1
|
Tonphu K, Mueangaun S, Lerkdumnernkit N, Sengking J, Tocharus J, Benjakul S, Mittal A, Tocharus C. Chitooligosaccharide-epigallocatechin gallate conjugate ameliorates lipid accumulation and promotes browning of white adipose tissue in high fat diet fed rats. Chem Biol Interact 2025; 406:111316. [PMID: 39577827 DOI: 10.1016/j.cbi.2024.111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
The prevalence of obesity has increased progressively worldwide. Obesity is characterized by excessive accumulation of fat in adipose tissues, leading to metabolic impairment. The anti-obese effects of chitooligosaccharide (COS) and epigallocatechin-3-gallate (EGCG) have been extensively clarified. This study aimed to investigate the effects and potential mechanisms of the COS-EGCG conjugate (CE) on anti-obesity, specifically by alleviating lipid accumulation and promoting the browning of white adipose tissue (WAT) in obese rats. Obesity as a consequence of a high-fat diet (HFD) was induced in male Wistar rats. The HFD was given for 16 weeks and the rats were then randomly subdivided into five groups namely: vehicle (control group), HFD plus CE at 150 mg/kg/day, HFD plus CE at 600 mg/kg/day, HFD plus COS at 600 mg/kg/day, and HFD plus atorvastatin at 10 mg/kg/day for 4 weeks. CE could reduce body weight, improve serum lipid profiles, and promote lipid metabolism via activation of AMP-activated protein kinase (AMPK) in WAT and enhance the processes of WAT browning by activating sirtuin 1 (Sirt 1), peroxisome proliferator-activated receptor-gamma coactivator (PGC1-α), and uncoupling the protein 1 (UCP1) signaling pathway. CE reduced obesity and promoted WAT browning in HFD-fed rats. Therefore, CE might be a new therapy for metabolic syndrome and obesity.
Collapse
Affiliation(s)
- Kanokrada Tonphu
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sirikul Mueangaun
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Natcha Lerkdumnernkit
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jirakhamon Sengking
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Wijesekara T, Xu B. New Insights into Sources, Bioavailability, Health-Promoting Effects, and Applications of Chitin and Chitosan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17138-17152. [PMID: 39042786 DOI: 10.1021/acs.jafc.4c02162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Chitin and chitosan are mostly derived from the exoskeletons of crustaceans, insects, and fungi. Chitin is the second most abundant biopolymer after cellulose, and it is a fibrous polysaccharide which resists enzymatic degradation in the stomach but undergoes microbial fermentation in the colon, producing beneficial metabolites. Chitosan, which is more soluble in the alkaline small intestine, is more susceptible to enzymatic action. Both biopolymers show limited absorption into the bloodstream, with smaller particles exhibiting better bioavailability. The health effects include anti-inflammatory properties, potential in immune system modulation, impacts on cholesterol levels, and antimicrobial effects, with a specific focus on implications for gut health. Chitin and chitosan exhibit anti-inflammatory properties by interacting with immune cells, influencing cytokine production, and modulating immune responses, which may benefit conditions characterized by chronic inflammation. These biopolymers can impact cholesterol levels by binding to dietary fats and reducing lipid absorption. Additionally, their antimicrobial properties contribute to gut health by controlling harmful pathogens and promoting beneficial gut microbiota. This review explores the extensive health benefits and applications of chitin and chitosan, providing a detailed examination of their chemical compositions, dietary sources, and applications, and critically assessing their health-promoting effects in the context of human well-being.
Collapse
Affiliation(s)
- Tharuka Wijesekara
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec H9X 3V9, Canada
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| |
Collapse
|
3
|
Zhuang X, Zhao M, Ji X, Yang S, Yin H, Zhao L. Chitobiose exhibited a lipid-lowering effect in ob/ob -/- mice via butyric acid enrolled liver-gut crosstalk. BIORESOUR BIOPROCESS 2023; 10:79. [PMID: 38647627 PMCID: PMC10991647 DOI: 10.1186/s40643-023-00696-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/14/2023] [Indexed: 04/25/2024] Open
Abstract
Chitobiose (COS2) efficiently lowers lipids in vivo and facilitates butyric acid enrichment during human fecal fermentation. However, whether COS2 can interact with butyric acid to generate a hypolipidemic effect remains unclear. This study examined the hypolipidemic mechanism of COS2 involving butyric acid, which could alleviate non-alcoholic fatty liver disease (NAFLD). The results revealed that COS2 administration modulated the β-oxidation pathway in the liver and restructured the short chain fatty acids in the fecal of ob/ob-/- mice. Moreover, the hypolipidemic effect of COS2 and its specific accumulated metabolite butyric acid was verified in sodium oleate-induced HepG2 cells. Butyric acid was more effective to reverse lipid accumulation and up-regulate β-oxidation pathway at lower concentrations. Furthermore, structural analysis suggested that butyric acid formed hydrogen bonds with key residues in hydrophilic ligand binding domains (LBDs) of PPARα and activated the transcriptional activity of the receptor. Therefore, the potential mechanism behind the lipid-lowering effect of COS2 in vivo involved restoring hepatic lipid disorders via butyric acid accumulation and liver-gut axis signaling.
Collapse
Affiliation(s)
- Xinye Zhuang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| | - Xiaoguo Ji
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Sihan Yang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai, 200003, China.
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai, 200003, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China.
| |
Collapse
|
4
|
Amelia R, Sumiwi SA, Saptarini NM, Levita J. Chitin Extracted from the Shell of Blue Swimming Crabs ( Portunus pelagicus Linn.) Inhibits NF-kappaB p65 in Ethanol-Induced Gastric Ulcerative Wistar Rats. Mar Drugs 2023; 21:488. [PMID: 37755101 PMCID: PMC10533015 DOI: 10.3390/md21090488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/09/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
Peptic ulcer disease is generated by the activation of NF-kappaB activity. A recent clinical study reported a significant increase in NF-kappaB2 gene expression in 79 samples of peptic ulcer patients compared to the control group. Moreover, the deacetylated chitin could alter the translocation of NF-kappaB p65 to the nucleus. Considering this, our work aims to explore the effect of chitin extracted from the shell of blue swimming crabs (Portunus pelagicus Linn.) towards NF-kappaB p65 levels in ethanol-induced gastric ulcerative Wistar rats. The shells are found abundantly as the waste of seafood processing in the northern part of West Java, Indonesia. In this study, chitin extraction was carried out using the microwave-assisted extraction method by employing choline chloride (C5H14ClNO) and DL-malic acid (C₄H₆O₅) as the solvents. The inhibitory activity assay of chitin on the expression of NF-kappaB p65 was performed by using Western blot. The extraction yielded a good quality of chitin with a deacetylation degree of 30.8026%, molecular weight of 3.35 × 105 Da, and a negligible heavy metals level. Moreover, chitin extract at doses of 150, 300, and 600 mg/kg BW significantly reduced the percentage of gastric ulcer index compared to the negative control group. Meanwhile, chitin extract at doses of 300 and 600 mg/kg BW significantly inhibited NF-kappaB expression compared to the negative control group. Histopathological examination demonstrated a decrease in the number of necrotic cells and fat degeneration in the gastric mucosa and an increase in normal cells. Taken together, chitin extract obtained from the shells of blue swimming crabs may be able to prevent gastric ulcers induced by ethanol via the inhibition of NF-kappaB p65; however, further studies are needed to verify its anti-ulcerative properties.
Collapse
Affiliation(s)
- Renny Amelia
- Department of Pharmacology, School of Pharmacy Muhammadiyah Cirebon, Cirebon 45153, West Java, Indonesia
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Padjadjaran University, Sumedang 45363, West Java, Indonesia;
| | - Nyi Mekar Saptarini
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Padjadjaran University, Sumedang 45363, West Java, Indonesia;
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Padjadjaran University, Sumedang 45363, West Java, Indonesia;
| |
Collapse
|
5
|
Lan R, Luo H, Wu F, Wang Y, Zhao Z. Chitosan Oligosaccharides Alleviate Heat-Stress-Induced Lipid Metabolism Disorders by Suppressing the Oxidative Stress and Inflammatory Response in the Liver of Broilers. Antioxidants (Basel) 2023; 12:1497. [PMID: 37627493 PMCID: PMC10451627 DOI: 10.3390/antiox12081497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Heat stress has been reported to induce hepatic oxidative stress and alter lipid metabolism and fat deposition in broilers. Chitosan oligosaccharides (COSs), a natural oligosaccharide, has anti-oxidant, anti-inflammatory, and lipid-lowering effects. This study is conducted to evaluate dietary COS supplementation on hepatic anti-oxidant capacity, inflammatory response, and lipid metabolism in heat-stressed broilers. The results indicate that heat-stress-induced poor (p < 0.05) growth performance and higher (p < 0.05) abdominal adiposity are alleviated by COS supplementation. Heat stress increases (p < 0.05) serum AST and ATL activity, serum and liver MDA, TG, TC, and LDL-C levels, and the expression of hepatic IL-1β, IL-6, SREBP-1c, ACC, and FAS, while it decreases (p < 0.05) serum SOD and CAT activity, liver GSH-Px and SOD activity, and the expression of hepatic Nrf2, GPX1, IL-10, MTTP, PPARα, and CPT1. Nevertheless, COS supplementation decreases (p < 0.05) serum AST and ATL activity, serum and liver MDA, TG, TC, and LDL-C levels, and the expression of hepatic IL-1β, IL-6, SREBP-1c, ACC, and FAS, while it increases (p < 0.05) serum SOD and CAT activity, liver GSH-Px activity, and the expression of hepatic Nrf2, CAT, IL-10, LPL, MTTP, PPARα, and CPT1. In conclusion, COS could alleviate heat-stress-induced lipid metabolism disorders by enhancing hepatic anti-oxidant and anti-inflammatory capacity.
