1
|
Noriega HA, Wang Q, Yu D, Wang XS. Structural studies of Parvoviridae capsid assembly and evolution: implications for novel AAV vector design. Front Artif Intell 2025; 8:1559461. [PMID: 40242328 PMCID: PMC12000042 DOI: 10.3389/frai.2025.1559461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Adeno-associated virus (AAV) vectors have emerged as powerful tools in gene therapy, potentially treating various genetic disorders. Engineering the AAV capsids through computational methods enables the customization of these vectors to enhance their effectiveness and safety. This engineering allows for the development of gene therapies that are not only more efficient but also personalized to unique genetic profiles. When developing, it is essential to understand the structural biology and the vast techniques used to guide vector designs. This review covers the fundamental biology of the Parvoviridae capsids, focusing on modern structural study techniques, including (a) Cryo-electron microscopy and X-ray Crystallography studies and (b) Comparative analysis of capsid structures across different Parvoviridae species. Along with the structure and evolution of the Parvoviridae capsids, computational methods have provided significant insights into the design of novel AAV vector techniques, which include (a) Structure-guided design of AAV capsids with improved properties, (b) Directed Evolution of AAV capsids for specific applications, and (c) Computational prediction of AAV capsid-receptor interactions. Further discussion addressed the ongoing challenges in the AAV vector design and proposed future directions for exploring enhanced computational tools, such as artificial intelligence/machine learning and deep learning.
Collapse
Affiliation(s)
- Heather A. Noriega
- Department of Pharmaceutical Sciences, Artificial Intelligence and Drug Discovery Core Laboratory for District of Columbia Center for AIDS Research (DC CFAR), College of Pharmacy, Howard University, Washington, DC, United States
| | - Qizhao Wang
- AAVnerGene Inc., Rockville, MD, United States
| | - Daozhan Yu
- AAVnerGene Inc., Rockville, MD, United States
| | - Xiang Simon Wang
- Department of Pharmaceutical Sciences, Artificial Intelligence and Drug Discovery Core Laboratory for District of Columbia Center for AIDS Research (DC CFAR), College of Pharmacy, Howard University, Washington, DC, United States
| |
Collapse
|
2
|
Romanovsky D, Scherk H, Föhr B, Babutzka S, Bogedein J, Lu Y, Reschigna A, Michalakis S. Heparan sulfate proteoglycan affinity of adeno-associated virus vectors: Implications for retinal gene delivery. Eur J Pharm Sci 2025; 206:107012. [PMID: 39805508 DOI: 10.1016/j.ejps.2025.107012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/24/2024] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Adeno-associated virus (AAV)-based vectors have emerged as an effective and widely used technology for somatic gene therapy approaches, including those targeting the retina. A major advantage of the AAV technology is the availability of a large number of serotypes that have either been isolated from nature or produced in the laboratory. These serotypes have different properties in terms of sensitivity to neutralizing antibodies, cellular transduction profile and efficiency. The infectivity of AAV vectors depends on the affinity to certain molecules on the cell surface, in particular to cellular glycosaminoglycans (GAGs) such as heparan sulfate proteoglycans (HSPGs). Here, we tested how altering HSPG affinity in AAV vectors affects cellular tropism and transduction efficiency. The previously developed AAV2.GL variant was used as a starting variant to alter or disrupt HSPG affinity. The HSPG-independent AAV9 serotype was used to introduce different HSPG-binding sites. As an indicator of HSPG affinity, we measured the binding strength of the vector variant on a heparin chromatography column. We show that modification of capsid-exposed residues has a strong impact on HSPG affinity, cellular tropism and transduction efficiency in HeLa cells and in vivo in mouse retina. Our study shows that key properties of AAV vectors can be tailored in different directions and used to improve tropism and efficiency.
Collapse
Affiliation(s)
- Dimitri Romanovsky
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Hanna Scherk
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Bastian Föhr
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sabrina Babutzka
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jacqueline Bogedein
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Yi Lu
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Alice Reschigna
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
3
|
Soth S, Takakura M, Suekawa M, Onishi T, Hirohata K, Hashimoto T, Maruno T, Fukuhara M, Tsunaka Y, Torisu T, Uchiyama S. Quantification of full and empty particles of adeno-associated virus vectors via a novel dual fluorescence-linked immunosorbent assay. Mol Ther Methods Clin Dev 2024; 32:101291. [PMID: 39070291 PMCID: PMC11283060 DOI: 10.1016/j.omtm.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
The adeno-associated virus (AAV) vector is one of the most advanced platforms for gene therapy because of its low immunogenicity and non-pathogenicity. The concentrations of both AAV vector empty particles, which do not contain DNA and do not show any efficacy, and AAV vector full particles (FPs), which contain DNA, are important quality attributes. In this study, a dual fluorescence-linked immunosorbent assay (dFLISA), which uses two fluorescent dyes to quantify capsid and genome titers in a single analysis, was established. In dFLISA, capture of AAV particles, detection of capsid proteins, and release and detection of the viral genome are performed in the same well. We demonstrated that the capsid and genomic titers determined by dFLISA were comparable with those of analytical ultracentrifugation. The FP ratios determined by dFLISA were in good agreement with the expected values. In addition, we showed that dFLISA can quantify the genomic and capsid titers of crude samples. dFLISA can be easily modified for measuring other AAV vector serotypes and AAV vectors with different genome lengths. These features make dFLISA a valuable tool for the future development of AAV-based gene therapies.
