1
|
Wang Y, Wu G, Wang Y, Rehman A, Yu L, Zhang H, Jin Q, Suleria HAR, Wang X. Recent developments, challenges, and prospects of dietary omega-3 PUFA-fortified foods: Focusing on their effects on cardiovascular diseases. Food Chem 2025; 470:142498. [PMID: 39736180 DOI: 10.1016/j.foodchem.2024.142498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/30/2024] [Accepted: 12/13/2024] [Indexed: 01/01/2025]
Abstract
Dietary omega-3 polyunsaturated fatty acids (Dω-3 PUFAs) have been extensively studied and have been proven to offer notable benefits for heart health. Scientific meta-analysis strongly endorses them as potent bioactive agents capable of preventing and managing cardiovascular diseases (CVDs). Fortification of foods with Dω-3 PUFAs is a potential strategy for enhancing Dω-3 PUFA intake in an effort to continue strengthening public health outcomes. This review analyzed recent trends in the fortification of foods with Dω-3 PUFAs in relation to technological developments, challenges linked to the method, and future scope. Additionally, recent clinical trials and research on the effect of Dω-3 PUFA-fortified food consumption on cardiovascular health are reviewed. Technological trends in fortification methods, namely microencapsulation- and nanoencapsulation, have made considerable progress to date, along with excellent stability in both processing and storage conditions and favorable bioaccessibility and sensory attributes of fortified foods. There is a tremendous deal of promise for cardiovascular health based on recent clinical trial findings that fortifying food with Dω-3 PUFAs decreased the incidence of heart disease, blood pressure, and lipid profiles. In summary, substantial progress has been made in addressing the challenges of Dω-3 PUFA fortification. However, further multidisciplinary research is needed to inculcate effectiveness toward achieving the maximum possible Dω-3 PUFAs to protect against the harmful effects of CVDs and continue global health progress.
Collapse
Affiliation(s)
- Yongjin Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yandan Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Le Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Hafiz Ansar Rasul Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Fogacci F, ALGhasab NS, Di Micoli V, Giovannini M, Cicero AFG. Cholesterol-Lowering Bioactive Foods and Nutraceuticals in Pediatrics: Clinical Evidence of Efficacy and Safety. Nutrients 2024; 16:1526. [PMID: 38794764 PMCID: PMC11123713 DOI: 10.3390/nu16101526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Long-term exposure to even slightly elevated plasma cholesterol levels significantly increases the risk of developing cardiovascular disease. The latest evidence recommends an improvement in plasma lipid levels, even in children who are not affected by severe hypercholesterolemia. The risk-benefit profile of pharmacological treatments in pediatric patients with moderate dyslipidemia is uncertain, and several cholesterol-lowering nutraceuticals have been recently tested. In this context, the available randomized clinical trials are small, short-term and mainly tested different types of fibers, plant sterols/stanols, standardized extracts of red yeast rice, polyunsaturated fatty acids, soy derivatives, and some probiotics. In children with dyslipidemia, nutraceuticals can improve lipid profile in the context of an adequate, well-balanced diet combined with regular physical activity. Of course, they should not be considered an alternative to conventional lipid-lowering drugs when necessary.
Collapse
Affiliation(s)
- Federica Fogacci
- Hypertension and Cardiovascular Risk Factors Research Center, Medical and Surgical Sciences Department, Sant’Orsola-Malpighi University Hospital, Via Albertoni 15, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
| | - Naif Saad ALGhasab
- Department of Internal Medicine, Medical College, Ha’il University, Ha’il 55476, Saudi Arabia
- Department of Cardiology, Libin Cardiovascular Institute, Calgary University, Calgary, AB T2N 1N4, Canada
| | - Valentina Di Micoli
- Hypertension and Cardiovascular Risk Factors Research Center, Medical and Surgical Sciences Department, Sant’Orsola-Malpighi University Hospital, Via Albertoni 15, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
| | - Marina Giovannini
- Hypertension and Cardiovascular Risk Factors Research Center, Medical and Surgical Sciences Department, Sant’Orsola-Malpighi University Hospital, Via Albertoni 15, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
| | - Arrigo Francesco Giuseppe Cicero
- Hypertension and Cardiovascular Risk Factors Research Center, Medical and Surgical Sciences Department, Sant’Orsola-Malpighi University Hospital, Via Albertoni 15, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
- Cardiovascular Medicine Unit, Heart, Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
3
|