Collapse
Affiliation(s)
| | | | | | | | - Zhihui Zhao
- Department of Animal Science and Technology, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.L.); (H.L.); (F.W.); (Y.W.)
| |
Collapse
|
6
|
Thakur D, Bairwa A, Dipta B, Jhilta P, Chauhan A. An overview of fungal chitinases and their potential applications. PROTOPLASMA 2023; 260:1031-1046. [PMID: 36752884 DOI: 10.1007/s00709-023-01839-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 01/30/2023] [Indexed: 06/07/2023]
Abstract
Chitin, the world's second most abundant biopolymer after cellulose, is composed of β-1,4-N-acetylglucosamine (GlcNAc) residues. It is the key structural component of many organisms, including crustaceans, mollusks, marine invertebrates, algae, fungi, insects, and nematodes. There has been a significant increase in the generation of chitinous waste from seafood businesses, resulting in a big amount of scrap. Although several organisms, such as plants, crustaceans, insects, nematodes, and animals, produce chitinases, microorganisms are promising candidates and a sustainable option that mediates chitin degradation. Fungi are the dominant group of chitinase producers among microorganisms. In fungi, chitinases are involved in morphogenesis, cell division, autolysis, chitin acquisition for nutritional purposes, and mycoparasitism. Many efficient chitinolytic fungi with potential applications have been identified in a variety of environments, including soil, water, marine wastes, and plants. The current review highlights the key sources of chitinolytic fungi and the characterization of fungal chitinases. It also discusses the applications of fungal chitinases and the cloning of fungal chitinase genes.
Collapse
Affiliation(s)
- Deepali Thakur
- Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Aarti Bairwa
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Bhawna Dipta
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India.
| | - Prakriti Jhilta
- Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Anjali Chauhan
- Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| |
Collapse
|
7
|
Zarasvand SA, Haley-Zitlin V, Oladosu O, Esobi I, Powell RR, Bruce T, Stamatikos A. Assessing Anti-Adipogenic Effects of Mango Leaf Tea and Mangiferin within Cultured Adipocytes. Diseases 2023; 11:70. [PMID: 37218883 PMCID: PMC10204365 DOI: 10.3390/diseases11020070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Obesity is a condition caused by surplus adipose tissue and is a risk factor for several diet-related diseases. Obesity is a global epidemic that has also been challenging to treat effectively. However, one promoted therapy to safely treat obesity is anti-adipogenic therapeutics. Therefore, identifying potent anti-adipogenic bioactive compounds that can safely be used clinically may effectively treat obesity in humans. Mango leaf has potential medicinal properties due to its many bioactive compounds that may enhance human health. Mangiferin (MGF) is a primary constituent in mango plants, with many health-promoting qualities. Therefore, this study investigated the effect of MGF, and tea brewed with mango leaves in cultured adipocytes. The anti-adipogenic efficacy of mango leaf tea (MLT) and MGF in 3T3-L1 cells were assessed, along with cell viability, triglyceride levels, adiponectin secretion, and glucose uptake analyzed. In addition, changes in the mRNA expression of genes involved in lipid metabolism within 3T3-L1 cells were determined using quantitative real-time PCR. Our results showed while both MLT and MGF increased glucose uptake in adipocytes, only MLT appeared to inhibit adipogenesis, as determined by decreased triglyceride accumulation. We also observed increased secretory adiponectin levels, reduced ACC mRNA expression, and increased FOXO1 and ATGL gene expression in 3T3-L1 cells treated with MLT but not MGF. Together, these results suggest that MLT may exhibit anti-adipogenic properties independent of MGF content.
Collapse
Affiliation(s)
- Sepideh Alasvand Zarasvand
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (S.A.Z.); (V.H.-Z.); (O.O.); (I.E.)
| | - Vivian Haley-Zitlin
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (S.A.Z.); (V.H.-Z.); (O.O.); (I.E.)
| | - Olanrewaju Oladosu
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (S.A.Z.); (V.H.-Z.); (O.O.); (I.E.)
| | - Ikechukwu Esobi
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (S.A.Z.); (V.H.-Z.); (O.O.); (I.E.)
| | - Rhonda Reigers Powell
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA; (R.R.P.); (T.B.)
| | - Terri Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA; (R.R.P.); (T.B.)
| | - Alexis Stamatikos
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (S.A.Z.); (V.H.-Z.); (O.O.); (I.E.)
| |
Collapse
|
8
|
Khaisaat S, Chancharoensin S, Wipatanawin A, Suphantharika M, Payongsri P. Influence of Degree of Polymerization of Low-Molecular-Weight Chitosan Oligosaccharides on the α-Glucosidase Inhibition. Molecules 2022; 27:molecules27238129. [PMID: 36500221 PMCID: PMC9740910 DOI: 10.3390/molecules27238129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Chitosan oligosaccharide (COS) is a bioactive compound derived from marine by-products. COS consumption has been demonstrated to lower the risk of diabetes. However, there are limited data on the inhibitory effect of low-molecular-weight COSs with different degrees of polymerization (DP) on α-glucosidase. This study investigates the α-glucosidase inhibitory activity of two low-molecular-weight COSs, i.e., S-TU-COS with DP2−4 and L-TU-COS with DP2−5, both of which have different molecular weight distributions. The inhibition constants of the inhibitors binding to free enzymes (Ki) and an enzyme−substrate complex (Kii) were investigated to elucidate the inhibitory mechanism of COSs with different chain lengths. The kinetic inhibition model of S-TU-COS showed non-completive inhibition results which are close to the uncompetitive inhibition results with Ki and Kii values of 3.34 mM and 2.94 mM, respectively. In contrast, L-TU-COS showed uncompetitive inhibition with a Kii value of 5.84 mM. With this behavior, the IC50 values of S-TU-COS and L-TU-COS decreased from 12.54 to 11.84 mM and 20.42 to 17.75 mM, respectively, with an increasing substrate concentration from 0.075 to 0.3 mM. This suggests that S-TU-COS is a more potent inhibitor, and the different DP of COS may cause significantly different inhibition (p < 0.05) on the α-glucosidase activity. This research may provide new insights into the production of a COS with a suitable profile for antidiabetic activity.
Collapse
Affiliation(s)
- Supharada Khaisaat
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Saovanee Chancharoensin
- Global Innovation Centre (GIC), Thai Union Group PCL. S.M. Tower, Phaholyothin Road, Phayathai Sub-District, Phayathai, Bangkok 10400, Thailand
| | - Angkana Wipatanawin
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Manop Suphantharika
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Panwajee Payongsri
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
- Correspondence: ; Tel.: +66-2201-5315
| |
Collapse
|
9
|
Anil S. Potential Medical Applications of Chitooligosaccharides. Polymers (Basel) 2022; 14:3558. [PMID: 36080631 PMCID: PMC9460531 DOI: 10.3390/polym14173558] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Chitooligosaccharides, also known as chitosan oligomers or chitooligomers, are made up of chitosan with a degree of polymerization (DP) that is less than 20 and an average molecular weight (MW) that is lower than 3.9 kDa. COS can be produced through enzymatic conversions using chitinases, physical and chemical applications, or a combination of these strategies. COS is of significant interest for pharmacological and medical applications due to its increased water solubility and non-toxicity, with a wide range of bioactivities, including antibacterial, anti-inflammatory, anti-obesity, neuroprotective, anticancer, and antioxidant effects. This review aims to outline the recent advances and potential applications of COS in various diseases and conditions based on the available literature, mainly from preclinical research. The prospects of further in vivo studies and translational research on COS in the medical field are highlighted.