Collapse
Affiliation(s)
- Sereirath Soth
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mikako Takakura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiro Suekawa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Onishi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kiichi Hirohata
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tamami Hashimoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahiro Maruno
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuko Fukuhara
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Tsunaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuo Torisu
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
4
|
Vu Hong A, Suel L, Petat E, Dubois A, Le Brun PR, Guerchet N, Veron P, Poupiot J, Richard I. An engineered AAV targeting integrin alpha V beta 6 presents improved myotropism across species. Nat Commun 2024; 15:7965. [PMID: 39261465 PMCID: PMC11390886 DOI: 10.1038/s41467-024-52002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
Current adeno-associated virus (AAV) gene therapy using nature-derived AAVs is limited by non-optimal tissue targeting. In the treatment of muscular diseases (MD), high doses are often required but can lead to severe adverse effects. Here, we rationally design an AAV capsid that specifically targets skeletal muscle to lower treatment doses. We computationally integrate binding motifs of human integrin alphaV beta6, a skeletal muscle receptor, into a liver-detargeting capsid. Designed AAVs show higher productivity and superior muscle transduction compared to their parent. One variant, LICA1, demonstrates comparable muscle transduction to other myotropic AAVs with reduced liver targeting. LICA1's myotropic properties are observed across species, including non-human primate. Consequently, LICA1, but not AAV9, effectively delivers therapeutic transgenes and improved muscle functionality in two mouse MD models (male mice) at a low dose (5E12 vg/kg). These results underline the potential of our design method for AAV engineering and LICA1 variant for MD gene therapy.
Collapse
Affiliation(s)
- Ai Vu Hong
- Genethon, 1 bis rue de l'internationale, Evry, France.
- INTEGRARE research unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), Evry, France.
| | - Laurence Suel
- Genethon, 1 bis rue de l'internationale, Evry, France
- INTEGRARE research unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), Evry, France
| | - Eva Petat
- Genethon, 1 bis rue de l'internationale, Evry, France
- INTEGRARE research unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), Evry, France
| | - Auriane Dubois
- Genethon, 1 bis rue de l'internationale, Evry, France
- INTEGRARE research unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), Evry, France
| | - Pierre-Romain Le Brun
- Genethon, 1 bis rue de l'internationale, Evry, France
- INTEGRARE research unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), Evry, France
| | - Nicolas Guerchet
- Genethon, 1 bis rue de l'internationale, Evry, France
- INTEGRARE research unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), Evry, France
| | - Philippe Veron
- Genethon, 1 bis rue de l'internationale, Evry, France
- INTEGRARE research unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), Evry, France
| | - Jérôme Poupiot
- Genethon, 1 bis rue de l'internationale, Evry, France
- INTEGRARE research unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), Evry, France
| | - Isabelle Richard
- Genethon, 1 bis rue de l'internationale, Evry, France.
- INTEGRARE research unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), Evry, France.
- Atamyo Therapeutics, 1 bis rue de l'internationale, Evry, France.
| |
Collapse
|
5
|
Shay TF, Jang S, Brittain TJ, Chen X, Walker B, Tebbutt C, Fan Y, Wolfe DA, Arokiaraj CM, Sullivan EE, Ding X, Wang TY, Lei Y, Chuapoco MR, Chou TF, Gradinaru V. Human cell surface-AAV interactomes identify LRP6 as blood-brain barrier transcytosis receptor and immune cytokine IL3 as AAV9 binder. Nat Commun 2024; 15:7853. [PMID: 39245720 PMCID: PMC11381518 DOI: 10.1038/s41467-024-52149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024] Open
Abstract
Adeno-associated viruses (AAVs) are foundational gene delivery tools for basic science and clinical therapeutics. However, lack of mechanistic insight, especially for engineered vectors created by directed evolution, can hamper their application. Here, we adapt an unbiased human cell microarray platform to determine the extracellular and cell surface interactomes of natural and engineered AAVs. We identify a naturally-evolved and serotype-specific interaction between the AAV9 capsid and human interleukin 3 (IL3), with possible roles in host immune modulation, as well as lab-evolved low-density lipoprotein receptor-related protein 6 (LRP6) interactions specific to engineered capsids with enhanced blood-brain barrier crossing in non-human primates after intravenous administration. The unbiased cell microarray screening approach also allows us to identify off-target tissue binding interactions of engineered brain-enriched AAV capsids that may inform vectors' peripheral organ tropism and side effects. Our cryo-electron tomography and AlphaFold modeling of capsid-interactor complexes reveal LRP6 and IL3 binding sites. These results allow confident application of engineered AAVs in diverse organisms and unlock future target-informed engineering of improved viral and non-viral vectors for non-invasive therapeutic delivery to the brain.
