1
|
Hansen B, Sánchez-Castro M, Schintgen L, Khakdan A, Schneider JG, Wilmes P. The impact of fasting and caloric restriction on rheumatoid arthritis in humans: A narrative review. Clin Nutr 2025; 49:178-186. [PMID: 40328175 DOI: 10.1016/j.clnu.2025.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease affecting approximately 1 % of the global population. It is characterized by swollen and painful joints eventually evolving into bone erosion, cartilage degradation and systemic inflammation, that significantly reduce patients' quality of life. While modern pharmacological treatments often lead to symptom improvement, they are also accompanied by substantial side effects, which can further impair patient wellbeing. Dietary interventions, particularly fasting and caloric restriction (CR), have gained increasing attention as adjunctive strategies for RA prevention and treatment. Their anti-inflammatory potential and ability to modulate the gut microbiome render them an attractive option to accompany or modify medical treatment. However, high-quality research on fasting and CR interventions in humans with RA remains limited, and the underlying mechanisms are not yet fully understood. The present narrative review reflects our current knowledge regarding fasting and CR, emphasising their impact on clinical outcomes, potential underlying mechanism and the sustainability of their effects. Evidence suggests that fasting and CR may lead to short-term improvements in RA disease activity, including reductions in inflammatory markers such as C-reactive protein (CRP) and interleukin-6 (IL-6). However, their long-term efficacy remains uncertain due to the limited duration of most studies. Future research should focus on identifying optimal fasting and CR protocols and their feasibility in long-term disease management, along with investigating patient adherence and potential risks associated with fasting interventions.
Collapse
Affiliation(s)
- Bérénice Hansen
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marta Sánchez-Castro
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Lynn Schintgen
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Arefeh Khakdan
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jochen G Schneider
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Department of Internal Medicine II, Saarland University Hospital and Saarland University Faculty of Medicine, Homburg, Germany.
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
2
|
Chojdak-Łukasiewicz J, Bizoń A, Kołtuniuk A, Waliszewska-Prosół M, Budrewicz S, Piwowar A, Pokryszko-Dragan A. Are Sirtuins 1 and 2 Relevant Players in Relapsing-Remitting Multiple Sclerosis? Biomedicines 2024; 12:2027. [PMID: 39335541 PMCID: PMC11428838 DOI: 10.3390/biomedicines12092027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
SIRTs were demonstrated to play an important role in inflammatory, degenerative, and metabolic alterations, constituting the background of the central nervous system. Thus, they seem to be an appropriate object of investigation (as potential biomarkers of disease activity and/or novel therapeutic targets) in multiple sclerosis (MS), which has a complex etiology that comprises a cross-talk between all these processes. The aim of this study was to evaluate the levels of SIRT1 and SIRT2 in the serum of patients with the relapsing-remitting type of MS (RRMS), as well as their relationships with various aspects of MS-related disability. METHODS A total of 115 patients with RRMS (78 women, 37 men, mean age 43 ± 9.9) and 39 healthy controls were included in the study. SIRT1 and SIRT2 were detected in the serum using the enzyme-linked immunoassay (ELISA) method. In the RRMS group, relationships were investigated between the SIRT 1 and 2 levels and the demographic data, MS-related clinical variables, and the results of tests evaluating fatigue, sleep problems, cognitive performance, autonomic dysfunction, and depression. RESULTS The levels of SIRT1 and SIRT2 in RRMS patients were significantly lower than in the controls (11.14 vs. 14. 23, p = 0.04; 8.62 vs. 14.2, p < 0.01). In the RRMS group, the level of both SIRTs was higher in men than in women (15.7 vs. 9.0; 11.3 vs. 7.3, p = 0.002) and showed a significant correlation with the degree of disability (R = -0.25, p = 0.018). No other relationships were found between SIRT levels and the analyzed data. CONCLUSIONS The serum levels of SIRT1 and 2 were decreased in the RRMS patients (especially in the female ones) and correlated with the degree of neurological deficit. The role of SIRTs as biomarkers of disease activity or mediators relevant for "invisible disability" in MS warrants further investigation.
