patients with HDL-C ≥ 1.52 mmol/L (median DFS: not reached vs. 26.30 months, P = 0.0005) and a decreased HDL-C level after adjuvant chemotherapy (median DFS: 80.43 vs. 26.12 months, P = 0.0204) had a longer DFS. An HDL-C level that increased by ≥ 0.32 mmol/L after chemotherapy indicated a worse DFS. A high baseline ApoB level were associated with a superior DFS. In the univariate analysis and the multivariate Cox analyses, a high baseline HDL-C level and a HDL-C reduction after adjuvant chemotherapy were independent indicators for superior DFS. High baseline HDL-C was related to N0-1 stage (χ2 = 6.413, P = 0.011), and HDL-C fluctuation was significantly correlated with specific chemotherapy regimens (χ2 = 5.002, P = 0.025). Conclusions Adjuvant chemotherapy increased various lipid levels in resected NSCLC patients. A higher HDL-C level before chemotherapy and a reduced HDL-C level after adjuvant chemotherapy were independent predictors of longer DFS in patients with curable NSCLC.
Collapse
Affiliation(s)
- Fan Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Guangdong Esophageal Cancer Institute, Sun Yat- sen University Cancer Center, 510060, Guangzhou, People's Republic of China
| | - Kang-Mei Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Guangdong Esophageal Cancer Institute, Sun Yat- sen University Cancer Center, 510060, Guangzhou, People's Republic of China.
| | - Jia-Xin Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Guangdong Esophageal Cancer Institute, Sun Yat- sen University Cancer Center, 510060, Guangzhou, People's Republic of China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Guangdong Esophageal Cancer Institute, Sun Yat- sen University Cancer Center, 510060, Guangzhou, People's Republic of China
| | - Su-Xia Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Pathology, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, 510060, Guangzhou, People's Republic of China
| | - Wen-Juan Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Guangdong Esophageal Cancer Institute, Sun Yat- sen University Cancer Center, 510060, Guangzhou, People's Republic of China
| | - Yun-Peng Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Guangdong Esophageal Cancer Institute, Sun Yat- sen University Cancer Center, 510060, Guangzhou, People's Republic of China
| | - Zhong-Han Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Guangdong Esophageal Cancer Institute, Sun Yat- sen University Cancer Center, 510060, Guangzhou, People's Republic of China
| | - Fei-Teng Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Guangdong Esophageal Cancer Institute, Sun Yat- sen University Cancer Center, 510060, Guangzhou, People's Republic of China
| | - Yan Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Guangdong Esophageal Cancer Institute, Sun Yat- sen University Cancer Center, 510060, Guangzhou, People's Republic of China
| | - Hong-Yun Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Clinical Research, Guangdong Esophageal Cancer Institute, Sun Yat- sen University Cancer Center, 510060, Guangzhou, People's Republic of China.
| | - Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Guangdong Esophageal Cancer Institute, Sun Yat- sen University Cancer Center, 510060, Guangzhou, People's Republic of China.
| |
Collapse
|
15
|
Vladimirov S, Gojkovic T, Zeljkovic A, Jelic-Ivanovic Z, Zeljkovic D, Antonic T, Trifunovic B, Spasojevic-Kalimanovska V. Can non-cholesterol sterols indicate the presence of specific dysregulation of cholesterol metabolism in patients with colorectal cancer? Biochem Pharmacol 2021; 196:114595. [PMID: 33964280 DOI: 10.1016/j.bcp.2021.114595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC) is a highly prevalent malignancy. Previous studies suggested that cholesterol might play a signficant role in malignant transformation and proliferation. Non-cholesterol sterols (NCS), which are transported by serum lipoproteins alongside cholesterol, are regarded as cholesterol synthesis and absorption markers. Quantification of NCS in serum and HDL fraction (NCSHDL), could provide a better insight into the cholesterol metabolism. The aim of this study was to examine the status of cholesterol synthesis and cholesterol absorption markers in serum and HDL fraction and explore their interrelation in CRC patients. Current study was designed as observational, case-control study. The study included 73 CRC patients and 95 healthy subjects. NCS and NCSHDL concentrations were determined by HPLC-MS/MS. Based on NCS and NCSHDL concentrations, different cholesterol homeostasis indices were calculated. Patients had significantly lower NCS (P<0.001) and NCSHDL concentrations (P<0.001 for desmosterolHDL; P<0.05 for lathosterolHDL, P=0.001 for campesterolHDL, P<0.001 for β-sitosterolHDL). NCSHDL/NCS (P<0.005 for desmosterolHDL/desmosterol; P<0.05 for lathosterolHDL/lathosterol; P<0.001 for both β-sitosterolHDL/β-sitosterol and campesterolHDL/campesterol) and synthesis to absorption ratio (CSI/CAI) (P<0.005) were increased in CRC patients. Additionally, low serum concentrations of desmosterol (P<0.001; OR=0.329; 95%CI (0.199-0.542)) and campesterol (P<0.001; OR=0.540; 95%CI (0.424-0.687)) were independent predictors of CRC presence. Our data suggest that cholesterol homeostasis in CRC is shifted towards increased synthesis. Relative abundance of NCS in HDL particles is increased, suggesting the possible overproduction of cholesterol precursors in peripheral tissues.
Collapse
Affiliation(s)
- Sandra Vladimirov
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| | - Tamara Gojkovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| | - Aleksandra Zeljkovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| | - Zorana Jelic-Ivanovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| | - Dejan Zeljkovic
- Clinic for General Surgery, Military Medical Academy, 17 Crnotravska St, 11000 Belgrade, Serbia.
| | - Tamara Antonic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| | - Bratislav Trifunovic
- Clinic for General Surgery, Military Medical Academy, 17 Crnotravska St, 11000 Belgrade, Serbia.
| | - Vesna Spasojevic-Kalimanovska
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| |
Collapse
|
16
|
Garrido MM, Marta JC, Ribeiro RM, Pinheiro LC, Guimarães JT. Serum lipids and prostate cancer. J Clin Lab Anal 2021; 35:e23705. [PMID: 33724557 PMCID: PMC8059719 DOI: 10.1002/jcla.23705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Conflicting results are found in the literature relating serum lipids levels and prostate cancer. Some results imply a relationship between them; others contradict this association. The purpose of this study was to investigate a possible association between serum lipids levels and prostate cancer, at time of diagnosis. METHODS We measured serum levels of total cholesterol, HDL cholesterol, LDL cholesterol, and triglycerides in 237 patients submitted to a prostate biopsy, with PSA between 2 and 10 ng/ml. Patients without cancer at biopsy were used as controls, and the others were considered as cases. No information about lipid-lowering therapy, including statins, was available neither in cases nor in controls. Cases were divided into risk groups, according to the disease severity, based on staging. Lipids levels were compared between groups, using parametric and nonparametric tests. Logistic regression analysis and odds ratios were calculated. RESULTS LDL and total cholesterol levels were lower in patients with cancer, with the difference being statistically significant for LDL cholesterol (p = 0.010) and borderline for total cholesterol (p = 0.050). No significant differences were found between the several risk groups. Odds ratios for low LDL cholesterol (<130 mg/dl) and low total cholesterol (<200 mg/dl), with prostate cancer as the outcome, were 1.983 and 1.703, respectively. There were no significant differences between cases and controls for the other lipids. CONCLUSION Lower LDL cholesterol (<130 mg/dl) and lower total cholesterol (<200 mg/dl) serum levels seem to associate with prostate cancer, at time of diagnosis.
Collapse
Affiliation(s)
- Manuel M. Garrido
- Department of Clinical PathologyCentral Lisbon University Hospital Center & Department of Laboratory Medicine, School of Medicine, University of LisbonLisbonPortugal
| | - José C. Marta
- Department of Clinical PathologyCentral Lisbon University Hospital CenterLisbonPortugal
| | - Ruy M. Ribeiro
- Biomathematics LaboratorySchool of Medicine, University of LisbonLisbonPortugal
| | - Luís C. Pinheiro
- Department of UrologyCentral Lisbon University Hospital Center & Department of Urology, Nova Medical SchoolLisbonPortugal
| | - João T. Guimarães
- Department of Clinical PathologySao Joao University Hospital Center & Department of Biomedicine, School of Medicine & Institute of Public Health, University of PortoPortoPortugal
| |
Collapse
|
17
|
Lazaris V, Hatziri A, Symeonidis A, Kypreos KE. The Lipoprotein Transport System in the Pathogenesis of Multiple Myeloma: Advances and Challenges. Front Oncol 2021; 11:638288. [PMID: 33842343 PMCID: PMC8032975 DOI: 10.3389/fonc.2021.638288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/10/2021] [Indexed: 01/02/2023] Open
Abstract
Multiple myeloma (MM) is an incurable neoplastic hematologic disorder characterized by malignant plasma cells, mainly in the bone marrow. MM is associated with multiple factors, such as lipid metabolism, obesity, and age-associated disease development. Although, the precise pathogenetic mechanisms remain unknown, abnormal lipid and lipoprotein levels have been reported in patients with MM. Interestingly, patients with higher APOA1 levels, the major apolipoprotein of high density lipoprotein (HDL), have better overall survival. The limited existing studies regarding serum lipoproteins in MM are inconclusive, and often contradictory. Nevertheless, it appears that deregulation of the lipoprotein transport system may facilitate the development of the disease. Here, we provide a critical review of the literature on the role of lipids and lipoproteins in MM pathophysiology. We also propose novel mechanisms, linking the development and progression of MM to the metabolism of blood lipoproteins. We anticipate that proteomic and lipidomic analyses of serum lipoproteins along with analyses of their functionality may improve our understanding and shed light on novel mechanistic aspects of MM pathophysiology.
