1
|
Stefanis C, Tsigalou C, Bezirtzoglou I, Mitropoulou G, Voidarou C, Stavropoulou E. The dynamic linkage between covid-19 and nutrition: a review from a probiotics perspective using machine learning and bibliometric analysis. Front Nutr 2025; 12:1575130. [PMID: 40416372 PMCID: PMC12098087 DOI: 10.3389/fnut.2025.1575130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/15/2025] [Indexed: 05/27/2025] Open
Abstract
Introduction The pandemic crisis is now a memorable milestone in the history of science, not only for the impacts on the population's health but also for the effort of the medical community to find immediate solutions amid the pandemic so that appropriate therapeutic means can be provided. Diet and nutrition could not fail to be studied in the context of combating the side effects of COVID-19. This study attempts to detect the relationship between dietary patterns and the disease of COVID-19 and emphasizes research on probiotics by mapping the knowledge produced during the pandemic until 2024. Methods In addition to bibliometrics, a machine-learning framework, ASReview, was used to structure the literature search. With this method, 2,309 articles were collected from the PubMed database, with 599 constituting inputs into bibliometric software and further analysis. Results Food choices, dietary patterns, vitamins and their role (vitamin D), obesity, and probiotics were keywords that attracted global research attention. Dietary supplements also constituted a field of study regarding the evolution of the disease and the impact they could have after the first pandemic wave. Discussion Probiotics were considered an adjunct therapeutic intervention not only during the period before the development of vaccines but also alongside other therapeutic solutions. Whether used preventively or during the treatment phase, probiotics were studied to combat COVID-19 due to their potential role in immunomodulation and ability to regulate gut microbiota during respiratory infections.
Collapse
Affiliation(s)
- Christos Stefanis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Tsigalou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Gregoria Mitropoulou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Elisavet Stavropoulou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
2
|
Bakhet S, Mardosaitė R, Ahmed Baba M, Tamulevičienė A, Abakevičienė B, Klinavičius T, Dagilis K, Račkauskas S, Tamulevičius S, Lelešius R, Zienius D, Šalomskas A, Šmits K, Tamulevičius T. Virucidal Efficacy of Laser-Generated Copper Nanoparticle Coatings against Model Coronavirus and Herpesvirus. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26431-26444. [PMID: 40263124 PMCID: PMC12067380 DOI: 10.1021/acsami.5c03330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025]
Abstract
High-efficiency antiviral surfaces can be an effective means of fighting viral diseases, such as the recent COVID-19 pandemic. Copper and copper oxides, their nanoparticles (NPs) (CuNPs), and coatings are among the effective antiviral materials having internal and external biocidal effects on viruses. In this work, CuNP colloids were produced via femtosecond laser ablation of the metal target in water, a photophysical, cost-effective green synthesis alternative utilizing sodium citrate surfactant stabilizing the NPs. Raman spectroscopy and X-ray diffraction studies confirmed that the 32 nm mean size CuNPs are mixtures of mainly metallic copper and copper(I) oxide. Polyvinyl butyral was utilized as the binding agent for the CuNPs deposited via high-throughput spray-coating technology. The virucidal efficacy of such coatings containing Cu content ranging from 2.9 to 11.2 atom % was confirmed against animal-origin coronavirus containing ribonucleic acid, the agent of avian infectious bronchitis (IBV), and herpesvirus containing DNA, the agent of bovine herpesvirus (BoHV-1) infection. It was demonstrated that after a short time of exposure, the Cu NP-based coatings do not have a toxic effect on the cell cultures while demonstrating a negative effect on the biological activity of both model viruses that was confirmed by quantification of the viruses via the determination of tissue culture infectious dose (TCID50) virus titer and their viral nucleic acids via determination of threshold cycle (Ct) employing real-time polymerase chain reaction analysis. The assays showed that the decrease in TCID50 virus titer and increase in Ct values correlated with Cu content in Cu NP-based coatings for both investigated viruses. Contact with coatings decreased IBV and BoHV-1 numbers from 99.42% to 100.00% and from 98.65% to 99.96%, respectively. These findings suggest that CuNPs show inhibitory effects leading to the inactivation of viruses and their nuclei regardless of the presence of a viral envelope.
Collapse
Affiliation(s)
- Shahd Bakhet
- Institute
of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
| | - Rasa Mardosaitė
- Institute
of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
| | - Mohamed Ahmed Baba
- Institute
of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
| | - Asta Tamulevičienė
- Institute
of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
- Department
of Physics, Kaunas University of Technology, Studentų Street 50, LT-51368 Kaunas, Lithuania
| | - Brigita Abakevičienė
- Institute
of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
- Department
of Physics, Kaunas University of Technology, Studentų Street 50, LT-51368 Kaunas, Lithuania
| | - Tomas Klinavičius
- Institute
of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
| | - Kristupas Dagilis
- Department
of Physics, Kaunas University of Technology, Studentų Street 50, LT-51368 Kaunas, Lithuania
| | - Simas Račkauskas
- Institute
of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
| | - Sigitas Tamulevičius
- Institute
of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
- Department
of Physics, Kaunas University of Technology, Studentų Street 50, LT-51368 Kaunas, Lithuania
| | - Raimundas Lelešius
- Department
of Veterinary Pathobiology, Lithuanian University
of Health Sciences, Tilžės Street 18, LT-47181 Kaunas, Lithuania
- Institute
of Microbiology and Virology, Lithuanian
University of Health Sciences, Tilžės Street 18, LT-47181 Kaunas, Lithuania
| | - Dainius Zienius
- Department
of Veterinary Pathobiology, Lithuanian University
of Health Sciences, Tilžės Street 18, LT-47181 Kaunas, Lithuania
- Institute
of Microbiology and Virology, Lithuanian
University of Health Sciences, Tilžės Street 18, LT-47181 Kaunas, Lithuania
| | - Algirdas Šalomskas
- Department
of Veterinary Pathobiology, Lithuanian University
of Health Sciences, Tilžės Street 18, LT-47181 Kaunas, Lithuania
| | - Krišja̅nis Šmits
- Institute
of Solid State Physics, University of Latvia, 8 Kengaraga Street, LV-1063 Riga, Latvia
| | - Tomas Tamulevičius
- Institute
of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
- Department
of Physics, Kaunas University of Technology, Studentų Street 50, LT-51368 Kaunas, Lithuania
| |
Collapse
|
3
|
Jose J, Ndang K, Chethana MB, Chinmayi CS, Afrana K, Gopan G, Parambi DGT, Munjal K, Chopra H, Dhyani A, Kamal MA. Opportunities and Regulatory Challenges of Functional Foods and
Nutraceuticals During COVID-19 Pandemic. CURRENT NUTRITION & FOOD SCIENCE 2024; 20:1252-1271. [DOI: 10.2174/0115734013276165231129102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 01/04/2025]
Abstract
:
The novel Coronavirus has brought global mortality, disruption, and a significant loss
of life. A compromised immune system is a known risk factor for all viral influenza infections.
Due to the perceived “immune-boosting” properties of nutraceutical products, sales of dietary supplements have grown globally. In recent years, consumers have increasingly demanded nutraceutical products rather than curative synthetic medicines for preventive therapies for the coronavirus
disease outbreak of 2019 (COVID-19). Healthy foods and nutraceuticals have become daily diet
plans for consumers. Although there has been an increase in demand, there is no such regulation
and harmonized process, which stands as a barrier to the approval of these products. Therefore,
many misbranded and spurious products are entering the market, which may harm consumers.
This article focuses on the role of functional foods and nutraceutical in the management of
COVID-19 also focuses on the different nutraceutical regulations in each country and compare the
similarities and differences of the following countries: India, the USA (United States of America),
the EU (European Union), and China. The comparative study of nutraceutical regulations in India,
the USA, Europe, and China shows that there is a difference regarding the nutraceutical regulations; however, despite the differences, it is observed that it has the same underlying objective,
i.e., ensuring the safety of the consumers by maintaining the product quality.
Collapse
Affiliation(s)
- Jobin Jose
- Department of Pharmaceutics and Pharmaceutical Regulatory Affairs, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore 575018, India
| | - Keyidaule Ndang
- Department of Pharmaceutics and Pharmaceutical Regulatory Affairs, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore 575018, India
| | - Madhusoodhana Ballakkuraya Chethana
- Department of Pharmaceutics and Pharmaceutical Regulatory Affairs, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore 575018, India
| | - Chikmagalur Srinath Chinmayi
- Department of Pharmaceutics and Pharmaceutical Regulatory Affairs, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore 575018, India
| | - Khatheeja Afrana
- Department of Pharmaceutics and Pharmaceutical Regulatory Affairs, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore 575018, India
| | - Gopika Gopan
- Department of Pharmaceutics and Pharmaceutical Regulatory Affairs, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore 575018, India
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, College of
Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Kavita Munjal
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering,
Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
| | - Archana Dhyani
- School of Pharmacy,
Graphic Era Hill University, Dehradun, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-
related Molecular Network, West China Hospital, Sichuan University, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health
Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, 7 Peterlee place, Hebersham, NSW
2770; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
4
|
Lu C, Chang C, Zheng Y, Ji J, Lin L, Chen X, Chen W, Chen L, Chen Z, Chen R. Supramolecular Self-Assembled Hydrogel for Antiviral Therapy through Glycyrrhizic Acid-Enhanced Zinc Absorption and Intracellular Accumulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60027-60044. [PMID: 39466722 DOI: 10.1021/acsami.4c15042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Respiratory syncytial virus (RSV) is a common pathogen that causes respiratory infections in infants and children worldwide, significantly impacting hospitalization rates in this age group. Zinc ions are considered to have broad-spectrum antiviral potential against RNA viruses, including RSV. However, poor organism absorption and low intracellular accumulation of zinc require repeated high-dose supplementation, which may lead to unnecessary toxic side effects. In this research, a Zn2+-mediated glycyrrhizinic acid (GA)-based hydrogel (ZnGA Gel) was introduced and potentially developed to be a clinically available drug candidate for RSV therapy. ZnGA Gel was fabricated based on the cooperation of two potential RSV inhibiting molecules (Zn2+ and GA), where Zn2+ promoted self-assembly of GA and reduced its gel concentration and GA promoted zinc absorption and distribution in lung tissue in vivo. The facile construction of supramolecular hydrogel by the self-assembled coordination complex made it an injectable, temperature-sensitive, and pH-responsive controlled-release drug delivery for Zn2+. Most importantly, GA was observed to enhance organism absorption and intracellular accumulation of Zn2+ and was identified as a zinc ionophore for the first time. GA can colonize on the cell membrane and disturb cell membrane potential, resulting in an enhanced cell membrane permeability. In the presence of GA, more than 4.7-fold increasing Zn2+ concentrations materialized in the intracellular cytoplasm, compared to Zn2+ alone administration. This intracellular Zn2+ accumulation directly boosted the antiviral activities through improved inhibition of RSV replication-associated proteins and significantly inhibited RSV replication. Oral administration of ZnGA Gel on the RSV-infected mice model achieved an ideal therapeutic effect by effectively lowering viral load in the lungs, alleviating lung injury symptoms, and reducing inflammatory cell infiltration at pathological sites. The mechanism involved the inhibition of RSV replication-related proteins, aligning with our in vitro results. Additionally, ZnGA Gel had demonstrated biocompatibility, and reasonable supplementation of zinc was acceptable and effective for infants and children in clinical practice. Hence, the ZnGA Gel developed by us holds promise as an effective anti-RSV medicine in the future.