Collapse
Affiliation(s)
- Sukumaran Anil
- Oral Health Institute, Department of Dentistry, Hamad Medical Corporation, Qatar University, Doha 3050, Qatar; ; Tel.: +974-50406670
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre (PIMS&RC), Thiruvalla, Pathanamthitta 689101, Kerala, India
| |
Collapse
|
10
|
Wen J, Niu X, Chen S, Chen Z, Wu S, Wang X, Yong Y, Liu X, Yu Z, Ma X, Abd El-Aty A, Ju X. Chitosan oligosaccharide improves the mucosal immunity of small intestine through activating SIgA production in mice: Proteomic analysis. Int Immunopharmacol 2022; 109:108826. [DOI: 10.1016/j.intimp.2022.108826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 11/05/2022]
|
11
|
Fan J, Chen J, Wu H, Lu X, Fang X, Yin F, Zhao Z, Jiang P, Yu H. Chitosan Oligosaccharide Inhibits the Synthesis of Milk Fat in Bovine Mammary Epithelial Cells through AMPK-Mediated Downstream Signaling Pathway. Animals (Basel) 2022; 12:ani12131692. [PMID: 35804595 PMCID: PMC9265072 DOI: 10.3390/ani12131692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary In order to study the effect of chitosan oligosaccharides on milk fat synthesis of bovine mammary epithelial cells (BMECs), we did a series of related experiments. The results showed that chitosan oligosaccharide (COS) could inhibit the fatty acid synthesis and promote milk fat decomposition and oxidation through AMPK/SREBP1/SCD1, AMPK/HSL and AMPK/PPARα signaling pathways to reduce the milk fat content in bovine mammary epithelial cells. We elucidated the important role of COS in BMECs lipid metabolism. COS may be the potential small-molecule component in milk cow molecular breeding to regulate milk fat synthesis and metabolism. These findings will help us to further understand the mechanism of COS on milk fat metabolism. Abstract Chitosan oligosaccharide (COS) is a variety of oligosaccharides, and it is also the only abundant basic amino oligosaccharide in natural polysaccharides. Chitosan oligosaccharide is a low molecular weight product of chitosan after enzymatic degradation. It has many biological effects, such as lipid-lowering, antioxidant and immune regulation. Previous studies have shown that chitosan oligosaccharide has a certain effect on fat synthesis, but the effect of chitosan oligosaccharide on milk fat synthesis of bovine mammary epithelial cells (BMECs) has not been studied. Therefore, this study aimed to investigate chitosan oligosaccharide’s effect on milk fat synthesis in bovine mammary epithelial cells and explore the underlying mechanism. We treated bovine mammary epithelial cells with different concentrations of chitosan oligosaccharide (0, 100, 150, 200, 400 and 800 μg/mL) for 24 h, 36 h and 48 h respectively. To assess the effect of chitosan oligosaccharide on bovine mammary epithelial cells and determine the concentration and time for chitosan oligosaccharide treatment on cells, several in vitro cellular experiments, including on cell viability, cycle and proliferation were carried out. The results highlighted that chitosan oligosaccharide (100, 150 μg/mL) significantly promoted cell viability, cycle and proliferation, increased intracellular cholesterol content, and reduced intracellular triglyceride and non-esterified fatty acids content. Under the stimulation of chitosan oligosaccharide, the expression of genes downstream of Phosphorylated AMP-activated protein kinase (P-AMPK) and AMP-activated protein kinase (AMPK) signaling pathway changed, increasing the expression of peroxisome proliferator-activated receptor alpha (PPARα) and hormone-sensitive lipase (HSL), but the expression of sterol regulatory element-binding protein 1c (SREBP1) and its downstream target gene stearoyl-CoA desaturase (SCD1) decreased. In conclusion, these results suggest that chitosan oligosaccharide may inhibit milk fat synthesis in bovine mammary epithelial cells by activating the AMP-activated protein kinase signaling pathway, promoting the oxidative decomposition of fatty acids and inhibiting fatty acid synthesis.
Collapse
Affiliation(s)
- Jing Fan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (J.C.); (H.W.); (F.Y.); (Z.Z.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiayi Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (J.C.); (H.W.); (F.Y.); (Z.Z.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China
| | - Haochen Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (J.C.); (H.W.); (F.Y.); (Z.Z.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xin Lu
- College of Animal Science, Jilin University, Changchun 130062, China; (X.L.); (X.F.)
| | - Xibi Fang
- College of Animal Science, Jilin University, Changchun 130062, China; (X.L.); (X.F.)
| | - Fuquan Yin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (J.C.); (H.W.); (F.Y.); (Z.Z.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhihui Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (J.C.); (H.W.); (F.Y.); (Z.Z.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ping Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (J.C.); (H.W.); (F.Y.); (Z.Z.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China
- Correspondence: (P.J.); (H.Y.); Tel.: +86-151-4305-9097 (P.J.); +86-186-8660-9912 (H.Y.)
| | - Haibin Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (J.C.); (H.W.); (F.Y.); (Z.Z.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China
- Correspondence: (P.J.); (H.Y.); Tel.: +86-151-4305-9097 (P.J.); +86-186-8660-9912 (H.Y.)
| |
Collapse
|
12
|
Wang R, Chen J, Gooneratne R, He X, Huang J, Zhao Z. Effects of varied molecular weight of chitosan oligosaccharides on growth performance, carcass trait, meat quality, and fat metabolism in indigenous yellow-feathered chickens. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2021.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
13
|
Rahman SU, Gong H, Mi R, Huang Y, Han X, Chen Z. Chitosan Protects Immunosuppressed Mice Against Cryptosporidium parvum Infection Through TLR4/STAT1 Signaling Pathways and Gut Microbiota Modulation. Front Immunol 2022; 12:784683. [PMID: 35095858 PMCID: PMC8795679 DOI: 10.3389/fimmu.2021.784683] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/17/2021] [Indexed: 01/03/2023] Open
Abstract
Cryptosporidium parvum infection is very common in infants, immunocompromised patients, or in young ruminants, and chitosan supplementation exhibits beneficial effects against the infection caused by C. parvum. This study investigated whether chitosan supplementation modulates the gut microbiota and mediates the TLR4/STAT1 signaling pathways and related cytokines to attenuate C. parvum infection in immunosuppressed mice. Immunosuppressed C57BL/6 mice were divided into five treatment groups. The unchallenged mice received a basal diet (control), and three groups of mice challenged with 1 × 106 C. parvum received a basal diet, a diet supplemented with 50 mg/kg/day paromomycin, and 1 mg/kg/day chitosan, and unchallenged mice treated with 1 mg/kg/day chitosan. Chitosan supplementation regulated serum biochemical indices and significantly (p < 0.01) reduced C. parvum oocyst excretion in infected mice treated with chitosan compared with the infected mice that received no treatment. Chitosan-fed infected mice showed significantly (p < 0.01) decreased mRNA expression levels of interferon-gamma (IFN-γ) and tumor necrosis factor-α (TNF-α) compared to infected mice that received no treatment. Chitosan significantly inhibited TLR4 and upregulated STAT1 protein expression (p < 0.01) in C. parvum-infected mice. 16S rRNA sequencing analysis revealed that chitosan supplementation increased the relative abundance of Bacteroidetes/Bacteroides, while that of Proteobacteria, Tenericutes, Defferribacteres, and Firmicutes decreased (p < 0.05). Overall, the findings revealed that chitosan supplementation can ameliorate C. parvum infection by remodeling the composition of the gut microbiota of mice, leading to mediated STAT1/TLR4 up- and downregulation and decreased production of IFN-γ and TNF-α, and these changes resulted in better resolution and control of C. parvum infection.
Collapse
Affiliation(s)
- Sajid Ur Rahman
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Rongsheng Mi
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yan Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiangan Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhaoguo Chen
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
14
|
A REVIEW ON POTENTIAL ANTI-DIABETIC MECHANISMS OF CHITOSAN AND ITS DERIVATIVES. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
15
|
Liu P, Li H, Gong J, Geng Y, Jiang M, Xu H, Xu Z, Shi J. Chitooligosaccharides alleviate hepatic fibrosis by regulating the polarization of M1 and M2 macrophages. Food Funct 2021; 13:753-768. [PMID: 34940780 DOI: 10.1039/d1fo03768d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regulating immune homeostasis by targeting liver macrophage polarization is a potential therapeutic strategy for hepatic fibrosis. Chitooligosaccharide (COS) is a bioactive oligosaccharide possessing potent immunomodulatory and hepatoprotective effects. In this study the hepatoprotective effect of COS on hepatic fibrosis was examined in mice and the underlying mechanisms were investigated. Herein, mice were induced to hepatic fibrosis using carbon tetrachloride (CCl4) and concurrently treated with COS orally. Kupffer cells (KCs) were skewed towards M1 macrophage polarization by lipopolysaccharide (LPS) and towards M2 macrophage polarization by interleukin-4 (IL-4) in vitro, which were utilized for COS treatment. The results showed that mice were rescued from hepatic fibrosis by COS, marked by a reduction in the deposition of the extracellular matrix (ECM) and histological lesions. COS had an inhibitory effect on the polarization of M1 and M2 macrophages both in vivo and in vitro, characterized by the raised biomarker of the M1 and M2 macrophages slipping towards the basal levels. Furthermore, COS inhibited the JAK2/STAT1 pathways on M1 macrophages and the JAK1/STAT6 pathways on M2 macrophages in KCs. In summary, this study revealed a molecular mechanism for the impact of COS effectiveness on the polarization of liver macrophages, suggesting that is could be a possible intervention for hepatic fibrosis.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| | - Jinsong Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| | - Yan Geng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| | - Min Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| | - Hongyu Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenghong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jinsong Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
16
|
Tao W, Wang G, Wei J. The Role of Chitosan Oligosaccharide in Metabolic Syndrome: A Review of Possible Mechanisms. Mar Drugs 2021; 19:md19090501. [PMID: 34564163 PMCID: PMC8465579 DOI: 10.3390/md19090501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome, a cluster of metabolic disorders including central obesity, insulin resistance, hyperglycemia, dyslipidemia, and hypertension, has become a major public health problem worldwide. It is of great significance to develop natural products to prevent and treat metabolic syndrome. Chitosan oligosaccharide (COS) is an oligomer of chitosan prepared by the deacetylation of chitin, which is the second most abundant polymer in nature. In recent years, COS has received widespread attention due to its various biological activities. The present review will summarize the evidence from both in vitro and in vivo studies of the beneficial effects of COS on obesity, dyslipidemia, diabetes mellitus, hyperglycemia, and hypertension, and focus attention on possible mechanisms of the prevention and treatment of metabolic syndrome by COS.