Patel A, Desai SS, Mane VK, Enman J, Rova U, Christakopoulos P, Matsakas L. Futuristic food fortification with a balanced ratio of dietary ω-3/ω-6 omega fatty acids for the prevention of lifestyle diseases. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Moosavian SP, Rahimlou M, Saneei P, Esmaillzadeh A. Effects of dairy products consumption on inflammatory biomarkers among adults: A systematic review and meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 2020; 30:872-888. [PMID: 32409275 DOI: 10.1016/j.numecd.2020.01.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
AIMS This study aimed to summarize earlier studies on the effects of dairy consumption on inflammatory biomarkers in adults and to quantify these effects through meta-analysis. DATA SYNTHESIS A comprehensive search of all relevant articles, published up to December 2019 indexed in PubMed, ISI (Institute for Scientific Information), EmBase, Scopus, and Google Scholar was done using relevant keywords. Randomized controlled trials (RCTs) that examined the effect of dairy products consumption, compared with low or no dairy intake, on inflammatory biomarkers in adults were included. Overall, 11 RCTs with 663 participants were included in this meta-analysis. We found that high consumption of dairy products, compared with low or no dairy intake, might significantly reduce CRP [weighed mean difference (WMD): -0.24 mg/L; 95% CI, -0.35, -0.14], TNF-α (WMD:- 0.66 pg/mL; 95% CI, -1.23, -0.09), IL-6 (WMD: -0.74 pg/mL; 95% CI, -1.36, -0.12), and MCP concentrations (WMD: -25.58 pg/mL; 95% CI, -50.31, -0.86). However, when the analyses were confined to cross-over trials, no such beneficial effects of dairy intake on inflammation were observed. In addition, high dairy intake might result in increased adiponectin levels (WMD: 2.42 μg/mL; 95% CI, 0.17, 4.66). No significant effect of dairy consumption on serum leptin (WMD: -0.32 ng/mL; 95% CI, -3.30, 2.65), ICAM-1 (WMD: -3.38 ng/ml; 95% CI, -15.57, 8.96) and VCAM-1 (WMD: 3.1 ng/mL; 95% CI, -21.38, 27.58) levels was observed. CONCLUSIONS In summary, the current meta-analysis indicated that dairy intake might improve several inflammatory biomarkers in adults. In most subgroups without heterogeneity, effects tended to be null. Study design and participants' age were the main sources of heterogeneity. More research, with a particular focus on fat content of dairy foods, is recommended.
Collapse
Affiliation(s)
- Seyedeh Parisa Moosavian
- Students' Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran; Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Rahimlou
- Department of Nutrition, School of Para-Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parvane Saneei
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ahmad Esmaillzadeh
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Rahmawaty S, Meyer BJ. Stunting is a recognized problem: Evidence for the potential benefits of ω-3 long-chain polyunsaturated fatty acids. Nutrition 2020; 73:110564. [DOI: 10.1016/j.nut.2019.110564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/11/2019] [Indexed: 02/06/2023]
|
6
|
Hombali AS, Solon JA, Venkatesh BT, Nair NS, Peña‐Rosas JP, Cochrane Public Health Group. Fortification of staple foods with vitamin A for vitamin A deficiency. Cochrane Database Syst Rev 2019; 5:CD010068. [PMID: 31074495 PMCID: PMC6509778 DOI: 10.1002/14651858.cd010068.pub2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Vitamin A deficiency is a significant public health problem in many low- and middle-income countries, especially affecting young children, women of reproductive age, and pregnant women. Fortification of staple foods with vitamin A has been used to increase vitamin A consumption among these groups. OBJECTIVES To assess the effects of fortifying staple foods with vitamin A for reducing vitamin A deficiency and improving health-related outcomes in the general population older than two years of age. SEARCH METHODS We searched the following international databases with no language or date restrictions: Cochrane Central Register of Controlled Trials (CENTRAL; 2018, Issue 6) in the Cochrane Library; MEDLINE and MEDLINE In Process OVID; Embase OVID; CINAHL Ebsco; Web of Science (ISI) SCI, SSCI, CPCI-exp and CPCI-SSH; BIOSIS (ISI); POPLINE; Bibliomap; TRoPHI; ASSIA (Proquest); IBECS; SCIELO; Global Index Medicus - AFRO and EMRO; LILACS; PAHO; WHOLIS; WPRO; IMSEAR; IndMED; and Native Health Research Database. We also searched clinicaltrials.gov and the International Clinical Trials Registry Platform to identify ongoing and unpublished studies. The date of the last search was 19 July 2018. SELECTION CRITERIA We included individually or cluster-randomised controlled trials (RCTs) in this review. The intervention included fortification of staple foods (sugar, edible oils, edible fats, maize flour or corn meal, wheat flour, milk and dairy products, and condiments and seasonings) with vitamin A alone or in combination with other vitamins and minerals. We included the general population older than two years