Collapse
Affiliation(s)
- Vasileios Lazaris
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Patras, Greece.,Hematology Clinic, Department of Medicine, School of Health Sciences, University of Patras, Patras, Greece
| | - Aikaterini Hatziri
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Patras, Greece
| | - Argiris Symeonidis
- Hematology Clinic, Department of Medicine, School of Health Sciences, University of Patras, Patras, Greece
| | - Kyriakos E Kypreos
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Patras, Greece.,Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
18
|
Chanukuppa V, Taware R, Taunk K, Chatterjee T, Sharma S, Somasundaram V, Rashid F, Malakar D, Santra MK, Rapole S. Proteomic Alterations in Multiple Myeloma: A Comprehensive Study Using Bone Marrow Interstitial Fluid and Serum Samples. Front Oncol 2021; 10:566804. [PMID: 33585190 PMCID: PMC7879980 DOI: 10.3389/fonc.2020.566804] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell-associated cancer and exists as the second most common hematological malignancy worldwide. Although researchers have been working on MM, a comprehensive quantitative Bone Marrow Interstitial Fluid (BMIF) and serum proteomic analysis from the same patients’ samples is not yet reported. The present study involves the investigation of alterations in the BMIF and serum proteome of MM patients compared to controls using multipronged quantitative proteomic approaches viz., 2D-DIGE, iTRAQ, and SWATH-MS. A total of 279 non-redundant statistically significant differentially abundant proteins were identified by the combination of three proteomic approaches in MM BMIF, while in the case of serum 116 such differentially abundant proteins were identified. The biological context of these dysregulated proteins was deciphered using various bioinformatic tools. Verification experiments were performed in a fresh independent cohort of samples using immunoblotting and mass spectrometry based SRM assays. Thorough data evaluation led to the identification of a panel of five proteins viz., haptoglobin, kininogen 1, transferrin, and apolipoprotein A1 along with albumin that was validated using ELISA in a larger cohort of serum samples. This panel of proteins could serve as a useful tool in the diagnosis and understanding of the pathophysiology of MM in the future.
Collapse
Affiliation(s)
- Venkatesh Chanukuppa
- Proteomics Lab, National Centre for Cell Science, Pune, India.,Savitribai Phule Pune University, Pune, India
| | - Ravindra Taware
- Proteomics Lab, National Centre for Cell Science, Pune, India
| | - Khushman Taunk
- Proteomics Lab, National Centre for Cell Science, Pune, India
| | | | | | | | | | | | - Manas K Santra
- Cancer Biology and Epigenetics Lab, National Centre for Cell Science, Pune, India
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science, Pune, India
| |
Collapse
|
19
|
Duan X, Zheng L, Zhang X, Wang B, Xiao M, Zhao W, Liu S, Sui G. A Membrane-free Liver-Gut-on-Chip Platform for the Assessment on Dysregulated Mechanisms of Cholesterol and Bile Acid Metabolism Induced by PM 2.5. ACS Sens 2020; 5:3483-3492. [PMID: 33135418 DOI: 10.1021/acssensors.0c01524] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fine particulate matter (PM2.5)-induced metabolic diseases have attracted a great deal of attention recently. However, the relevant metabolic mechanisms of PM2.5 in vivo have not yet been fully described due to the lack of reliable platforms. Herein, a membrane-free liver-gut-on-chip (L-GOC) platform was developed to investigate metabolism dysregulation induced by PM2.5. A multiple organ system with a liver-gut structure and two circulation paths (L-G and G-L circulation paths) was created, and then cells were exposed to PM2.5 on this platform. Secreted high-density lipoprotein (HDL) levels were detected, which demonstrates that this multiple organ system functioned with normal physiological metabolism at the organ level. Untargeted metabolomic analysis showed that there were 364 metabolites of LO2 cells dysregulated after exposure to PM2.5 at a concentration of 200 μg/mL. Moreover, cholesterol and bile acid metabolism were significantly dysregulated. Further immunofluorescence and ELISA assays confirmed that signal transduction pathways related to cholesterol metabolism (LCAT-CE, PON1-HDL, and SRB1-HDL metabolic pathways) and bile acid metabolism (CYP7A1-CA/CDCA/DCA metabolic pathways) were disturbed. These results indicate that PM2.5 primarily disturbed cholesterol metabolism of the liver and then disrupted bile acid metabolism of the liver (primary bile acid biosynthesis) and gut (secondary bile acid biosynthesis) via related metabolic pathways. These findings may partially explain the metabolic mechanisms of cells triggered by PM2.5 exposure.
Collapse
Affiliation(s)
- Xiaoxiao Duan
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Xinlian Zhang
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Bo Wang
- Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Mingming Xiao
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Wang Zhao
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Sixiu Liu
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Guodong Sui
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| |
Collapse
|
20
|
Delk SC, Chattopadhyay A, Escola-Gil JC, Fogelman AM, Reddy ST. Apolipoprotein mimetics in cancer. Semin Cancer Biol 2020; 73:158-168. [PMID: 33188891 DOI: 10.1016/j.semcancer.2020.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/10/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022]
Abstract
Peptides have many advantages over traditional therapeutics, including small molecules and other biologics, because of their low toxicity and immunogenicity, while still exhibiting efficacy. This review discusses the benefits and mechanism of action of apolipoprotein mimetic peptides in tumor biology and their potential utility in treating various cancers. Among lipoproteins in the circulation, high-density lipoprotein (HDL) and its constituents including apolipoprotein A-I (apoA-I; the predominant protein in HDL), apoJ, and apoE, harbor anti-tumorigenic activities. Peptides that mimic apoA-I function have been developed through molecular mimicry of the amphipathic α-helices of apoA-I. Oral apoA-I mimetic peptides remodel HDL, promote cholesterol efflux, sequester oxidized lipids, and activate anti-inflammatory processes. ApoA-I and apoJ mimetic peptides ameliorate various metrics of cancer progression and have demonstrated efficacy in preclinical models in the inhibition of ovarian, colon, breast, and metastatic lung cancers. Apolipoprotein mimetic peptides are poorly absorbed when administered orally and rapidly degraded when injected into the circulation. The small intestine is the major site of action for apoA-I mimetic peptides and recent studies suggest that modulation of immune cells in the lamina propria of the small intestine is, in part, a potential mechanism of action. Finally, several recent studies underscore the use of reconstituted HDL as target-specific nanoparticles carrying poorly soluble or unstable therapeutics to tumors even across the blood-brain barrier. Preclinical studies suggest that these versatile recombinant lipoprotein based nanoparticles and apolipoprotein mimetics can serve as safe, novel drug delivery, and therapeutic agents for the treatment of a number of cancers.
Collapse
Affiliation(s)
- Samuel C Delk
- Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA; Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Arnab Chattopadhyay
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Joan Carles Escola-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Sant Quintí 77, 08041, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Monforte de Lemos 3-5, 28029, Madrid, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Antoni M. Claret 167, 08025, Barcelona, Spain
| | - Alan M Fogelman
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Srinivasa T Reddy
- Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA; Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
21
|
Dossou AS, Sabnis N, Nagarajan B, Mathew E, Fudala R, Lacko AG. Lipoproteins and the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:93-116. [PMID: 32845504 DOI: 10.1007/978-3-030-48457-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The tumor microenvironment (TME) plays a key role in enhancing the growth of malignant tumors and thus contributing to "aggressive phenotypes," supporting sustained tumor growth and metastasis. The precise interplay between the numerous components of the TME that contribute to the emergence of these aggressive phenotypes is yet to be elucidated and currently under intense investigation. The purpose of this article is to identify specific role(s) for lipoproteins as part of these processes that facilitate (or oppose) malignant growth as they interact with specific components of the TME during tumor development and treatment. Because of the scarcity of literature reports regarding the interaction of lipoproteins with the components of the tumor microenvironment, we were compelled to explore topics that were only tangentially related to this topic, to ensure that we have not missed any important concepts.
Collapse
Affiliation(s)
- Akpedje Serena Dossou
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Nirupama Sabnis
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Bhavani Nagarajan
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ezek Mathew
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Rafal Fudala
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA.,Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Andras G Lacko
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA. .,Departments of Physiology/Anatomy and Pediatrics, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
22
|
Yuan B, Fu J, Yu WL, Fu XH, Qiu YH, Yin L, Zhu B, Zhang YJ. Prognostic value of serum high-density lipoprotein cholesterol in patients with gallbladder cancer. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2020; 111:839-845. [PMID: 31595756 DOI: 10.17235/reed.2019.6201/2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVES the aim of this study was to evaluate the prognostic significance of preoperative serum lipid in patients with gallbladder cancer (GBC). METHODS ninety-nine patients with GBC between October 2009 and December 2013 were reviewed in this retrospective study. Total serum cholesterol (TC), total triglyceride (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), apolipoprotein A (Apo-A), apolipoprotein B (Apo-B) and free fatty acids (FFA) were measured before surgery. The correlation of serum lipid levels with clinical data, including gender, age, tumor size, lymph nodes metastasis, tumor differentiation, distant metastasis and TNM stage were analyzed by univariate and multivariate survival analysis to evaluate independent prognostic factors. RESULTS compared with the normal HDL-C group (n = 57), the overall survival rate among GBC patients with low HDL-C levels (n = 42) was reduced (p < 0.05). However, there were no significant differences in overall survival for patients with different levels of TC, TG, Apo-A, Apo-B, LDL-C or FFA. The serum level of HDL-C was associated with TNM stage (p < 0.05) and distant metastasis (p < 0.001). The multivariate prognosis analysis showed that HDL-C and lymph nodes metastasis were independent prognostic factors (p < 0.05). A prognostic evaluation model based on HDL-C and lymph nodes metastasis was established. CONCLUSION preoperative serum HDL-C level was closely associated with distant metastasis of patients with GBC. HDL-C level may be a valuable prognostic factor for GBC patients. The combination of HDLC and lymph nodes metastasis can better predict the prognosis of GBC.