Collapse
Affiliation(s)
- Chang Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Chenqi Chang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Yu Zheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lili Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - XiuZhen Chen
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Wei Chen
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Linwei Chen
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Zhipeng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rui Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
5
|
Dang VB, Alsherbiny MA, Lin R, Gao Y, Li C, Bhuyan DJ. Impact of a Functional Dairy Powder and Its Primary Component on the Growth of Pathogenic and Probiotic Gut Bacteria and Human Coronavirus 229E. Int J Mol Sci 2024; 25:9353. [PMID: 39273301 PMCID: PMC11394815 DOI: 10.3390/ijms25179353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Milk boasts an array of potent bioactive compounds, such as lactoferrin (Lf), immunoglobulins, and functional proteins, all delivering substantial therapeutic benefits. In this study, Immune Powder (a functional dairy formulation) and its primary component called Fractionated Milk Protein (FMP) containing Lf, zinc, and immunoglobulins and formulated by Ausnutria Pty Ltd. were evaluated for their potential broad-spectrum pharmacological activity. In particular, this study investigated the antibacterial (against pathogenic Escherichia coli), prebiotic (promoting Lactobacillus delbrueckii growth), anti-inflammatory (inhibition of NO production in RAW264.7 macrophages), and antiviral (against human coronavirus 229E) effects of the samples. In addition, the impact of simulated gastric digestion on the efficacy of the samples was explored. LCMS-based proteomics was implemented to unveil cellular and molecular mechanisms underlying antiviral activity. The Immune Powder demonstrated antibacterial activity against E. coli (up to 99.74 ± 11.47% inhibition), coupled with prebiotic action (10.84 ± 2.2 viability fold-change), albeit these activities diminished post-digestion (p < 0.01). The Immune Powder effectively mitigated NO production in lipopolysaccharide-stimulated RAW264.7 macrophages, with declining efficacy post-digestion (p < 0.0001). The Immune Powder showed similar antiviral activity before and after digestion (p > 0.05) with up to 3-fold improvement. Likewise, FMP exhibited antibacterial potency pre-digestion at high concentrations (95.56 ± 1.23% inhibition at 125 mg/mL) and post-digestion at lower doses (61.82 ± 5.58% inhibition at 3906.25 µg/mL). FMP also showed enhanced prebiotic activity post-digestion (p < 0.0001), NO inhibition pre-digestion, and significant antiviral activity. The proteomics study suggested that the formulation and its primary component shared similar antiviral mechanisms by inhibiting scavenger receptor binding and extracellular matrix interaction.
Collapse
Affiliation(s)
- Vu Bao Dang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | | | - Ruohui Lin
- Australian Dairy Park Pty Ltd., 120 Frankston Gardens Drive, Carrum Downs, VIC 3201, Australia
- Ausnutria Pty Ltd., 25-27 Keysborough Avenue, Keysborough, VIC 3173, Australia
| | - Yumei Gao
- Ausnutria Pty Ltd., 25-27 Keysborough Avenue, Keysborough, VIC 3173, Australia
| | - Chunguang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
6
|
Ferreira J, Fadl S, Cardoso T, Andrade B, Melo T, Silva E, Agarwal A, Turville S, Saksena N, Rabeh W. Boosting immunity: synergistic antiviral effects of luteolin, vitamin C, magnesium and zinc against SARS-CoV-2 3CLpro. Biosci Rep 2024; 44:BSR20240617. [PMID: 39045772 PMCID: PMC11327220 DOI: 10.1042/bsr20240617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024] Open
Abstract
SARS-CoV-2 was first discovered in 2019 and has disseminated throughout the globe to pandemic levels, imposing significant health and economic burdens. Although vaccines against SARS-CoV-2 have been developed, their long-term efficacy and specificity have not been determined, and antiviral drugs remain necessary. Flavonoids, which are commonly found in plants, fruits, and vegetables and are part of the human diet, have attracted considerable attention as potential therapeutic agents due to their antiviral and antimicrobial activities and effects on other biological activities, such as inflammation. The present study uses a combination of biochemical, cellular, molecular dynamics, and molecular docking experiments to provide compelling evidence that the flavonoid luteolin (2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one) has antiviral activity against SARS-CoV-2 3-chymotrypsin-like protease (3CLpro) that is synergistically enhanced by magnesium, zinc, and vitamin C. The IC50 of luteolin against 2 µM 3CLpro is 78 µM and decreases 10-fold to 7.6 µM in the presence of zinc, magnesium, and vitamin C. Thermodynamic stability analyses revealed that luteolin has minimal effects on the structure of 3CLpro, whereas metal ions and vitamin C significantly alter the thermodynamic stability of the protease. Interactome analysis uncovered potential host-virus interactions and functional clusters associated with luteolin activity, supporting the relevance of this flavone for combating SARS-CoV-2 infection. This comprehensive investigation sheds light on luteolin's therapeutic potential and provides insights into its mechanisms of action against SARS-CoV-2. The novel formulation of luteolin, magnesium, zinc, and vitamin C may be an effective avenue for treating COVID-19 patients.
Collapse
Affiliation(s)
- Juliana C. Ferreira
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Samar Fadl
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Thyago H.S. Cardoso
- G42 Healthcare Omics Excellence Center, Masdar City, Abu Dhabi, United Arabes Emirates
| | - Bruno Silva Andrade
- UESB - Universidade Estatudal Do Sudoeste da Bahia. Deparmento de Ciencias Biologicas
| | - Tarcisio S. Melo
- UESB - Universidade Estatudal Do Sudoeste da Bahia. Deparmento de Ciencias Biologicas
| | | | | | | | - Nitin K. Saksena
- Victoria University, Footscray Park Campus, Melbourne, VIC, 3134, Australia
- Aegros Therapeutics Pty Ltd, 5-6 Eden Park Drive, Macquarie Park, NSW 2113, Australia
| | - Wael M. Rabeh
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Min JH, Sarlus H, Harris RA. Copper toxicity and deficiency: the vicious cycle at the core of protein aggregation in ALS. Front Mol Neurosci 2024; 17:1408159. [PMID: 39050823 PMCID: PMC11267976 DOI: 10.3389/fnmol.2024.1408159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The pathophysiology of ALS involves many signs of a disruption in copper homeostasis, with both excess free levels and functional deficiency likely occurring simultaneously. This is crucial, as many important physiological functions are performed by cuproenzymes. While it is unsurprising that many ALS symptoms are related to signs of copper deficiency, resulting in vascular, antioxidant system and mitochondrial oxidative respiration deficiencies, there are also signs of copper toxicity such as ROS generation and enhanced protein aggregation. We discuss how copper also plays a key role in proteostasis and interacts either directly or indirectly with many of the key aggregate-prone proteins implicated in ALS, such as TDP-43, C9ORF72, SOD1 and FUS as well as the effect of their aggregation on copper homeostasis. We suggest that loss of cuproprotein function is at the core of ALS pathology, a condition that is driven by a combination of unbound copper and ROS that can either initiate and/or accelerate protein aggregation. This could trigger a positive feedback cycle whereby protein aggregates trigger the aggregation of other proteins in a chain reaction that eventually captures elements of the proteostatic mechanisms in place to counteract them. The end result is an abundance of aggregated non-functional cuproproteins and chaperones alongside depleted intracellular copper stores, resulting in a general lack of cuproenzyme function. We then discuss the possible aetiology of ALS and illustrate how strong risk factors including environmental toxins such as BMAA and heavy metals can functionally behave to promote protein aggregation and disturb copper metabolism that likely drives this vicious cycle in sporadic ALS. From this synthesis, we propose restoration of copper balance using copper delivery agents in combination with chaperones/chaperone mimetics, perhaps in conjunction with the neuroprotective amino acid serine, as a promising strategy in the treatment of this incurable disease.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
8
|
Bulgarin H, Thomberg T, Lust A, Nerut J, Koppel M, Romann T, Palm R, Månsson M, Vana M, Junninen H, Külaviir M, Paiste P, Kirsimäe K, Punapart M, Viru L, Merits A, Lust E. Enhanced and copper concentration dependent virucidal effect against SARS-CoV-2 of electrospun poly(vinylidene difluoride) filter materials. iScience 2024; 27:109835. [PMID: 38799576 PMCID: PMC11126773 DOI: 10.1016/j.isci.2024.109835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/11/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Virucidal filter materials were prepared by electrospinning a solution of 28 wt % poly(vinylidene difluoride) in N,N-dimethylacetamide without and with the addition of 0.25 wt %, 0.75 wt %, 2.0 wt %, or 3.5 wt % Cu(NO3)2 · 2.5H2O as virucidal agent. The fabricated materials had a uniform and defect free fibrous structure and even distribution of copper nanoclusters. X-ray diffraction analysis showed that during the electrospinning process, Cu(NO3)2 · 2.5H2O changed into Cu2(NO3)(OH)3. Electrospun filter materials obtained by electrospinning were essentially macroporous. Smaller pores of copper nanoclusters containing materials resulted in higher particle filtration than those without copper nanoclusters. Electrospun filter material fabricated with the addition of 2.0 wt % and 3.5 wt % of Cu(NO3)2 · 2.5H2O in a spinning solution showed significant virucidal activity, and there was 2.5 ± 0.35 and 3.2 ± 0.30 logarithmic reduction in the concentration of infectious SARS-CoV-2 within 12 h, respectively. The electrospun filter materials were stable as they retained virucidal activity for three months.
Collapse
Affiliation(s)
- Hanna Bulgarin
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Thomas Thomberg
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Andres Lust
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Jaak Nerut
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Miriam Koppel
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Tavo Romann
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Rasmus Palm
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
- Department of Applied Physics, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Martin Månsson
- Department of Applied Physics, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Marko Vana
- Institute of Physics, University of Tartu, W. Ostwald 1, 50411 Tartu, Estonia
| | - Heikki Junninen
- Institute of Physics, University of Tartu, W. Ostwald 1, 50411 Tartu, Estonia
| | - Marian Külaviir
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Päärn Paiste
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Kalle Kirsimäe
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Marite Punapart
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Liane Viru
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Andres Merits
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Enn Lust
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| |
Collapse
|
9
|
Mrozińska Z, Kaczmarek A, Świerczyńska M, Juszczak M, Kudzin MH. Biochemical Behavior, Influence on Cell DNA Condition, and Microbiological Properties of Wool and Wool-Copper Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2878. [PMID: 38930247 PMCID: PMC11204859 DOI: 10.3390/ma17122878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
The paper presents the study concerning the preparation and physio-chemical and biological properties of wool-copper (WO-Cu) materials obtained by the sputter deposition of copper onto the wool fibers. The WO-Cu material was subjected to physio-chemical and biological investigations. The physio-chemical investigations included the elemental analysis of materials (C, N, O, S, and Cu), their microscopic analysis, and surface properties analysis (specific surface area and total pore volume). The biological investigations consisted of the antimicrobial activity tests of the WO-Cu materials against colonies of Gram-positive (Staphylococcus aureus) bacteria, Gram-negative (Escherichia coli) bacteria, and fungal mold species (Chaetomium globosum). Biochemical-hematological tests included the evaluation of the activated partial thromboplastin time and pro-thrombin time. The tested wool-copper demonstrated the ability to interact with the DNA in a time-dependent manner. These interactions led to the DNA's breaking and degradation. The antimicrobial and antifungal activities of the WO-Cu materials suggest a potential application as an antibacterial/antifungal material. Wool-copper materials may be also used as customized materials where the blood coagulation process could be well controlled through the appropriate copper content.
Collapse
Affiliation(s)
- Zdzisława Mrozińska
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
| | - Anna Kaczmarek
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
| | - Małgorzata Świerczyńska
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Michał Juszczak
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Marcin H. Kudzin
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
| |
Collapse
|
10
|
Younes S. The role of nutrition on the treatment of Covid 19. HUMAN NUTRITION & METABOLISM 2024; 36:200255. [DOI: 10.1016/j.hnm.2024.200255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
|
11
|
Albalawi SA, Albalawi RA, Albalawi AA, Alanazi RF, Almahlawi RM, Alhwity BS, Alatawi BD, Elsherbiny N, Alqifari SF, Abdel-Maksoud MS. The Possible Mechanisms of Cu and Zn in the Treatment and Prevention of HIV and COVID-19 Viral Infection. Biol Trace Elem Res 2024; 202:1524-1538. [PMID: 37608131 DOI: 10.1007/s12011-023-03788-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Due to their unique properties and their potential therapeutic and prophylactic applications, heavy metals have attracted the interest of many researchers, especially during the outbreak of COVID-19. Indeed, zinc (Zn) and copper (Cu) have been widely used during viral infections. Zn has been reported to prevent excessive inflammatory response and cytokine storm, improve the response of the virus to Type I interferon (IFN-1), and enhance the production of IFN-a to counteract the antagonistic effect of SARS-CoV-2 virus protein on IFN. Additionally, Zn has been found to promote the proliferation and differentiation of T and B lymphocytes, thereby improving immune function, inhibiting RNA-dependent RNA polymerase (RdRp) in SARS- CoV-2 reducing the viral replication and stabilizing the cell membrane by preventing the proteolytic processing of viral polyprotein and proteases enzymes. Interestingly, Zn deficiency has been correlated with enhanced SARS-CoV-2 viral entry through interaction between the ACE2 receptor and viral spike protein. Along with zinc, Cu possesses strong virucidal capabilities and is known to be effective at neutralizing a variety of infectious viruses, including the poliovirus, influenza virus, HIV type 1, and other enveloped or nonenveloped, single- or double-stranded DNA and RNA viruses. Cu-related antiviral action has been linked to different pathways. First, it may result in permanent damage to the viral membrane, envelopes, and genetic material of viruses. Second, Cu produces reactive oxygen species to take advantage of the redox signaling mechanism to eradicate the virus. The present review focused on Zn and Cu in the treatment and prevention of viral infection. Moreover, the application of metals such as Cu and gold in nanotechnology for the development of antiviral therapies and vaccines has been also discussed.