of age (including pregnant and lactating women) from any country. DATA COLLECTION AND ANALYSIS Two authors independently screened and assessed eligibility of studies for inclusion, extracted data from included studies and assessed their risk of bias. We used standard Cochrane methodology to carry out the review. MAIN RESULTS We included 10 randomised controlled trials involving 4455 participants. All the studies were conducted in low- and upper-middle income countries where vitamin A deficiency was a public health issue. One of the included trials did not contribute data to the outcomes of interest.Three trials compared provision of staple foods fortified with vitamin A versus unfortified staple food, five trials compared provision of staple foods fortified with vitamin A plus other micronutrients versus unfortified staple foods, and two trials compared provision of staple foods fortified with vitamin A plus other micronutrients versus no intervention. No studies compared staple foods fortified with vitamin A alone versus no intervention.The duration of interventions ranged from three to nine months. We assessed six studies at high risk of bias overall. Government organisations, non-governmental organisations, the private sector, and academic institutions funded the included studies; funding source does not appear to have distorted the results.Staple food fortified with vitamin A versus unfortified staple food We are uncertain whether fortifying staple foods with vitamin A alone makes little or no difference for serum retinol concentration (mean difference (MD) 0.03 μmol/L, 95% CI -0.06 to 0.12; 3 studies, 1829 participants; I² = 90%, very low-certainty evidence). It is uncertain whether vitamin A alone reduces the risk of subclinical vitamin A deficiency (risk ratio (RR) 0.45, 95% CI 0.19 to 1.05; 2 studies; 993 participants; I² = 33%, very low-certainty evidence). The certainty of the evidence was mainly affected by risk of bias, imprecision and inconsistency.It is uncertain whether vitamin A fortification reduces clinical vitamin A deficiency, defined as night blindness (RR 0.11, 95% CI 0.01 to 1.98; 1 study, 581 participants, very low-certainty evidence). The certainty of the evidence was mainly affected by imprecision, inconsistency, and risk of bias.Staple foods fortified with vitamin A versus no intervention No studies provided data for this comparison.Staple foods fortified with vitamin A plus other micronutrients versus same unfortified staple foods Fortifying staple foods with vitamin A plus other micronutrients may not increase the serum retinol concentration (MD 0.08 μmol/L, 95% CI -0.06 to 0.22; 4 studies; 1009 participants; I² = 95%, low-certainty evidence). The certainty of the evidence was mainly affected by serious inconsistency and risk of bias.In comparison to unfortified staple foods, fortification with vitamin A plus other micronutrients probably reduces the risk of subclinical vitamin A deficiency (RR 0.27, 95% CI 0.16 to 0.49; 3 studies; 923 participants; I² = 0%; moderate-certainty evidence). The certainty of the evidence was mainly affected by serious risk of bias.Staple foods fortified with vitamin A plus other micronutrients versus no interventionFortification of staple foods with vitamin A plus other micronutrients may increase serum retinol concentration (MD 0.22 μmol/L, 95% CI 0.15 to 0.30; 2 studies; 318 participants; I² = 0%; low-certainty evidence). When compared to no intervention, it is uncertain whether the intervention reduces the risk of subclinical vitamin A deficiency (RR 0.71, 95% CI 0.52 to 0.98; 2 studies; 318 participants; I² = 0%; very low-certainty evidence) . The certainty of the evidence was affected mainly by serious imprecision and risk of bias.No trials reported on the outcomes of all-cause morbidity, all-cause mortality, adverse effects, food intake, congenital anomalies (for pregnant women), or breast milk concentration (for lactating women). AUTHORS' CONCLUSIONS Fortifying staple foods with vitamin A alone may make little or no difference to serum retinol concentrations or the risk of subclinical vitamin A deficiency. In comparison with provision of unfortified foods, provision of staple foods fortified with vitamin A plus other micronutrients may not increase serum retinol concentration but probably reduces the risk of subclinical vitamin A deficiency.Compared to no intervention, staple foods fortified with vitamin A plus other micronutrients may increase serum retinol concentration, although it is uncertain whether the intervention reduces the risk of subclinical vitamin A deficiency as the certainty of the evidence has been assessed as very low.It was not possible to estimate the effect of staple food fortification on outcomes such as mortality, morbidity, adverse effects, congenital anomalies, or breast milk vitamin A, as no trials included these outcomes.The type of funding source for the studies did not appear to distort the results from the analysis.