Collapse
Affiliation(s)
- Bo Yuan
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University,
| | - Jing Fu
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University
| | - Wen-Long Yu
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University
| | - Xiao-Hui Fu
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University,
| | - Ying-He Qiu
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University,
| | - Lei Yin
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University,
| | - Bin Zhu
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University,
| | - Yong-Jie Zhang
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Mil, China
| |
Collapse
|
23
|
Raut S, Garud A, Nagarajan B, Sabnis N, Remaley A, Fudala R, Gryczynski I, Gryczynski Z, Dzyuba SV, Borejdo J, Lacko A. Probing the Assembly of HDL Mimetic, Drug Carrying Nanoparticles Using Intrinsic Fluorescence. J Pharmacol Exp Ther 2020; 373:113-121. [PMID: 31941718 PMCID: PMC7160862 DOI: 10.1124/jpet.119.262899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/13/2019] [Indexed: 12/27/2022] Open
Abstract
Reconstituted high-density lipoprotein (HDL) containing apolipoprotein A-I (Apo A-I) mimics the structure and function of endogenous (human plasma) HDL due to its function and potential therapeutic utility in atherosclerosis, cancer, neurodegenerative diseases, and inflammatory diseases. Recently, a new class of HDL mimetics has emerged, involving peptides with amino acid sequences that simulate the the primary structure of the amphipathic alpha helices within the Apo A-I protein. The findings reported in this communication were obtained using a similar amphiphilic peptide (modified via conjugation of a myristic acid residue at the amino terminal aspartic acid) that self-assembles (by itself) into nanoparticles while retaining the key features of endogenous HDL. The studies presented here involve the macromolecular assembly of the myristic acid conjugated peptide (MYR-5A) into nanomicellar structures and its characterization via steady-state and time-resolved fluorescence spectroscopy. The structural differences between the free peptide (5A) and MYR-5A conjugate were also probed, using tryptophan fluorescence, Fӧrster resonance energy transfer (FRET), dynamic light scattering, and gel exclusion chromatography. To our knowledge, this is the first report of a lipoprotein assembly generated from a single ingredient and without a separate lipid component. The therapeutic utility of these nanoparticles (due to their capablity to incorporate a wide range of drugs into their core region for targeted delivery) was also investigated by probing the role of the scavenger receptor type B1 in this process. SIGNIFICANCE STATEMENT: Although lipoproteins have been considered as effective drug delivery agents, none of these nanoformulations has entered clinical trials to date. A major challenge to advancing lipoprotein-based formulations to the clinic has been the availability of a cost-effective protein or peptide constituent, needed for the assembly of the drug/lipoprotein nanocomplexes. This report of a robust, spontaneously assembling drug transport system from a single component could provide the template for a superior, targeted drug delivery strategy for therapeutics of cancer and other diseases (Counsell and Pohland, 1982).
Collapse
Affiliation(s)
- Sangram Raut
- Departments of Physiology and Anatomy (S.R., A.G., B.N., N.S., A.L.) and Microbiology, Immunology and Genetics (R.F., I.G., Z.G., J.B.), UNT Health Science Center, Fort Worth, Texas; National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland (A.R.); and Departments of Physics and Astronomy (Z.G.) and Chemistry and Biochemistry (S.V.D.), Texas Christian University, Fort Worth, Texas
| | - Ashwini Garud
- Departments of Physiology and Anatomy (S.R., A.G., B.N., N.S., A.L.) and Microbiology, Immunology and Genetics (R.F., I.G., Z.G., J.B.), UNT Health Science Center, Fort Worth, Texas; National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland (A.R.); and Departments of Physics and Astronomy (Z.G.) and Chemistry and Biochemistry (S.V.D.), Texas Christian University, Fort Worth, Texas
| | - Bhavani Nagarajan
- Departments of Physiology and Anatomy (S.R., A.G., B.N., N.S., A.L.) and Microbiology, Immunology and Genetics (R.F., I.G., Z.G., J.B.), UNT Health Science Center, Fort Worth, Texas; National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland (A.R.); and Departments of Physics and Astronomy (Z.G.) and Chemistry and Biochemistry (S.V.D.), Texas Christian University, Fort Worth, Texas
| | - Nirupama Sabnis
- Departments of Physiology and Anatomy (S.R., A.G., B.N., N.S., A.L.) and Microbiology, Immunology and Genetics (R.F., I.G., Z.G., J.B.), UNT Health Science Center, Fort Worth, Texas; National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland (A.R.); and Departments of Physics and Astronomy (Z.G.) and Chemistry and Biochemistry (S.V.D.), Texas Christian University, Fort Worth, Texas
| | - Alan Remaley
- Departments of Physiology and Anatomy (S.R., A.G., B.N., N.S., A.L.) and Microbiology, Immunology and Genetics (R.F., I.G., Z.G., J.B.), UNT Health Science Center, Fort Worth, Texas; National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland (A.R.); and Departments of Physics and Astronomy (Z.G.) and Chemistry and Biochemistry (S.V.D.), Texas Christian University, Fort Worth, Texas
| | - Rafal Fudala
- Departments of Physiology and Anatomy (S.R., A.G., B.N., N.S., A.L.) and Microbiology, Immunology and Genetics (R.F., I.G., Z.G., J.B.), UNT Health Science Center, Fort Worth, Texas; National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland (A.R.); and Departments of Physics and Astronomy (Z.G.) and Chemistry and Biochemistry (S.V.D.), Texas Christian University, Fort Worth, Texas
| | - Ignacy Gryczynski
- Departments of Physiology and Anatomy (S.R., A.G., B.N., N.S., A.L.) and Microbiology, Immunology and Genetics (R.F., I.G., Z.G., J.B.), UNT Health Science Center, Fort Worth, Texas; National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland (A.R.); and Departments of Physics and Astronomy (Z.G.) and Chemistry and Biochemistry (S.V.D.), Texas Christian University, Fort Worth, Texas
| | - Zygmunt Gryczynski
- Departments of Physiology and Anatomy (S.R., A.G., B.N., N.S., A.L.) and Microbiology, Immunology and Genetics (R.F., I.G., Z.G., J.B.), UNT Health Science Center, Fort Worth, Texas; National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland (A.R.); and Departments of Physics and Astronomy (Z.G.) and Chemistry and Biochemistry (S.V.D.), Texas Christian University, Fort Worth, Texas
| | - Sergei V Dzyuba
- Departments of Physiology and Anatomy (S.R., A.G., B.N., N.S., A.L.) and Microbiology, Immunology and Genetics (R.F., I.G., Z.G., J.B.), UNT Health Science Center, Fort Worth, Texas; National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland (A.R.); and Departments of Physics and Astronomy (Z.G.) and Chemistry and Biochemistry (S.V.D.), Texas Christian University, Fort Worth, Texas
| | - Julian Borejdo
- Departments of Physiology and Anatomy (S.R., A.G., B.N., N.S., A.L.) and Microbiology, Immunology and Genetics (R.F., I.G., Z.G., J.B.), UNT Health Science Center, Fort Worth, Texas; National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland (A.R.); and Departments of Physics and Astronomy (Z.G.) and Chemistry and Biochemistry (S.V.D.), Texas Christian University, Fort Worth, Texas
| | - Andras Lacko
- Departments of Physiology and Anatomy (S.R., A.G., B.N., N.S., A.L.) and Microbiology, Immunology and Genetics (R.F., I.G., Z.G., J.B.), UNT Health Science Center, Fort Worth, Texas; National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland (A.R.); and Departments of Physics and Astronomy (Z.G.) and Chemistry and Biochemistry (S.V.D.), Texas Christian University, Fort Worth, Texas
| |
Collapse
|
24
|
Fichtali K, Bititi A, Elghanmi A, Ghazi B. Serum Lipidomic Profiling in Breast Cancer to Identify Screening, Diagnostic, and Prognostic Biomarkers. Biores Open Access 2020; 9:1-6. [PMID: 32042507 PMCID: PMC6945794 DOI: 10.1089/biores.2018.0022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is the major mortality cause of women worldwide. In the course of management of breast cancer, the identification of a biomarker is important in enhancing our knowledge on cancer pathology, predicting the response to treatment, and selecting the patients who are more favorable to receive certain treatments. These biomarkers have a prognostic value. In addition to traditional breast cancer prognosis factors such as the tumor size and grade, the axillary lymph node micrometastasis, and biomarkers such as HER2/neu, newly discovered biomarkers have been discovered. Some of these factors are genetic signature in tissue or in peripheral blood. Lipid profil, a simple and accessible biological examination, has been a novel path on the prediction of breast cancer risk of occurrence and recurrence in many studies. The main goal of our review is to evaluate lipid profile and breast cancer risk with an emphasis on the prognosis value of lipid profiles in breast cancer patient management.
Collapse
Affiliation(s)
- Karima Fichtali
- Cheikh Khalifa International Hospital, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Amine Bititi
- Cheikh Khalifa International Hospital, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Adil Elghanmi
- Cheikh Khalifa International Hospital, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Bouchra Ghazi
- National Laboratory of Reference, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| |
Collapse
|
25
|
Lipoprotein Drug Delivery Vehicles for Cancer: Rationale and Reason. Int J Mol Sci 2019; 20:ijms20246327. [PMID: 31847457 PMCID: PMC6940806 DOI: 10.3390/ijms20246327] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/26/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Lipoproteins are a family of naturally occurring macromolecular complexes consisting amphiphilic apoproteins, phospholipids, and neutral lipids. The physiological role of mammalian plasma lipoproteins is to transport their apolar cargo (primarily cholesterol and triglyceride) to their respective destinations through a highly organized ligand-receptor recognition system. Current day synthetic nanoparticle delivery systems attempt to accomplish this task; however, many only manage to achieve limited results. In recent years, many research labs have employed the use of lipoprotein or lipoprotein-like carriers to transport imaging agents or drugs to tumors. The purpose of this review is to highlight the pharmacologic, clinical, and molecular evidence for utilizing lipoprotein-based formulations and discuss their scientific rationale. To accomplish this task, evidence of dynamic drug interactions with circulating plasma lipoproteins are presented. This is followed by epidemiologic and molecular data describing the association between cholesterol and cancer.
Collapse
|
26
|
Riscal R, Skuli N, Simon MC. Even Cancer Cells Watch Their Cholesterol! Mol Cell 2019; 76:220-231. [PMID: 31586545 DOI: 10.1016/j.molcel.2019.09.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
Deregulated cell proliferation is an established feature of cancer, and altered tumor metabolism has witnessed renewed interest over the past decade, including the study of how cancer cells rewire metabolic pathways to renew energy sources and "building blocks" that sustain cell division. Microenvironmental oxygen, glucose, and glutamine are regarded as principal nutrients fueling tumor growth. However, hostile tumor microenvironments render O2/nutrient supplies chronically insufficient for increased proliferation rates, forcing cancer cells to develop strategies for opportunistic modes of nutrient acquisition. Recent work shows that cancer cells overcome this nutrient scarcity by scavenging other substrates, such as proteins and lipids, or utilizing adaptive metabolic pathways. As such, reprogramming lipid metabolism plays important roles in providing energy, macromolecules for membrane synthesis, and lipid-mediated signaling during cancer progression. In this review, we highlight more recently appreciated roles for lipids, particularly cholesterol and its derivatives, in cancer cell metabolism within intrinsically harsh tumor microenvironments.