Collapse
Affiliation(s)
- Timothy F Shay
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Seongmin Jang
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Tyler J Brittain
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Xinhong Chen
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Beth Walker
- Charles River Laboratories, High Peak Business Park, Buxton Road, Chinley, SK23 6FJ, UK
| | - Claire Tebbutt
- Charles River Laboratories, High Peak Business Park, Buxton Road, Chinley, SK23 6FJ, UK
| | - Yujie Fan
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Damien A Wolfe
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Cynthia M Arokiaraj
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Erin E Sullivan
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Xiaozhe Ding
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ting-Yu Wang
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yaping Lei
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Miguel R Chuapoco
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Tsui-Fen Chou
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Viviana Gradinaru
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
6
|
Hoffman JA, Denton N, Sims JJ, Meggersee R, Zhang Z, Olagbegi K, Wilson JM. Modulation of AAV9 Galactose Binding Yields Novel Gene Therapy Vectors and Predicts Cross-Species Differences in Glycan Avidity. Hum Gene Ther 2024; 35:734-753. [PMID: 39001819 DOI: 10.1089/hum.2024.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024] Open
Abstract
Effective use of adeno-associated viruses (AAVs) for clinical gene therapy is limited by their propensity to accumulate in and transduce the liver. This natural liver tropism is associated with severe adverse events at the high doses that can be necessary for achieving therapeutic transgene expression in extrahepatic tissues. To improve the safety and cost of AAV gene therapy, capsid engineering efforts are underway to redirect in vivo AAV biodistribution away from the liver toward disease-relevant peripheral organs such as the heart. Building on previous work, we generated a series of AAV libraries containing variations at three residues (Y446, N470, and W503) of the galactose-binding pocket of the AAV9 VP1 protein. Screening of this library in mice identified the XRH family of variants (Y446X, N470R, and W503H), the strongest of which, HRH, exhibited a 6-fold reduction in liver RNA expression and a 10-fold increase in cardiac RNA expression compared with wild-type AAV9 in the mouse. Screening of our library in a nonhuman primate (NHP) revealed reduced performance of AAV9 and two closely related vectors in the NHP liver compared with the mouse liver. Measurement of the galactose-binding capacity of our library further identified those same three vectors as the only strong galactose binders, suggesting an altered galactose presentation between the mouse and NHP liver. N-glycan profiling of these tissues revealed a 9% decrease in exposed galactose in the NHP liver compared with the mouse liver. In this work, we identified a novel family of AAV variants with desirable biodistribution properties that may be suitable for targeting extrahepatic tissues such as the heart. These data also provide important insights regarding species- and tissue-specific differences in glycan presentation that may have implications for the development and translation of AAV gene therapies.
Collapse
Affiliation(s)
- Jacob A Hoffman
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nathan Denton
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joshua J Sims
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rosemary Meggersee
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhe Zhang
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kanyin Olagbegi
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Kachanov A, Kostyusheva A, Brezgin S, Karandashov I, Ponomareva N, Tikhonov A, Lukashev A, Pokrovsky V, Zamyatnin AA, Parodi A, Chulanov V, Kostyushev D. The menace of severe adverse events and deaths associated with viral gene therapy and its potential solution. Med Res Rev 2024; 44:2112-2193. [PMID: 38549260 DOI: 10.1002/med.22036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 08/09/2024]
Abstract
Over the past decade, in vivo gene replacement therapy has significantly advanced, resulting in market approval of numerous therapeutics predominantly relying on adeno-associated viral vectors (AAV). While viral vectors have undeniably addressed several critical healthcare challenges, their clinical application has unveiled a range of limitations and safety concerns. This review highlights the emerging challenges in the field of gene therapy. At first, we discuss both the role of biological barriers in viral gene therapy with a focus on AAVs, and review current landscape of in vivo human gene therapy. We delineate advantages and disadvantages of AAVs as gene delivery vehicles, mostly from the safety perspective (hepatotoxicity, cardiotoxicity, neurotoxicity, inflammatory responses etc.), and outline the mechanisms of adverse events in response to AAV. Contribution of every aspect of AAV vectors (genomic structure, capsid proteins) and host responses to injected AAV is considered and substantiated by basic, translational and clinical studies. The updated evaluation of recent AAV clinical trials and current medical experience clearly shows the risks of AAVs that sometimes overshadow the hopes for curing a hereditary disease. At last, a set of established and new molecular and nanotechnology tools and approaches are provided as potential solutions for mitigating or eliminating side effects. The increasing number of severe adverse reactions and, sadly deaths, demands decisive actions to resolve the issue of immune responses and extremely high doses of viral vectors used for gene therapy. In response to these challenges, various strategies are under development, including approaches aimed at augmenting characteristics of viral vectors and others focused on creating secure and efficacious non-viral vectors. This comprehensive review offers an overarching perspective on the present state of gene therapy utilizing both viral and non-viral vectors.