Collapse
Affiliation(s)
- Justyna Chojdak-Łukasiewicz
- Clinical Department of Neurology, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Anna Bizoń
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Aleksandra Kołtuniuk
- Department of Nursing and Obstetrics, Faculty of Health Sciences, Wroclaw Medical University, Bartla 5, 51-618 Wroclaw, Poland
| | - Marta Waliszewska-Prosół
- Clinical Department of Neurology, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Sławomir Budrewicz
- Clinical Department of Neurology, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Anna Pokryszko-Dragan
- Clinical Department of Neurology, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| |
Collapse
|
3
|
Sohouli MH, Eslamian G, Rohani P, Zand H, Guimarães NS. The effect of weight loss therapies on sirtuin 1 regulation: a systematic review and meta-analysis of randomized controlled trials. BMC Nutr 2024; 10:111. [PMID: 39138555 PMCID: PMC11320984 DOI: 10.1186/s40795-024-00921-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Recent evidence shows the role of sirtuin 1(SIRT1), a family of evolutionarily conserved proteins, as a potential therapeutic target in the prevention and treatment of obesity and metabolic diseases. Some evidence shows the moderating effects of weight loss interventions on this factor. However, the findings are contradictory. In order to obtain a better viewpoint from them, this study aimed to comprehensively investigate the effects of weight loss interventions on SIRT 1 modulation. METHODS For this study, we searched four electronic databases using predefined keywords from inception until March 2024. We includedrandomized controlled trials that evaluated the effect of weight reduction strategies on SIRT1 levels. The random-effects model analysis was used to obtain the pooled weighted mean difference (WMD) and 95% confidence intervals (95% CI). The meta-analysis was conducted using RevMan version 5.3 software and Stata version 12.0. RESULTS Twelve studies with 627 volunteers were included. The pooled findings showed that weight loss interventions have no significant effect on the modulation of SIRT1 compared to the control group (pooled WMD of 0.58 ng/mL; 95% confidence interval [CI] -0.17 to 1.33; p = 0.130). However, subgroup analysis showed that weight loss interventions significantly modulate SIRT1 at metabolic disease (WMD: 1.2 ng/mL, 95% CI: 0.11 to 2.62, I2 = 82.9%). In addition, subgroup findings indicated health status and body mass index (BMI) as sources of high and potential heterogeneity. CONCLUSIONS Based on the findings, weight loss therapies in individuals having a metabolic disorder appear to generate a considerable increase in SIRT1 levels.
Collapse
Affiliation(s)
- Mohammad Hassan Sohouli
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Eslamian
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamid Zand
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nathalia Sernizon Guimarães
- Department of Nutrition, School of Nursing, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
4
|
Jeong S, Chokkalla AK, Davis CK, Jeong H, Chelluboina B, Arruri V, Kim B, Narman A, Bathula S, Arumugam TV, Bendlin BB, Vemuganti R. Circadian-Dependent Intermittent Fasting Influences Ischemic Tolerance and Dendritic Spine Remodeling. Stroke 2024; 55:2139-2150. [PMID: 38920050 PMCID: PMC11262964 DOI: 10.1161/strokeaha.124.046400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Preconditioning by intermittent fasting is linked to improved cognition and motor function, and enhanced recovery after stroke. Although the duration of fasting was shown to elicit different levels of neuroprotection after ischemic stroke, the impact of time of fasting with respect to the circadian cycles remains unexplored. METHODS Cohorts of mice were subjected to a daily 16-hour fast, either during the dark phase (active-phase intermittent fasting) or the light phase (inactive-phase intermittent fasting) or were fed ad libitum. Following a 6-week dietary regimen, mice were subjected to transient focal cerebral ischemia and underwent behavioral functional assessment. Brain samples were collected for RNA sequencing and histopathologic analyses. RESULTS Active-phase intermittent fasting cohort exhibited better poststroke motor and cognitive recovery as well as reduced infarction, in contrast to inactive-phase intermittent fasting cohort, when compared with ad libitum cohort. In addition, protection of dendritic spine density/morphology and increased expression of postsynaptic density protein-95 were observed in the active-phase intermittent fasting. CONCLUSIONS These findings indicate that the time of daily fasting is an important factor in inducing ischemic tolerance by intermittent fasting.