Collapse
Affiliation(s)
- Romain Riscal
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicolas Skuli
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Apolipoprotein A-I (ApoA-I), Immunity, Inflammation and Cancer. Cancers (Basel) 2019; 11:cancers11081097. [PMID: 31374929 PMCID: PMC6721368 DOI: 10.3390/cancers11081097] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Apolipoprotein A-I (ApoA-I), the major protein component of high-density lipoproteins (HDL) is a multifunctional protein, involved in cholesterol traffic and inflammatory and immune response regulation. Many studies revealing alterations of ApoA-I during the development and progression of various types of cancer suggest that serum ApoA-I levels may represent a useful biomarker contributing to better estimation of cancer risk, early cancer diagnosis, follow up, and prognosis stratification of cancer patients. In addition, recent in vitro and animal studies disclose a more direct, tumor suppressive role of ApoA-I in cancer pathogenesis, which involves anti-inflammatory and immune-modulatory mechanisms. Herein, we review recent epidemiologic, clinicopathologic, and mechanistic studies investigating the role of ApoA-I in cancer biology, which suggest that enhancing the tumor suppressive activity of ApoA-I may contribute to better cancer prevention and treatment.
Collapse
|
28
|
Hao B, Peng X, Bi B, Yu M, Sang C, Chen Z. Preoperative serum high-density lipoprotein cholesterol as a predictor of poor survival in patients with clear cell renal cell cancer. Int J Biol Markers 2019; 34:168-175. [PMID: 30912469 DOI: 10.1177/1724600819831404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Purpose: Numerous studies have suggested that dyslipidemia is closely related to various cancers and the high-density lipoprotein cholesterol (HDL-C) levels are associated with the outcome of cancer patients. However, the predictive value of HDL-C in patients with renal cell carcinoma remains unclear. Our study aims to explore the relationship between the levels of serum HDL-C and the prognosis of renal cell carcinoma. Methods: A total of 308 patients diagnosed with clear cell renal cell carcinoma (CCRCC) who received surgical treatment were retrospectively enrolled in our study. The necessary clinical data of each enrolled patient were collected and the Kaplan–Meier method and the Cox proportional hazards regression model were used to calculate the overall survival and cancer-specific survival. Results: Kaplan–Meier and univariate analysis showed that a lower preoperative serum HDL-C level was a risk factor of CCRCC patients. Multivariate analyses demonstrated that a higher serum HDL-C level was closely associated with better overall survival (hazard ratio = 0.32; 95% confidence interval (0.13, 0.78); P=0.013) and cancer-specific survival (hazard ratio =0.42; 95% confidence interval (0.15, 0.99); P=0.048). Conclusion: Our findings suggest that an increased serum level of HDL-C might predict better overall survival and cancer-specific survival in patients with CCRCC.
Collapse
Affiliation(s)
- Bo Hao
- Department of Cardiothoracic Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xufeng Peng
- Department of Urology, Children’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Baochen Bi
- Department of Cardiothoracic Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Miaomei Yu
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Chen Sang
- Department of Cardiothoracic Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhen Chen
- Department of Urology, the Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
29
|
Hemati M, Mansourabadi AH, Bafghi MK, Moradi A. Association between paraoxonase-1 gene Q192R and L55M polymorphisms and risk of gastric cancer: A case-control study from Iran. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:521-532. [PMID: 30857497 DOI: 10.1080/15257770.2019.1573371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the present study was to examine the relation between two paraoxonase1 (PON1) polymorphisms, Q192R and L55M and susceptibility to gastric cancer in an Iranian population. In this case-control study the PON1 polymorphisms were assessed in 90 gastric cancer patients and 90 healthy controls by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Regarding PON1 Q192R polymorphism, a significant increase in the R allele in the patient group compared with the controls (p value = 0.0006) While the Q allele was more frequent in the control group. No significant difference was found in the genotype or allele frequency of the L55M polymorphism between healthy individuals and patients with gastric cancer. Our results demonstrated the protective effect of Q allele against gastric cancer.
Collapse
Affiliation(s)
- Mahdie Hemati
- a Department of clinical Biochemistry faculty of Medicine , Shahid Sadoughi University of Medical Sciences and Health Services , Yazd , Iran.,b Hematology and Oncology Research Center Shahid Sadoughi University of Medical Sciences Yazd , Iran
| | - Amir Hossein Mansourabadi
- c Department of clinical immunology faculty of medicine , Tehran university of medical science , Tehran , Iran
| | | | - Ali Moradi
- a Department of clinical Biochemistry faculty of Medicine , Shahid Sadoughi University of Medical Sciences and Health Services , Yazd , Iran.,b Hematology and Oncology Research Center Shahid Sadoughi University of Medical Sciences Yazd , Iran
| |
Collapse
|
30
|
Ganjali S, Ricciuti B, Pirro M, Butler AE, Atkin SL, Banach M, Sahebkar A. High-Density Lipoprotein Components and Functionality in Cancer: State-of-the-Art. Trends Endocrinol Metab 2019; 30:12-24. [PMID: 30473465 DOI: 10.1016/j.tem.2018.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 01/05/2023]
Abstract
Cancer is the second leading cause of death in western countries, and thus represents a major global public health issue. Whilst it is well-recognized that diet, obesity, and smoking are risk factors for cancer, the role of low levels of high-density lipoprotein cholesterol (HDL-C) in cancer is less well appreciated. Conflicting evidence suggests that serum HDL-C levels may be either positively or negatively associated with cancer incidence and mortality. Such disparate associations are supported in part by the multitude of high-density lipoprotein (HDL) functions that can all have an impact on cancer cell biology. The aim of this review is to provide a comprehensive overview of the crosstalk between HDLs and cancer, focusing on the molecular mechanisms underlying this association.
Collapse
Affiliation(s)
- Shiva Ganjali
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Biagio Ricciuti
- Department of Medical Oncology, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | | | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Caracciolo G, Safavi-Sohi R, Malekzadeh R, Poustchi H, Vasighi M, Zenezini Chiozzi R, Capriotti AL, Laganà A, Hajipour M, Di Domenico M, Di Carlo A, Caputo D, Aghaverdi H, Papi M, Palmieri V, Santoni A, Palchetti S, Digiacomo L, Pozzi D, Suslick KS, Mahmoudi M. Disease-specific protein corona sensor arrays may have disease detection capacity. NANOSCALE HORIZONS 2019; 4:1063-1076. [DOI: 10.1039/c9nh00097f] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Protein corona sensor array technology identifies diseases through specific proteomics pattern recognition.
Collapse
|
32
|
Samadi S, Ghayour-Mobarhan M, Mohammadpour A, Farjami Z, Tabadkani M, Hosseinnia M, Miri M, Heydari-Majd M, Mehramiz M, Rezayi M, Ferns GA, Avan A. High-density lipoprotein functionality and breast cancer: A potential therapeutic target. J Cell Biochem 2018; 120:5756-5765. [PMID: 30362608 DOI: 10.1002/jcb.27862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022]
Abstract
Breast cancer is a major cause of death globally, and particularly in developed countries. Breast cancer is influenced by cholesterol membrane content, by affecting the signaling pathways modulating cell growth, adherence, and migration. Furthermore, steroid hormones are derived from cholesterol and these play a key role in the pathogenesis of breast cancer. Although most findings have reported an inverse association between serum high-density lipoprotein (HDL)-cholesterol level and the risk of breast cancer, there have been some reports of the opposite, and the association therefore remains unclear. HDL is principally known for participating in reverse cholesterol transport and has an inverse relationship with the cardiovascular risk. HDL is heterogeneous, with particles varying in composition, size, and structure, which can be altered under different circumstances, such as inflammation, aging, and certain diseases. It has also been proposed that HDL functionality might have a bearing on the breast cancer. Owing to the potential role of cholesterol in cancer, its reduction using statins, and particularly as an adjuvant during chemotherapy may be useful in the anticancer treatment, and may also be related to the decline in cancer mortality. Reconstituted HDLs have the ability to release chemotherapeutic drugs inside the cell. As a consequence, this may be a novel way to improve therapeutic targeting for the breast cancer on the basis of detrimental impacts of oxidized HDL on cancer development.
Collapse
Affiliation(s)
- Sara Samadi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhooshang Mohammadpour
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Farjami
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahla Tabadkani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hosseinnia
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehri Miri
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Motahareh Heydari-Majd
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrane Mehramiz
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Raut S, Mooberry L, Sabnis N, Garud A, Dossou AS, Lacko A. Reconstituted HDL: Drug Delivery Platform for Overcoming Biological Barriers to Cancer Therapy. Front Pharmacol 2018; 9:1154. [PMID: 30374303 PMCID: PMC6196266 DOI: 10.3389/fphar.2018.01154] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Drug delivery to malignant tumors is limited by several factors, including off-target toxicities and suboptimal benefits to cancer patient. Major research efforts have been directed toward developing novel technologies involving nanoparticles (NPs) to overcome these challenges. Major obstacles, however, including, opsonization, transport across cancer cell membranes, multidrug-resistant proteins, and endosomal sequestration of the therapeutic agent continue to limit the efficiency of cancer chemotherapy. Lipoprotein-based drug delivery technology, "nature's drug delivery system," while exhibits highly desirable characteristics, it still needs substantial investment from private/government stakeholders to promote its eventual advance to the bedside. Consequently, this review focuses specifically on the synthetic (reconstituted) high-density lipoprotein rHDL NPs, evaluating their potential to overcome specific biological barriers and the challenges of translation toward clinical utilization and commercialization. This highly robust drug transport system provides site-specific, tumor-selective delivery of anti-cancer agents while reducing harmful off-target effects. Utilizing rHDL NPs for anti-cancer therapeutics and tumor imaging revolutionizes the future strategy for the management of a broad range of cancers and other diseases.