Collapse
Affiliation(s)
- Artyom Kachanov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Ivan Karandashov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Andrey Tikhonov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Vadim Pokrovsky
- Laboratory of Biochemical Fundamentals of Pharmacology and Cancer Models, Blokhin Cancer Research Center, Moscow, Russia
- Department of Biochemistry, People's Friendship University, Russia (RUDN University), Moscow, Russia
| | - Andrey A Zamyatnin
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Research, Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Vladimir Chulanov
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Infectious Diseases, Sechenov University, Moscow, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
8
|
Ge J, Xie S, Duan J, Tian B, Ren P, Hu E, Huang Q, Mao H, Zou Y, Chen Q, Wang W. Imbalance between hippocampal projection cell and parvalbumin interneuron architecture increases epileptic susceptibility in mouse model of methyl CpG binding protein 2 duplication syndrome. Epilepsia 2024; 65:2483-2496. [PMID: 38819633 DOI: 10.1111/epi.18027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE Methyl CpG-binding protein 2 (MECP2) duplication syndrome is a rare X-linked genomic disorder affecting predominantly males, which is usually manifested as epilepsy and autism spectrum disorder (ASD) comorbidity. The transgenic line MeCP2Tg1 was used for mimicking MECP2 duplication syndrome and showed autism-epilepsy co-occurrence. Previous works suggested that the excitatory/inhibitory (E/I) imbalance is a potential common mechanism for both epilepsy and ASD. The projection neurons and parvalbumin (PV) interneurons account for the majority of E/I balance in the hippocampus. Therefore, we explored how structural changes of projection and PV+ neurons occur in the hippocampus of MeCP2Tg1 mice and whether these morphological changes contribute to epilepsy susceptibility. METHODS We used the interneuron Designer receptors exclusively activated by designer drugs mouse model to inhibit inhibitory neurons in the hippocampus to verify the epilepsy susceptibility of MeCP2Tg1 (FVB, an inbred strain named as sensitivity to Friend leukemia virus) mice. Electroencephalograms were recorded for the definition of seizure. We performed retro-orbital injection of virus in MeCP2Tg1 (FVB):CaMKIIα-Cre (C57BL/6) mice or MeCP2Tg1:PV-Cre (C57BL/6) mice and their littermate controls to specifically label projection and PV+ neurons for structural analysis. RESULTS Epilepsy susceptibility was increased in MeCP2Tg1 mice. There was a reduced number of PV neurons and reduced dendritic complexity in the hippocampus of MeCP2Tg1 mice. The dendritic complexity in MeCP2Tg1 mice was increased compared to wild-type mice, and total dendritic spine density in dentate gyrus of MeCP2Tg1 mice was also increased. Total dendritic spine density was increased in CA1 of MeCP2Tg1 mice. SIGNIFICANCE Overexpression of MeCP2 may disrupt crucial signaling pathways, resulting in decreased dendritic complexity of PV interneurons and increased dendritic spine density of projection neurons. This reciprocal modulation of excitatory and inhibitory neuronal structures associated with MeCP2 implies its significance as a potential target in the development of epilepsy and offers a novel perspective on the co-occurrence of autism and epilepsy.
Collapse
Affiliation(s)
- Junye Ge
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Shengjun Xie
- Jingzhou Hospital affiliated with Yangtze University, Jingzhou, China
| | - Jiamei Duan
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Biqing Tian
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Pengfei Ren
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Erling Hu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Qiyi Huang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yuxin Zou
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Qian Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
9
|
Hoffmann M, Gallant J, LeBeau A, Schmidt D. Unlocking precision gene therapy: harnessing AAV tropism with nanobody swapping at capsid hotspots. NAR MOLECULAR MEDICINE 2024; 1:ugae008. [PMID: 39022346 PMCID: PMC11250487 DOI: 10.1093/narmme/ugae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Adeno-associated virus (AAV) has been remarkably successful in the clinic, but its broad tropism is a practical limitation of precision gene therapy. A promising path to engineer AAV tropism is the addition of binding domains to the AAV capsid that recognize cell surface markers present on a targeted cell type. We have recently identified two previously unexplored capsid regions near the 2/5-fold wall and 5-fold pore of the AAV capsid that are amenable to insertion of larger protein domains, including nanobodies. Here, we demonstrate that these hotspots facilitate AAV tropism switching through simple nanobody replacement without extensive optimization in both VP1 and VP2. Our data suggest that engineering VP2 is the preferred path for maintaining both virus production yield and infectivity. We demonstrate highly specific targeting of human cancer cells expressing fibroblast activating protein (FAP). Furthermore, we found that the combination of FAP nanobody insertion plus ablation of the heparin binding domain can reduce off-target infection to a minimum, while maintaining a strong infection of FAP receptor-positive cells. Taken together, our study shows that nanobody swapping at multiple capsid locations is a viable strategy for nanobody-directed cell-specific AAV targeting.