Collapse
Affiliation(s)
- Wenjing Tao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
| | - Geng Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou 310058, China;
| | - Jintao Wei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
- Correspondence:
| |
Collapse
|
17
|
Shen X, Liang X, Ji X, You J, Zhuang X, Song Y, Yin H, Zhao M, Zhao L. CD36 and DGAT2 facilitate the lipid-lowering effect of chitooligosaccharides via fatty acid intake and triglyceride synthesis signaling. Food Funct 2021; 12:8681-8693. [PMID: 34351342 DOI: 10.1039/d1fo01472b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study examined the impact of chitobiose (GlcN)2 and chitotriose (GlcN)3 on lipid accumulation modification and their inhibitory functionalities. (GlcN)2 and (GlcN)3 significantly inhibited the total cholesterol (TC), triglyceride (TG), and low-density lipid cholesterol (LDL-c) levels in the liver of the ob/ob-/- mice fed a non-high-fat diet. This phenomenon was associated with a reduction in the mRNA and protein expression of TG synthesis and fatty acid uptake-related signaling, significantly affecting the cluster of differentiation 36 (CD36) and diacylglycerol acyltransferase 2 (DGAT2). Furthermore, the CD36 and DGAT2 genes were overexpressed by constructing a plasmid and transfecting it into HepG2 cells, after which the phenotypic traits of lipid accumulation were assessed in vitro. Consequently, it was evident that (GlcN)2 and (GlcN)3 reduced the overexpression of these proteins and relieved cellular lipid accumulation. In conclusion, these results indicated that (GlcN)2 and (GlcN)3 acted positively against NAFLD while regulating steatosis in the non-high-fat diet NAFLD model. The potential NAFLD treatment strategies, such as targeting CD36 and DGAT2 signaling, could provide scientific insight into further applying food-derived ingredients to reduce the risk of high-fat metabolism.
Collapse
Affiliation(s)
- Xin Shen
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China.
| | - Xinyi Liang
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China.
| | - Xiaoguo Ji
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiangshan You
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China.
| | - Xinye Zhuang
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China.
| | - Yudong Song
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China.
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China.
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China. and Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| |
Collapse
|
18
|
Sutthasupha P, Lungkaphin A. The potential roles of chitosan oligosaccharide in prevention of kidney injury in obese and diabetic conditions. Food Funct 2021; 11:7371-7388. [PMID: 32839793 DOI: 10.1039/d0fo00302f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is closely associated with insulin resistance (IR). The most likely links between the two are obesity-mediated systemic low-grade chronic inflammation, endoplasmic reticulum stress and mitochondrial dysfunction, which are all known to contribute to the development of type 2 diabetes (T2DM) and eventually diabetic nephropathy (DN). Chitosan oligosaccharide (COS) is an oligomer of chitosan prepared by the deacetylation of chitin commonly found in exoskeletons of crustaceans such as shrimp and crab as well as the cell walls of fungi. COS has various biological effects including lipid lowering, anti-inflammation, anti-diabetes, and anti-oxidant effects. Therefore, COS is a potential new therapeutic agent for treatment of the obesity-induced DN condition. It is an abundant natural polymer and therefore freely available. This review includes information regarding the relationship between obesity, IR, T2DM, and DN as well as the potential usefulness of COS in controlling lipid and cholesterol metabolism, T2DM and kidney injury models in both in vivo and in vitro studies. However, evidence is limited regarding the effect of COS on the DN model. Further studies, especially in obesity-induced DN, are needed to support the mechanisms proposed in this review.
Collapse
Affiliation(s)
- Prempree Sutthasupha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. and Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
19
|
Tang D, Wang Y, Kang W, Zhou J, Dong R, Feng Q. Chitosan attenuates obesity by modifying the intestinal microbiota and increasing serum leptin levels in mice. J Funct Foods 2020; 64:103659. [DOI: 10.1016/j.jff.2019.103659] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
20
|
Chiu CY, Yen TE, Liu SH, Chiang MT. Comparative Effects and Mechanisms of Chitosan and Its Derivatives on Hypercholesterolemia in High-Fat Diet-Fed Rats. Int J Mol Sci 2019; 21:E92. [PMID: 31877743 PMCID: PMC6981742 DOI: 10.3390/ijms21010092] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/14/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
The present study investigated and compared the effects of different molecular weights of chitosan (high molecular weight chitosan (HC) and low molecular weight chitosan (LC)) and its derivatives (chitosan oligosaccharide (CO)) on cholesterol regulation in high-fat (HF) diet-fed rats. A diet supplementation of 5% HC, 5% LC, or 5% CO for 8 weeks showed hypocholesterolemic potential in HF diet-fed rats. Unexpectedly, a 5% CO-supplemented diet exerted hepatic damage, producing increased levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and tumor necrosis factor-alpha (TNF-α). The supplementation of HC and LC, unlike CO, significantly decreased the hepatic total cholesterol (TC) levels and increased the fecal TC levels in HF diet-fed rats. The hepatic protein expression of the peroxisome proliferator-activated receptor-α (PPARα) in the HF diet-fed rats was markedly decreased, which could be significantly reversed by both HC and LC, but not CO, supplementation. Unlike the supplementation of CO, both HC and LC supplementation could effectively reverse the HF-inhibited/induced gene expressions of the low-density lipoprotein receptor (LDLR) and cholesterol 7α-hydroxylase (CYP7A1), respectively. The upregulated intestinal acyl-CoA cholesterol acyltransferase 2 (ACAT2) protein expression in HF diet-fed rats could be reversed by HC and LC, but not CO, supplementation. Taken together, a supplementation of 5% CO in HF diet-fed rats may exert liver damage via a higher hepatic cholesterol accumulation and a higher intestinal cholesterol uptake. Both HC and LC effectively ameliorated the hypercholesterolemia and regulated cholesterol homeostasis via the activation and inhibition of hepatic (AMPKα and PPARα) and intestinal (ACAT2) cholesterol-modulators, respectively, as well as the modulation of downstream signals (LDLR and CYP7A1).
Collapse
Affiliation(s)
- Chen-Yuan Chiu
- Department of Botanicals, Medical and Pharmaceutical Industry Technology and Development Center, New Taipei City 248, Taiwan;
| | - Tsai-En Yen
- Department of Food Science, College of Life Science, National Taiwan Ocean University, Keelung 202, Taiwan;
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Pediatrics, College of Medicine and Hospital, National Taiwan University, Taipei 100, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Meng-Tsan Chiang
- Department of Food Science, College of Life Science, National Taiwan Ocean University, Keelung 202, Taiwan;
| |
Collapse
|
21
|
Chitosan Oligosaccharide Attenuates Nonalcoholic Fatty Liver Disease Induced by High Fat Diet through Reducing Lipid Accumulation, Inflammation and Oxidative Stress in C57BL/6 Mice. Mar Drugs 2019; 17:md17110645. [PMID: 31744059 PMCID: PMC6891487 DOI: 10.3390/md17110645] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease closely associated with metabolic syndrome, but there are no validated pharmacological therapies. The aim of this study was to investigate the effect of chitosan oligosaccharide (COS) on NAFLD. Mice were fed either a control diet or a high-fat diet (HFD) with or without COS (200 or 400 mg/kg body weight (BW)) by oral gavage for seven weeks. Administration with COS significantly lowered serum lipid levels in the HFD-fed mice. The hepatic lipid accumulation was significantly decreased by COS, which was attributed to decreased expressions of lipogenic genes and increased expressions of fatty β-oxidation-related genes. Moreover, pro-inflammatory cytokines, neutrophils infiltration, and macrophage polarization were decreased by COS in the liver. Furthermore, COS ameliorated hepatic oxidative stress by activating the nuclear factor E2-related factor 2 (Nrf2) pathway and upregulating gene expressions of antioxidant enzymes. These beneficial effects were mediated by the activation of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Therefore, COS might be a potent dietary supplement to ameliorate NAFLD.
Collapse
|
22
|
Recent Updates in Pharmacological Properties of Chitooligosaccharides. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4568039. [PMID: 31781615 PMCID: PMC6875261 DOI: 10.1155/2019/4568039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/26/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
Chemical structures derived from marine foods are highly diverse and pharmacologically promising. In particular, chitooligosaccharides (COS) present a safe pharmacokinetic profile and a great source of new bioactive polymers. This review describes the antioxidant, anti-inflammatory, and antidiabetic properties of COS from recent publications. Thus, COS constitute an effective agent against oxidative stress, cellular damage, and inflammatory pathogenesis. The mechanisms of action and targeted therapeutic pathways of COS are summarized and discussed. COS may act as antioxidants via their radical scavenging activity and by decreasing oxidative stress markers. The mechanism of COS antidiabetic effect is characterized by an acceleration of pancreatic islets proliferation, an increase in insulin secretion and sensitivity, a reduction of postprandial glucose, and an improvement of glucose uptake. COS upregulate the GLUT2 and inhibit digestive enzyme and glucose transporters. Furthermore, they resulted in reduction of gluconeogenesis and promotion of glucose conversion. On the other hand, the COS decrease inflammatory mediators, suppress the activation of NF-κB, increase the phosphorylation of kinase, and stimulate the proliferation of lymphocytes. Overall, this review brings evidence from experimental data about protective effect of COS.