Collapse
Affiliation(s)
- Shatha A Albalawi
- Pharm D program, Faculty of pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Raneem A Albalawi
- Pharm D program, Faculty of pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Amaal A Albalawi
- Pharm D program, Faculty of pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Raghad F Alanazi
- Pharm D program, Faculty of pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Raghad M Almahlawi
- Pharm D program, Faculty of pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Basma S Alhwity
- Pharm D program, Faculty of pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Bashayer D Alatawi
- Pharm D program, Faculty of pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Nehal Elsherbiny
- Department of Pharmaceutical chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Saleh F Alqifari
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohamed S Abdel-Maksoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
12
|
Su R, Li X, Xiao J, Xu J, Tian J, Liu T, Hu Y. UiO-66 nanoparticles combat influenza A virus in mice by activating the RIG-I-like receptor signaling pathway. J Nanobiotechnology 2024; 22:99. [PMID: 38461229 PMCID: PMC10925002 DOI: 10.1186/s12951-024-02358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/20/2024] [Indexed: 03/11/2024] Open
Abstract
The Influenza A virus (IAV) is a zoonotic pathogen that infects humans and various animal species. Infection with IAV can cause fever, anorexia, and dyspnea and is often accompanied by pneumonia characterized by an excessive release of cytokines (i.e., cytokine storm). Nanodrug delivery systems and nanoparticles are a novel approach to address IAV infections. Herein, UiO-66 nanoparticles (NPs) are synthesized using a high-temperature melting reaction. The in vitro and in vivo optimal concentrations of UiO-66 NPs for antiviral activity are 200 μg mL-1 and 60 mg kg-1, respectively. Transcriptome analysis revealed that UiO-66 NPs can activate the RIG-I-like receptor signaling pathway, thereby enhancing the downstream type I interferon antiviral effect. These NPs suppress inflammation-related pathways, including the FOXO, HIF, and AMPK signaling pathways. The inhibitory effect of UiO-66 NPs on the adsorption and entry of IAV into A549 cells is significant. This study presents novel findings that demonstrate the effective inhibition of IAV adsorption and entry into cells via UiO-66 NPs and highlights their ability to activate the cellular RIG-I-like receptor signaling pathway, thereby exerting an anti-IAV effect in vitro or in mice. These results provide valuable insights into the mechanism of action of UiO-66 NPs against IAV and substantial data for advancing innovative antiviral nanomedicine.
Collapse
Affiliation(s)
- Ruijing Su
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xinsen Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jin Xiao
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd, Beijing, People's Republic of China
| | - Jiawei Xu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jijing Tian
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Tianlong Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Yanxin Hu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
13
|
Restivo E, Pugliese D, Gallichi-Nottiani D, Sammartino JC, Bloise N, Peluso E, Percivalle E, Janner D, Milanese D, Visai L. Effect of Low Copper Doping on the Optical, Cytocompatible, Antibacterial, and SARS-CoV-2 Trapping Properties of Calcium Phosphate Glasses. ACS OMEGA 2023; 8:42264-42274. [PMID: 38024754 PMCID: PMC10652837 DOI: 10.1021/acsomega.3c04293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023]
Abstract
Calcium phosphate glasses (CPGs) are acquiring great importance in the biomedical field because of their thermomechanical and bioresorbable properties. In this study, optically transparent copper (1 mol %)-doped calcium phosphate glasses (CPGs_Cu) were prepared through the melt-quenching method, and their biocompatibility and antibacterial and antiviral properties were evaluated and compared with undoped CPGs. Biocompatibility was evaluated on murine fibroblast NIH-3T3 cells as a preliminary study of cytocompatibility. The in vitro tests were performed through indirect and direct cytotoxicity analyses by MTT and Alamar Blue assays and supported by electron microscopy observations. Microbiological analyses were performed against the most common Gram-negative and Gram-positive pathogens that cause nosocomial infections: Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, and the methicillin-resistant Staphylococcus aureus strain. In addition, the bioglass samples were exposed to SARS-CoV-2 to assess their effects on viral survival. The obtained results assessed the biocompatibility of both bioglass types and their ability to reduce the viral load and trap the virus. In addition, Cu2+-doped bioglass was found to be antibacterial despite its low content (1 mol %) of copper, making this a promising candidate material for biomedical applications, e.g., surgery probes, drug delivery, and photodynamic therapy.
Collapse
Affiliation(s)
- Elisa Restivo
- Department
of Molecular Medicine, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia27100,Italy
| | - Diego Pugliese
- Department
of Applied Science and Technology, UdR INSTM, Politecnico di Torino, Torino10129,Italy
| | | | - José Camilla Sammartino
- Department
of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia27100,Italy
| | - Nora Bloise
- Department
of Molecular Medicine, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia27100,Italy
- Medicina
Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia27100,Italy
| | - Emanuela Peluso
- Department
of Molecular Medicine, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia27100,Italy
| | - Elena Percivalle
- Molecular
Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia27100,Italy
| | - Davide Janner
- Department
of Applied Science and Technology, UdR INSTM, Politecnico di Torino, Torino10129,Italy
| | - Daniel Milanese
- Department
of Engineering and Architecture, UdR INSTM, University of Parma, Parma43121,Italy
| | - Livia Visai
- Department
of Molecular Medicine, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia27100,Italy
- Medicina
Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia27100,Italy
| |
Collapse
|
14
|
Jindal A, Patil N, Bains A, Sridhar K, Stephen Inbaraj B, Tripathi M, Chawla P, Sharma M. Recent Trends in Cereal- and Legume-Based Protein-Mineral Complexes: Formulation Methods, Toxicity, and Food Applications. Foods 2023; 12:3898. [PMID: 37959017 PMCID: PMC10649166 DOI: 10.3390/foods12213898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Minerals play an important role in maintaining human health as the deficiency of these minerals can lead to serious health issues. To address these deficiencies, current research efforts are actively investigating the utilization of protein-mineral complexes as eco-friendly, non-hazardous, suitable mineral fortifiers, characterized by minimal toxicity, for incorporation into food products. Thus, we reviewed the current challenges in incorporating the cereal-legume protein-inorganic minerals complexes' structure, binding properties, and toxicity during fortification on human health. Moreover, we further reviewed the development of protein-mineral complexes, characterization, and their food applications. The use of inorganic minerals has been associated with several toxic effects, leading to tissue-level toxicity. Cereal- and legume-based protein-mineral complexes effectively reduced the toxicity, improved bone mineral density, and has antioxidant properties. The characterization techniques provided a better understanding of the binding efficiency of cereal- and legume-based protein-mineral complexes. Overall, understanding the mechanism and binding efficiency underlying protein-mineral complex formation provided a novel insight into the design of therapeutic strategies for mineral-related diseases with minimal toxicity.
Collapse
Affiliation(s)
- Aprajita Jindal
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (A.J.); (N.P.)
| | - Nikhil Patil
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (A.J.); (N.P.)
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore 641021, India
| | | | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (A.J.); (N.P.)
| | | |
Collapse
|
15
|
Duman H, Karav S. Bovine colostrum and its potential contributions for treatment and prevention of COVID-19. Front Immunol 2023; 14:1214514. [PMID: 37908368 PMCID: PMC10613682 DOI: 10.3389/fimmu.2023.1214514] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
Bovine colostrum (BC) is the initial milk an animal produces after giving birth, particularly in the first few days. Numerous bioactive substances found in BC, including proteins, enzymes, growth factors, immunoglobulins, etc., are beneficial to human health. BC has a significant role to play as part of a healthy diet, with well-documented health and nutritional advantages for people. Therefore, the use of BC and its crucial derivatives in the development of functional food and pharmaceuticals for the prevention of several diseases such as gastrointestinal and respiratory system disorders is becoming increasingly popular around the world. A novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the cause of a cluster of pneumonia cases that is called Coronavirus Disease 2019 (COVID-19) in China. After the first SARS-CoV-2 virus-related fatality was announced, the illness quickly spread throughout China and to other continents, causing a pandemic. Since then, numerous studies have been initiated to develop safe and efficient treatments. To prevent viral infection and potential lingering effects, it is important to investigate alternative treatments for COVID-19. Due to its effective bioactive profile and its immunomodulatory roles in biological processes, BC might be considered a promising approach to assist in combating people affected by the SARS-CoV-2 or prevention from the virus. BC has immunomodulatory effects because to its high concentration of bioactive components such as immunoglobulins, lactoferrin, cytokines, and growth factors, etc., which might help control immunological responses, potentially fostering a balanced immune response. Furthermore, its bioactive components have a potential cross-reactivity against SARS-CoV-2, aiding in virus neutralization and its comprehensive food profile also supplies important vitamins, minerals, and amino acids, fostering a healthy immune system. Hence, the possible contributions of BC to the management of COVID-19 were reviewed in this article based on the most recent research on the subject. Additionally, the key BC components that influence immune system modulation were evaluated. These components may serve as potential mediators or therapeutic advantages in COVID-19.
Collapse
Affiliation(s)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Türkiye
| |
Collapse
|
16
|
Singh P, Hernandez‐Rauda R, Peña‐Rodas O. Preventative and therapeutic potential of animal milk components against COVID-19: A comprehensive review. Food Sci Nutr 2023; 11:2547-2579. [PMID: 37324885 PMCID: PMC10261805 DOI: 10.1002/fsn3.3314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/07/2023] [Accepted: 02/24/2023] [Indexed: 06/17/2023] Open
Abstract
The global pandemic of COVID-19 is considered one of the most catastrophic events on earth. During the pandemic, food ingredients may play crucial roles in preventing infectious diseases and sustaining people's general health and well-being. Animal milk acts as a super food since it has the capacity to minimize the occurrence of viral infections due to inherent antiviral properties of its ingredients. SARS-CoV-2 virus infection can be prevented by immune-enhancing and antiviral properties of caseins, α-lactalbumin, β-lactoglobulin, mucin, lactoferrin, lysozyme, lactoperoxidase, oligosaccharides, glycosaminoglycans, and glycerol monolaurate. Some of the milk proteins (i.e., lactoferrin) may work synergistically with antiviral medications (e.g., remdesivir), and enhance the effectiveness of treatment in this disease. Cytokine storm during COVID-19 can be managed by casein hydrolyzates, lactoferrin, lysozyme, and lactoperoxidase. Thrombus formation can be prevented by casoplatelins as these can inhibit human platelet aggregation. Milk vitamins (i.e., A, D, E, and B complexes) and minerals (i.e., Ca, P, Mg, Zn, and Se) can have significantly positive effects on boosting the immunity and health status of individuals. In addition, certain vitamins and minerals can also act as antioxidants, anti-inflammatory, and antivirals. Thus, the overall effect of milk might be a result of synergistic antiviral effects and host immunomodulator activities from multiple components. Due to multiple overlapping functions of milk ingredients, they can play vital and synergistic roles in prevention as well as supportive agents during principle therapy of COVID-19.