Collapse
Affiliation(s)
- Sangram Raut
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Linda Mooberry
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Nirupama Sabnis
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Ashwini Garud
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Akpedje Serena Dossou
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Andras Lacko
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
34
|
Borlak J, Länger F, Chatterji B. Serum proteome mapping of EGF transgenic mice reveal mechanistic biomarkers of lung cancer precursor lesions with clinical significance for human adenocarcinomas. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3122-3144. [PMID: 29960043 DOI: 10.1016/j.bbadis.2018.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/12/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022]
Abstract
Atypical adenomatous hyperplasia (AAH) of the lung is a pre-invasive lesion (PL) with high risk of progression to lung cancer (LC). However, the pathways involved are uncertain. We searched for novel mechanistic biomarkers of AAH in an EGF transgenic disease model of lung cancer. Disease regulated proteins were validated by Western immunoblotting and immunohistochemistry (IHC) of control and morphologically altered respiratory epithelium. Translational work involved clinical resection material. Collectively, 68 unique serum proteins were identified by 2DE-MALDI-TOF mass spectrometry and 13 reached statistical significance (p < 0.05). EGF, amphiregulin and the EGFR endosomal sorting protein VPS28 were induced up to 5-fold while IHC confirmed strong induction of these proteins. Furthermore, ApoA1, α-2-macroglobulin, and vitamin-D binding protein were nearly 6- and 2-fold upregulated in AAH; however, ApoA1 was oppositely regulated in LC to evidence disease stage dependent regulation of this tumour suppressor. Conversely, plasminogen and transthyretin were highly significantly repressed by 3- and 20-fold. IHC confirmed induced ApoA1, Fetuin-B and transthyretin expression to influence calcification, inflammation and tumour-infiltrating macrophages. Moreover, serum ApoA4, ApoH and ApoM were 2-, 2- and 6-fold repressed; however tissue ApoM and sphingosine-1-phosphate receptor expression was markedly induced to suggest a critical role of sphingosine-1-phosphate signalling in PL and malignant transformation. Finally, a comparison of three different LC models revealed common and unique serum biomarkers mechanistically linked to EGFR, cMyc and cRaf signalling. Their validation by IHC on clinical resection material established relevance for distinct human lung pathologies. In conclusion, we identified mechanistic biomarker candidates recommended for in-depth clinical evaluation.
Collapse
Affiliation(s)
- Jürgen Borlak
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Florian Länger
- Hannover Medical School, Institute of Pathology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Bijon Chatterji
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
35
|
Bamji-Stocke S, van Berkel V, Miller DM, Frieboes HB. A review of metabolism-associated biomarkers in lung cancer diagnosis and treatment. Metabolomics 2018; 14:81. [PMID: 29983671 PMCID: PMC6033515 DOI: 10.1007/s11306-018-1376-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/29/2018] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Lung cancer continues to be the leading cause of cancer-related mortality worldwide. Early detection has proven essential to extend survival. Genomic and proteomic advances have provided impetus to the effort dedicated to detect and diagnose the disease at an earlier stage. Recently, the study of metabolites associated with tumor formation and progression has inaugurated the era of cancer metabolomics to aid in this effort. OBJECTIVES This review summarizes recent work regarding novel metabolites with the potential to serve as biomarkers for early lung tumor detection, evaluation of disease progression, and prediction of patient outcomes. METHOD We compare the metabolite profiling of cancer patients with that of healthy individuals, and the metabolites identified in tissue and biofluid samples and their usefulness as lung cancer biomarkers. We discuss metabolite alterations in tumor versus paired non-tumor lung tissues, as well as metabolite alterations in different stages of lung cancers and their usefulness as indicators of disease progression and overall survival. We evaluate metabolite dysregulation in different types of lung cancers, and those associated with lung cancer versus other lung diseases. We also examine metabolite differences between lung cancer patients and smokers/risk-factor individuals. RESULT Although an extensive list of metabolites has been evaluated to distinguish between these cases, refinement of methods is further required for adequate patient diagnosis. CONCLUSION We conclude that with technological advancement, metabolomics may be able to replace more invasive and costly diagnostic procedures while also providing the means to more effectively tailor treatment to patient-specific tumors.
Collapse
Affiliation(s)
- Sanaya Bamji-Stocke
- Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, KY, 40208, USA
| | - Victor van Berkel
- Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Donald M Miller
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, KY, 40208, USA.
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
36
|
Shi F, Wu H, Qu K, Sun Q, Li F, Shi C, Li Y, Xiong X, Qin Q, Yu T, Jin X, Cheng L, Wei Q, Li Y, She J. Identification of serum proteins AHSG, FGA and APOA-I as diagnostic biomarkers for gastric cancer. Clin Proteomics 2018; 15:18. [PMID: 29719494 PMCID: PMC5925839 DOI: 10.1186/s12014-018-9194-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/18/2018] [Indexed: 12/15/2022] Open
Abstract
Background The development of clinically accessible biomarkers is critical for the early diagnosis of gastric cancer (GC) in patients. High-throughput proteomics techniques could not only effectively generate a serum peptide profile but also provide a new approach to identify potentially diagnostic and prognostic biomarkers for cancer patients. Methods In this study, we aim to identify potentially discriminating serum biomarkers for GC. In the discovery cohort, we screened potential biomarkers using magnetic-bead-based purification and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in 64 samples from 32 GC patients that were taken both pre- and post-operatively and 30 healthy volunteers that served as controls. In the validation cohort, the expression patterns and diagnostic values of serum FGA, AHSG and APOA-I were further confirmed by ELISA in 42 paired GC patients (pre- and post-operative samples from 16 patients with pathologic stage I/II and 26 with stage III/IV), 30 colorectal cancer patients, 30 hepatocellular carcinoma patients, and 28 healthy volunteers. Results ClinProTools software was used and annotated 107 peptides, 12 of which were differentially expressed among three groups (P < 0.0001, fold > 1.5). These 12 peptide peaks were further identified as FGA, AHSG, APOA-I, HBB, TXNRD1, GSPT2 and CAKP5. ELISA data suggested that the serum levels of FGA, AHSG and APOA-I in GC patients were significantly different compared with healthy controls and had favorable diagnostic values for GC patients. Moreover, we found that the serum levels of these three proteins were associated with TNM stages and could reflect tumor burden. Conclusion Our findings suggested that FGA, AHSG and APOA-I might be potential serum biomarkers for GC diagnosis.
Collapse
Affiliation(s)
- Feiyu Shi
- 1Department of General Surgery, The First Affiliated Hospital of Xi'an Jiao Tong University, 277 Yanta West Road, Xi'an, 710061 Shaanxi China
| | - Hong Wu
- 1Department of General Surgery, The First Affiliated Hospital of Xi'an Jiao Tong University, 277 Yanta West Road, Xi'an, 710061 Shaanxi China
| | - Kai Qu
- 2Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiao Tong University, 277 Yanta West Road, Xi'an, 710061 Shaanxi China
| | - Qi Sun
- 1Department of General Surgery, The First Affiliated Hospital of Xi'an Jiao Tong University, 277 Yanta West Road, Xi'an, 710061 Shaanxi China
| | - Fanni Li
- 3Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiao Tong University, 277 Yanta West Road, Xi'an, 710061 Shaanxi China
| | - Chengxin Shi
- 1Department of General Surgery, The First Affiliated Hospital of Xi'an Jiao Tong University, 277 Yanta West Road, Xi'an, 710061 Shaanxi China
| | - Yaguang Li
- 1Department of General Surgery, The First Affiliated Hospital of Xi'an Jiao Tong University, 277 Yanta West Road, Xi'an, 710061 Shaanxi China
| | - Xiaofan Xiong
- 4Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiao Tong University Health Science Center, 76 Yanta West Road, Xi'an, 710061 Shaanxi China
| | - Qian Qin
- 1Department of General Surgery, The First Affiliated Hospital of Xi'an Jiao Tong University, 277 Yanta West Road, Xi'an, 710061 Shaanxi China
| | - Tianyu Yu
- 1Department of General Surgery, The First Affiliated Hospital of Xi'an Jiao Tong University, 277 Yanta West Road, Xi'an, 710061 Shaanxi China
| | - Xin Jin
- 1Department of General Surgery, The First Affiliated Hospital of Xi'an Jiao Tong University, 277 Yanta West Road, Xi'an, 710061 Shaanxi China
| | - Liang Cheng
- 2Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiao Tong University, 277 Yanta West Road, Xi'an, 710061 Shaanxi China
| | - Qingxia Wei
- 5Department of Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, ON M5G0A4 Canada
| | - Yingchao Li
- 6Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiao Tong University, 277 Yanta West Road, Xi'an, 710061 Shaanxi China
| | - Junjun She
- 1Department of General Surgery, The First Affiliated Hospital of Xi'an Jiao Tong University, 277 Yanta West Road, Xi'an, 710061 Shaanxi China
| |
Collapse
|
37
|
Chen P, Han L, Wang C, Jia Y, Song Q, Wang J, Guan S, Tan B, Liu B, Jia W, Cui J, Zhou W, Cheng Y. Preoperative serum lipids as prognostic predictors in esophageal squamous cell carcinoma patients with esophagectomy. Oncotarget 2018; 8:41605-41619. [PMID: 28404928 PMCID: PMC5522301 DOI: 10.18632/oncotarget.15651] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 01/06/2017] [Indexed: 11/25/2022] Open
Abstract
This study was to evaluate the prognostic significance of serum lipids in esophageal squamous cell carcinoma patients who underwent esophagectomy. Preoperative serum lipids were collected from 214 patients who were diagnosed with esophageal squamous cell carcinoma. All of the patients received esophagectomy in Qilu Hospital of Shandong University from January 2007 to December 2008. The records and data were analyzed retrospectively. We found that low total cholesterol (for T stage, p = 0.006; for TNM stage, p = 0.039) and low-density lipoprotein cholesterol (for T stage, p = 0.031; for TNM stage, p = 0.035) were associated with advanced T stage and TNM stage. Kaplan-Meier survival analysis indicated that low total cholesterol and low-density lipoprotein cholesterol were associated with shorter disease-free survival(for total cholesterol, p = 0.045; for low-density lipoprotein cholesterol, p < 0.001) and overall survival (for total cholesterol, p = 0.043; for low-density lipoprotein cholesterol, p < 0.001). Lower low-density lipoprotein cholesterol/high-density lipoprotein cholesterol ratio (LHR) indicated poorer disease-free survival and overall survival (both p < 0.001). In the multivariate analysis, low-density lipoprotein cholesterol and LHR were independent prognostic factors for disease-free survival and overall survival. In conclusion, our study indicated that preoperative serum total cholesterol and low-density lipoprotein cholesterol are prognostic factors for esophageal squamous cell carcinoma patients who underwent esophagectomy. LHR can serve as a promising serum lipids-based prognostic indicator.