Collapse
Affiliation(s)
- Aditi S Hombali
- Institute of Mental HealthDepartment of ResearchBlock 7, Buangkok View, Buangkok Green Medical ParkSingaporeSingapore539747
| | | | - Bhumika T Venkatesh
- Prasanna School of Public Health, Manipal Academy of Higher EducationPublic Health Evidence South Asia (PHESA)ManipalUdupiIndia
| | - N Sreekumaran Nair
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER) (Institution of National Importance Under Ministry of Health and Family Welfare, Government of India)Department of Medical Biometrics & Informatics (Biostatistics)4th Floor, Administrative BlockDhanvantri NagarPuducherryIndia605006
| | - Juan Pablo Peña‐Rosas
- World Health OrganizationEvidence and Programme Guidance, Department of Nutrition for Health and Development20 Avenue AppiaGenevaGESwitzerland1211
| | | |
Collapse
|
7
|
Soto-Méndez MJ, Rangel-Huerta OD, Ruiz-López MD, Martínez de Victoria E, Anguita-Ruiz A, Gil A. Role of Functional Fortified Dairy Products in Cardiometabolic Health: A Systematic Review and Meta-analyses of Randomized Clinical Trials. Adv Nutr 2019; 10:S251-S271. [PMID: 31089744 PMCID: PMC6518140 DOI: 10.1093/advances/nmz001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
There is insufficient evidence on the role of functional fortified dairy products in improving health and in preventing risk factors associated with noncommunicable chronic diseases. This systematic review was conducted to summarize effects of the consumption of fortified dairy products on biomarkers of cardiometabolic risk. MEDLINE and SCOPUS databases were used to perform searches to include studies published up to 30 April 2018. Randomized clinical trials with human subjects consuming dairy products fortified with phytosterols, FAs, vitamins or minerals and relating this consumption with cardiometabolic health were included in this review. Risk of bias assessment according to Cochrane guidelines was performed to determine the quality of the trials. Forty-one studies were finally selected for this synthesis; the selected studies tested dairy products fortified with the following nutrients and bioactive components: phytosterols (n = 31), FAs (n = 8), and vitamin D (n = 2). We found that the consumption of phytosterol-fortified dairy, led to an overall LDL cholesterol reduction of -0.36 (-0.41, -0.31) mmol/L, P < 0.001; this decrease was mainly related to the dosage. Likewise, consumption of ω-3 FA-fortified dairy products resulted in a plasma LDL cholesterol reduction of -0.18 (-0.27, -0.09) mmol/L as well as a decrease of -0.18 (-0.32, -0.05) mmol/L in triacylglycerols (TG). Performing meta-analyses of the consumption of dairy products fortified with vitamin D or FAs other than ω-3 FAs and biomarkers of cardiometabolic risk was not possible because of the few available publications. Our results indicate that consumption of dairy products fortified with phytosterols and ω-3 FAs can lead to a reduction of LDL cholesterol and consumption of fortified dairy products fortified with ω-3 FAs can reduce TG concentration. However, more studies with homogeneous designs are needed to determine the advantages of using dairy products as fortification vehicles to prevent cardiometabolic risk.