Collapse
Affiliation(s)
- Mareike D Hoffmann
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph P Gallant
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Aaron M LeBeau
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Daniel Schmidt
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Ding X, Chen X, Sullivan EE, Shay TF, Gradinaru V. Fast, accurate ranking of engineered proteins by target-binding propensity using structure modeling. Mol Ther 2024; 32:1687-1700. [PMID: 38582966 PMCID: PMC11184338 DOI: 10.1016/j.ymthe.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/08/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
Deep-learning-based methods for protein structure prediction have achieved unprecedented accuracy, yet their utility in the engineering of protein-based binders remains constrained due to a gap between the ability to predict the structures of candidate proteins and the ability toprioritize proteins by their potential to bind to a target. To bridge this gap, we introduce Automated Pairwise Peptide-Receptor Analysis for Screening Engineered proteins (APPRAISE), a method for predicting the target-binding propensity of engineered proteins. After generating structural models of engineered proteins competing for binding to a target using an established structure prediction tool such as AlphaFold-Multimer or ESMFold, APPRAISE performs a rapid (under 1 CPU second per model) scoring analysis that takes into account biophysical and geometrical constraints. As proof-of-concept cases, we demonstrate that APPRAISE can accurately classify receptor-dependent vs. receptor-independent adeno-associated viral vectors and diverse classes of engineered proteins such as miniproteins targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike, nanobodies targeting a G-protein-coupled receptor, and peptides that specifically bind to transferrin receptor or programmed death-ligand 1 (PD-L1). APPRAISE is accessible through a web-based notebook interface using Google Colaboratory (https://tiny.cc/APPRAISE). With its accuracy, interpretability, and generalizability, APPRAISE promises to expand the utility of protein structure prediction and accelerate protein engineering for biomedical applications.
Collapse
Affiliation(s)
- Xiaozhe Ding
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California, Boulevard, Pasadena, CA 91125, USA.
| | - Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California, Boulevard, Pasadena, CA 91125, USA
| | - Erin E Sullivan
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California, Boulevard, Pasadena, CA 91125, USA
| | - Timothy F Shay
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California, Boulevard, Pasadena, CA 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California, Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
11
|
Mietzsch M, Nelson AR, Hsi J, Zachary J, Potts L, Chipman P, Ghanem M, Khandekar N, Alexander IE, Logan GJ, Huiskonen JT, McKenna R. Structural characterization of antibody-responses from Zolgensma treatment provides the blueprint for the engineering of an AAV capsid suitable for redosing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.590489. [PMID: 38746165 PMCID: PMC11092599 DOI: 10.1101/2024.05.01.590489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Monoclonal antibodies (mAbs) are useful tools to dissect the neutralizing antibody response against the adeno-associated virus (AAV) capsids used as gene therapy delivery vectors. This study structurally characterizes the interactions of 21 human-derived antibodies from patients treated with the AAV9 vector, Zolgensma ® , utilizing high-resolution cryo-electron microscopy. The majority of the bound antibodies do not conform to the icosahedral symmetry of the capsid, thus requiring localized reconstructions. These complex structures provide unprecedented details of the mAbs binding interfaces, with some antibodies inducing structural perturbations of the capsid upon binding. Key surface capsid amino acid residues were identified facilitating the design of capsid variants with an antibody escape phenotype, with the potential to expand the patient cohort treatable with AAV9 vectors to include those that were previously excluded due to their pre-existing neutralizing antibodies, and possibly also to those requiring redosing.
Collapse
|
12
|
Hoffmann MD, Gallant JP, LeBeau AM, Schmidt D. Unlocking Precision Gene Therapy: Harnessing AAV Tropism with Nanobody Swapping at Capsid Hotspots. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587049. [PMID: 38585985 PMCID: PMC10996663 DOI: 10.1101/2024.03.27.587049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Adeno-associated virus has been remarkably successful in the clinic, but its broad tropism is a practical limitation of precision gene therapy. A promising path to engineer AAV tropism is the addition of binding domains to the AAV capsid that recognize cell surface markers present on a targeted cell type. We have recently identified two previously unexplored capsid regions near the 2-fold valley and 5-fold pore of the AAV capsid that are amenable to insertion of larger protein domains including nanobodies. Here, we demonstrate that these hotspots facilitate AAV tropism switching through simple nanobody replacement without extensive optimization in both VP1 and VP2. We demonstrate highly specific targeting of human cancer cells expressing fibroblast activating protein (FAP). Our data suggest that engineering VP2 is the preferred path for maintaining both virus production yield and infectivity. Our study shows that nanobody swapping at multiple capsid location is a viable strategy for nanobody-directed cell-specific AAV targeting.