Collapse
Affiliation(s)
- Parminder Singh
- Department of Animal Husbandry AmritsarGovernment of PunjabAmritsarIndia
| | - Roberto Hernandez‐Rauda
- Laboratorio de Inocuidad de AlimentosUniversidad Doctor Andres BelloSan SalvadorEl Salvador, América Central
| | - Oscar Peña‐Rodas
- Laboratorio de Inocuidad de AlimentosUniversidad Doctor Andres BelloSan SalvadorEl Salvador, América Central
| |
Collapse
|
17
|
Renata RBN, Arely GRA, Gabriela LMA, Esther MLM. Immunomodulatory Role of Microelements in COVID-19 Outcome: a Relationship with Nutritional Status. Biol Trace Elem Res 2023; 201:1596-1614. [PMID: 35668151 PMCID: PMC9170122 DOI: 10.1007/s12011-022-03290-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/16/2022] [Indexed: 12/17/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 infection can activate innate and adaptive immune responses and result in massive inflammatory responses in the disease. A comprehensive understanding of the participation of micronutrients in the immune response to COVID-19 will allow the creation of prevention and supplementation scenarios in malnutrition states. Microelement deficiency can be decisive in the progression of diseases and their optimal levels can act as protective factors, helping to maintain homeostasis. Vitamin A, B, D, selenium, zinc, and copper, through their complementary and synergistic effects, allow the components of innate and adaptive immunity to counteract infections like those occurring in the respiratory tract.Thus, alterations in nutritional status are related to metabolic diseases, systemic inflammation, and deterioration of the immune system that alter the response against viral infections, such as COVID-19. The aim of this review is to describe the micronutrients that play an important role as immunomodulators and its relationship between malnutrition and the development of respiratory infections with an emphasis on severe and critical COVID-19. We conclude that although an unbalanced diet is not the only risk factor that predisposes to COVID-19, a correct and balanced diet, which provides the optimal amount of micronutrients and favors an adequate nutritional status, could confer beneficial effects for prevention and improvement of clinical results. The potential usefulness of micronutrient supplementation in special cases is highlighted.
Collapse
Affiliation(s)
- Roldán-Bretón Nuria Renata
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés S/N, Centro Cívico, 21000, Mexicali, Baja California, México
| | - González-Rascón Anna Arely
- Facultad de Odontología Mexicali, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Leija-Montoya Ana Gabriela
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés S/N, Centro Cívico, 21000, Mexicali, Baja California, México
| | - Mejía-León María Esther
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés S/N, Centro Cívico, 21000, Mexicali, Baja California, México.
| |
Collapse
|
18
|
Correa JDS, Primo JDO, Balaba N, Pratsch C, Werner S, Toma HE, Anaissi FJ, Wattiez R, Zanette CM, Onderwater RCA, Bittencourt C. Copper(II) and Cobalt(II) Complexes Based on Abietate Ligands from Pinus Resin: Synthesis, Characterization and Their Antibacterial and Antiviral Activity against SARS-CoV-2. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1202. [PMID: 37049296 PMCID: PMC10096983 DOI: 10.3390/nano13071202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Co-abietate and Cu-abietate complexes were obtained by a low-cost and eco-friendly route. The synthesis process used Pinus elliottii resin and an aqueous solution of CuSO4/CoSO4 at a mild temperature (80 °C) without organic solvents. The obtained complexes are functional pigments for commercial architectural paints with antipathogenic activity. The pigments were characterized by Fourier-transform infrared spectroscopy (FTIR), mass spectrometry (MS), thermogravimetry (TG), near-edge X-ray absorption fine structure (NEXAFS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and colorimetric analysis. In addition, the antibacterial efficiency was evaluated using the minimum inhibitory concentration (MIC) test, and the antiviral tests followed an adaptation of the ISO 21702:2019 guideline. Finally, virus inactivation was measured using the RT-PCR protocol using 10% (w/w) of abietate complex in commercial white paint. The Co-abietate and Cu-abietate showed inactivation of >4 log against SARS-CoV-2 and a MIC value of 4.50 µg·mL-1 against both bacteria Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The results suggest that the obtained Co-abietate and Cu-abietate complexes could be applied as pigments in architectural paints for healthcare centers, homes, and public places.
Collapse
Affiliation(s)
- Jamille de S. Correa
- Departament of Chemistry, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antonio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil
| | - Julia de O. Primo
- Departament of Chemistry, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antonio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil
| | - Nayara Balaba
- Departament of Chemistry, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antonio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil
| | - Christoph Pratsch
- Department X-ray Microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Stephan Werner
- Department X-ray Microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Henrique E. Toma
- Institute of Chemistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Fauze J. Anaissi
- Departament of Chemistry, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antonio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil
| | - Ruddy Wattiez
- Department of Chemistry, University of Mons, Place du Parc 23, 7000 Mons, Belgium;
| | - Cristina M. Zanette
- Department of Food Engineering, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antonio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil
| | | | - Carla Bittencourt
- Department of Chemistry, University of Mons, Place du Parc 23, 7000 Mons, Belgium;
| |
Collapse
|
19
|
Fu J, Liu T, Binte Touhid SS, Fu F, Liu X. Functional Textile Materials for Blocking COVID-19 Transmission. ACS NANO 2023; 17:1739-1763. [PMID: 36683285 PMCID: PMC9885531 DOI: 10.1021/acsnano.2c08894] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The outbreak of COVID-19 provided a warning sign for society worldwide: that is, we urgently need to explore effective strategies for combating unpredictable viral pandemics. Protective textiles such as surgery masks have played an important role in the mitigation of the COVID-19 pandemic, while revealing serious challenges in terms of supply, cross-infection risk, and environmental pollution. In this context, textiles with an antivirus functionality have attracted increasing attention, and many innovative proposals with exciting commercial possibilities have been reported over the past three years. In this review, we illustrate the progress of textile filtration for pandemics and summarize the recent development of antiviral textiles for personal protective purposes by cataloging them into three classes: metal-based, carbon-based, and polymer-based materials. We focused on the preparation routes of emerging antiviral textiles, providing a forward-looking perspective on their opportunities and challenges, to evaluate their efficacy, scale up their manufacturing processes, and expand their high-volume applications. Based on this review, we conclude that ideal antiviral textiles are characterized by a high filtration efficiency, reliable antiviral effect, long storage life, and recyclability. The expected manufacturing processes should be economically feasible, scalable, and quickly responsive.
Collapse
Affiliation(s)
- Jiajia Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Tianxing Liu
- Department of Cell and Systems Biology,
University of Toronto, Toronto, OntarioM5S1A1,
Canada
| | - S Salvia Binte Touhid
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Feiya Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Xiangdong Liu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| |
Collapse
|
20
|
Santos ACF, Martel F, Freire CSR, Ferreira BJML. Polymeric Materials as Indispensable Tools to Fight RNA Viruses: SARS-CoV-2 and Influenza A. Bioengineering (Basel) 2022; 9:816. [PMID: 36551022 PMCID: PMC9816944 DOI: 10.3390/bioengineering9120816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Towards the end of 2019 in Wuhan, suspicions of a new dangerous virus circulating in the air began to arise. It was the start of the world pandemic coronavirus disease 2019 (COVID-19). Since then, considerable research data and review papers about this virus have been published. Hundreds of researchers have shared their work in order to achieve a better comprehension of this disease, all with the common goal of overcoming this pandemic. The coronavirus is structurally similar to influenza A. Both are RNA viruses and normally associated with comparable infection symptoms. In this review, different case studies targeting polymeric materials were appraised to highlight them as an indispensable tool to fight these RNA viruses. In particular, the main focus was how polymeric materials, and their versatile features could be applied in different stages of viral disease, i.e., in protection, detection and treatment.
Collapse
Affiliation(s)
- Ariana C. F. Santos
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fátima Martel
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- I3S-Institute of Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Carmen S. R. Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bárbara J. M. L. Ferreira
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
21
|
Hussain FS, Abro NQ, Ahmed N, Memon SQ, Memon N. Nano-antivirals: A comprehensive review. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1064615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nanoparticles can be used as inhibitory agents against various microorganisms, including bacteria, algae, archaea, fungi, and a huge class of viruses. The mechanism of action includes inhibiting the function of the cell membrane/stopping the synthesis of the cell membrane, disturbing the transduction of energy, producing toxic reactive oxygen species (ROS), and inhibiting or reducing RNA and DNA production. Various nanomaterials, including different metallic, silicon, and carbon-based nanomaterials and nanoarchitectures, have been successfully used against different viruses. Recent research strongly agrees that these nanoarchitecture-based virucidal materials (nano-antivirals) have shown activity in the solid state. Therefore, they are very useful in the development of several products, such as fabric and high-touch surfaces. This review thoroughly and critically identifies recently developed nano-antivirals and their products, nano-antiviral deposition methods on various substrates, and possible mechanisms of action. By considering the commercial viability of nano-antivirals, recommendations are made to develop scalable and sustainable nano-antiviral products with contact-killing properties.
Collapse
|
22
|
Bayraktar N, Bayraktar M, Ozturk A, Ibrahim B. Evaluation of the Relationship Between Aquaporin-1, Hepcidin, Zinc, Copper, and İron Levels and Oxidative Stress in the Serum of Critically Ill Patients with COVID-19. Biol Trace Elem Res 2022; 200:5013-5021. [PMID: 36001235 PMCID: PMC9399591 DOI: 10.1007/s12011-022-03400-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
Our study aims to determine the relationship between hepcidin, aquaporin (AQP-1), copper (Cu), zinc (Zn), iron (Fe) levels, and oxidative stress in the sera of seriously ill COVID-19 patients with invasive mechanical ventilation. Ninety persons with and without COVID-19 were taken up and separated into two groups. The first group included seriously COVID-19 inpatients having endotracheal intubation in the intensive care unit (n = 45). The second group included individuals who had negative PCR tests and had no chronic disease (the healthy control group n = 45). AQP-1, hepcidin, Zn, Cu, Fe, total antioxidant status (TAS), and total oxidant status (TOS) were studied in the sera of both groups, and the relations of these levels with oxidative stress were determined. When the COVID-19 patient and the control groups were compared, all studied parameters were found to be statistically significant (p < 0.01). Total oxidant status (TOS), oxidative stress index (OSI), and AQP-1, hepcidin, and Cu levels were increased in patients with COVID-19 compared to healthy people. Serum TAC, Zn, and Fe levels were found to be lower in the patient group than in the control group. Significant correlations were detected between the studied parameters in COVID-19 patients. Results indicated that oxidative stress may play an important role in viral infection due to SARS-CoV-2. We think that oxidative stress parameters as well as some trace elements at the onset of COVID-19 disease will provide a better triage in terms of disease severity.
Collapse
Affiliation(s)
- Nihayet Bayraktar
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Şanlıurfa, Turkey
| | - Mustafa Bayraktar
- Department of Internal Medical, Faculty of Medicine, Yıdırım Beyazıt University, Ankara, Turkey
| | - Ali Ozturk
- Department of Medical Microbiology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Bashar Ibrahim
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
23
|
Kubo AL, Rausalu K, Savest N, Žusinaite E, Vasiliev G, Viirsalu M, Plamus T, Krumme A, Merits A, Bondarenko O. Antibacterial and Antiviral Effects of Ag, Cu and Zn Metals, Respective Nanoparticles and Filter Materials Thereof against Coronavirus SARS-CoV-2 and Influenza A Virus. Pharmaceutics 2022; 14:2549. [PMID: 36559043 PMCID: PMC9785359 DOI: 10.3390/pharmaceutics14122549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Due to the high prevalence of infectious diseases and their concurrent outbreaks, there is a high interest in developing novel materials with antimicrobial properties. Antibacterial and antiviral properties of a range of metal-based nanoparticles (NPs) are a promising means to fight airborne diseases caused by viruses and bacteria. The aim of this study was to test antimicrobial metals and metal-based nanoparticles efficacy against three viruses, namely influenza A virus (H1N1; A/WSN/1933) and coronaviruses TGEV and SARS-CoV-2; and two bacteria, Escherichia coli and Staphylococcus aureus. The efficacy of ZnO, CuO, and Ag NPs and their respective metal salts, i.e., ZnSO4, CuSO4, and AgNO3, was evaluated in suspensions, and the compounds with the highest antiviral efficacy were chosen for incorporation into fibers of cellulose acetate (CA), using electrospinning to produce filter materials for face masks. Among the tested compounds, CuSO4 demonstrated the highest efficacy against influenza A virus and SARS-CoV-2 (1 h IC50 1.395 mg/L and 0.45 mg/L, respectively), followed by Zn salt and Ag salt. Therefore, Cu compounds were selected for incorporation into CA fibers to produce antiviral and antibacterial filter materials for face masks. CA fibers comprising CuSO4 decreased SARS-CoV-2 titer by 0.38 logarithms and influenza A virus titer by 1.08 logarithms after 5 min of contact; after 1 h of contact, SARS-COV-2 virus was completely inactivated. Developed CuO- and CuSO4-based filter materials also efficiently inactivated the bacteria Escherichia coli and Staphylococcus aureus. The metal NPs and respective metal salts were potent antibacterial and antiviral compounds that were successfully incorporated into the filter materials of face masks. New antibacterial and antiviral materials developed and characterized in this study are crucial in the context of the ongoing SARS-CoV-2 pandemic and beyond.