Collapse
|
23
|
Qian M, Lyu Q, Liu Y, Hu H, Wang S, Pan C, Duan X, Gao Y, Qi LW, Liu W, Wang L. Chitosan Oligosaccharide Ameliorates Nonalcoholic Fatty Liver Disease (NAFLD) in Diet-Induced Obese Mice. Mar Drugs 2019; 17:md17070391. [PMID: 31269758 PMCID: PMC6669476 DOI: 10.3390/md17070391] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global epidemic, and there is no standard and efficient therapy for it. Chitosan oligosaccharide (COS) is widely known to have various biological effects, and in this study we aimed to evaluate the liver-protective effect in diet-induced obese mice for an enzymatically digested product of COS called COS23 which is mainly composed of dimers and trimers. An integrated analysis of the lipidome and gut microbiome were performed to assess the effects of COS23 on lipids in plasma and the liver as well as on intestinal microbiota. Our results revealed that COS23 obviously attenuated hepatic steatosis and ameliorated liver injury in diet-induced obese mice. The hepatic toxic lipids—especially triglycerides (TGs) and free fatty acids (FFAs)—were decreased dramatically after COS23 treatment. COS23 regulated lipid-related pathways, especially inhibiting the expressions of FFA-synthesis-related genes and inflammation-related genes. Furthermore, COS23 could alter lipid profiles in plasma. More importantly, COS23 also decreased the abundance of Mucispirillum and increased the abundance of Coprococcus in gut microbiota and protected the intestinal barrier by up-regulating the expression of tight-junction-related genes. In conclusion, COS23, an enzymatically digested product of COS, might serve as a promising candidate in the clinical treatment of NAFLD.
Collapse
Affiliation(s)
- Minyi Qian
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
- College of pharmacy and chemistry, Dali University, Dali 671003, China
| | - Qianqian Lyu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Yujie Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Haiyang Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Shilei Wang
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, China
| | - Chuyue Pan
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Xubin Duan
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yingsheng Gao
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Lian-Wen Qi
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, China
| | - Weizhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| | - Lirui Wang
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
24
|
Ebrahimi Z, Khazaei MR, Ghanbari E, Khazaei M. Renal Tissue Damages and Its Antioxidant Status Improved by Crab Shell Extract in Streptozotocin-induced Diabetic Rat. Adv Biomed Res 2019; 8:41. [PMID: 31360682 PMCID: PMC6621417 DOI: 10.4103/abr.abr_65_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Diabetic nephropathy is a complex and multifactorial adverse effect of diabetes mellitus (DM). Crab shell as a natural product is supposed to have antioxidant effect which is one of the important mechanisms to improve DM. The aim of this study was to investigate the effect of crab shell extract (CSE) on the histopathology and antioxidant status of kidney in diabetic rats. MATERIALS AND METHODS Forty-two adult Wistar rats (210 ± 10 g) were divided into six groups (n = 7). Streptozotocin (50 mg/kg) was administered interaperitonealy (IP) for inducing diabetes. Rats were treated for 14 days by CSE with 100, 200, and 400 mg/kg doses IP. Fasting blood glucose, body, and renal weight were evaluated. The antioxidant status of kidney's tissue was evaluated by determining the level of ferric-reducing antioxidant power (FRAP). Furthermore, urine samples were used to determine nitric oxide (NO) levels. Microscopic slides were prepared to compare kidney histology between groups. Data were analyzed by one-way analysis of variance with post hoc Tukey's test, and P < 0.05 was considered statistically significant. RESULTS CSE induced a significant reduction in blood glucose (P = 0.01) and a significant increase in total antioxidant capacity (FRAP) (P = 0.004). Furthermore, urine NO was decreased significantly (P = 0.000). The extract improved renal tissue changes caused by diabetes. CONCLUSION CSE improved antioxidant status and diabetic histological changes of rat kidney, and it could be an alternative complementary therapy in diabetic-associated disorders.
Collapse
Affiliation(s)
- Zohreh Ebrahimi
- From the Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Rasool Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Ghanbari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
25
|
Chitooligosaccharide supplementation prevents the development of high fat diet-induced non-alcoholic fatty liver disease (NAFLD) in mice via the inhibition of cluster of differentiation 36 (CD36). J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
26
|
Yuan X, Zheng J, Jiao S, Cheng G, Feng C, Du Y, Liu H. A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production. Carbohydr Polym 2019; 220:60-70. [PMID: 31196551 DOI: 10.1016/j.carbpol.2019.05.050] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
Chitosan oligosaccharides (COS) are the degraded products of chitin or chitosan prepared by chemical or enzymatic hydrolysis. As compared to chitosan, COS not only exhibit some specific physicochemical properties such as excellent water solubility, biodegradability and biocompatibility, but also have a variety of functionally biological activities including anti-inflammation, anti-bacteria, immunomodulation, neuroprotection and so on. This review aims to summarize the preparation and structural characterization methods of COS, and will discuss the application of COS or their derivatives to human health, animal husbandry and agricultural production. COS have been demonstrated to prevent the occurrence of human health-related diseases, enhance the resistance to diseases of livestock and poultry, and improve the growth and quality of crops in plant cultivation. Overall, COS have presented a broad developmental potential and application prospect in the healthy field that deserves further exploration.
Collapse
Affiliation(s)
- Xubing Yuan
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Junping Zheng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Siming Jiao
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Gong Cheng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Cui Feng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Hongtao Liu
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
27
|
Shi L, Fang B, Yong Y, Li X, Gong D, Li J, Yu T, Gooneratne R, Gao Z, Li S, Ju X. Chitosan oligosaccharide-mediated attenuation of LPS-induced inflammation in IPEC-J2 cells is related to the TLR4/NF-κB signaling pathway. Carbohydr Polym 2019; 219:269-279. [PMID: 31151525 DOI: 10.1016/j.carbpol.2019.05.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 04/16/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
Abstract
The protective mechanism of chitosan oligosaccharide (COS) against lipopolysaccharides (LPS) -induced inflammatory responses in IPEC-J2 and in mice with DSS dextran sulfate sodium (DSS) -induced colitis is reported. Upon exposure to LPS, the proliferation rate of IPEC-J2 cells markedly decreased, and epithelial cell integrity was compromised. However, COS pretreatment significantly reduced these changes. Low-concentration (200 μg/mL) COS up-regulated Toll-like receptor 4 (TLR4) and nuclear p65 expression, but inhibited LPS-induced expression of nuclear p65, IL-6, and IL-8. Addition of the TLR4 inhibitor reduced nuclear p65, IL-6, and IL-8 expression in IPEC-J2 cells exposed to COS or LPS alone, and a slight up-regulation in nuclear p65 was observed in COS and LPS co-treated cells. Medium-dose COS (600 mg/kg/d) protected against DSS-induced colitis, in which TLR4 and nuclear p65 expression levels were decreased. We postulate that the prevention of both LPS- and DSS -induced inflammatory responses in IPEC-J2 cells and mice by COS are related to the inhibition of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lin Shi
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518018, China
| | - Biao Fang
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Xuewen Li
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Dongliang Gong
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Junyu Li
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Tianyue Yu
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Zhenhua Gao
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| | - Sidong Li
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518018, China.
| |
Collapse
|
28
|
Chitosan oligosaccharide (COS): An overview. Int J Biol Macromol 2019; 129:827-843. [PMID: 30708011 DOI: 10.1016/j.ijbiomac.2019.01.192] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/14/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
|
29
|
Brito LF, Gontijo DC, Toledo RCL, Barcelos RM, de Oliveira AB, Brandão GC, de Sousa LP, Ribeiro SMR, Leite JPV, Fietto LG, de Queiroz JH. Mangifera indica leaves extract and mangiferin modulate CB1 and PPARγ receptors and others markers associated with obesity. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
30
|
Potential Analysis and Preparation of Chitosan Oligosaccharides as Oral Nutritional Supplements of Cancer Adjuvant Therapy. Int J Mol Sci 2019; 20:ijms20040920. [PMID: 30791594 PMCID: PMC6412339 DOI: 10.3390/ijms20040920] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer is considered to have an adverse influence on health around the world. Chitosan, a linear polysaccharide that contains copolymers of β-1-4 linked d-glucosamine and N-acetyl-d-glucosamine units, has been widely used in the field of biomedicine, owing to its nontoxicity, biocompatibility, biodegradability, and hemocompatibility. This study was aimed at preparing the chitosan oligosaccharides (COS) and examining its ability on suppressing lung cancer in vitro and in vivo. Human non-small-cell lung cancer A549 cells model and C57BL/6 mice bearing lung cancer model were adopted. COS showed inhibition on the viability and proliferation of lung carcinoma cells (A549) in time-dependent manners, but no cytotoxicity to human liver cell (HL-7702). Moreover, COS could significantly increase Bax expression of A549 cells while decreasing Bcl-2 expression. COS supplementation significantly inhibited the growth of Lewis tissues and promoted necrosis of tumor cells in vivo. After treatment with COS, significantly elevated concentrations of Bax and reduced expression of Bcl-2 in tumor tissues, as well as elevated levels of TNF-α, IL-2, Fas and Fas-L in mice serum were observed (p < 0.05). In conclusion, COS had certain anti-tumor effects and potential application as a synergic functional food ingredient to prevent cancer.