Collapse
Affiliation(s)
- Soomin Jeong
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Charles K Davis
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Hyunmook Jeong
- Department of Transdisciplinary Medicine, Institute of Convergence Medicine with Innovative Technology, Seoul National University Hospital, Seoul, South Korea
| | - Bharath Chelluboina
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Bori Kim
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Ashlyn Narman
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | | | - Thiruma V Arumugam
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Barbara B Bendlin
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
- William S. Middleton Veterans Hospital, Madison, WI, USA
| |
Collapse
|
5
|
Wei Z, Yang B, Wang H, Lv S, Chen H, Liu D. Caloric restriction, Sirtuins, and cardiovascular diseases. Chin Med J (Engl) 2024; 137:921-935. [PMID: 38527930 PMCID: PMC11046024 DOI: 10.1097/cm9.0000000000003056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 03/27/2024] Open
Abstract
ABSTRACT Caloric restriction (CR) is a well-established dietary intervention known to extend healthy lifespan and exert positive effects on aging-related diseases, including cardiovascular conditions. Sirtuins, a family of nicotinamide adenine dinucleotide (NAD + )-dependent histone deacetylases, have emerged as key regulators of cellular metabolism, stress responses, and the aging process, serving as energy status sensors in response to CR. However, the mechanism through which CR regulates Sirtuin function to ameliorate cardiovascular disease remains unclear. This review not only provided an overview of recent research investigating the interplay between Sirtuins and CR, specifically focusing on their potential implications for cardiovascular health, but also provided a comprehensive summary of the benefits of CR for the cardiovascular system mediated directly via Sirtuins. CR has also been shown to have considerable impact on specific metabolic organs, leading to the production of small molecules that enter systemic circulation and subsequently regulate Sirtuin activity within the cardiovascular system. The direct and indirect effects of CR offer a potential mechanism for Sirtuin modulation and subsequent cardiovascular protection. Understanding the interplay between CR and Sirtuins will provide new insights for the development of interventions to prevent and treat cardiovascular diseases.
Collapse
Affiliation(s)
- Ziyu Wei
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Bo Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Huiyu Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Shuangjie Lv
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Houzao Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Depei Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
6
|
Fedorczak A, Lewiński A, Stawerska R. Sirtuin 1 serum concentration in healthy children - dependence on sex, age, stage of puberty, body weight and diet. Front Endocrinol (Lausanne) 2024; 15:1356612. [PMID: 38529393 PMCID: PMC10961438 DOI: 10.3389/fendo.2024.1356612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/21/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Sirtuin 1 (SIRT1) is known to be involved in sensing cellular energy levels and regulating energy metabolism. This study aimed to evaluate fasting serum SIRT1 levels in healthy children, and to analyse the influence of age, sex, puberty, body weight, height, and diet on its concentration. Methods 47 healthy children aged 4-14 with weight and height within normal range and no chronic disease were included into the study. Fasting serum SIRT1 concentrations were estimated by Enzyme Linked Immunosorbent Assay (ELISA). Results Results showed that serum SIRT1 concentrations in healthy children did not differ with respect to sex, age, height, weight and puberty. Whereas, it appeared that a higher frequency of fruits, vegetables and dairy products consumption was associated with an increase in serum SIRT1 levels. Discussion Studying SIRT1 in the context of children's health may have implications for a broader understanding of growth processes, pubertal development, metabolic disorders and nutrition.