Collapse
Affiliation(s)
- Anna-Liisa Kubo
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Nanordica Medical OÜ, Vana-Lõuna 39a-7, 10134 Tallinn, Estonia
| | - Kai Rausalu
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Natalja Savest
- Laboratory of Polymers and Textile Technology, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Eva Žusinaite
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Grigory Vasiliev
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Nanordica Medical OÜ, Vana-Lõuna 39a-7, 10134 Tallinn, Estonia
| | - Mihkel Viirsalu
- Laboratory of Polymers and Textile Technology, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Tiia Plamus
- Laboratory of Polymers and Textile Technology, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Andres Krumme
- Laboratory of Polymers and Textile Technology, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Andres Merits
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Olesja Bondarenko
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Nanordica Medical OÜ, Vana-Lõuna 39a-7, 10134 Tallinn, Estonia
| |
Collapse
|
24
|
Massai L, Grifagni D, De Santis A, Geri A, Cantini F, Calderone V, Banci L, Messori L. Gold-Based Metal Drugs as Inhibitors of Coronavirus Proteins: The Inhibition of SARS-CoV-2 Main Protease by Auranofin and Its Analogs. Biomolecules 2022; 12:1675. [PMID: 36421689 PMCID: PMC9687241 DOI: 10.3390/biom12111675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 08/08/2023] Open
Abstract
Gold compounds have a long tradition in medicine and offer many opportunities for new therapeutic applications. Herein, we evaluated the lead compound Auranofin and five related gold(I) complexes as possible inhibitors of SARS-CoV-2 Main Protease (SARS-CoV-2 Mpro), a validated drug target for the COVID-19 disease. The investigational panel of gold compounds included Auranofin; three halido analogues, i.e., Au(PEt3)Cl, Au(PEt3)Br, and Au(PEt3)I; and two gold carbene complexes, i.e., Au(NHC)Cl and [Au(NHC)2]PF6. Notably, all these gold compounds, with the only exception of [Au(NHC)2]PF6, turned out to be potent inhibitors of the catalytic activity of SARS-CoV-2 Mpro: the measured Ki values were in the range 2.1-0.4 μM. The reactions of the various gold compounds with SARS-CoV-2 Mpro were subsequently investigated through electrospray ionization (ESI) mass spectrometry (MS) upon a careful optimization of the experimental conditions; the ESI MS spectra provided clear evidence for the formation of tight metallodrug-protein adducts and for the coordination of well defined gold-containing fragments to the SARS-CoV-2 Mpro, again with the only exception of [Au(NHC)2]PF6, The metal-protein stoichiometry was unambiguously determined for the resulting species. The crystal structures of the metallodrug- Mpro adducts were solved in the case of Au(PEt3)Br and Au(NHC)Cl. These crystal structures show that gold coordination occurs at the level of catalytic Cys 145 in the case of Au(NHC)Cl and at the level of both Cys 145 and Cys 156 for Au(PEt3)Br. Tight coordination of gold atoms to functionally relevant cysteine residues is believed to represent the true molecular basis of strong enzyme inhibition.
Collapse
Affiliation(s)
- Lara Massai
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3, 50019 Florence, Italy
| | - Deborah Grifagni
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3, 50019 Florence, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Alessia De Santis
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3, 50019 Florence, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Andrea Geri
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3, 50019 Florence, Italy
| | - Francesca Cantini
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3, 50019 Florence, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), University of Florence, Via L. Sacconi 6, 50019 Florence, Italy
| | - Vito Calderone
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3, 50019 Florence, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), University of Florence, Via L. Sacconi 6, 50019 Florence, Italy
| | - Lucia Banci
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3, 50019 Florence, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), University of Florence, Via L. Sacconi 6, 50019 Florence, Italy
| | - Luigi Messori
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3, 50019 Florence, Italy
| |
Collapse
|
25
|
Content of Essential Trace Elements in the Hair of Residents of the Caspian Region of the Republic of Kazakhstan Who Recovered from COVID-19. Diagnostics (Basel) 2022; 12:diagnostics12112734. [PMID: 36359577 PMCID: PMC9689738 DOI: 10.3390/diagnostics12112734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022] Open
Abstract
This study aimed to investigate the content of essential elements in the hair of unvaccinated residents of the Caspian region who recovered from COVID-19. This cross-sectional study involved 260 unvaccinated permanent residents of Mangistau oblast aged 18−60. The diagnosis and severity of COVID-19 were based on clinical signs and symptoms, laboratory data, R-graph results, and oxygen saturation by the Clinical Protocol of the Ministry of Health of the Republic of Kazakhstan. Inductively coupled plasma mass spectrometry determined the content of trace elements cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), iodine (I), manganese (Mn), selenium (Se), and zinc (Zn). The content of Cr (p < 0.05), Cu (p < 0.05), Fe (p < 0.001), I (p < 0.05), Mn (p < 0.001), and Zn (p < 0.05) in the hair of individuals who had a coronavirus infection was lower than those who did not have this infection. There were significantly higher levels of Cu (p < 0.05) in the hair of participants who had moderate or severe COVID-19 compared to those with mild forms. The results of multiple regression analysis showed that in the presence of a COVID-19 infection in a subject’s history, the content of Cr (0.871 (95% CI: 0.811; 0.936)), Cu (0.875 (95% CI: 0.803; 0.955)), Fe (0.745 (95% CI: 0.636; 0.873)), and Mn (0.642 (95%CI: 00.518; 0.795)) decreased in the hair. The data obtained indicate that past COVID-19 infections affect the trace element status of the inhabitants of the Caspian region of Kazakhstan.
Collapse
|
26
|
He Y, Yu H, Huffman A, Lin AY, Natale DA, Beverley J, Zheng L, Perl Y, Wang Z, Liu Y, Ong E, Wang Y, Huang P, Tran L, Du J, Shah Z, Shah E, Desai R, Huang HH, Tian Y, Merrell E, Duncan WD, Arabandi S, Schriml LM, Zheng J, Masci AM, Wang L, Liu H, Smaili FZ, Hoehndorf R, Pendlington ZM, Roncaglia P, Ye X, Xie J, Tang YW, Yang X, Peng S, Zhang L, Chen L, Hur J, Omenn GS, Athey B, Smith B. A comprehensive update on CIDO: the community-based coronavirus infectious disease ontology. J Biomed Semantics 2022; 13:25. [PMID: 36271389 PMCID: PMC9585694 DOI: 10.1186/s13326-022-00279-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The current COVID-19 pandemic and the previous SARS/MERS outbreaks of 2003 and 2012 have resulted in a series of major global public health crises. We argue that in the interest of developing effective and safe vaccines and drugs and to better understand coronaviruses and associated disease mechenisms it is necessary to integrate the large and exponentially growing body of heterogeneous coronavirus data. Ontologies play an important role in standard-based knowledge and data representation, integration, sharing, and analysis. Accordingly, we initiated the development of the community-based Coronavirus Infectious Disease Ontology (CIDO) in early 2020. RESULTS As an Open Biomedical Ontology (OBO) library ontology, CIDO is open source and interoperable with other existing OBO ontologies. CIDO is aligned with the Basic Formal Ontology and Viral Infectious Disease Ontology. CIDO has imported terms from over 30 OBO ontologies. For example, CIDO imports all SARS-CoV-2 protein terms from the Protein Ontology, COVID-19-related phenotype terms from the Human Phenotype Ontology, and over 100 COVID-19 terms for vaccines (both authorized and in clinical trial) from the Vaccine Ontology. CIDO systematically represents variants of SARS-CoV-2 viruses and over 300 amino acid substitutions therein, along with over 300 diagnostic kits and methods. CIDO also describes hundreds of host-coronavirus protein-protein interactions (PPIs) and the drugs that target proteins in these PPIs. CIDO has been used to model COVID-19 related phenomena in areas such as epidemiology. The scope of CIDO was evaluated by visual analysis supported by a summarization network method. CIDO has been used in various applications such as term standardization, inference, natural language processing (NLP) and clinical data integration. We have applied the amino acid variant knowledge present in CIDO to analyze differences between SARS-CoV-2 Delta and Omicron variants. CIDO's integrative host-coronavirus PPIs and drug-target knowledge has also been used to support drug repurposing for COVID-19 treatment. CONCLUSION CIDO represents entities and relations in the domain of coronavirus diseases with a special focus on COVID-19. It supports shared knowledge representation, data and metadata standardization and integration, and has been used in a range of applications.
Collapse
Affiliation(s)
- Yongqun He
- University of Michigan Medical School, Ann Arbor, MI USA
| | - Hong Yu
- People’s Hospital of Guizhou Province, Guiyang, Guizhou China
| | | | - Asiyah Yu Lin
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
- National Center for Ontological Research, Buffalo, NY USA
| | | | - John Beverley
- National Center for Ontological Research, Buffalo, NY USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Ling Zheng
- Computer Science and Software Engineering Department, Monmouth University, West Long Branch, NJ USA
| | - Yehoshua Perl
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ USA
| | - Zhigang Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yingtong Liu
- University of Michigan Medical School, Ann Arbor, MI USA
| | - Edison Ong
- University of Michigan Medical School, Ann Arbor, MI USA
| | - Yang Wang
- University of Michigan Medical School, Ann Arbor, MI USA
- People’s Hospital of Guizhou Province, Guiyang, Guizhou China
| | - Philip Huang
- University of Michigan Medical School, Ann Arbor, MI USA
| | - Long Tran
- University of Michigan Medical School, Ann Arbor, MI USA
| | - Jinyang Du
- University of Michigan Medical School, Ann Arbor, MI USA
| | - Zalan Shah
- University of Michigan Medical School, Ann Arbor, MI USA
| | - Easheta Shah
- University of Michigan Medical School, Ann Arbor, MI USA
| | - Roshan Desai
- University of Michigan Medical School, Ann Arbor, MI USA
| | - Hsin-hui Huang
- University of Michigan Medical School, Ann Arbor, MI USA
- National Yang-Ming University, Taipei, Taiwan
| | - Yujia Tian
- Rutgers University, New Brunswick, NJ USA
| | | | | | | | - Lynn M. Schriml
- University of Maryland School of Medicine, Baltimore, MD USA
| | - Jie Zheng
- Department of Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Anna Maria Masci
- Office of Data Science, National Institute of Environmental Health Sciences, Research Triangle Park, NC USA
| | | | | | | | - Robert Hoehndorf
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zoë May Pendlington
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Paola Roncaglia
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Xianwei Ye
- People’s Hospital of Guizhou Province, Guiyang, Guizhou China
| | - Jiangan Xie
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yi-Wei Tang
- Cepheid, Danaher Diagnostic Platform, Shanghai, China
| | - Xiaolin Yang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Suyuan Peng
- National Institute of Health Data Science, Peking University, Beijing, China
| | - Luxia Zhang
- National Institute of Health Data Science, Peking University, Beijing, China
| | - Luonan Chen
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Junguk Hur
- University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND USA
| | | | - Brian Athey
- University of Michigan Medical School, Ann Arbor, MI USA
| | - Barry Smith
- National Center for Ontological Research, Buffalo, NY USA
- University at Buffalo, Buffalo, NY 14260 USA
| |
Collapse
|
27
|
de Moraes Segundo JDDP, Constantino JSF, Calais GB, de Moura Junior CF, de Moraes MOS, da Fonseca JHL, Tsukamoto J, Monteiro RRDC, Andrade FK, d’Ávila MA, Arns CW, Beppu MM, Vieira RS. Virucidal PVP-Copper Salt Composites against Coronavirus Produced by Electrospinning and Electrospraying. Polymers (Basel) 2022; 14:polym14194157. [PMID: 36236105 PMCID: PMC9570984 DOI: 10.3390/polym14194157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Electrospinning technology was used to produced polyvinylpyrrolidone (PVP)-copper salt composites with structural differences, and their virucidal activity against coronavirus was investigated. The solutions were prepared with 20, 13.3, 10, and 6.6% w/v PVP containing 3, 1.0, 0.6, and 0.2% w/v Cu (II), respectively. The rheological properties and electrical conductivity contributing to the formation of the morphologies of the composite materials were observed by scanning electron microscopy (SEM). SEM images revealed the formation of electrospun PVP-copper salt ultrafine composite fibers (0.80 ± 0.35 µm) and electrosprayed PVP-copper salt composite microparticles (1.50 ± 0.70 µm). Energy-dispersive X-ray spectroscopy (EDS) evidenced the incorporation of copper into the produced composite materials. IR spectra confirmed the chemical composition and showed an interaction of Cu (II) ions with oxygen in the PVP resonant ring. Virucidal composite fibers inactivated 99.999% of coronavirus within 5 min of contact time, with moderate cytotoxicity to L929 cells, whereas the virucidal composite microparticles presented with a virucidal efficiency of 99.999% within 1440 min of exposure, with low cytotoxicity to L929 cells (mouse fibroblast). This produced virucidal composite materials have the potential to be applied in respirators, personal protective equipment, self-cleaning surfaces, and to fabric coat personal protective equipment against SARS-CoV-2, viral outbreaks, or pandemics.