Collapse
Affiliation(s)
- Mareike D. Hoffmann
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joseph P. Gallant
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, United States
| | - Aaron M. LeBeau
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, United States
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, United States
| | - Daniel Schmidt
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
13
|
Lopez-Gordo E, Chamberlain K, Riyad JM, Kohlbrenner E, Weber T. Natural Adeno-Associated Virus Serotypes and Engineered Adeno-Associated Virus Capsid Variants: Tropism Differences and Mechanistic Insights. Viruses 2024; 16:442. [PMID: 38543807 PMCID: PMC10975205 DOI: 10.3390/v16030442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
Today, adeno-associated virus (AAV)-based vectors are arguably the most promising in vivo gene delivery vehicles for durable therapeutic gene expression. Advances in molecular engineering, high-throughput screening platforms, and computational techniques have resulted in a toolbox of capsid variants with enhanced performance over parental serotypes. Despite their considerable promise and emerging clinical success, there are still obstacles hindering their broader use, including limited transduction capabilities, tissue/cell type-specific tropism and penetration into tissues through anatomical barriers, off-target tissue biodistribution, intracellular degradation, immune recognition, and a lack of translatability from preclinical models to clinical settings. Here, we first describe the transduction mechanisms of natural AAV serotypes and explore the current understanding of the systemic and cellular hurdles to efficient transduction. We then outline progress in developing designer AAV capsid variants, highlighting the seminal discoveries of variants which can transduce the central nervous system upon systemic administration, and, to a lesser extent, discuss the targeting of the peripheral nervous system, eye, ear, lung, liver, heart, and skeletal muscle, emphasizing their tissue and cell specificity and translational promise. In particular, we dive deeper into the molecular mechanisms behind their enhanced properties, with a focus on their engagement with host cell receptors previously inaccessible to natural AAV serotypes. Finally, we summarize the main findings of our review and discuss future directions.
Collapse
|
14
|
Zhang R, Liu Y, Yu F, Xu G, Li L, Li B, Lou Z. Structural basis of the recognition of adeno-associated virus by the neurological system-related receptor carbonic anhydrase IV. PLoS Pathog 2024; 20:e1011953. [PMID: 38315719 PMCID: PMC10868842 DOI: 10.1371/journal.ppat.1011953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/15/2024] [Accepted: 01/07/2024] [Indexed: 02/07/2024] Open
Abstract
Carbonic anhydrase IV (Car4) is a newly identified receptor that allows adeno-associated virus (AAV) 9P31 to cross the blood-brain barrier and achieve efficient infection in the central nervous system (CNS) in mouse models. However, the molecular mechanism by which engineered AAV capsids with 7-mer insertion in the variable region (VR) VIII recognize these novel cellular receptors is unknown. Here we report the cryo-EM structures of AAV9P31 and its complex with Mus musculus Car4 at atomic resolution by utilizing the block-based reconstruction (BBR) method. The structures demonstrated that Car4 binds to the protrusions at 3-fold axes of the capsid. The inserted 7-mer extends into a hydrophobic region near the catalytic center of Car4 to form stable interactions. Mutagenesis studies also identified the key residues in Car4 responsible for the AAV9P31 interaction. These findings provide new insights into the novel receptor recognition mechanism of AAV generated by directed evolution and highlight the application of the BBR method to studying the virus-receptor molecular mechanism.
Collapse
Affiliation(s)
- Ran Zhang
- Jinshan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, China
- MOE Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China
| | - Yixiao Liu
- MOE Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China
| | - Fengxi Yu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Guangxue Xu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lili Li
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Baobin Li
- Department of Anesthesiology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Zhiyong Lou
- MOE Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
15
|
Yoshida K, Tsunekawa Y, Kurihara K, Watanabe K, Makino-Manabe Y, Wada M, Tanaka T, Ide T, Okada T. Engineering a highly durable adeno-associated virus receptor for analytical applications. Mol Ther Methods Clin Dev 2023; 31:101157. [PMID: 38152699 PMCID: PMC10751509 DOI: 10.1016/j.omtm.2023.101157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/10/2023] [Indexed: 12/29/2023]
Abstract
Adeno-associated virus (AAV) is a major viral vector used in gene therapy. There are multiple AAV serotypes, and many engineered AAV serotypes are developed to alter their tissue tropisms with capsid modification. The universal AAV receptor (AAVR) is an essential receptor for multiple AAV serotypes. Since most AAV serotypes used in gene therapy infect cells via interaction with AAVR, the quantification of the vector-binding ability of AAV to AAVR could be an important quality check for therapeutic AAV vectors. To enable a steady evaluation of the AAV-AAVR interaction, we created an engineered AAVR through mutagenesis. Engineered AAVR showed high durability against acid while retaining its AAV-binding activity. An affinity chromatography column with the engineered AAVR was also developed. This column enabled repeated binding and acid dissociation measurements of AAVR with various AAV serotypes. Our data showed that the binding affinities of AAV2 to AAVR were diverse among serotypes, providing insight into the relationship with the infection efficiency of AAV vectors. Thus, this affinity column can be used in process development for quality checks, quantitating capsid titers, and affinity purification of AAV vectors. Furthermore, this column may serve as a useful tool in novel AAV vector capsid engineering.