Collapse
|
31
|
Yang XF, Qiu YQ, Wang L, Gao KG, Jiang ZY. A high-fat diet increases body fat mass and up-regulates expression of genes related to adipogenesis and inflammation in a genetically lean pig. J Zhejiang Univ Sci B 2019; 19:884-894. [PMID: 30387338 DOI: 10.1631/jzus.b1700507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Because of their physiological similarity to humans, pigs provide an excellent model for the study of obesity. This study evaluated diet-induced adiposity in genetically lean pigs and found that body weight and energy intake did not differ between controls and pigs fed the high-fat (HF) diet for three months. However, fat mass percentage, adipocyte size, concentrations of total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), insulin, and leptin in plasma were significantly higher in HF pigs than in controls. The HF diet increased the expression in backfat tissue of genes responsible for cholesterol synthesis such as Insig-1 and Insig-2. Lipid metabolism-related genes including sterol regulatory element binding protein 1c (SREBP-1c), fatty acid synthase 1 (FASN1), diacylglycerol O-acyltransferase 2 (DGAT2), and fatty acid binding protein 4 (FABP4) were significantly up-regulated in backfat tissue, while the expression of proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyl transferase 2 (CPT2), both involved in fatty acid oxidation, was reduced. In liver tissue, HF feeding significantly elevated the expression of SREBP-1c, FASN1, DGAT2, and hepatocyte nuclear factor-4α (HNF-4α) mRNAs. Microarray analysis further showed that the HF diet had a significant effect on the expression of 576 genes. Among these, 108 genes were related to 21 pathways, with 20 genes involved in adiposity deposition and 26 related to immune response. Our results suggest that an HF diet can induce genetically lean pigs into obesity with body fat mass expansion and adipose-related inflammation.
Collapse
Affiliation(s)
- Xue-Fen Yang
- Laboratory of Animal Nutrition and Feed (South China), Ministry of Agriculture / State Key Laboratory of Livestock and Poultry Breeding / Guangdong Key Laboratory of Animal Breeding and Nutrition / Guangdong Public Laboratory of Animal Breeding and Nutrition / Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yue-Qin Qiu
- Laboratory of Animal Nutrition and Feed (South China), Ministry of Agriculture / State Key Laboratory of Livestock and Poultry Breeding / Guangdong Key Laboratory of Animal Breeding and Nutrition / Guangdong Public Laboratory of Animal Breeding and Nutrition / Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Li Wang
- Laboratory of Animal Nutrition and Feed (South China), Ministry of Agriculture / State Key Laboratory of Livestock and Poultry Breeding / Guangdong Key Laboratory of Animal Breeding and Nutrition / Guangdong Public Laboratory of Animal Breeding and Nutrition / Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Kai-Guo Gao
- Laboratory of Animal Nutrition and Feed (South China), Ministry of Agriculture / State Key Laboratory of Livestock and Poultry Breeding / Guangdong Key Laboratory of Animal Breeding and Nutrition / Guangdong Public Laboratory of Animal Breeding and Nutrition / Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zong-Yong Jiang
- Laboratory of Animal Nutrition and Feed (South China), Ministry of Agriculture / State Key Laboratory of Livestock and Poultry Breeding / Guangdong Key Laboratory of Animal Breeding and Nutrition / Guangdong Public Laboratory of Animal Breeding and Nutrition / Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
32
|
Yang X, Zhang J, Chen L, Wu Q, Yu C. Chitosan oligosaccharides enhance lipid droplets via down-regulation of PCSK9 gene expression in HepG2 cells. Exp Cell Res 2018; 366:152-160. [PMID: 29548750 DOI: 10.1016/j.yexcr.2018.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/04/2018] [Accepted: 03/11/2018] [Indexed: 01/08/2023]
Abstract
Chitosan oligosaccharides (COS), linear polymers of N-acetyl-D-glucosamine and deacetylated glucosamine, exhibit diverse pharmacological effects such as antimicrobial, antitumor, antioxidant and anti-inflammatory activities. Here, we explored their hypocholesterolemic effects in vivo and the molecular mechanisms of COS in hepatic cells. Our in vivo study of dyslipidemic ApoE-/- male mice showed that COS treatment of 500 mg kg-1 d-1 for 4 weeks clearly reduced the lipid deposits in the aorta and significantly decreased the hepatic proprotein convertase subtilisin/kexin type 9 (PCSK9) protein levels versus HFD groups (p < 0.05). To elucidate the mechanisms behind these effects, the HepG2 cell line was treated with COS. We found that COS (200 μg/ml) increased the amount of cell-surface low-density lipoprotein receptor (LDLR) and enhanced the lipid droplets in HepG2 cells (p < 0.05). The mRNA levels of LDLR and HMG-CoA protein levels were not altered, and the mRNA levels of PCSK9 were down-regulated by COS treatment for 24 h. We also observed that the expression levels of SREBP-2 (125 kD) and HNF-1α were increased in total cell lysates, but nuclear SREBP-2 (nSREBP-2, 68 kD, the active subunit of SREBP-2) levels were decreased and FOXO3a levels increased in nuclear lysates after COS treatment for 24 h. We demonstrated that one of the reasons for regulation of lipid transfer with COS is that FOXO3a levels are up-regulated by COS, leading to a reduction in the PCSK9 promoter binding capacity of HNF-1α and thus suppressing PCSK9 gene expression, up-regulating LDLR levels, and enhancing the lipid droplets in HepG2 cells. In addition, decreased expression of the PCSK9 gene was also contributed to by down-regulation of SREBP-2 by COS. We further confirmed the effect of suppression of PCSK9 expression by COS by utilizing RNA interference to silence HNF-1α and SREBP-2. Finally, to the best of our knowledge, we are the first to demonstrate that PCSK9 expression and LDLR activity are synergistically changed by a combination of HNF-1α and SREBP-2 after COS treatment. Our findings indicate that COS may regulate PCSK9 to modulate hepatic LDLR abundance and activity.
Collapse
Affiliation(s)
- Xi Yang
- Institute of Life Science and College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Jun Zhang
- Institute of Life Science and College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Linmu Chen
- Institute of Life Science and College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Qiong Wu
- Institute of Life Science and College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Chao Yu
- Institute of Life Science and College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
33
|
Chitooligosaccharides and their biological activities: A comprehensive review. Carbohydr Polym 2018; 184:243-259. [DOI: 10.1016/j.carbpol.2017.12.067] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/10/2017] [Accepted: 12/24/2017] [Indexed: 01/11/2023]
|
34
|
Functional Comparison for Lipid Metabolism and Intestinal and Fecal Microflora Enzyme Activities between Low Molecular Weight Chitosan and Chitosan Oligosaccharide in High-Fat-Diet-Fed Rats. Mar Drugs 2017; 15:md15070234. [PMID: 28737708 PMCID: PMC5532676 DOI: 10.3390/md15070234] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/15/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022] Open
Abstract
The present study investigated and compared the regulatory effects on the lipid-related metabolism and intestinal disaccharidase/fecal bacterial enzyme activities between low molecular weight chitosan and chitosan oligosaccharide in high-fat-diet-fed rats. Diet supplementation of low molecular weight chitosan showed greater efficiency than chitosan oligosaccharide in suppressing the increased weights in body and in liver and adipose tissues of high-fat-diet-fed rats. Supplementation of low molecular weight chitosan also showed a greater improvement than chitosan oligosaccharide in imbalance of plasma, hepatic, and fecal lipid profiles, and intestinal disaccharidase activities in high-fat-diet-fed rats. Moreover, both low molecular weight chitosan and chitosan oligosaccharide significantly decreased the fecal microflora mucinase and β-glucuronidase activities in high-fat-diet-fed rats. These results suggest that low molecular weight chitosan exerts a greater positive improvement than chitosan oligosaccharide in lipid metabolism and intestinal disaccharidase activity in high-fat-diet-induced obese rats.
Collapse
|
35
|
Effects of Non-Starch Polysaccharides on Inflammatory Bowel Disease. Int J Mol Sci 2017; 18:ijms18071372. [PMID: 28654020 PMCID: PMC5535865 DOI: 10.3390/ijms18071372] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/12/2017] [Accepted: 06/18/2017] [Indexed: 12/24/2022] Open
Abstract
The incidence of inflammatory bowel disease (IBD) has increased considerably over the past few decades. In the present review, we discuss several disadvantages existing in the treatment of IBD and current understandings of the structures, sources, and natures of various kinds of non-starch polysaccharides (NSPs). Available evidences for the use of different sources of NSPs in IBD treatment both in vitro and in vivo are analyzed, including glucan from oat bran, mushroom, seaweed, pectin, gum, prebiotics, etc. Their potential mechanisms, especially their related molecular mechanism of protective action in the treatment and prevention of IBD, are also summarized, covering the anti-inflammation, immune-stimulating, and gut microbiota-modulating activities, as well as short-chain fatty acids (SCFAs) production, anti-oxidative stress accompanied with inflammation, the promotion of gastric epithelial cell proliferation and tissue healing, and the reduction of the absorption of toxins of NSPs, thus ameliorating the symptoms and reducing the reoccurrence rate of IBD. In summary, NSPs exhibit the potential to be promising agents for an adjuvant therapy and for the prevention of IBD. Further investigating of the crosstalk between immune cells, epithelial cells, and gut microorganisms in addition to evaluating the effects of different kinds and different molecular weights of NSPs will lead to well-designed clinical intervention trials and eventually improve the treatment and prevention of IBD.