Collapse
Affiliation(s)
- João de Deus Pereira de Moraes Segundo
- Department of Chemical Engineering, Federal University of Ceará, Fortaleza 60455-760, Brazil
- Department of Materials and Bioprocess Engineering, University of Campinas, Campinas 13083-852, Brazil
- Department of Manufacturing and Materials Engineering, University of Campinas, Campinas 13083-860, Brazil
- Correspondence: (J.d.D.P.d.M.S.); (R.S.V.)
| | | | - Guilherme Bedeschi Calais
- Department of Materials and Bioprocess Engineering, University of Campinas, Campinas 13083-852, Brazil
| | | | - Maria Oneide Silva de Moraes
- Thematic Laboratory of Microscopy and Nanotechnology, National Institute of Amazonian Research, Manaus 69067-001, Brazil
| | | | - Junko Tsukamoto
- Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-970, Brazil
| | | | - Fábia Karine Andrade
- Department of Chemical Engineering, Federal University of Ceará, Fortaleza 60455-760, Brazil
| | - Marcos Akira d’Ávila
- Department of Manufacturing and Materials Engineering, University of Campinas, Campinas 13083-860, Brazil
| | - Clarice Weis Arns
- Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-970, Brazil
| | - Marisa Masumi Beppu
- Department of Materials and Bioprocess Engineering, University of Campinas, Campinas 13083-852, Brazil
| | - Rodrigo Silveira Vieira
- Department of Chemical Engineering, Federal University of Ceará, Fortaleza 60455-760, Brazil
- Correspondence: (J.d.D.P.d.M.S.); (R.S.V.)
| |
Collapse
|
28
|
Upper Airways Spray for Viral Infections Prevention. J Immunol Res 2022; 2022:2502199. [PMID: 36249418 PMCID: PMC9553441 DOI: 10.1155/2022/2502199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/06/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
Abstract
Aim Several studies emphasized the antiviral properties of many natural compounds enclosed in nutraceuticals formulas and quite effective to prevent the respiratory infections. The rationale of our investigation has been to achieve protection from common cold viruses' infection of the upper airways pooling together and dispensing different active principles on a multistep defense basis. Material and Methods. 30 patients affected by sudden aspecific viral-induced sore throat rhinitis were divided in two groups: (1) the first group included 15 patients which were administered with our spray formula and (2) the second group included 15 patients with the commercial nasal lavage kit. The mucous smear was stained with May Grunwald-Giemsa to exclude eosinophilic infiltrate and confirm the prevalence of granulocytes and lympho-monocytes typical of viral seasonal inflammatory upper airways conditions. Results The symptomatic relieve is remarkedly evident in the treated group with our spray compared to the second group treated with commercial nasal lavage kit. Conclusions The open case-control retrospective observational study showed a definite benefit of the spray based on natural herbal extracts to take control of the upper airways respiratory distress due to viral infections.
Collapse
|
29
|
Engin AB, Engin ED, Engin A. Can iron, zinc, copper and selenium status be a prognostic determinant in COVID-19 patients? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103937. [PMID: 35882309 PMCID: PMC9307469 DOI: 10.1016/j.etap.2022.103937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 05/14/2023]
Abstract
In severe COVID-19, the levels of iron (Fe), copper (Cu), zinc (Zn) and selenium (Se), do not only regulate host immune responses, but modify the viral genome, as well. While low serum Fe concentration is an independent risk factor for the increased death rate, Zn controls oxidative stress, synthesis of inflammatory cytokines and viral replication. Therefore, Zn deficiency associates with a worse prognosis. Although Cu exposure inactivates the viral genome and exhibits spike protein dispersal, increase in Cu/Zn due to high serum Cu levels, are correlated with enhanced risk of infections. Se levels are significantly higher in surviving COVID-19 patients. Meanwhile, both Zn and Se suppress the replication of SARS-CoV-2. Since the balance between the deficiency and oversupply of these metals due to a reciprocal relationship, has decisive effect on the prognosis of the SARS-CoV-2 infection, monitoring their concentrations may facilitate improved outcomes for patients suffering from COVID-19.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| | - Evren Doruk Engin
- Ankara University, Biotechnology Institute, Gumusdere Campus, Kecioren, Ankara, Turkey
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| |
Collapse
|
30
|
Al-Wasidi AS, Naglah AM, Saad FA, Abdelrahman EA. Modification of sodium aluminum silicate hydrate by thioglycolic acid as a new composite capable of removing and preconcentrating Pb(II), Cu(II), and Zn(II) ions from food and water samples. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
31
|
Kirankaya A, Ozel A, Gayret OB, Atici A, Tenekecigil A, Erol M. Assessment of Serum Zinc and Selenium Levels in Children with COVID-19. J PEDIAT INF DIS-GER 2022. [DOI: 10.1055/s-0042-1756714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Abstract
Objective Zinc and selenium levels are being investigated with increasing frequency in adult patients with coronavirus disease 2019 (COVID-19). However, levels of zinc and selenium in children with COVID-19 have not been adequately studied to date.
Methods This prospective, observational study was conducted on 146 pediatric patients diagnosed with COVID-19 and 49 healthy controls between 2020 and 2021. Normal serum zinc reference values were 0.60 to 1.20 µg/mL for children 0 to 10 years old and 0.66 to 1.10 µg/mL for children ≥11 years old. The normal range for serum selenium concentration was considered between 70 and 150 µg/L. Deficiencies were defined for values below the reference range.
Results Zinc and selenium levels were significantly lower in the COVID-19 (+) group compared with the controls (zinc: 0.7 ± 0.2 vs 0.9 ± 0.2 µg/mL, p < 0.001; selenium: 57.1 ± 9.1 vs 66.5 ± 11.4 µg/L, p < 0.01, respectively). Also, zinc and selenium levels were found to be statistically significantly lower in the hospitalized group compared with the outpatient group (zinc: 0.6 ± 0.2 vs 0.8 ± 0.2 µg/mL, p < 0.001; selenium: 52.1 ± 9.6 vs 58.8 ± 8.3 µg/L, p < 0.001). In the receiver operating characteristic curve analysis, selenium levels with a cutoff value of 55.50 µg/L, with 75% sensitivity and 70% specificity, and zinc levels with a cutoff value of 0.7 µg/mL, with 56% sensitivity and 53% specificity, predicted hospitalization.
Conclusion Our data showed that serum zinc and selenium levels were significantly lower in patients with COVID-19 compared with healthy control group. Also, zinc and selenium levels were found to be lower in the hospitalized group compared with the outpatient COVID-19 group.
Collapse
Affiliation(s)
- Aysegul Kirankaya
- Department of Biochemistry, Health Science University, Bagcılar Research and Education Hospital, Istanbul, Turkey
| | - Abdulrahman Ozel
- Department of Pediatrics, Health Science University, Bagcılar Research and Education Hospital, Istanbul, Turkey
| | - Ozlem Bostan Gayret
- Department of Pediatrics, Health Science University, Bagcılar Research and Education Hospital, Istanbul, Turkey
| | - Adem Atici
- Department of Cardiology, Faculty of Medicine, Istanbul Medeniyet University, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Aslihan Tenekecigil
- Department of Medical Biochemistry, Gazi University of Medicine, Ankara, Turkey
| | - Meltem Erol
- Department of Pediatrics, Health Science University, Bagcılar Research and Education Hospital, Istanbul, Turkey
| |
Collapse
|
32
|
Li Y, Luo W, Liang B. Circulating trace elements status in COVID-19 disease: A meta-analysis. Front Nutr 2022; 9:982032. [PMID: 36034929 PMCID: PMC9411985 DOI: 10.3389/fnut.2022.982032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/27/2022] [Indexed: 12/18/2022] Open
Abstract
Trace elements are a group of essential metals or metalloids, which are necessary for life, and present in minute amounts. Despite substantial researches highlighting the importance of trace elements in Coronavirus disease 2019 (COVID-19) diseases, a thorough evaluation of the levels of circulating trace elements is lacking. Therefore, we conducted a systematic review and meta-analysis to evaluate the trace element status (Zn, Fe, Cu, Mg, and Se) in COVID-19 disease. We also assessed the relationship between circulating trace elements and COVID-19 disease severity and survival status during follow-up. We searched comprehensively MEDLINE, Web of Science, CNKI, and WangFang databases without language restriction, between November 1, 2019 and April 1, 2022. The search identified 1,566 preliminary references. A total of 49 studies met the eligibility criteria and were included in the review, and 42 studies were included in the final meta-analysis. Meta-analysis showed that COVID-19 patients had significantly lower circulating Zn (SMD: -0.83, 95% CI: -1.19 to -0.46, P < 0.001), Fe (SMD: -1.56, 95% CI: -2.90 to -0.21, P = 0.023), and Se (SMD: -0.75, 95% CI: -0.94 to -0.56, P < 0.001) levels than healthy controls, and circulating Zn (SMD: -0.47, 95% CI: -0.75 to -0.18, P = 0.002), Fe (SMD: -0.45, 95% CI: -0.79 to -0.12, P = 0.008), and Se (SMD: -0.27, 95% CI: -0.49 to -0.04, P = 0.020) levels were associated with the presence of severity status in COVID-19 patients. Moreover, circulating Fe levels in non-survivors were significantly lower than survivors in COVID-19 (SMD: -0.28, 95% CI: -0.44 to -0.12, P = 0.001). However, there was no significant difference in Cu and Mg levels between COVID-19 patients and controls, severity and non-severity status, and survivors and non-survivors (all P > 0.05). Taken together, COVID-19 patients displayed lower circulating levels of Zn, Fe, and Se, and their levels were associated with severity status. Moreover, circulating Fe levels may provide part of the explanation for the unfavorable survival status. Therefore, we presumed optimistically that supplements of trace elements might provide an adjutant treatment in the early stages of COVID-19. Systematic review registration [https://www.crd.york.ac.uk/prospero], identifier [CRD42022348599].
Collapse
Affiliation(s)
- Yunhui Li
- Clinical Laboratory, PLA North Military Command Region General Hospital, Shenyang, China
| | - Weihe Luo
- Department of Medical Engineering, PLA North Military Command Region General Hospital, Shenyang, China
| | - Bin Liang
- Department of Bioinformatics, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| |
Collapse
|
33
|
Textiles Functionalized with Copper Oxides: A Sustainable Option for Prevention of COVID-19. Polymers (Basel) 2022; 14:polym14153066. [PMID: 35956581 PMCID: PMC9370190 DOI: 10.3390/polym14153066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 02/01/2023] Open
Abstract
COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and healthcare-associated infections (HAIs) represent severe problems in health centers and public areas. Polyester/cotton (PES/CO) blend fabrics have been functionalized with copper oxides on an industrial scale. For functionalization, the impregnation dyeing technique was applied. The functionalized samples were tested virologically against SARS-CoV-2 and human coronavirus (229E) according to ISO 18184-2019 and microbiologically against Escherichia coli (ATCC 25922) bacteria according to ASTM E2149-2013. The results show that the fabric functionalized with copper oxides inactivated both viruses after 30 min of exposure, presenting excellent virucidal activity against 229E and SARS-CoV-2, respectively. Furthermore, its inactivation efficiency for SARS-CoV-2 was 99.93% and 99.96% in 30 min and 60 min exposure, respectively. The fabric inhibited bacterial growth by more than 99% before and after 10 and 20 washes. In conclusion, 265 m of PES/CO fabric (wide 1.7 m) was functionalized in situ on an industrial scale with copper oxide nanoparticles. The functionalized fabric presented virucidal and bactericidal properties against SARS-CoV-2 and Escherichia coli.