Collapse
Affiliation(s)
- Kouhei Yoshida
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Tosoh Corporation, Life Science Research Laboratory, 2743-1, Hayakawa, Ayase, Kanagawa 252-1123, Japan
| | - Yuji Tsunekawa
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kento Kurihara
- Tosoh Corporation, Life Science Research Laboratory, 2743-1, Hayakawa, Ayase, Kanagawa 252-1123, Japan
| | - Kazuya Watanabe
- Tosoh Corporation, Life Science Research Laboratory, 2743-1, Hayakawa, Ayase, Kanagawa 252-1123, Japan
| | - Yuriko Makino-Manabe
- Tosoh Corporation, Life Science Research Laboratory, 2743-1, Hayakawa, Ayase, Kanagawa 252-1123, Japan
| | - Mikako Wada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Toru Tanaka
- Tosoh Corporation, Life Science Research Laboratory, 2743-1, Hayakawa, Ayase, Kanagawa 252-1123, Japan
| | - Teruhiko Ide
- Tosoh Corporation, Life Science Research Laboratory, 2743-1, Hayakawa, Ayase, Kanagawa 252-1123, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
16
|
Yost SA, Firlar E, Glenn JD, Carroll HB, Foltz S, Giles AR, Egley JM, Firnberg E, Cho S, Nguyen T, Henry WM, Janczura KJ, Bruder J, Liu Y, Danos O, Karumuthil-Melethil S, Pannem S, Yost V, Engelson Y, Kaelber JT, Dimant H, Smith JB, Mercer AC. Characterization and biodistribution of under-employed gene therapy vector AAV7. J Virol 2023; 97:e0116323. [PMID: 37843374 PMCID: PMC10688378 DOI: 10.1128/jvi.01163-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/27/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE The use of adeno-associated viruses (AAVs) as gene delivery vectors has vast potential for the treatment of many severe human diseases. Over one hundred naturally existing AAV capsid variants have been described and classified into phylogenetic clades based on their sequences. AAV8, AAV9, AAVrh.10, and other intensively studied capsids have been propelled into pre-clinical and clinical use, and more recently, marketed products; however, less-studied capsids may also have desirable properties (e.g., potency differences, tissue tropism, reduced immunogenicity, etc.) that have yet to be thoroughly described. These data will help build a broader structure-function knowledge base in the field, present capsid engineering opportunities, and enable the use of novel capsids with unique properties.
Collapse
Affiliation(s)
- Samantha A. Yost
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Emre Firlar
- Institute of Quantitative Biomedicine and Rutgers CryoEM & Nanoimaging Facility, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Justin D. Glenn
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Hayley B. Carroll
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Steven Foltz
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - April R. Giles
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Jenny M. Egley
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Elad Firnberg
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Sungyeon Cho
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Trang Nguyen
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - William M. Henry
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | | | - Joseph Bruder
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Ye Liu
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Olivier Danos
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | | | | | | | | | - Jason T. Kaelber
- Institute of Quantitative Biomedicine and Rutgers CryoEM & Nanoimaging Facility, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Hemi Dimant
- Invicro LLC, Needham, Massachusetts, USA
- Emit Imaging, Baltimore, Maryland, USA
| | - Jared B. Smith
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Andrew C. Mercer
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| |
Collapse
|
17
|
Li L, Vasan L, Kartono B, Clifford K, Attarpour A, Sharma R, Mandrozos M, Kim A, Zhao W, Belotserkovsky A, Verkuyl C, Schmitt-Ulms G. Advances in Recombinant Adeno-Associated Virus Vectors for Neurodegenerative Diseases. Biomedicines 2023; 11:2725. [PMID: 37893099 PMCID: PMC10603849 DOI: 10.3390/biomedicines11102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are gene therapy delivery tools that offer a promising platform for the treatment of neurodegenerative diseases. Keeping up with developments in this fast-moving area of research is a challenge. This review was thus written with the intention to introduce this field of study to those who are new to it and direct others who are struggling to stay abreast of the literature towards notable recent studies. In ten sections, we briefly highlight early milestones within this field and its first clinical success stories. We showcase current clinical trials, which focus on gene replacement, gene augmentation, or gene suppression strategies. Next, we discuss ongoing efforts to improve the tropism of rAAV vectors for brain applications and introduce pre-clinical research directed toward harnessing rAAV vectors for gene editing applications. Subsequently, we present common genetic elements coded by the single-stranded DNA of rAAV vectors, their so-called payloads. Our focus is on recent advances that are bound to increase treatment efficacies. As needed, we included studies outside the neurodegenerative disease field that showcased improved pre-clinical designs of all-in-one rAAV vectors for gene editing applications. Finally, we discuss risks associated with off-target effects and inadvertent immunogenicity that these technologies harbor as well as the mitigation strategies available to date to make their application safer.