Collapse
Affiliation(s)
| | - Oscar D Rangel-Huerta
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - María D Ruiz-López
- Iberoamerican Nutrition Foundation –FINUT–, Granada, Spain
- Department of Nutrition and Food Sciences, School of Pharmacy
- Institute of Nutrition and Food Technology “José Mataix,” Biomedical Research Center, University of Granada, Granada, Spain
| | - Emilio Martínez de Victoria
- Iberoamerican Nutrition Foundation –FINUT–, Granada, Spain
- Department of Physiology, School of Sciences
- Institute of Nutrition and Food Technology “José Mataix,” Biomedical Research Center, University of Granada, Granada, Spain
| | - Augusto Anguita-Ruiz
- Institute of Nutrition and Food Technology “José Mataix,” Biomedical Research Center, University of Granada, Granada, Spain
- Biomedical Research Institute ibs GRANADA, University Hospital Complex in Granada, Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain
| | - Angel Gil
- Iberoamerican Nutrition Foundation –FINUT–, Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix,” Biomedical Research Center, University of Granada, Granada, Spain
- Biomedical Research Institute ibs GRANADA, University Hospital Complex in Granada, Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Omega-3 fatty acids and leukocyte-endothelium adhesion: Novel anti-atherosclerotic actions. Mol Aspects Med 2018; 64:169-181. [DOI: 10.1016/j.mam.2018.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
|
9
|
Еffects of fortified milk on cognitive abilities in school-aged children: results from a randomized-controlled trial. Eur J Nutr 2018; 58:1863-1872. [PMID: 29881917 DOI: 10.1007/s00394-018-1734-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 05/25/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND Micronutrients such as vitamins and minerals and long-chain polyunsaturated omega-3 fatty acids (PUFAs) are essential for children's brain development and cognitive functions. The current study investigated whether milk fortified with micronutrients and PUFA can result in improved cognitive function in mainstream school children. METHODS One-hundred-and-nineteen children (age 8-14, 58 boys) were randomly allocated to a fortified milk group or a regular full milk control group. Participants consumed 0.6L/day of the milk for 5 months. We recorded relevant biochemical, anthropometric, and cognitive measures (working memory and processing speed) at the start of the study and at follow-up after 5 months. RESULTS The fortified milk significantly increased docosahexaenoic acid (DHA) (change from baseline of 28% [95% CI 17-39%] vs. -6% [95% CI - 13 to 0%] in the control group) and serum 25OH-vitamin D concentrations (41% [95% CI 30-52%] vs. 21% [95% CI 11-30%] in the control group). The fortified milk improved working memory on one of two tests (32% [95% CI 17-47%] vs. 13% [95% CI 6-19%] in the control group). The fortified milk also indirectly increased processing speed on one of two tests; this effect was small and completely mediated by increases in 25OH-vitamin D concentrations. CONCLUSIONS These results suggest that fortifying milk with micronutrients and PUFA could be an effective and practical way to aid children's cognitive development.
Collapse
|
10
|
Engel S, Elhauge M, Tholstrup T. Effect of whole milk compared with skimmed milk on fasting blood lipids in healthy adults: a 3-week randomized crossover study. Eur J Clin Nutr 2017; 72:249-254. [PMID: 29229955 DOI: 10.1038/s41430-017-0042-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/29/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES Dietary guidelines have for decades recommended choosing low-fat dairy products due to the high content of saturated fat in dairy known to increase blood concentration of LDL cholesterol. However, meta-analyses including observational studies show no association between overall dairy intake and risk of cardiovascular disease and even point to an inverse association with type 2 diabetes. The objective was to compare the effects of whole milk (3.5% fat) with skimmed milk (0.1% fat) on fasting serum blood lipids, insulin, and plasma glucose in healthy subjects. SUBJECT/METHODS A randomized, controlled 2 × 3-week crossover dietary intervention in 18 healthy adults randomly assigned to a sequence of treatments consisting of 0.5 L/d of whole milk and skimmed milk as part of their habitual diet. A total of 17 subjects completed the intervention. RESULTS Whole milk increased HDL cholesterol concentrations significantly compared to skimmed milk (P < 0.05). There were no significant differences between whole milk and skimmed milk in effects on total and LDL cholesterol, triacylglycerol, insulin, and glucose concentrations. CONCLUSIONS Intake of 0.5 L/d of whole milk did not adversely affect fasting blood lipids, glucose, or insulin compared to skimmed milk. Moreover, intake of whole milk increased HDL cholesterol concentration compared to skimmed milk. These findings suggest that if the higher energy content is taken into account, whole milk might be considered a part of a healthy diet among the normocholesterolemic population.
Collapse
Affiliation(s)
- Sara Engel
- Faculty of Science, Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 30, DK-1958, Frederiksberg, Denmark.