Collapse
Affiliation(s)
- Anna Fedorczak
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital – Research Institute, Lodz, Poland
| | - Andrzej Lewiński
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital – Research Institute, Lodz, Poland
- Department of Paediatric Endocrinology, Medical University of Lodz, Lodz, Poland
| | - Renata Stawerska
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital – Research Institute, Lodz, Poland
- Department of Paediatric Endocrinology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
Juan CG, Matchett KB, Davison GW. A systematic review and meta-analysis of the SIRT1 response to exercise. Sci Rep 2023; 13:14752. [PMID: 37679377 PMCID: PMC10485048 DOI: 10.1038/s41598-023-38843-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/16/2023] [Indexed: 09/09/2023] Open
Abstract
Sirtuin 1 (SIRT1) is a key physiological regulator of metabolism and a target of therapeutic interventions for cardiometabolic and ageing-related disorders. Determining the factors and possible mechanisms of acute and adaptive SIRT1 response to exercise is essential for optimising exercise interventions aligned to the prevention and onset of disease. Exercise-induced SIRT1 upregulation has been reported in animals, but, to date, data in humans have been inconsistent. This exploratory systematic review and meta-analysis aims to assess various exercise interventions measuring SIRT1 in healthy participants. A total of 34 studies were included in the meta-analysis (13 single bout exercise, 21 training interventions). Studies were grouped according to tissue sample type (blood, muscle), biomarkers (gene expression, protein content, enzyme level, enzyme activity), and exercise protocols. A single bout of high-intensity or fasted exercise per se increases skeletal muscle SIRT1 gene expression as measured by qPCR or RT-PCR, while repeated resistance training alone increases blood SIRT1 levels measured by ELISA. A limited number of studies also show a propensity for an increase in muscle SIRT1 activity as measured by fluorometric or sirtuin activity assay. In conclusion, exercise acutely upregulates muscle SIRT1 gene expression and chronically increases SIRT1 blood enzyme levels.
Collapse
Affiliation(s)
- Ciara Gallardo Juan
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast, BT15 1AP, UK.
| | - Kyle B Matchett
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry/Londonderry, BT47 6SB, UK
| | - Gareth W Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast, BT15 1AP, UK
| |
Collapse
|
8
|
Gonçalinho GHF, Kuwabara KL, Faria NFDO, Goes MFDS, Roggerio A, Avakian SD, Strunz CMC, Mansur ADP. Sirtuin 1 and Vascular Function in Healthy Women and Men: A Randomized Clinical Trial Comparing the Effects of Energy Restriction and Resveratrol. Nutrients 2023; 15:2949. [PMID: 37447275 DOI: 10.3390/nu15132949] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Background: Sirtuin 1 (SIRT1) has been associated with longevity and protection against cardiometabolic diseases, but little is known about how it influences human vascular function. Therefore, this study evaluated the effects of SIRT1 activation by resveratrol and energy restriction on vascular reactivity in adults. Methods: A randomized trial allocated 48 healthy adults (24 women and 24 men), aged 55 to 65 years, to resveratrol supplementation or energy restriction for 30 days. Blood lipids, glucose, insulin, C-reactive protein, noradrenaline, SIRT1 (circulating and gene expression), and flow-mediated vasodilation (FMD) and nitrate-mediated vasodilation (NMD) were measured. Results: Both interventions increased circulating SIRT1 (p < 0.001). Pre- and post-tests changes of plasma noradrenaline were significant for both groups (resveratrol: p = 0.037; energy restriction: p = 0.008). Baseline circulating SIRT1 was inversely correlated with noradrenaline (r = -0.508; p < 0.01), and post-treatment circulating SIRT1 was correlated with NMD (r = 0.433; p < 0.01). Circulating SIRT1 was a predictor of FMD in men (p = 0.045), but not in women. SIRT1 was an independent predictor of NMD (p = 0.026) only in the energy restriction group. Conclusions: Energy restriction and resveratrol increased circulating SIRT1 and reduced sympathetic activity similarly in healthy adults. SIRT1 was independently associated with NMD only in the energy restriction group.