Collapse
|
36
|
Yu SY, Kwon YI, Lee C, Apostolidis E, Kim YC. Antidiabetic effect of chitosan oligosaccharide (GO2KA1) is mediated via inhibition of intestinal alpha-glucosidase and glucose transporters and PPARγ expression. Biofactors 2017; 43:90-99. [PMID: 27388525 DOI: 10.1002/biof.1311] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/17/2016] [Accepted: 06/05/2016] [Indexed: 12/12/2022]
Abstract
We have previously reported that administration of low molecular weight chitosan oligosaccharide (GO2KA1) significantly suppressed postprandial blood glucose rise with increased plasma adiponectin and HbA1c levels in animals and humans. However, the cellular mechanisms whereby GO2KA1 exerts antihyperglycemic effects still remain to be determined. Using intestinal Caco-2 cells and 3T3-L1 cells, here we show that GO2KA1 has dual modes of antidiabetic action by (1) inhibiting intestinal α-glucosidase as well as glucose transporters SGLT1 and GLUT2 that were distinct from the acarbose effect; (2) enhancing adipocyte differentiation, PPARγ expression and its target genes, such as FABP4, adiponectin, and GLUT4, whereas the effects were abolished by co-treatment with BADGE, a PPARγ antagonist. Moreover, GO2KA1 significantly increased glucose uptake, which was reduced in the presence of BADGE. Our data show that GO2KA1 may prevent hyperglycemia by inhibiting intestinal glucose digestion and transport and also enhance glucose uptake, at least in part, by upregulating adiponectin expression through PPARγ in adipocytes. These findings may provide potential molecular modes of action for the antidiabetic effects of chitosan oligosaccharide observed in clinical and animal studies. © 2016 BioFactors, 43(1):90-99, 2017.
Collapse
Affiliation(s)
- Seok-Yeong Yu
- Department of Nutrition, University of Massachusetts, Amherst, MA, USA
| | - Young-In Kwon
- Department of Food and Nutrition, Hannam University, Daejeon, Korea
| | - Chan Lee
- Department of Food Science and Technology, Chung-Ang University, Kyeonggi-Do, Korea
| | | | - Young-Cheul Kim
- Department of Nutrition, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
37
|
Fu C, Jiang Y, Guo J, Su Z. Natural Products with Anti-obesity Effects and Different Mechanisms of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9571-9585. [PMID: 27931098 DOI: 10.1021/acs.jafc.6b04468] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Obesity, a primary influence on health condition, causes numerous comorbidities and complications and, therefore, pharmacotherapy is considered a strategy for its treatment. However, the adverse effects of most chemical drugs targeting weight loss complicate their approval by regulatory authorities. Recently, interest has increased in the development of ingredients from natural sources with fewer adverse effects for preventing and ameliorating obesity. This review provides an overview of current anti-obesity drugs and natural products with anti-obesity properties as well as their mechanisms of action, which include interfering with nutrient absorption, decreasing adipogenesis, increasing energy expenditure (thermogenesis), appetite suppression, modifying intestinal microbiota composition, and increasing fecal fat excretion.
Collapse
Affiliation(s)
- Chuhan Fu
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University , Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yao Jiang
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University , Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jiao Guo
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University , Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University , Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
38
|
Chitosan Modulates Inflammatory Responses in Rats Infected with Enterotoxigenic Escherichia coli. Mediators Inflamm 2016; 2016:7432845. [PMID: 28100936 PMCID: PMC5215628 DOI: 10.1155/2016/7432845] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/16/2016] [Accepted: 11/30/2016] [Indexed: 01/31/2023] Open
Abstract
This study aims to investigate the effects of dietary chitosan (COS) on gastrointestinal pathogen resistance in mice model. For two weeks, a control group of ICR mice received a basal diet whilst the intervention group received the basal diet supplemented with 300 mg/kg COS. After two weeks, the mice fed the supplemented diet had a lower body weight. Then enterotoxigenic Escherichia coli (E. coli) was administered to the mice through oral gavage, with each mouse receiving 108 CFU. At day 7 after infection, the bacterial load in the jejunum and faeces was significantly lower in the COS group than that in the control group. Moreover, the mRNA and protein levels of IL-1β, IL-6, IL-17, IL-18, and TNF-α were significantly lower in the group of mice receiving the COS diet; also the jejunal production of toll-like receptor-4 (TLR-4) was suppressed in the COS group. These results indicate the intervention influenced inflammation and controlled E. coli infection.
Collapse
|
39
|
Muanprasat C, Chatsudthipong V. Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacol Ther 2016; 170:80-97. [PMID: 27773783 DOI: 10.1016/j.pharmthera.2016.10.013] [Citation(s) in RCA: 323] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chitosan oligosaccharide (COS) is an oligomer of β-(1➔4)-linked d-glucosamine. COS can be prepared from the deacetylation and hydrolysis of chitin, which is commonly found in the exoskeletons of arthropods and insects and the cell walls of fungi. COS is water soluble, non-cytotoxic, readily absorbed through the intestine and mainly excreted in the urine. Of particular importance, COS and its derivatives have been demonstrated to possess several biological activities including anti-inflammation, immunostimulation, anti-tumor, anti-obesity, anti-hypertension, anti-Alzheimer's disease, tissue regeneration promotion, drug and DNA delivery enhancement, anti-microbial, anti-oxidation and calcium-absorption enhancement. The mechanisms of actions of COS have been found to involve the modulation of several important pathways including the suppression of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) and the activation of AMP-activated protein kinase (AMPK). This review summarizes the current knowledge of the preparation methods, pharmacokinetic profiles, biological activities, potential therapeutic applications and safety profiles of COS and its derivatives. In addition, future research directions are discussed.
Collapse
Affiliation(s)
- Chatchai Muanprasat
- Excellent Center for Drug Discovery and Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand.
| | - Varanuj Chatsudthipong
- Excellent Center for Drug Discovery and Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
40
|
Dietary Chitosan Supplementation Increases Microbial Diversity and Attenuates the Severity of Citrobacter rodentium Infection in Mice. Mediators Inflamm 2016; 2016:9236196. [PMID: 27761062 PMCID: PMC5059534 DOI: 10.1155/2016/9236196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/25/2016] [Accepted: 09/14/2016] [Indexed: 01/23/2023] Open
Abstract
C57BL/6 mice were tested in order to investigate the effects of dietary chitosan (COS) supplements on intestinal microflora and resistance to Citrobacter rodentium infection. The findings reveal that, after consuming a 300 mg/kg COS diet for 14 days, microflora became more diverse as a result of the supplement. Mice receiving COS exhibited an increase in the percentage of Bacteroidetes phylum and a decrease in the percentage of Firmicutes phylum. After Citrobacter rodentium infection, the histopathology scores indicated that COS feeding resulted in less severe colitis. IL-6 and TNF-α were significantly lower in colon from COS-feeding mice than those in the control group. Furthermore, mice in COS group were also found to experience inhibited activation of nuclear factor-kappa B (NF-κB) in the colonic tissue. Overall, the findings revealed that adding 300 mg/kg COS to the diet changed the composition of the intestinal microflora of mice, resulting in suppressed NF-κB activation and less production of TNF-α and IL-6; and these changes led to better control of inflammation and resolution of infection with C. rodentium.
Collapse
|
41
|
Ha BG, Park JE, Shon YH. Stimulatory Effect of Balanced Deep-Sea Water Containing Chitosan Oligosaccharides on Glucose Uptake in C2C12 Myotubes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:475-484. [PMID: 27215753 DOI: 10.1007/s10126-016-9709-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 05/11/2016] [Indexed: 06/05/2023]
Abstract
Deep-sea water (DSW) and chitosan oligosaccharides (COS) have recently drawn much attention because of their potential medical and pharmaceutical applications. Balanced DSW (BDSW) was prepared by mixing DSW mineral extracts and desalinated water. This study investigated the effects of BDSW, COS, and BDSW containing COS on glucose uptake and their mode of action in mature C2C12 myotubes. BDSW and COS increased glucose uptake in a dose-dependent manner. BDSW containing COS synergistically increased glucose uptake; this was dependent on the activation of insulin receptor substrate 1 and protein kinase C in insulin-dependent signaling pathways as well as liver kinase B1, AMP-activated protein kinase, and mammalian target of rapamycin in insulin-independent signaling pathways. Quantitative real-time polymerase chain reaction revealed that the expressions of the following genes related to glucose uptake were elevated: glucose transporter 4 (GLUT4), insulin-responsive aminopeptidase, and vesicle-associated membrane protein 2 for abundant proteins of GLUT4 storage vesicles (GSVs); syntaxin 4 and soluble N-ethylmaleimide-sensitive factor attachment protein 23 for trafficking between the plasma membrane and GSVs; and syntaxin 6 and syntaxin 16 for trafficking between GSVs and the trans-Golgi network. Taken together, these results suggest BDSW containing COS has a greater stimulatory effect on glucose uptake than BDSW or COS alone. Moreover, this effect is mediated by the stimulation of diverse signaling pathways via the activation of main signaling molecules related to GSV trafficking.