Collapse
Affiliation(s)
- Pengxiang Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Lihui Han
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Cong Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yibin Jia
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Qingxu Song
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Jianbo Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Shanghui Guan
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Bingxu Tan
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Bowen Liu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Wenqiao Jia
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Jianfeng Cui
- Department of Urology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Wei Zhou
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| |
Collapse
|
38
|
Notarnicola M, Lorusso D, Tutino V, De Nunzio V, De Leonardis G, Marangelli G, Guerra V, Veronese N, Caruso MG, Giannelli G. Differential Tissue Fatty Acids Profiling between Colorectal Cancer Patients with and without Synchronous Metastasis. Int J Mol Sci 2018; 19:ijms19040962. [PMID: 29570667 PMCID: PMC5979339 DOI: 10.3390/ijms19040962] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/12/2018] [Accepted: 03/22/2018] [Indexed: 12/20/2022] Open
Abstract
The early detection of colorectal cancer and determination of its metastatic potential are important factors to set up more efficacious therapeutic strategies. In the present study, we hypothesize that fatty acids analysis in colorectal cancer patients can discriminate between metastatic and non-metastatic patients. Fifty-one consecutive patients with histologically proven colorectal cancer were enrolled in the study and the presence of synchronous metastasis was detected in 25 of these 51 patients. Fatty acid profile analysis in red blood cell membranes was not able to discriminate the metastatic colorectal cancer patients from those without metastasis. However, significant differences in the tumor tissue fatty acid profile were found in metastatic cancer patients when compared to patients without metastasis. Metastatic patients showed significantly lower percentages of Eicosapentaenoic acid (EPA) and higher levels of γ-linolenic acid (GLA), a n-3- and n-6-Polyunsaturated fatty acid (PUFA), respectively. Our findings, suggesting that membrane lipid rearrangement could influence the cellular function and make the cell more prone to metastasis, offer the opportunity to develop nutritional strategies that may be helpful in the prevention and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology-Research Hospital, Via Turi, 27, 70013 Castellana Grotte, Bari, Italy.
| | - Dionigi Lorusso
- Division of Surgery, National Institute of Gastroenterology-Research Hospital, Via Turi, 27, 70013 Castellana Grotte, Bari, Italy.
| | - Valeria Tutino
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology-Research Hospital, Via Turi, 27, 70013 Castellana Grotte, Bari, Italy.
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology-Research Hospital, Via Turi, 27, 70013 Castellana Grotte, Bari, Italy.
| | - Giampiero De Leonardis
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology-Research Hospital, Via Turi, 27, 70013 Castellana Grotte, Bari, Italy.
| | - Gisella Marangelli
- Division of Surgery, National Institute of Gastroenterology-Research Hospital, Via Turi, 27, 70013 Castellana Grotte, Bari, Italy.
| | - Vito Guerra
- Clinical Trial Unit, National Institute of Gastroenterology-Research Hospital, Via Turi, 27, 70013 Castellana Grotte, Bari, Italy.
| | - Nicola Veronese
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology-Research Hospital, Via Turi, 27, 70013 Castellana Grotte, Bari, Italy.
| | - Maria Gabriella Caruso
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology-Research Hospital, Via Turi, 27, 70013 Castellana Grotte, Bari, Italy.
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology-Research Hospital"S. de Bellis", Via Turi, 27, 70013 Castellana Grotte, Bari, Italy.
| |
Collapse
|
39
|
Lipoproteins for therapeutic delivery: recent advances and future opportunities. Ther Deliv 2018; 9:257-268. [DOI: 10.4155/tde-2017-0122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The physiological role(s) of mammalian plasma lipoproteins is to transport hydrophobic molecules (primarily cholesterol and triacylglycerols) to their respective destinations. Lipoproteins have also been studied as drug-delivery agents due to their advantageous payload capacity, long residence time in the circulation and biocompatibility. The purpose of this review is to briefly discuss current findings with the focus on each type of formulation's potential for clinical applications. Regarding utilizing lipoprotein type formulation for cancer therapeutics, their potential for tumor-selective delivery is also discussed.
Collapse
|
40
|
Xu GH, Lou N, Shi HC, Xu YC, Ruan HL, Xiao W, Liu L, Li X, Xiao HB, Qiu B, Bao L, Yuan CF, Zhou YL, Hu WJ, Chen K, Yang HM, Zhang XP. Up-regulation of SR-BI promotes progression and serves as a prognostic biomarker in clear cell renal cell carcinoma. BMC Cancer 2018; 18:88. [PMID: 29357836 PMCID: PMC5778766 DOI: 10.1186/s12885-017-3761-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/06/2017] [Indexed: 01/05/2023] Open
Abstract
Background Scavenger receptor class B type I (SR-BI) has been reported to be involved in carcinogenesis of several human cancers. However, it is currently unknown whether SR-BI plays a role in clear cell renal cell carcinoma (ccRCC). Here, we aimed to evaluate a tumor promotive mechanism for SR-BI in ccRCC. Methods The expression of SR-BI was evaluated by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot and immunohistochemistry (IHC) in ccRCC tissues and cell lines. Lipid droplets in ccRCC tissues and normal kidney tissues were examined by Oil Red O (ORO) and hematoxylin-eosin (HE) staining. The correlation between SR-BI mRNA levels and clinicopathological features was analyzed by Pearson’s chi-square test or Fisher’s exact test. Kaplan-Meier analysis and Cox model were used to evaluate the difference in progression-free survival (PFS) associated with expression of SR-BI. Inhibition of SR-BI was conducted by using small interfering RNA (siRNA). In vitro assays were performed to assess the impact of SR-BI knockdown on cell biological behaviors. High density lipoprotein (HDL)-cholesterol content in ccRCC cells and extracellular media was also measured after transfection with siRNA. Results The expression of SR-BI was markedly up-regulated in ccRCC tissues and tumor cell lines. ORO and HE staining revealed huge amounts of lipid droplets accumulation in ccRCC. Clinical analysis showed that over-expression of SR-BI was positively associated with tumor size, grade, distant metastasis and inversely correlated with PFS. Furthermore, SR-BI was proved to be an independent prognostic marker in ccRCC patients. The inhibition of SR-BI attenuated the tumorous behaviors of ccRCC cells, expression of metastasis and AKT pathway related proteins. The content of HDL-cholesterol was reduced in cells while increased in extracellular media after transfection with si-SR-BI. Conclusions Our results demonstrate that SR-BI functions as an oncogene and promotes progression of ccRCC. SR-BI may serve as a potential prognostic biomarker and therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Guang-Hua Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Ning Lou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Hang-Chuan Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Yu-Chen Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Hai-Long Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Lei Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Xiang Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Hai-Bing Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Bin Qiu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Lin Bao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Chang-Fei Yuan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Ya-Li Zhou
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No.13, Hangkong Road, Wuhan, Hubei, 430030, China
| | - Wen-Jun Hu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No.13, Hangkong Road, Wuhan, Hubei, 430030, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Hong-Mei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No.13, Hangkong Road, Wuhan, Hubei, 430030, China.
| | - Xiao-Ping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China.
| |
Collapse
|
41
|
Effect of size and pegylation of liposomes and peptide-based synthetic lipoproteins on tumor targeting. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1869-1878. [PMID: 28434931 DOI: 10.1016/j.nano.2017.04.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022]
Abstract
Synthetic high-density lipoprotein nanoparticles (sHDL) are a valuable class of nanomedicines with established animal safety profile, clinical tolerability and therapeutic efficacy for cardiovascular applications. In this study we examined how the scavenger receptor B-I-mediated (SR-BI) tumor-targeting ability of sHDL, long plasma circulation half-life, and small particle size (9.6±0.2nm) impacted sHDL accumulation in SR-BI positive colorectal carcinoma cells, 3D tumor spheroids, and in vivo xenografts. We compared tumor accumulation of sHDL with that of liposomes (LIP, 130.7±0.8nm), pegylated liposomes (PEG-LIP, 101±2nm), and pegylated sHDL (12.1±0.1nm), all prepared with the same lipid components. sHDL penetrated deep (210μm) into tumor spheroids and exhibited 12- and 3-fold higher in vivo solid tumor accumulation, compared with LIP (p<0.01) and PEG-LIP (p<0.05), respectively. These results suggest that sHDL with established human safety possess promising intrinsic tumor-targeted properties.