Collapse
|
34
|
Abstract
Zinc is an essential element for human health. Among its many functions, zinc(II) modulates the immune response to infections and, at high concentrations or in the presence of ionophores, inhibits the replication of various RNA viruses. Structural biology studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed that zinc(II) is the most common metal ion that binds to viral proteins. However, the number of zinc(II)-binding sites identified by experimental methods is far from exhaustive, as metal ions may be lost during protein purification protocols. To better define the zinc(II)-binding proteome of coronavirus, we leveraged the wealth of deposited structural data and state-of-the-art bioinformatics methods. Through this in silico approach, 15 experimental zinc(II) sites were identified and a further 22 were predicted in Spike, open reading frame (ORF)3a/d, ORF8, and several nonstructural proteins, highlighting an essential role of zinc(II) in viral replication. Furthermore, the structural relationships between viral and eukaryotic sites (typically zinc fingers) indicate that SARS-CoV-2 can compete with human proteins for zinc(II) binding. Given the double-edged effect of zinc(II) ions, both essential and toxic to coronavirus, only the complete elucidation of the structural and regulatory zinc(II)-binding sites can guide selective antiviral strategies based on zinc supplementation.
Collapse
Affiliation(s)
- Claudia Andreini
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Fabio Arnesano
- Department of Chemistry, University of Bari “Aldo Moro,” Via Orabona 4, 70125 Bari, Italy
| | - Antonio Rosato
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
35
|
Mushtaq A, Iqbal MZ, Kong X. Antiviral effects of coinage metal-based nanomaterials to combat COVID-19 and its variants. J Mater Chem B 2022; 10:5323-5343. [PMID: 35775993 DOI: 10.1039/d2tb00849a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The world has been suffering from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, and millions of people have been infected through human-to-human transmission and lost their lives within months. Although multidisciplinary scientific approaches have been employed to fight against this deadly pandemic, various mutations and diverse environments keep producing constraints in treating SARS-CoV-2. Indeed, the efficacy of the developed vaccines has been limited, and inoculation with the vaccines does not guarantee complete protection even though multiple doses are required, which is a frustrating process. Historically, coinage metals (Cu, Ag, and Au) have been well-known for their effectiveness in antiviral action as well as good biocompatibility, binding receptor inhibition, reactive oxygen species, and phototherapy properties. Thus, this review highlights the diagnostic and therapeutic mechanisms of SARS-CoV-2 using the antivirus ability and mode of action of coinage metals such as viral entry mechanisms into host cells and the NP-inhibition process, which are explained in detail. This article also draws attention to coinage metal nanomaterial-based approaches to treat other contagious viruses. In addition, coinage metal-based biosensors and an overview of some other biocompatible metal-based nanomaterials to fight against SARS-CoV-2 variants are discussed. Finally, the advantages, perspectives and challenges of coinage metal nanoparticles are given to fight against viral infections in the future.
Collapse
Affiliation(s)
- Asim Mushtaq
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China. .,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China. .,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China. .,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| |
Collapse
|
36
|
Costa BTD, Araújo GRL, da Silva Júnior RT, Santos LKDS, Lima de Souza Gonçalves V, Lima DBA, Cuzzuol BR, Santos Apolonio J, de Carvalho LS, Marques HS, Silva CS, Barcelos IDS, Oliveira MV, Freire de Melo F. Effects of nutrients on immunomodulation in patients with severe COVID-19: Current knowledge. World J Crit Care Med 2022; 11:201-218. [PMID: 36051942 PMCID: PMC9305681 DOI: 10.5492/wjccm.v11.i4.201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/24/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
Recent research has demonstrated that critically ill patients with coronavirus disease 2019 (COVID-19) show significant immune system dysregulation. Due to that, some nutrients that influence immunomodulation have been suggested as a form of treatment against the infection. This review collected the information on the impact of vitamins on the prognosis of COVID-19, with the intention of facilitating treatment and prevention of the disease risk status in patients. The collected information was obtained using the PubMed electronic database by searching for articles that relate COVID-19 and the mechanisms/effects of the nutrients: Proteins, glucose, lipids, vitamin B12, vitamin D, calcium, iron, copper, zinc, and magnesium, including prospective, retrospective, and support articles. The findings reveal an optimal response related mainly to omega-3, eicosapentaenoic acid, docosahexaenoic acid, calcium, and iron that might represent benefits in the treatment of critically ill patients. However, nutrient supplementation should be done with caution due to the limited availability of randomized controlled studies.
Collapse
Affiliation(s)
- Bruna Teixeira da Costa
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Glauber Rocha Lima Araújo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Luana Kauany de Sá Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Daniel Bastos Alves Lima
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Beatriz Rocha Cuzzuol
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Jonathan Santos Apolonio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Lorena Sousa de Carvalho
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45083-900, Bahia, Brazil
| | - Camilo Santana Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Isadora de Souza Barcelos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Márcio Vasconcelos Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
37
|
Bahrami A, Arabestani MR, Taheri M, Farmany A, Norozzadeh F, Hosseini SM, Nozari H, Nouri F. Exploring the Role of Heavy Metals and Their Derivatives on the Pathophysiology of COVID-19. Biol Trace Elem Res 2022; 200:2639-2650. [PMID: 34448983 PMCID: PMC8391869 DOI: 10.1007/s12011-021-02893-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
Many aspects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its disease, COVID-19, have been studied to determine its properties, transmission mechanisms, and pathology. These efforts are aimed at identifying potential approaches to control or treat the disease. Early treatment of novel SARS-CoV-2 infection to minimize symptom progression has minimal evidence; however, many researchers and firms are working on vaccines, and only a few vaccines exist. COVID-19 is affected by several heavy metals and their nanoparticles. We investigated the effects of heavy metals and heavy metal nanoparticles on SARS-CoV-2 and their roles in COVID-19 pathogenesis. AgNPs, AuNPs, gold-silver hybrid NPs, copper nanoparticles, zinc oxide, vanadium, gallium, bismuth, titanium, palladium, silver grafted graphene oxide, and some quantum dots were tested to see if they could minimize the severity or duration of symptoms in patients with SARS-CoV-2 infection when compared to standard therapy.
Collapse
Affiliation(s)
- Ali Bahrami
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Farmany
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Norozzadeh
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Mostafa Hosseini
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hesam Nozari
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Nouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
38
|
Luz MS, da Silva Júnior RT, Santos de Santana GA, Rodrigues GS, Crivellaro HDL, Calmon MS, dos Santos CFSM, Silva LGDO, Ferreira QR, Mota GR, Heim H, Silva FAFD, de Brito BB, de Melo FF. Molecular and serology methods in the diagnosis of COVID-19: An overview. World J Methodol 2022; 12:83-91. [PMID: 35721247 PMCID: PMC9157626 DOI: 10.5662/wjm.v12.i3.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/31/2021] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease-19 (COVID-19) has become a pandemic, being a global health concern since December 2019 when the first cases were reported. Severe acute respiratory syndrome coronavirus 2, the COVID-19 causal agent, is a β-coronavirus that has on its surface the spike protein, which helps in its virulence and pathogenicity towards the host. Thus, effective and applicable diagnostic methods to this disease come as an important tool for the management of the patients. The use of the molecular technique PCR, which allows the detection of the viral RNA through nasopharyngeal swabs, is considered the gold standard test for the diagnosis of COVID-19. Moreover, serological methods, such as enzyme-linked immunosorbent assays and rapid tests, are able to detect severe acute respiratory syndrome coronavirus 2-specific immunoglobulin A, immunoglobulin M, and immunoglobulin G in positive patients, being important alternative techniques for the diagnostic establishment and epidemiological surveillance. On the other hand, reverse transcription loop-mediated isothermal amplification also proved to be a useful diagnostic method for the infection, mainly because it does not require a sophisticated laboratory apparatus and has similar specificity and sensitivity to PCR. Complementarily, imaging exams provide findings of typical pneumonia, such as the ground-glass opacity radiological pattern on chest computed tomography scanning, which along with laboratory tests assist in the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | | | | | - Gabriela Santos Rodrigues
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | - Henrique de Lima Crivellaro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | - Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | | | | | - Qesya Rodrigues Ferreira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | - Guilherme Rabelo Mota
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | - Heloísa Heim
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | | | - Breno Bittencourt de Brito
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde , Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
39
|
Boretti A. Zinc augments the antiviral potential of HCQ/CQ and ivermectin to reduce the risks of more serious outcomes from COVID-19 infection. J Trace Elem Med Biol 2022; 71:126954. [PMID: 35190326 PMCID: PMC8851879 DOI: 10.1016/j.jtemb.2022.126954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
Treatments do not replace vaccinations or restrictions, but are practical, effective, and safe means to help to reduce the fatality associated with COVID-19 infection. While no treatment is available and effective for all the current and future variants of COVID-19, treatments reduce the risk of COVID-19 becoming endemic and reduce mortality and collateral damages. The use of Zinc (Zn) for COVID-19 infection is here reviewed. Zn supplementation may help in prevention as well as during the administration of therapies. Zn supplementation reduces the risks of serious outcomes from Covid19 infection. Evidence also suggests that Zn helps in treatments of COVID-19 infection if taken in conjunction with antiviral drugs. The literature supports the use of Zn, with improvements towards a lower risk ranging from 37% in late treatment, RR 0.63 CI [0.53-0.74], to 78% in sufficiency, RR 0.22 CI [0.05-0.96].
Collapse
Affiliation(s)
- Alberto Boretti
- Independent Scientist, Johnsonville, Wellington 6037, New Zealand.
| |
Collapse
|
40
|
Ivanova ID, Pal A, Simonelli I, Atanasova B, Ventriglia M, Rongioletti M, Squitti R. Evaluation of zinc, copper, and Cu:Zn ratio in serum, and their implications in the course of COVID-19. J Trace Elem Med Biol 2022; 71:126944. [PMID: 35168023 PMCID: PMC8820953 DOI: 10.1016/j.jtemb.2022.126944] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/20/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND The dynamics of essential metals such as Copper (Cu) and Zinc (Zn) may be associated with the novel coronavirus disease 2019 (COVID-19) that has spread across the globe. OBJECTIVES The aim of this study is to investigate the relationship between serum levels of Cu and Zn, as well as the Cu:Zn ratio in the acute phase of COVID-19 along with the assessment of their connection to other laboratory parameters (hematological, biochemical, hemostatic). METHODS Serum levels of Cu and Zn were measured by atomic absorption spectrometry in 75 patients in the acute COVID-19 phase and were compared with those of 22 COVID-19 patients evaluated three months after the acute phase of the disease ('non-acute' group) and with those of 68 healthy individuals. RESULTS In comparison with both the non-acute patients and the healthy controls, the acute patients had lower levels of hemoglobulin and albumin, and higher levels of glucose, creatinine, liver transaminases, C-reactive protein (CRP), and higher values of the neutrophils to lymphocytes ratio (NLR) at the hospital admission. They also exhibited increased levels of Cu and decreased of Zn, well represented by the Cu:Zn ratio which was higher in the acute patients than in both non-acute patients (p = 0.001) and healthy controls (p < 0.001), with no statistical difference between the last two groups. The Cu:Zn ratio (log scale) positively correlated with CRP (log scale; r = 0.581, p < 0.001) and NLR (r = 0.436, p = 0.003). CONCLUSION Current results demonstrate that abnormal dynamics of Cu and Zn levels in serum occur early during the course of COVID-19 disease, and are mainly associated with the inflammation response.