| | - Mie Elhauge
- Faculty of Science, Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 30, DK-1958, Frederiksberg, Denmark
| | - Tine Tholstrup
- Faculty of Science, Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 30, DK-1958, Frederiksberg, Denmark
| |
Collapse
|
11
|
A Review of Recruitment, Adherence and Drop-Out Rates in Omega-3 Polyunsaturated Fatty Acid Supplementation Trials in Children and Adolescents. Nutrients 2017; 9:nu9050474. [PMID: 28489030 PMCID: PMC5452204 DOI: 10.3390/nu9050474] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION The influence of n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) supplementation on health outcomes has been studied extensively with randomized controlled trials (RCT). In many research fields, difficulties with recruitment, adherence and high drop-out rates have been reported. However, what is unknown is how common these problems are in n-3 LCPUFA supplementation studies in children and adolescents. Therefore, this paper will review n-3 LCPUFA supplementation studies in children and adolescents with regard to recruitment, adherence and drop-out rates. METHODS The Web of Science, PubMed and Ovid databases were searched for papers reporting on RCT supplementing children and adolescents (2-18 years) with a form of n-3 LCPUFA (or placebo) for at least four weeks. As a proxy for abiding to CONSORT guidelines, we noted whether manuscripts provided a flow-chart and provided dates defining the period of recruitment and follow-up. RESULTS Ninety manuscripts (reporting on 75 studies) met the inclusion criteria. The majority of the studies did not abide by the CONSORT guidelines: 55% did not provide a flow-chart, while 70% did not provide dates. The majority of studies provided minimal details about the recruitment process. Only 25 of the 75 studies reported an adherence rate which was on average 85%. Sixty-five of the 75 studies included drop-out rates which were on average 17%. CONCLUSION Less than half of the included studies abided by the CONSORT guidelines (45% included a flow chart, while 30% reported dates). Problems with recruitment and drop-out seem to be common in n-3 LCPUFA supplementation trials in children and adolescents. However, reporting about recruitment, adherence and dropout rates was very heterogeneous and minimal in the included studies. Some techniques to improve recruitment, adherence and dropout rates were identified from the literature, however these techniques may need to be tailored to n-3 LCPUFA supplementation studies in children and adolescents.
Collapse
|
12
|
Funtikova AN, Navarro E, Bawaked RA, Fíto M, Schröder H. Impact of diet on cardiometabolic health in children and adolescents. Nutr J 2015; 14:118. [PMID: 26574072 PMCID: PMC4647337 DOI: 10.1186/s12937-015-0107-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/05/2015] [Indexed: 01/10/2023] Open
Abstract
The manifestation of cardiovascular risk factors, such as hypertension, diabetes, and particularly obesity begins in children and adolescents, with deleterious effects for cardiometabolic health at adulthood. Although the impact of diet on cardiovascular risk factors has been studied extensively in adults, showing that their cardiometabolic health is strongly lifestyle-dependent, less is known about this impact in children and adolescents. In particular, little is known about the relationship between their dietary patterns, especially when derived a posteriori, and cardiovascular risk. An adverse association of cardiovascular health and increased intake of sodium, saturated fat, meat, fast food and soft drinks has been reported in this population. In contrast, vitamin D, fiber, mono-and poly-unsaturated fatty acids, dairy, fruits and vegetables were positively linked to cardiovascular health. The aim of this review was to summarize current epidemiological and experimental evidence on the impact of nutrients, foods, and dietary pattern on cardiometabolic health in children and adolescents. A comprehensive review of the literature available in English and related to diet and cardiometabolic health in this population was undertaken via the electronic databases PubMed, Cochrane Library, and Medline.
Collapse
Affiliation(s)
- Anna N Funtikova
- Cardiovascular Risk and Nutrition Research Group (CARIN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,CIBER Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Barcelona, Spain.,Food and Nutrition PhD program, University of Barcelona, Barcelona, Spain
| | - Estanislau Navarro
- Molecular Oncology Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Rowaedh Ahmed Bawaked
- Cardiovascular Risk and Nutrition Research Group (CARIN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Biomedicine PhD program, University of Pompeu Fabra, Barcelona, Spain
| | - Montserrat Fíto
- Cardiovascular Risk and Nutrition Research Group (CARIN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Barcelona, Spain
| | - Helmut Schröder
- Cardiovascular Risk and Nutrition Research Group (CARIN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain. .,CIBER Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
13
|
Rahmawaty S, Lyons-Wall P, Charlton K, Batterham M, Meyer BJ. Effect of replacing bread, egg, milk, and yogurt with equivalent ω-3 enriched foods on ω-3 LCPUFA intake of Australian children. Nutrition 2014; 30:1337-43. [DOI: 10.1016/j.nut.2014.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/03/2014] [Accepted: 03/25/2014] [Indexed: 01/05/2023]