Collapse
Affiliation(s)
- Gustavo Henrique Ferreira Gonçalinho
- Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-060, Brazil
- Serviço de Prevenção, Cardiopatia da Mulher e Reabilitação Cardiovascular, Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo 05403-900, Brazil
| | - Karen Lika Kuwabara
- Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-060, Brazil
- Serviço de Prevenção, Cardiopatia da Mulher e Reabilitação Cardiovascular, Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo 05403-900, Brazil
| | - Nathalia Ferreira de Oliveira Faria
- Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-060, Brazil
- Serviço de Prevenção, Cardiopatia da Mulher e Reabilitação Cardiovascular, Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo 05403-900, Brazil
| | - Marisa Fernandes da Silva Goes
- Pesquisa Clínica, Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo 05403-900, Brazil
| | - Alessandra Roggerio
- Laboratório de Análises Clínicas, Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo 05403-900, Brazil
| | - Solange Desirée Avakian
- Unidade Clínica de Cardiopatias Valvares, Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo 05403-900, Brazil
| | - Célia Maria Cassaro Strunz
- Laboratório de Análises Clínicas, Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo 05403-900, Brazil
| | - Antonio de Padua Mansur
- Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-060, Brazil
- Serviço de Prevenção, Cardiopatia da Mulher e Reabilitação Cardiovascular, Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo 05403-900, Brazil
| |
Collapse
|
9
|
Sapatini LRL, Calsa B, Marim LJ, Helaehil JV, Chiarotto GB, Corezola do Amaral ME. Caloric restriction prevents inflammation and insulin dysfunction in middle-aged ovariectomized mice. Mol Biol Rep 2023:10.1007/s11033-023-08508-z. [PMID: 37208539 DOI: 10.1007/s11033-023-08508-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Loss of ovarian function is associated with increased visceral fat. In this study, we aimed to study the effects of caloric restriction (CR) on metabolism in ovariectomized mice. METHODS AND RESULTS Female, 8-12-month-old mice were divided into three groups: OVX (ovariectomized mice), OVXR (40% CR) and Sham. CR increased insulin sensitivity and glucose tolerance. AMPK phosphorylation was observed in the liver of OVXR mice. CR also increased hepatic cholesterol and triglyceride levels. The reductions in the level of TBARS in the serum and liver and of H2O2 in the liver of OVXR mice suggested alterations in the redox state of the liver. Although expression of catalase protein was reduced by CR, expression of superoxide dismutase was not altered by CR. Although interleukin IL-6 and IL-10 levels in OVXR mice were similar to those in Sham mice, macrophage infiltration was reduced in OVXR mice. OVXR mice had increased sirtuin1 levels and decreased sirtuin3 levels in the liver. CONCLUSIONS In conclusion, CR improved the condition of ovariectomized mice by reducing adiposity and increasing insulin sensitivity and glucose tolerance through a mechanism that may involve AMPK.
Collapse
Affiliation(s)
- Leticia Roberta Leme Sapatini
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, Av. Maximiliano Barutto nº 500, Jardim Universitário, Araras, SP, 13607-339, Brazil
| | - Bruno Calsa
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, Av. Maximiliano Barutto nº 500, Jardim Universitário, Araras, SP, 13607-339, Brazil
- Fetal Programming and Hydroelectrolyte Metabolism laboratory, Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, UNICAMP, São Paulo, Brazil
| | - Lais Jorge Marim
- Physiotherapy College, University Center of Hermínio Ometto Foundation, FHO, Araras, SP, Brazil
| | - Júlia Venturini Helaehil
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, Av. Maximiliano Barutto nº 500, Jardim Universitário, Araras, SP, 13607-339, Brazil
| | - Gabriela Bortolança Chiarotto
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, Av. Maximiliano Barutto nº 500, Jardim Universitário, Araras, SP, 13607-339, Brazil
| | - Maria Esméria Corezola do Amaral
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, Av. Maximiliano Barutto nº 500, Jardim Universitário, Araras, SP, 13607-339, Brazil.