Collapse
Affiliation(s)
- Irena D Ivanova
- Clinical Laboratory Department, St. Ivan Rilski University Hospital, Medical University, Sofia, Bulgaria
| | - Amit Pal
- Department of Biochemistry, AIIMS, Kalyani, India
| | - Ilaria Simonelli
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Bisera Atanasova
- University Hospital "Alexandrovska", Sofia, Bulgaria; Department of Clinical Laboratory, Faculty of Medicine, Medical University - Sofia, Bulgaria
| | - Mariacarla Ventriglia
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
41
|
Gutiérrez Rodelo C, Salinas RA, Armenta JaimeArmenta E, Armenta S, Galdámez-Martínez A, Castillo-Blum SE, Astudillo-de la Vega H, Nirmala Grace A, Aguilar-Salinas CA, Gutiérrez Rodelo J, Christie G, Alsanie WF, Santana G, Thakur VK, Dutt A. Zinc associated nanomaterials and their intervention in emerging respiratory viruses: Journey to the field of biomedicine and biomaterials. Coord Chem Rev 2022; 457:214402. [PMID: 35095109 PMCID: PMC8788306 DOI: 10.1016/j.ccr.2021.214402] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022]
Abstract
Respiratory viruses represent a severe public health risk worldwide, and the research contribution to tackle the current pandemic caused by the SARS-CoV-2 is one of the main targets among the scientific community. In this regard, experts from different fields have gathered to confront this catastrophic pandemic. This review illustrates how nanotechnology intervention could be valuable in solving this difficult situation, and the state of the art of Zn-based nanostructures are discussed in detail. For virus detection, learning from the experience of other respiratory viruses such as influenza, the potential use of Zn nanomaterials as suitable sensing platforms to recognize the S1 spike protein in SARS-CoV-2 are shown. Furthermore, a discussion about the antiviral mechanisms reported for ZnO nanostructures is included, which can help develop surface disinfectants and protective coatings. At the same time, the properties of Zn-based materials as supplements for reducing viral activity and the recovery of infected patients are illustrated. Within the scope of noble adjuvants to improve the immune response, the ZnO NPs properties as immunomodulators are explained, and potential prototypes of nanoengineered particles with metallic cations (like Zn2+) are suggested. Therefore, using Zn-associated nanomaterials from detection to disinfection, supplementation, and immunomodulation opens a wide area of opportunities to combat these emerging respiratory viruses. Finally, the attractive properties of these nanomaterials can be extrapolated to new clinical challenges.
Collapse
Affiliation(s)
- Citlaly Gutiérrez Rodelo
- Healthcare Business and Computer Technology, Mexico
- Nanopharmacia Diagnostica, Tlaxcala No. 146/705, Col. Roma Sur, Cuauhtémoc, Cuidad de México, C.P. 06760, Mexico
| | - Rafael A Salinas
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional (CIBA-IPN), Tlaxcala 72197, Mexico
| | - Erika Armenta JaimeArmenta
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF 04510, México
| | - Silvia Armenta
- Department of Biology, McGill University, 3649 Sir William Osler, Montreal, QC H3G 0B1, Canada
| | - Andrés Galdámez-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacan, México City, C.P. 04510, Mexico
| | - Silvia E Castillo-Blum
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF 04510, México
| | - Horacio Astudillo-de la Vega
- Healthcare Business and Computer Technology, Mexico
- Nanopharmacia Diagnostica, Tlaxcala No. 146/705, Col. Roma Sur, Cuauhtémoc, Cuidad de México, C.P. 06760, Mexico
| | - Andrews Nirmala Grace
- Centre for Nanotechnology Research, VIT University, Vellore, Tamil Nadu 632 014, India
| | - Carlos A Aguilar-Salinas
- Unidad de Investigación de Enfermedades Metabólicas y Dirección de Nutrición. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| | - Juliana Gutiérrez Rodelo
- Instituto Méxicano del Seguro Social, Hospital General de SubZona No. 4, C.P. 80370, Navolato, Sinaloa, México
| | - Graham Christie
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - Walaa F Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Guillermo Santana
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacan, México City, C.P. 04510, Mexico
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh EH9 3JG, UK
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacan, México City, C.P. 04510, Mexico
| |
Collapse
|
42
|
Imran M, Fatima W, Alzahrani AK, Suhail N, Alshammari MK, Alghitran AA, Alshammari FN, Ghoneim MM, Alshehri S, Shakeel F. Development of Therapeutic and Prophylactic Zinc Compositions for Use against COVID-19: A Glimpse of the Trends, Inventions, and Patents. Nutrients 2022; 14:1227. [PMID: 35334884 PMCID: PMC8955262 DOI: 10.3390/nu14061227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Zinc is an essential nutrient for human health; it is involved in the catalytic, structural, and regulatory functions of the human cellular system. Different compositions of zinc, as well as its pharmaceutically acceptable salts, are available on the market. Recent studies have demonstrated the role of zinc in combating COVID-19. It has been determined that zinc prevents the entry of SARS-CoV-2 into cells by lowering the expression of ACE-2 receptors and inhibiting the RNA-dependent RNA polymerase of SARS-CoV-2. Zinc also prevents the cytokine storm that takes place after the entry of SARS-CoV-2 into the cell, via its anti-inflammatory activity. The authors believe that no study has yet been published that has reviewed the trends, inventions, and patent literature of zinc compositions to treat/prevent COVID-19. Accordingly, this review has been written in order to fill this gap in the literature. The information about the clinical studies and the published patents/patent applications was retrieved from different databases. This review covers patent literature on zinc compositions up to 31 January 2022. Many important patents/patent applications for zinc-based compositions filed by innovative universities and industries were identified. The patent literature revealed zinc compositions in combination with zinc ionophores, antioxidants, antivirals, antibiotics, hydroxychloroquine, heparin, ivermectin, and copper. Most of these studies were supported by clinical trials. The patent literature supports the potential of zinc and its pharmaceutical compositions as possible treatments for COVID-19. The authors believe that countless zinc-based compositions are still unexplored, and there is an immense opportunity to evaluate a considerable number of the zinc-based compositions for use against COVID-19.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Waseem Fatima
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia;
| | - A. Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia; (A.K.A.); (N.S.)
| | - Nida Suhail
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia; (A.K.A.); (N.S.)
| | | | - Abdulrahman A. Alghitran
- Department of Clinical Pharmacy, General Administration of Pharmaceutical Care, Ministry of Health, Riyadh 11176, Saudi Arabia;
| | - Fayez Nafea Alshammari
- Community Pharmacist, Al-Dawaa Pharmacies, Kingdom of Saudi Arabia, Hafer Albatin 39911, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, Riyadh 11451, Saudi Arabia;
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
43
|
Gordon AM, Hardigan PC. A Case-Control Study for the Effectiveness of Oral Zinc in the Prevention and Mitigation of COVID-19. Front Med (Lausanne) 2021; 8:756707. [PMID: 34966750 PMCID: PMC8711630 DOI: 10.3389/fmed.2021.756707] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/12/2021] [Indexed: 12/23/2022] Open
Abstract
Background: The ongoing coronavirus disease-19 (COVID-19) pandemic (caused by an infection with severe acute respiratory syndrome (SARS)-coronavirus (CoV-2) has put a burden on the medical community and society at large. Efforts to reduce the disease burden and mortality over the course of the pandemic have focused on research to rapidly determine age-stratified seroepidemiologic surveys, a centralized research program to fast-track the most promising rapid diagnostics and serologic assays, and the testing of potential anti-viral agents, immunologic therapies, and vaccine candidates. Despite the lack of official recognition for the role of nutrition in the fight against COVID-19 infection, multiple groups proposed zinc supplementation as an adjuvant for the management of participants. Method: In an ambulatory, interventional, prospective, single-blind study, we evaluated the effectiveness of zinc supplementation in the prevention and mitigation of COVID-19 in two similar participant groups. In Clinic A (n = 104) participants were randomized to receive 10 mg, 25 mg, or 50 mg zinc picolinate daily, and Clinic B control participants paired according to their demographics and clinical parameters (n = 96). All participants were compared based on demographics, clinical comorbidities, blood counts, renal functions, vitamin D levels, and their development of symptomatic COVID-19 infection. Results: Symptomatic COVID-19 infection was significantly higher among the control group participants (N = 9, 10.4%) than the treatment participants (N = 2, 1.9%), p = 0.015. The unadjusted odds ratio indicates that symptomatic COVID-19 infection was 5.93 [95% CI: 1.51, 39.26] higher in the control group, p < 0.01. Controlling for co-morbidities, individuals in the control group were 7.38 (95% CI: 1.80, 50.28) times more likely to develop symptomatic COVID-19 infection as compared with individuals in the treatment group (p < 0.01). For every-one unit increase in the number of co-morbidities, the likelihood of developing symptomatic COVID-19 infection increased 1.57 (95% CI: 1.16, 2.19) (p = 0.01). Discussion: The findings from our study suggest that zinc supplementation in all three doses (10, 25, and 50 mg) may be an effective prophylaxis of symptomatic COVID-19 and may mitigate the severity of COVID-19 infection. Conclusion: Zinc is a relatively inexpensive mineral nutrient that is an effective prophylactic agent to prevent and mitigate the potentially deadly symptomatic SARS-CoV-2 infection. As the COVID-19 pandemic continues with a lag in vaccinations in some regions and the continued emergence of dangerously infectious variants of SARS-CoV-2, it is important to replicate our data in other populations and locations and to engage public health and nutrition services on the emergent need to use zinc supplantation or fortification of staple foods in the prevention and mitigation of COVID-19 infection severity.
Collapse
Affiliation(s)
- Antonio M Gordon
- Department of Internal Medicine, University Health Care, Hialeah, FL, United States
| | - Patrick C Hardigan
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| |
Collapse
|
44
|
Yao S, Luo N, Liu J, Zha H, Ai Y, Luo J, Shi S, Wu K. Elevated Serum Levels of Progranulin and Soluble Vascular Cell Adhesion Molecule-1 in Patients with COVID-19. J Inflamm Res 2021; 14:4785-4794. [PMID: 34584437 PMCID: PMC8464378 DOI: 10.2147/jir.s330356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with the angiocentric inflammation and angiogenesis, yet the molecules involved in this process remain to be determined. Methods We did a cross-sectional study of a cohort of patients with COVID-19 in Zunyi, China between February 1 and March 30, 2020. Serum concentrations of PGRN were determined by enzyme-linked immunosorbent assay in patients with COVID-19 at hospital admission and at discharge. In parallel, the serum levels of soluble adhesion molecules, vascular cell adhesion molecule-1 (sVCAM-1), intercellular adhesion molecule-1 (sICAM-1), P-selectin (sP-selectin), and E-selectin (sE-selectin) were assayed by a human adhesion molecule multiplex kit. The association between serum PGRN levels and other laboratory test results was analyzed by Spearman correlation analysis. Results At baseline, the median serum PGRN levels in patients with COVID-19 were 94.8 ng/mL [interquartile range (IQR): 66.6–119.6 ng/mL], which was significantly elevated compared with those in healthy controls (46.3 ng/mL, IQR: 41.8–55.6 ng/mL). Moreover, the median serum sVCAM-1 levels were significantly higher in COVID-19 patients (1396.0 ng/mL, IQR: 1019.1–1774.8 ng/mL) than those in healthy controls (612.4 ng/mL, IQR: 466.4–689.3 ng/mL). However, the levels of sICAM-1, sP-selectin, and sE-selectin were not significantly elevated in patients with COVID-19 when compared to healthy controls. Further analysis showed that serum PGRN levels were significantly positively associated with sVCAM-1 (r= 0.675, P= 0.008) and inversely with sICAM-1 (r= −0.609, P= 0.021) and aspartate aminotransferase levels (r= −0.560, P= 0.037) in patients with COVID-19 at hospital admission. In COVID-19 patients, serum PGRN and sVCAM-1 levels fell significantly after successful treatment. Conclusion The present study demonstrates elevated serum PGRN and sVCAM-1 levels in patients with COVID-19, which may provide clues as to the mechanisms underlying the pathogenesis of COVID-19. Further studies are warranted to evaluate the potential of PGRN and sVCAM-1 as biomarkers and investigate their role in the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Shifei Yao
- Department of Laboratory Medicine, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China.,Scientific Research Center, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China
| | - Nanning Luo
- Department of Laboratory Medicine, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China.,Scientific Research Center, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China
| | - Jiaoyang Liu
- Department of Laboratory Medicine, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China.,Scientific Research Center, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China
| | - He Zha
- Department of Laboratory Medicine, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China
| | - Yuanhang Ai
- Department of Laboratory Medicine, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China.,Scientific Research Center, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China
| | - Juan Luo
- Department of Laboratory Medicine, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China.,Scientific Research Center, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China
| | - Shi Shi
- Department of Laboratory Medicine, The Fourth People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China
| | - Kaifeng Wu
- Department of Laboratory Medicine, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China.,Scientific Research Center, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China
| |
Collapse
|