Collapse
|
42
|
Serum low-density lipoprotein and low-density lipoprotein expression level at diagnosis are favorable prognostic factors in patients with small-cell lung cancer (SCLC). BMC Cancer 2017; 17:269. [PMID: 28410578 PMCID: PMC5391547 DOI: 10.1186/s12885-017-3239-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
Background Patients with small-cell lung cancer (SCLC) patients demonstrate varied survival outcomes. Previous studies have reported that lipoproteins are associated with prognosis in various cancers; however, the role of low-density lipoprotein (LDL) and low-density lipoprotein- cholesterol (LDLR) in patients with SCLC has not been studied. Methods In this study, the impact of LDL and LDLR on the prognosis of SCLC patients was evaluated. A total of 601 patients with SCLC were retrospectively evaluated, in which 198 patients had adequate tissues for immunohistochemistry, and serum LDL and LDLR expression levels at baseline were tested. X-tile tool, and univariate and multivariate Cox analysis were used to assess the association between LDL, LDLR and overall survival (OS). Results Univariate analysis demonstrated that a lower LDL level was significantly associated with superior OS (P = 0.037). Similarly, LDLR also significantly predicted OS (P = 0.003). Multivariate Cox analyses confirmed that lower LDL and LDLR expression was independent prognostic factors associated with longer OS (P = 0.019 and P = 0.027, respectively). Conclusions This study showed that both LDL and LDLR are prognostic indexes for survival in patients with SCLC. Patients with high LDL or LDLR expression level may benefit from treatment that modulates lipoprotein combined with platinum-based chemotherapy. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3239-z) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Mooberry LK, Sabnis NA, Panchoo M, Nagarajan B, Lacko AG. Targeting the SR-B1 Receptor as a Gateway for Cancer Therapy and Imaging. Front Pharmacol 2016; 7:466. [PMID: 28018216 PMCID: PMC5156841 DOI: 10.3389/fphar.2016.00466] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/16/2016] [Indexed: 01/25/2023] Open
Abstract
Malignant tumors display remarkable heterogeneity to the extent that even at the same tissue site different types of cells with varying genetic background may be found. In contrast, a relatively consistent marker the scavenger receptor type B1 (SR-B1) has been found to be consistently overexpressed by most tumor cells. Scavenger Receptor Class B Type I (SR-BI) is a high density lipoprotein (HDL) receptor that facilitates the uptake of cholesterol esters from circulating lipoproteins. Additional findings suggest a critical role for SR-BI in cholesterol metabolism, signaling, motility, and proliferation of cancer cells and thus a potential major impact in carcinogenesis and metastasis. Recent findings indicate that the level of SR-BI expression correlate with aggressiveness and poor survival in breast and prostate cancer. Moreover, genomic data show that depending on the type of cancer, high or low SR-BI expression may promote poor survival. This review discusses the importance of SR-BI as a diagnostic as well as prognostic indicator of cancer to help elucidate the contributions of this protein to cancer development, progression, and survival. In addition, the SR-B1 receptor has been shown to serve as a potential gateway for the delivery of therapeutic agents when reconstituted high density lipoprotein nanoparticles are used for their transport to cancer cells and tumors. Opportunities for the development of new technologies, particularly in the areas of cancer therapy and tumor imaging are discussed.
Collapse
Affiliation(s)
- Linda K. Mooberry
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort WorthTX, USA
| | - Nirupama A. Sabnis
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort WorthTX, USA
| | - Marlyn Panchoo
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort WorthTX, USA
| | - Bhavani Nagarajan
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort WorthTX, USA
| | - Andras G. Lacko
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort WorthTX, USA
- Department of Pediatrics, University of North Texas Health Science Center, Fort WorthTX, USA
| |
Collapse
|
44
|
Thaxton CS, Rink JS, Naha PC, Cormode DP. Lipoproteins and lipoprotein mimetics for imaging and drug delivery. Adv Drug Deliv Rev 2016; 106:116-131. [PMID: 27133387 PMCID: PMC5086317 DOI: 10.1016/j.addr.2016.04.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/02/2016] [Accepted: 04/19/2016] [Indexed: 12/22/2022]
Abstract
Lipoproteins are a set of natural nanoparticles whose main role is the transport of fats within the body. While much work has been done to develop synthetic nanocarriers to deliver drugs or contrast media, natural nanoparticles such as lipoproteins represent appealing alternatives. Lipoproteins are biocompatible, biodegradable, non-immunogenic and are naturally targeted to some disease sites. Lipoproteins can be modified to act as contrast agents in many ways, such as by insertion of gold cores to provide contrast for computed tomography. They can be loaded with drugs, nucleic acids, photosensitizers or boron to act as therapeutics. Attachment of ligands can re-route lipoproteins to new targets. These attributes render lipoproteins attractive and versatile delivery vehicles. In this review we will provide background on lipoproteins, then survey their roles as contrast agents, in drug and nucleic acid delivery, as well as in photodynamic therapy and boron neutron capture therapy.
Collapse
Affiliation(s)
- C Shad Thaxton
- Department of Urology, Northwestern University, Chicago, IL, USA; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, USA; International Institute for Nanotechnology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Jonathan S Rink
- Department of Urology, Northwestern University, Chicago, IL, USA; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, USA
| | - Pratap C Naha
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA; Department of Cardiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA.
| |
Collapse
|
45
|
Wang Y, Wang ZQ, Wang FH, Lei XF, Yan SM, Wang DS, Zhang F, Xu RH, Wang LY, Li YH. Predictive value of chemotherapy-related high-density lipoprotein cholesterol (HDL) elevation in patients with colorectal cancer receiving adjuvant chemotherapy: an exploratory analysis of 851 cases. Oncotarget 2016; 7:57290-57300. [PMID: 27344180 PMCID: PMC5302989 DOI: 10.18632/oncotarget.10145] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/03/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The phenomenon of chemotherapy-related lipid alterations has been reported based on a small number of patients and varies among different cancers. However, little is known about these alterations in colorectal cancer (CRC) patients. RESULTS Patients in cohort 1, but not in cohort 2, exhibited significantly increased cholesterol, triglyceride, HDL-C, and ApoA-I levels, and decreased LDL-C and ApoB levels after adjuvant chemotherapy. Patients with chemotherapy-related HDL-C elevation exhibited better 3-year DFS (84.5% vs. 73%, P = 0.001) and 7-year OS (82% vs. 70%, P = 0.002) than those without. Similarly, the 3-year DFS (83.3% vs. 77.6%, P = 0.008) and 7-year OS (81% vs. 74.6%, P = 0.040) were superior in chemotherapy-related ApoA-I elevation patients. However, only HDL-C elevation remained an independent prognostic value in the multivariate Cox model. METHODS Eight hundred fifty-one CRC patients with curative-intent resection were retrospectively analyzed. Six hundred sixty-seven receiving fluoropyrimidine-based adjuvant chemotherapy for more than 3 months were enrolled in cohort 1. The lipid alterations before and after chemotherapy were studied. Simultaneously, 184 patients not treated with chemotherapy (cohort 2) were included as a control for the comparisons of lipids alterations within 1 month after resection and at half-year follow-up. Furthermore, these significant alterations were investigated with respect to the prognostic value of disease-free survival (DFS) and overall survival (OS). An internal validation was performed. CONCLUSION We observed significant changes in the levels of various lipids in CRC patients receiving adjuvant chemotherapy. Furthermore, chemotherapy-related HDL-C elevation was determined to be an independent prognostic indicator for superior DFS and OS.
Collapse
Affiliation(s)
- Yun Wang
- Sate Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Zhi-qiang Wang
- Sate Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Feng-hua Wang
- Sate Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xue-fen Lei
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Shu-mei Yan
- Sate Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - De-shen Wang
- Sate Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Fei Zhang
- Sate Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Rui-hua Xu
- Sate Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Ling-yun Wang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yu-hong Li
- Sate Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| |
Collapse
|
46
|
Puchades-Carrasco L, Jantus-Lewintre E, Pérez-Rambla C, García-García F, Lucas R, Calabuig S, Blasco A, Dopazo J, Camps C, Pineda-Lucena A. Serum metabolomic profiling facilitates the non-invasive identification of metabolic biomarkers associated with the onset and progression of non-small cell lung cancer. Oncotarget 2016; 7:12904-16. [PMID: 26883203 PMCID: PMC4914330 DOI: 10.18632/oncotarget.7354] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/27/2016] [Indexed: 12/13/2022] Open
Abstract
Lung cancer (LC) is responsible for most cancer deaths. One of the main factors contributing to the lethality of this disease is the fact that a large proportion of patients are diagnosed at advanced stages when a clinical intervention is unlikely to succeed. In this study, we evaluated the potential of metabolomics by 1H-NMR to facilitate the identification of accurate and reliable biomarkers to support the early diagnosis and prognosis of non-small cell lung cancer (NSCLC).We found that the metabolic profile of NSCLC patients, compared with healthy individuals, is characterized by statistically significant changes in the concentration of 18 metabolites representing different amino acids, organic acids and alcohols, as well as different lipids and molecules involved in lipid metabolism. Furthermore, the analysis of the differences between the metabolic profiles of NSCLC patients at different stages of the disease revealed the existence of 17 metabolites involved in metabolic changes associated with disease progression.Our results underscore the potential of metabolomics profiling to uncover pathophysiological mechanisms that could be useful to objectively discriminate NSCLC patients from healthy individuals, as well as between different stages of the disease.