|
14
|
Rahmawaty S, Lyons-Wall P, Batterham M, Charlton K, Meyer BJ. Food patterns of Australian children ages 9 to 13 y in relation to ω-3 long chain polyunsaturated intake. Nutrition 2014; 30:169-76. [DOI: 10.1016/j.nut.2013.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/01/2013] [Accepted: 07/15/2013] [Indexed: 10/25/2022]
|
15
|
Rahmawaty S, Charlton K, Lyons-Wall P, Meyer BJ. Dietary intake and food sources of EPA, DPA and DHA in Australian children. Lipids 2013; 48:869-77. [PMID: 23881381 DOI: 10.1007/s11745-013-3812-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 06/07/2013] [Indexed: 11/28/2022]
Abstract
Secondary analysis of the 2007 Australian National Children's Nutrition and Physical Activity survey was undertaken to assess the intake and food sources of EPA, DPA and DHA (excluding supplements) in 4,487 children aged 2-16 years. An average of two 24-h dietary recalls was analysed for each child and food sources of EPA, DPA and DHA were assessed using the Australian nutrient composition database called AUSNUT 2007. Median (inter quartile range, IQR) for EPA, DPA and DHA intakes (mg/day) for 2-3, 4-8, 9-13, 14-16 year were: EPA 5.3 (1.5-14), 6.7 (1.8-18), 8.7 (2.6-23), 9.8 (2.7-28) respectively; DPA 6.2 (2.2-14), 8.2 (3.3-18), 10.8 (4.3-24), 12.2 (5-29) respectively; and DHA 3.9 (0.6-24), 5.1 (0.9-26), 6.8 (1.1-27), 7.8 (1.5-33) respectively. Energy-adjusted intakes of EPA, DPA and DHA in children who ate fish were 7.5, 2 and 16-fold higher, respectively (P < 0.001) compared to those who did not eat fish during the 2 days of the survey. Intake of total long chain n-3 PUFA was compared to the energy adjusted suggested dietary target (SDT) for Australian children and 20 % of children who ate fish during the 2 days of the survey met the SDT. Fish and seafood products were the largest contributors to DHA (76 %) and EPA (59 %) intake, while meat, poultry and game contributed to 56 % DPA. Meat consumption was 8.5 times greater than that for fish/seafood. Australian children do not consume the recommended amounts of long chain omega-3 fatty acids, especially DHA, which could be explained by low fish consumption.
Collapse
Affiliation(s)
- Setyaningrum Rahmawaty
- Metabolic Research Centre, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia
| | | | | | | |
Collapse
|
16
|
Wu JHY, Cahill LE, Mozaffarian D. Effect of fish oil on circulating adiponectin: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab 2013; 98:2451-9. [PMID: 23703724 PMCID: PMC3667269 DOI: 10.1210/jc.2012-3899] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/29/2013] [Indexed: 11/19/2022]
Abstract
CONTEXT Seafood long-chain polyunsaturated omega-3 fatty acids (n-3 PUFAs) improve insulin sensitivity in animal experiments, but findings remain inconsistent in humans. Adiponectin is a robust marker for insulin sensitivity and adipocyte function. Whether n-3 PUFAs affect adiponectin in humans is unknown. OBJECTIVE Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, the objective of the study was to perform a systematic review and meta-analysis of randomized, placebo-controlled clinical trials (RCTs) to determine the effect of n-3 PUFA consumption on circulating adiponectin in humans. DATA SOURCES MEDLINE, EMBASE, CABI (CAB abstracts), Cochrane Central Registry of Controlled Trials, ClinicalTrials.gov, SIGLE, and Faculty of 1000 were searched through to June 2012, supplemented with author contact and reference list searches. STUDY SELECTION RCTs of either fish oil supplementation or isocaloric fish meal feeding that evaluated adiponectin as an outcome were selected for the study. DATA EXTRACTION Two investigators independently extracted the data. Effect estimates were pooled using inverse-variance weighted, random-effects meta-analysis. Heterogeneity was assessed by the I(2) and Q statistic. Prespecified sources of heterogeneity were investigated by meta-regression. Publication bias was assessed using funnel plots and Egger's test. DATA SYNTHESIS Of 110 studies, 14 RCTs met inclusion criteria. Fourteen trial arms evaluated fish oil (fish oil, n = 682; placebo, n = 641). Fish oil increased adiponectin by 0.37 μg/mL [95% confidence interval (CI) 0.07; 0.67, P = .02]. Although effects in 11 of 14 trials were 0 or greater, statistical heterogeneity was evident (I(2) = 72.9%), unexplained by n-3 PUFA dose or duration, study quality score, study location, or baseline body mass index (meta-regression P > .05 each). The funnel plot was asymmetric in favor of smaller trials with greater effects (Egger's P = .11); the fill-and-trim method suggested a theoretical pooled effect of 0.18 μg/mL (95% CI -0.15; +0.52, P = .28). Only 2 trial arms evaluated fish feeding (n = 136 intervention and 68 control subjects), for which the pooled effect on adiponectin was not statistically significant (-0.01 μg/mL, 95% CI -0.65; 0.64, P = 0.99), although CIs were broad due to the small number of subjects. CONCLUSIONS In placebo-controlled RCTs, fish oil moderately increases circulating adiponectin, although with unexplained heterogeneity as well as potential publication bias. These findings provide no evidence for harm and support possible benefits of n-3 PUFA consumption on insulin sensitivity and adipocyte function.