| |
Collapse
|
10
|
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, Guo JY, Liu FH, Chang Q, Zhang YX, Liu CG, Zhao YH. The sirtuin family in health and disease. Signal Transduct Target Ther 2022; 7:402. [PMID: 36581622 PMCID: PMC9797940 DOI: 10.1038/s41392-022-01257-8] [Citation(s) in RCA: 336] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 12/30/2022] Open
Abstract
Sirtuins (SIRTs) are nicotine adenine dinucleotide(+)-dependent histone deacetylases regulating critical signaling pathways in prokaryotes and eukaryotes, and are involved in numerous biological processes. Currently, seven mammalian homologs of yeast Sir2 named SIRT1 to SIRT7 have been identified. Increasing evidence has suggested the vital roles of seven members of the SIRT family in health and disease conditions. Notably, this protein family plays a variety of important roles in cellular biology such as inflammation, metabolism, oxidative stress, and apoptosis, etc., thus, it is considered a potential therapeutic target for different kinds of pathologies including cancer, cardiovascular disease, respiratory disease, and other conditions. Moreover, identification of SIRT modulators and exploring the functions of these different modulators have prompted increased efforts to discover new small molecules, which can modify SIRT activity. Furthermore, several randomized controlled trials have indicated that different interventions might affect the expression of SIRT protein in human samples, and supplementation of SIRT modulators might have diverse impact on physiological function in different participants. In this review, we introduce the history and structure of the SIRT protein family, discuss the molecular mechanisms and biological functions of seven members of the SIRT protein family, elaborate on the regulatory roles of SIRTs in human disease, summarize SIRT inhibitors and activators, and review related clinical studies.
Collapse
Affiliation(s)
- Qi-Jun Wu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan-Huan Chen
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue-Fei Yu
- grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Le Lv
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Yang Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ya-Shu Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Zheng
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun-Qi Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing-Yi Guo
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xiao Zhang
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cai-Gang Liu
- grid.412467.20000 0004 1806 3501Department of Cancer, Breast Cancer Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Opstad TB, Farup PG, Rootwelt H, Aaseth JO. Changes in circulating sirtuin 1 after bariatric surgery. Nutr Metab Cardiovasc Dis 2022; 32:2858-2864. [PMID: 36404480 DOI: 10.1016/j.numecd.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND AIMS Obesity is associated with chronic inflammation and oxidative stress. Weight loss after bariatric surgery improves the inflammatory state and risk of cardiovascular disease. Improvement in metabolic dysfunction might be associated with changes in the activity of sirtuin 1 (SIRT1) and we aimed to investigate the effect of bariatric surgery on its circulating levels. METHODS AND RESULTS This is a sub-study of a prospective cohort study, including 110 subjects with morbid obesity. The surgical procedure was either laparoscopic Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG). Blood was sampled at inclusion and six and 12 months after surgery. SIRT1 was measured in EDTA plasma with an enzyme-linked immunosorbent assay. The mean age in the population was 43 years, 80% were women and mean body mass index (BMI) was 38.8 kg/m2. RYGB and SG were performed in 89 and 21 subjects, respectively. SIRT1 concentration was significantly reduced from baseline to six and 12 months after surgery, with mean values (SD) 156.8 (82.6), 119.5 (65.6) and 94.9 (45.6) ng/mL, respectively, (p ≤ 0.002, all), accompanied by significant reductions in C-reactive protein (CRP), BMI and triglycerides from inclusion (p < 0.001, all). Type of surgery did not differently modify SIRT1 levels (p = 0.09). CRP and triglycerides were both positively predictive of SIRT1 levels (p ≤ 0.001, both). CONCLUSION SIRT1 concentration was significantly lower six and 12 months after bariatric surgery. CRP and triglycerides independently predicted SIRT1 levels, suggesting that reduction in SIRT1 levels might not intrinsically be related to weight reduction, but to improvement in metaflammation.
Collapse
Affiliation(s)
- Trine B Opstad
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, 0240 Oslo, Norway; Faculty of Medicine, University of Oslo, 0315 Oslo, Norway.