Collapse
Affiliation(s)
- Byung Geun Ha
- Bio-Medical Research Institute, Kyungpook National University Hospital, 50 Samduk 2ga Jung-gu, Daegu, 700-721, South Korea
| | - Jung-Eun Park
- Bio-Medical Research Institute, Kyungpook National University Hospital, 50 Samduk 2ga Jung-gu, Daegu, 700-721, South Korea
| | - Yun Hee Shon
- Bio-Medical Research Institute, Kyungpook National University Hospital, 50 Samduk 2ga Jung-gu, Daegu, 700-721, South Korea.
| |
Collapse
|
42
|
Pan H, Yang Q, Huang G, Ding C, Cao P, Huang L, Xiao T, Guo J, Su Z. Hypolipidemic effects of chitosan and its derivatives in hyperlipidemic rats induced by a high-fat diet. Food Nutr Res 2016; 60:31137. [PMID: 27146338 PMCID: PMC4856842 DOI: 10.3402/fnr.v60.31137] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 01/27/2023] Open
Abstract
Background Hyperlipidemia (HLP) is the primary risk factor of cardiovascular disease (CVD). Various factors, including genetics, physical inactivity, and daily nutritional habits, affect the prevalence of HLP. Recently, it was revealed that dietary fibers, such as pectin, psyllium, and especially chitosan (CTS), may play important roles in hypolipidemic management. Thus, this study aims to determine the hypolipidemic effect and mechanism of CTS and its water-soluble derivatives, chitosan oligosaccharides (MN≤1,000 Da (COSI) and MN≤3,000 Da (COSIII)), in male hyperlipidemic rats induced by a high-fat diet (HFD). Design After the model creation, 120 Sprague-Dawley (SD) rats were equally assigned to 12 groups fed various diets as follows: the normal group with basic diet, an HFD group, an HFD group supplemented with three doses of CTS, COSI and COSIII groups, and an HFD group treated with simvastatin (7 mg/kg·d). After 6 weeks, body weight, fat/body ratio, and the relevant biomarkers of serum, liver, and feces were measured. Additionally, the histological analysis of liver and adipose tissue was performed, and the mRNA expressions of liver peroxisome proliferator-activated receptor-α (PPARα) and hepatic lipase (HL) were examined. Results Compared with HFD group, rats fed CTS, COSI, and COSIII showed a better ability to regulate their body weight, liver and cardiac indices, fat/body ratio, as well as serum, liver, and fecal lipids, and simultaneously to maintain the appropriate activity of liver and serum superoxide dismutase (SOD), alanine aminotransferase (ALT), aspartate aminotransferase (AST), as well as liver and fecal total bile acids (TBA). Simultaneously, there had been a higher mRNA expression of PPARα and HL in the treatment groups. Conclusion The obtained results suggested that these three function foods can effectively improve liver lipid metabolism by normalizing the expressions of PPARα and HL, and protect liver from the oxidized trauma by enhancing hepatic function, which could be potentially used to remedy hyperlipidemia.
Collapse
Affiliation(s)
- Haitao Pan
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qingyun Yang
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guidong Huang
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chen Ding
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Peiqiu Cao
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lanlan Huang
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tiancun Xiao
- Inorganic Chemistry Laboratory, Oxford University, Oxford, United Kingdom.,Guangzhou Boxabio Ltd, D-106 Guangzhou International Business Incubator, Guangzhou Science City, Guangzhou, China
| | - Jiao Guo
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China;
| | - Zhengquan Su
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China;
| |
Collapse
|
43
|
Abstract
This experiment aimed to evaluate the capacities of two types of chitooligosaccharides (COS) with different molecular weights for the ability to eliminate lipid accumulation in hepatocytes. We have established a lipid accumulation model in HepG2 cells for these studies in vitro, which was established by induction with oleic acid. The capacity of COS to eliminate lipid accumulation was evaluated using three metrics: the thiazolyl blue dye absorbance (MTT value), the morphology of intracellular lipid droplets and the triglyceride level (TG). Two types of COS with different molecular weights (1000 Da and 3000 Da) can significantly reduce intracellular lipid accumulation and decrease TG content in HepG2 cells, in a dose-dependent fashion. We found that low molecular weight COS is more efficacious than high molecular weight COS. Two types of COS can eliminate lipid accumulation induced by oleic acid in HepG2 cells, leading to an obvious hypolipidemic effect in vitro. These results suggest that COS may be effective preventive agents in fatty liver disease.
Collapse
|
44
|
Anticoccidial activities of Chitosan on Eimeria papillata-infected mice. Parasitol Res 2016; 115:2845-52. [PMID: 27041340 DOI: 10.1007/s00436-016-5035-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/27/2016] [Indexed: 12/28/2022]
Abstract
Eimeria spp. multiply within the intestinal tract causing severe inflammatory responses. Chitosan (CS), meanwhile, has been shown to exhibit anti-inflammatory activities in different experimental models. Here, we investigated the effect of CS on the outcome of inflammation caused by Eimeria papillata in the mouse intestine. Investigations were undertaken into the oocyst output in feces and developmental stages and goblet cells in intestinal tissue. Assays for lipid peroxidation, nitric oxide (NO), and myeloperoxidase (MPO) were also performed. T cells in intestinal tissue were counted using immunohistochemistry while total IgA in serum or intestinal wash was assayed using ELISA. In addition, mRNA expression of tumor necrosis factor alpha (TNF-α), transforming growth factor β (TGF-β), interleukin (IL)-10, and IL-4 were detected using real-time PCR. The data indicated a reduction in both oocyst output and in the number of parasite developmental stages following CS treatment, while the goblet cell hypoplasia in infected mice was also inhibited. CS decreased lipid peroxidation, NO, and MPO but did not alter the T cell count or IgA levels in comparison to the infected group. The expression of TNF-α and TGF-β decreased but IL-10 and IL-4 increased after CS treatment in comparison to the non-treated infected group. In conclusion, CS showed anti-inflammatory and protective effects against E. papillata infection.
Collapse
|
45
|
Chitosan lowers body weight through intestinal microbiota and reduces IL-17 expression via mTOR signalling. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
46
|
Fluorescence-based bioassays for the detection and evaluation of food materials. SENSORS 2015; 15:25831-67. [PMID: 26473869 PMCID: PMC4634490 DOI: 10.3390/s151025831] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 12/12/2022]
Abstract
We summarize here the recent progress in fluorescence-based bioassays for the detection and evaluation of food materials by focusing on fluorescent dyes used in bioassays and applications of these assays for food safety, quality and efficacy. Fluorescent dyes have been used in various bioassays, such as biosensing, cell assay, energy transfer-based assay, probing, protein/immunological assay and microarray/biochip assay. Among the arrays used in microarray/biochip assay, fluorescence-based microarrays/biochips, such as antibody/protein microarrays, bead/suspension arrays, capillary/sensor arrays, DNA microarrays/polymerase chain reaction (PCR)-based arrays, glycan/lectin arrays, immunoassay/enzyme-linked immunosorbent assay (ELISA)-based arrays, microfluidic chips and tissue arrays, have been developed and used for the assessment of allergy/poisoning/toxicity, contamination and efficacy/mechanism, and quality control/safety. DNA microarray assays have been used widely for food safety and quality as well as searches for active components. DNA microarray-based gene expression profiling may be useful for such purposes due to its advantages in the evaluation of pathway-based intracellular signaling in response to food materials.
Collapse
|
47
|
Azuma K, Osaki T, Minami S, Okamoto Y. Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J Funct Biomater 2015; 6:33-49. [PMID: 25594943 PMCID: PMC4384099 DOI: 10.3390/jfb6010033] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/09/2015] [Indexed: 11/21/2022] Open
Abstract
Previous reports indicate that N-acetyl-d-glucosamine oligomers (chitin oligosaccharide; NACOS) and d-glucosamine oligomers (chitosan oligosaccharide; COS) have various biological activities, especially against cancer and inflammation. In this review, we have summarized the findings of previous investigations that have focused on anticancer or anti-inflammatory properties of NACOS and COS. Moreover, we have introduced recent evaluation of NACOS and COS as functional foods against cancer and inflammatory disease.
Collapse
Affiliation(s)
- Kazuo Azuma
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, 4-101 Koyama-minami, Tottori 680-8553, Japan.
| | - Tomohiro Osaki
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, 4-101 Koyama-minami, Tottori 680-8553, Japan.
| | - Saburo Minami
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, 4-101 Koyama-minami, Tottori 680-8553, Japan.
| | - Yoshiharu Okamoto
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, 4-101 Koyama-minami, Tottori 680-8553, Japan.
| |
Collapse
|
48
|
Lee MR, Oh DS, Wee AJ, Yun BS, Jang SA, Sung CK. Anti-Obesity Effects of Lentinus edodes on Obese Mice Induced by High Fat Diet. ACTA ACUST UNITED AC 2014. [DOI: 10.3746/jkfn.2014.43.2.194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Li Y, Liu H, Xu QS, Du YG, Xu J. Chitosan oligosaccharides block LPS-induced O-GlcNAcylation of NF-κB and endothelial inflammatory response. Carbohydr Polym 2013; 99:568-78. [PMID: 24274545 DOI: 10.1016/j.carbpol.2013.08.082] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/23/2013] [Accepted: 08/24/2013] [Indexed: 02/06/2023]
Abstract
It is known that chitosan oligosaccharides (COS) suppress LPS-induced vascular endothelial inflammatory response by mechanism involving NF-κB blockade. It remains unknown how COS inhibit NF-κB. We provided evidence both in cultured endothelial cells and mouse model supporting a new mechanism. Regardless of the endothelial cell types, the LPS-induced NF-κB-dependent inflammatory gene expression was suppressed by COS, which was associated with reduced NF-κB nucleus translocation. LPS enhanced O-GlcNAc modification of NF-κB/p65 and activated NF-κB pathway, which could be prevented either by siRNA knockdown of O-GlcNAc transferase (OGT) or pretreatment with COS. Inhibition of either mitogen-activated protein kinase or superoxide generation abolishes LPS-induced NF-κB O-GlcNAcylation. Consistently, aortic tissues from LPS-treated mice presented enhanced NF-κB/p65 O-GlcNAcylation in association with upregulated gene expression of inflammatory cytokines in vascular tissues; however, pre-administration of COS prevented these responses. In conclusion, COS decreased OGT-dependent O-GlcNAcylation of NF-κB and thereby attenuated LPS-induced vascular endothelial inflammatory response.
Collapse
Affiliation(s)
- Yu Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Medicine, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
50
|
Functional food ingredients for the management of obesity and associated co-morbidities – A review. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.04.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|