Collapse
Affiliation(s)
- Jason H Y Wu
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
17
|
Magrone T, Perez de Heredia F, Jirillo E, Morabito G, Marcos A, Serafini M. Functional foods and nutraceuticals as therapeutic tools for the treatment of diet-related diseases. Can J Physiol Pharmacol 2013; 91:387-96. [PMID: 23745830 DOI: 10.1139/cjpp-2012-0307] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In Western societies, the incidence of diet-related diseases is progressively increasing due to greater availability of hypercaloric food and a sedentary lifestyle. Obesity, diabetes, atherosclerosis, and neurodegeneration are major diet-related pathologies that share a common pathogenic denominator of low-grade inflammation. Functional foods and nutraceuticals may represent a novel therapeutic approach to prevent or attenuate diet-related disease in view of their ability to exert anti-inflammatory responses. In particular, activation of intestinal T regulatory cells and homeostatic regulation of the gut microbiota have the potential to reduce low-grade inflammation in diet-related diseases. In this review, clinical applications of polyphenol-rich functional foods and nutraceuticals in postprandial inflammation, obesity, and ageing will be discussed. We have placed special emphasis on polyphenols since they are broadly distributed in plants.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Policlinico, Piazza G. Cesare 11-70124 Bari, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Rajasekaran A, Kalaivani M. Designer foods and their benefits: A review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2013; 50:1-16. [PMID: 24425882 PMCID: PMC3550947 DOI: 10.1007/s13197-012-0726-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/02/2012] [Accepted: 04/27/2012] [Indexed: 02/07/2023]
Abstract
Designer foods are normal foods fortified with health promoting ingredients. These foods are similar in appearance to normal foods and are consumed regularly as a part of diet. In this article we have reviewed the global regulatory status and benefits of available designer foods such as designer egg, designer milk, designer grains, probiotics, designer foods enriched with micro and macronutrients and designer proteins. Designer foods are produced by the process of fortification or nutrification. With the advances in the biotechnology, biofortification of foods using technologies such as recombinant DNA technology and fermentation procedures are gaining advantage in the industry. The ultimate acceptability and extensive use of designer foods depend on proper regulation in the market by the regulatory authorities of the country and by creating consumer awareness about their health benefits through various nationwide programs.
Collapse
Affiliation(s)
- A. Rajasekaran
- />KMCH College of Pharmacy, Kalapatti Road, Coimbatore, 641 048 Tamil Nadu India
| | - M. Kalaivani
- />Indian Pharmacopoeia Commission, Sector-23, Raj Nagar, Ghaziabad-201002, Uttar Pradesh India
| |
Collapse
|
19
|
Rahmawaty S, Charlton K, Lyons-Wall P, Meyer BJ. Factors that influence consumption of fish and omega-3-enriched foods: A survey of Australian families with young children. Nutr Diet 2013. [DOI: 10.1111/1747-0080.12022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Setyaningrum Rahmawaty
- Metabolic Research Centre; University of Wollongong; Wollongong New South Wales Australia
- School of Health Sciences; Faculty of Health and Behaviour Sciences; University of Wollongong; Wollongong New South Wales Australia
| | - Karen Charlton
- Metabolic Research Centre; University of Wollongong; Wollongong New South Wales Australia
| | - Philippa Lyons-Wall
- School of Exercise and Health Sciences; Faculty of Computing, Health and Science; Edith Cowan University; Perth Western Australia Australia
| | - Barbara J. Meyer
- Metabolic Research Centre; University of Wollongong; Wollongong New South Wales Australia
- School of Health Sciences; Faculty of Health and Behaviour Sciences; University of Wollongong; Wollongong New South Wales Australia
| |
Collapse
|
20
|
Zhang J, Gu HD, Zhang L, Tian ZJ, Zhang ZQ, Shi XC, Ma WH. Protective effects of apricot kernel oil on myocardium against ischemia–reperfusion injury in rats. Food Chem Toxicol 2011; 49:3136-41. [DOI: 10.1016/j.fct.2011.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/09/2011] [Accepted: 08/12/2011] [Indexed: 11/28/2022]
|