| | - Per G Farup
- Department of Research, Innlandet Hospital Trust, PB 104, N-2381 Brumunddal, Norway; Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Helge Rootwelt
- Department of Medical Biochemistry, Oslo University Hospital, 0372 Oslo, Norway
| | - Jan O Aaseth
- Department of Research, Innlandet Hospital Trust, PB 104, N-2381 Brumunddal, Norway; Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, PB 400, N-2418 Elverum, Norway
| |
Collapse
|
12
|
Leal DP, Gonçalinho GHF, Tavoni TM, Kuwabara KL, Paccanaro AP, Freitas FR, Strunz CMC, César LAM, Maranhão RC, Mansur ADP. The Interplay of Sirtuin-1, LDL-Cholesterol, and HDL Function: A Randomized Controlled Trial Comparing the Effects of Energy Restriction and Atorvastatin on Women with Premature Coronary Artery Disease. Antioxidants (Basel) 2022; 11:2363. [PMID: 36552571 PMCID: PMC9774144 DOI: 10.3390/antiox11122363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION HDL function has gained prominence in the literature as there is a greater predictive capacity for risk in early coronary artery disease when compared to the traditional parameters. However, it is unclear how dietary energy restriction and atorvastatin influence HDL function. METHODS A randomized controlled trial with 39 women with early CAD divided into three groups (n = 13): energy restriction (30% of VET), atorvastatin (80 mg), and control. Analyses of traditional biochemical markers (lipid and glucose profile), circulating Sirt-1, and HDL function (lipid composition, lipid transfer, and antioxidant capacity). RESULTS Participants' mean age was 50.5 ± 3.8 years. Energy restriction increased Sirt-1 by 63.6 pg/mL (95%CI: 1.5-125.7; p = 0.045) and reduced BMI by 0.8 kg/m2 (95%CI: -1.349--0.273; p = 0.004) in a manner independent of other cardiometabolic factors. Atorvastatin reduced LDL-c by 40.0 mg/dL (95%CI: -69.910--10.1; p = 0.010). Increased Sirt-1 and reduced BMI were independently associated with reduced phospholipid composition of HDL (respectively, β = -0.071; CI95%:-0.136--0.006; p = 0.033; β = 7.486; CI95%:0.350-14.622; p = 0.040). Reduction in BMI was associated with lower HDL-free cholesterol (β = 0.818; CI95%:0.044-1.593; p = 0.039). LDL-c reduction by statins was associated with reduced maximal lipid peroxide production rate of HDL (β = 0.002; CI95%:0.000-0.003; p = 0.022) and total conjugated diene generation (β = 0.001; CI95%:0.000-0.001; p = 0.029). CONCLUSION This study showed that energy restriction and atorvastatin administration were associated with changes in lipid profile, serum Sirt-1 concentrations, and HDL function.
Collapse
Affiliation(s)
- Dalila Pinheiro Leal
- Faculdade de Medicina da Universidade de São Paulo, University of São Paulo, Sao Paulo 05508-060, Brazil
- Servico de Prevencao, Cardiopatia da Mulher e Reabilitacao Cardiovascular, Instituto do Coracao do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-900, Brazil
- Laboratorio de Metabolismo de Lipides, Instituto do Coracao do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-900, Brazil
| | - Gustavo Henrique Ferreira Gonçalinho
- Faculdade de Medicina da Universidade de São Paulo, University of São Paulo, Sao Paulo 05508-060, Brazil
- Servico de Prevencao, Cardiopatia da Mulher e Reabilitacao Cardiovascular, Instituto do Coracao do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-900, Brazil
| | - Thauany Martins Tavoni
- Laboratorio de Metabolismo de Lipides, Instituto do Coracao do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-900, Brazil
| | - Karen Lika Kuwabara
- Faculdade de Medicina da Universidade de São Paulo, University of São Paulo, Sao Paulo 05508-060, Brazil
- Servico de Prevencao, Cardiopatia da Mulher e Reabilitacao Cardiovascular, Instituto do Coracao do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-900, Brazil
| | - Ana Paula Paccanaro
- Laboratorio de Metabolismo de Lipides, Instituto do Coracao do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-900, Brazil
| | - Fatima Rodrigues Freitas
- Laboratorio de Metabolismo de Lipides, Instituto do Coracao do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-900, Brazil
| | - Célia Maria Cassaro Strunz
- Laboratorio de Analises Clinicas, Instituto do Coracao do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-900, Brazil
| | - Luiz Antonio Machado César
- Faculdade de Medicina da Universidade de São Paulo, University of São Paulo, Sao Paulo 05508-060, Brazil