Collapse
Affiliation(s)
| | - Eloisa Jantus-Lewintre
- Molecular Oncology Laboratory, Fundación para la Investigación del Hospital General Universitario, Valencia, Spain
| | - Clara Pérez-Rambla
- Structural Biochemistry Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Molecular Oncology Laboratory, Fundación para la Investigación del Hospital General Universitario, Valencia, Spain
- Instituto de Investigación Sanitaria La Fe, Hospital Universitario i Politécnico La Fe, Valencia, Spain
| | | | - Rut Lucas
- Molecular Oncology Laboratory, Fundación para la Investigación del Hospital General Universitario, Valencia, Spain
| | - Silvia Calabuig
- Molecular Oncology Laboratory, Fundación para la Investigación del Hospital General Universitario, Valencia, Spain
| | - Ana Blasco
- Department of Medical Oncology, Consorcio Hospital General Universitario, Valencia, Spain
| | - Joaquín Dopazo
- Computational Genomics Department, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Bioinformatics of Rare Diseases (BIER), CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
- Functional Genomics Node, Instituto Nacional de Bioinformática / Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carlos Camps
- Molecular Oncology Laboratory, Fundación para la Investigación del Hospital General Universitario, Valencia, Spain
- Department of Medical Oncology, Consorcio Hospital General Universitario, Valencia, Spain
- Department of Medicine, Universitat de València, Valencia, Spain
| | - Antonio Pineda-Lucena
- Structural Biochemistry Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Instituto de Investigación Sanitaria La Fe, Hospital Universitario i Politécnico La Fe, Valencia, Spain
| |
Collapse
|
47
|
Liao F, He W, Jiang C, Yin C, Guo G, Chen X, Qiu H, Rong Y, Zhang B, Xu D, Xia L. A high LDL-C to HDL-C ratio predicts poor prognosis for initially metastatic colorectal cancer patients with elevations in LDL-C. Onco Targets Ther 2015; 8:3135-42. [PMID: 26604782 PMCID: PMC4629979 DOI: 10.2147/ott.s90479] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Although lipid disequilibrium has been documented for several types of cancer including colorectal cancer (CRC), it remains unknown whether lipid parameters are associated with the outcome of metastatic CRC (mCRC) patients. Here, we retrospectively examined the lipid profiles of 453 mCRC patients and investigated whether any of the lipid parameters correlated with the outcome of mCRC patients. Pretreatment serum lipids, including triglyceride, cholesterol, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), were collected in 453 initially mCRC patients. The LDL-C to HDL-C ratio (LHR) was calculated and divided into the first, second, and third tertiles. Univariate and multivariate analyses were performed to evaluate the impact of lipids on overall survival (OS) and progression-free survival (PFS). Nearly two-fifths of the patients (41.3%) exhibited elevations in LDL-C while most patients (88.3%) showed normal HDL-C levels. Decreased HDL-C (P=0.542) and increased LDL-C (P=0.023) were prognostic factors for poor OS, while triglyceride (P=0.542) and cholesterol (P=0.215) were not. Multivariate analysis revealed that LDL-C (P=0.031) was an independent prognostic factor. Triglyceride, cholesterol, HDL-C, and LDL-C did not correlate with PFS. Among patients with elevations in LDL-C levels, patients in the third tertile of the LHR had a markedly shorter median OS compared to those in the first or second tertile (P=0.012). Thus, increased LDL-C level is an independent prognostic factor for poor prognosis in mCRC patients, and a high LHR predicts poor prognosis for initially mCRC patients with elevations in LDL-C.
Collapse
Affiliation(s)
- Fangxin Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China ; VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Wenzhuo He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China ; VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Chang Jiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China ; VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Chenxi Yin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China ; VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Guifang Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China ; VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xuxian Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China ; VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Huijuan Qiu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China ; VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yuming Rong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China ; VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Bei Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China ; VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Dazhi Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China ; Gastric and Pancreatic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Liangping Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China ; VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| |
Collapse
|
48
|
Yuan B, Wu C, Wang X, Wang D, Liu H, Guo L, Li XA, Han J, Feng H. High scavenger receptor class B type I expression is related to tumor aggressiveness and poor prognosis in breast cancer. Tumour Biol 2015; 37:3581-8. [PMID: 26456958 DOI: 10.1007/s13277-015-4141-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/25/2015] [Indexed: 01/25/2023] Open
Abstract
Scavenger receptor class B type I (SR-BI) has been linked to the development and progression of breast cancer. However, its clinical significance in breast cancer remains unclear. Here, we evaluated SR-BI expression in a well-characterized breast cancer tissue microarray by immunohistochemistry. High SR-BI expression was observed in 54 % of all breast cancer cases and was significantly associated with advanced pTNM stage (P = 0.002), larger tumor size (P = 0.023), lymph node metastasis (P = 0.012), and the absence of ER (P = 0.014). The Kaplan-Meier survival analysis revealed that patients with high SR-BI expression had significantly shorter overall survival (OS) (P = 0.004). Moreover, multivariate analysis with adjustment for other prognostic factors confirmed that SR-BI was an independent prognostic factor for patient outcome (P = 0.017). Overall, our study demonstrated that high SR-BI expression was related to conventional parameters indicative of more aggressive tumor type and may serve as a new prognostic marker for poor clinical outcome in human breast cancer.
Collapse
Affiliation(s)
- Baoying Yuan
- Cancer Center, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, 324 Jingwu Weiqi Road, Jinan, Shandong, 250021, People's Republic of China
| | - Changshun Wu
- Department of Orthopedics, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, 324 Jingwu Weiqi Road, Jinan, Shandong, 250021, China
| | - Xingwen Wang
- Cancer Center, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, 324 Jingwu Weiqi Road, Jinan, Shandong, 250021, People's Republic of China
| | - Dan Wang
- Department of Pediatrics, Saha Cardiovascular Research Center, University of Kentucky College of Medicine, 741 S. Limestone Street, Lexington, KY, 40536, USA
| | - Huiling Liu
- Cancer Center, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, 324 Jingwu Weiqi Road, Jinan, Shandong, 250021, People's Republic of China
| | - Ling Guo
- Department of Central Lab, Shandong Provincial Hospital affiliated to Shandong University, 324 Jingwu Weiqi Road, Jinan, Shandong, 250021, People's Republic of China
| | - Xiang-An Li
- Department of Pediatrics, Saha Cardiovascular Research Center, University of Kentucky College of Medicine, 741 S. Limestone Street, Lexington, KY, 40536, USA.
| | - Junqing Han
- Cancer Center, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, 324 Jingwu Weiqi Road, Jinan, Shandong, 250021, People's Republic of China.
| | - Hong Feng
- Cancer Center, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, 324 Jingwu Weiqi Road, Jinan, Shandong, 250021, People's Republic of China.
| |
Collapse
|
49
|
Ghahremanfard F, Mirmohammadkhani M, Shahnazari B, Gholami G, Mehdizadeh J. The Valuable Role of Measuring Serum Lipid Profile in Cancer Progression. Oman Med J 2015; 30:353-7. [PMID: 26421116 DOI: 10.5001/omj.2015.71] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVE Serum lipid levels are not only associated with etiology, but also with prognosis in cancer. To investigate this issue further, we aimed to evaluate the serum levels of lipids in association with the most important prognostic indicators in cancer patients at the start of chemotherapy. METHODS In a retrospective cross-sectional study, using existing medical records obtained from 2009-2014, the data of all incident cancer cases in Iranian patients referred to the Semnan oncology clinic for chemotherapy were analyzed. Data on demographics, cancer type, prognostic indicators (e.g. lymph node involvement, metastasis, and stage of disease), as well as the patient's lipid profile were collected. We used multiple logistic regression models to show the relationship between prognosis indicators and lipid profile adjusting for age, gender, and type of cancer. RESULTS The data of 205 patients was gathered. We found a significant difference in the lipid profile between different types of cancers (breast, colon, gastric, and ovarian). With the exception of high-density lipoprotein levels in women, which were higher than in men, the means of other lipid profiles were similar between the genders. There was a significant association between higher levels of low-density lipoprotein (LDL >110mg/dL) in the serum and metastasis (adjusted odds ratio=2.4, 95% CI 1.2-3.5). No significant association was reported between lipid profile and lymph nodes involvement and stage of the disease. CONCLUSION Our study suggested a benefit of measuring serum levels of lipids for predicting cancer progression. Increased LDL levels can be considered a predictive factor for increasing the risk of metastasis.
Collapse
Affiliation(s)
| | - Majid Mirmohammadkhani
- Research Center for Social Determinants of Health, Semnan University of Medical Sciences, Semnan, Iran
| | - Banafsheh Shahnazari
- Internal Medicine Department, Semnan University of Medical Sciences, Semnan, Iran
| | - Golnaz Gholami
- Internal Medicine Department, Semnan University of Medical Sciences, Semnan, Iran
| | | |
Collapse
|
50
|
McMahon KM, Foit L, Angeloni NL, Giles FJ, Gordon LI, Thaxton CS. Synthetic high-density lipoprotein-like nanoparticles as cancer therapy. Cancer Treat Res 2015; 166:129-50. [PMID: 25895867 PMCID: PMC4418545 DOI: 10.1007/978-3-319-16555-4_6] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
High-density lipoproteins (HDL) are diverse natural nanoparticles that carry cholesterol and are best known for the role that they play in cardiovascular disease. However, due to their unique targeting capabilities, diverse molecular cargo, and natural functions beyond cholesterol transport, it is becoming increasingly appreciated that HDLs are critical to cancer development and progression. Accordingly, this chapter highlights ongoing research focused on the connections between HDL and cancer in order to design new drugs and targeted drug delivery vehicles. Research is focused on synthesizing biomimetic HDL-like nanoparticles (NP) that can be loaded with diverse therapeutic cargo (e.g., chemotherapies, nucleic acids, proteins) and specifically targeted to cancer cells. Beyond drug delivery, new data is emerging that HDL-like NPs may be therapeutically active in certain tumor types, for example, B cell lymphoma. Overall, HDL-like NPs are becoming increasingly appreciated as targeted, biocompatible, and efficient therapies for cancer, and may soon become indispensable agents in the cancer therapeutic armamentarium.
Collapse
Affiliation(s)
- Kaylin M. McMahon
- Northwestern University, Feinberg School of Medicine, Department of Urology, Tarry 16-703, 303 E. Chicago Ave. Chicago, IL 60611 United States
- Simpson Querrey Institute (SQI), 303 E. Superior St, Chicago, IL 60611 United States
| | - Linda Foit
- Northwestern University, Feinberg School of Medicine, Department of Urology, Tarry 16-703, 303 E. Chicago Ave. Chicago, IL 60611 United States
- Simpson Querrey Institute (SQI), 303 E. Superior St, Chicago, IL 60611 United States
| | - Nicholas L. Angeloni
- Northwestern University, Feinberg School of Medicine, Department of Urology, Tarry 16-703, 303 E. Chicago Ave. Chicago, IL 60611 United States
- Simpson Querrey Institute (SQI), 303 E. Superior St, Chicago, IL 60611 United States
| | - Francis J. Giles
- Northwestern Medicine Developmental Therapeutics Institute, Northwestern University, 645 N. Michigan Ave, Chicago, IL 60611, USA
| | - Leo I. Gordon
- Department of Medicine, Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611
| | - C. Shad Thaxton
- Northwestern University, Feinberg School of Medicine, Department of Urology, Tarry 16-703, 303 E. Chicago Ave. Chicago, IL 60611 United States
- Simpson Querrey Institute (SQI), 303 E. Superior St, Chicago, IL 60611 United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611
- International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Rd. Evanston IL. 60208, United States
- Corresponding Author:
| |
Collapse
|