- Unidade Clinica de Coronariopatias Cronicas, Instituto do Coracao do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-900, Brazil
| | - Raul Cavalcante Maranhão
- Laboratorio de Metabolismo de Lipides, Instituto do Coracao do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-900, Brazil
- Faculdade de Ciencias Farmaceuticas da Universidade de Sao Paulo, University of São Paulo, Sao Paulo 05508-060, Brazil
| | - Antonio de Padua Mansur
- Faculdade de Medicina da Universidade de São Paulo, University of São Paulo, Sao Paulo 05508-060, Brazil
- Servico de Prevencao, Cardiopatia da Mulher e Reabilitacao Cardiovascular, Instituto do Coracao do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-900, Brazil
| |
Collapse
|
13
|
Kim KK, Kang JH, Kim EM. Updated Meta-Analysis of Studies from 2011 to 2021 Comparing the Effectiveness of Intermittent Energy Restriction and Continuous Energy Restriction. J Obes Metab Syndr 2022; 31:230-244. [PMID: 36177730 PMCID: PMC9579470 DOI: 10.7570/jomes22050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/02/2022] Open
Abstract
Background Despite the considerable number of trials and meta-analyses of studies on intermittent energy restriction (IER), it is not preferred to continuous energy restriction (CER) by the majority of obesity specialists. In this meta-analysis, we compare the effects of IER and CER on obesity using evidence from randomized controlled trials (RCTs). Methods A systematic electronic literature search was conducted to find RCTs published between January 1, 2011, and December 31, 2021 that directly compared IER and CER for an active weight loss period of at least 12 weeks and reported obesity indices or metabolic markers in adults with overweight or obesity. Finally, 16 RCTs from 25 articles with 1,438 participants were included. Results The attrition rates were 26.6% and 24.1% in the IER and CER groups, respectively, with no significant differences in changes in body weight, waist circumference, or body fat composition. CER changed blood glucose levels more than IER, but there was no significant difference in glycated hemoglobin levels. Systolic blood pressure was significantly lower in the CER group than the IER group, but diastolic blood pressure did not differ significantly between the groups. Changes in blood lipids did not differ significantly between the interventions. No differences between IER and CER were observed in the sensitivity analyses. Conclusion IER can be an alternative to CER because it induces comparable weight reduction and metabolic improvement. However, the effect of IER was not superior to that of CER, and its attrition rate was not lower than that of CER.
Collapse
Affiliation(s)
- Kyoung-Kon Kim
- Department of Family Medicine, Gachon University College of Medicine, Incheon, Korea
| | - Jee-Hyun Kang
- Department of Family Medicine, Konyang University College of Medicine, Daejeon, Korea
| | - Eun Mi Kim
- Department of Dietetics, Kangbuk Samsung Hospital, Seoul, Korea
| |
Collapse
|
14
|
Ye YF, Zhang MX, Lin Z, Tang L. Is Intermittent Fasting Better Than Continuous Energy Restriction for Adults with Overweight and Obesity? Diabetes Metab Syndr Obes 2022; 15:2813-2826. [PMID: 36134390 PMCID: PMC9484493 DOI: 10.2147/dmso.s376409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
As a popular weight management intervention, intermittent fasting (IF) has been widely applied to the treatment of overweight and obesity in adults. This review describes the different forms and implementation protocols of IF and their effects on body weight, body composition, cardiometabolic risk factors and other diseases. The existing evidence suggests that IF is as effective as continuous energy restriction and may be a feasible and effective approach to weight loss.
Collapse
Affiliation(s)
- Ya-Fei Ye
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, People’s Republic of China
- Health Management Centre, Taizhou Hospital, Zhejiang University, Linhai, 317000, People’s Republic of China
| | - Mei-Xian Zhang
- Evidence-Based Medicine Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, People’s Republic of China
| | - Zhi Lin
- Operating Rooms, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, People’s Republic of China
| | - Leiwen Tang
- Nursing Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, People’s Republic of China
| |
Collapse
|