Collapse
Affiliation(s)
- Leyao Li
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
| | - Lakshmy Vasan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Bryan Kartono
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Kevan Clifford
- Institute of Medical Science, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Centre for Addiction and Mental Health (CAMH), 250 College St., Toronto, ON M5T 1R8, Canada
| | - Ahmadreza Attarpour
- Department of Medical Biophysics, University of Toronto, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Raghav Sharma
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Matthew Mandrozos
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Ain Kim
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Claire Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
18
|
Logan GJ, Mietzsch M, Khandekar N, D'Silva A, Anderson D, Mandwie M, Hsi J, Nelson AR, Chipman P, Jackson J, Schofield P, Christ D, Goodnow CC, Reed JH, Farrar MA, McKenna R, Alexander IE. Structural and functional characterization of capsid binding by anti-AAV9 monoclonal antibodies from infants after SMA gene therapy. Mol Ther 2023; 31:1979-1993. [PMID: 37012705 PMCID: PMC10362397 DOI: 10.1016/j.ymthe.2023.03.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/02/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Success in the treatment of infants with spinal muscular atrophy (SMA) underscores the potential of vectors based on adeno-associated virus (AAV). However, a major obstacle to the full realization of this potential is pre-existing natural and therapy-induced anti-capsid humoral immunity. Structure-guided capsid engineering is one possible approach to surmounting this challenge but necessitates an understanding of capsid-antibody interactions at high molecular resolution. Currently, only mouse-derived monoclonal antibodies (mAbs) are available to structurally map these interactions, which presupposes that mouse and human-derived antibodies are functionally equivalent. In this study, we have characterized the polyclonal antibody responses of infants following AAV9-mediated gene therapy for SMA and recovered 35 anti-capsid mAbs from the abundance of switched-memory B (smB) cells present in these infants. For 21 of these mAbs, seven from each of three infants, we have undertaken functional and structural analysis measuring neutralization, affinities, and binding patterns by cryoelectron microscopy (cryo-EM). Four distinct patterns were observed akin to those reported for mouse-derived mAbs, but with early evidence of differing binding pattern preference and underlying molecular interactions. This is the first human and largest series of anti-capsid mAbs to have been comprehensively characterized and will prove to be powerful tools for basic discovery and applied purposes.
Collapse
Affiliation(s)
- Grant J Logan
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Neeta Khandekar
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Arlene D'Silva
- School of Women's and Children's Health, University of New South Wales Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Daniel Anderson
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Mawj Mandwie
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Jane Hsi
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Austin R Nelson
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Paul Chipman
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jennifer Jackson
- Garvan Institute of Medical Research, UNSW Sydney, Faculty of Medicine, Darlinghurst, NSW, Australia
| | - Peter Schofield
- Garvan Institute of Medical Research, UNSW Sydney, Faculty of Medicine, Darlinghurst, NSW, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, UNSW Sydney, Faculty of Medicine, Darlinghurst, NSW, Australia
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, UNSW Sydney, Faculty of Medicine, Darlinghurst, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Joanne H Reed
- Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Westmead, NSW, Australia
| | - Michelle A Farrar
- School of Women's and Children's Health, University of New South Wales Medicine, UNSW Sydney, Sydney, NSW, Australia; Department of Neurology, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia; Discipline of Child and Adolescent Health, University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
19
|
Martino RA, Wang Q, Xu H, Hu G, Bell P, Arroyo EJ, Sims JJ, Wilson JM. Vector Affinity and Receptor Distribution Define Tissue-Specific Targeting in an Engineered AAV Capsid. J Virol 2023; 97:e0017423. [PMID: 37199615 PMCID: PMC10308920 DOI: 10.1128/jvi.00174-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023] Open
Abstract
Unbiased in vivo selections of diverse capsid libraries can yield engineered capsids that overcome gene therapy delivery challenges like traversing the blood-brain barrier (BBB), but little is known about the parameters of capsid-receptor interactions that govern their improved activity. This hampers broader efforts in precision capsid engineering and is a practical impediment to ensuring the translatability of capsid properties between preclinical animal models and human clinical trials. In this work, we utilize the adeno-associated virus (AAV)-PHP.B-Ly6a model system to better understand the targeted delivery and BBB penetration properties of AAV vectors. This model offers a defined capsid-receptor pair that can be used to systematically define relationships between target receptor affinity and in vivo activity of engineered AAV vectors. Here, we report a high-throughput method for quantifying capsid-receptor affinity and demonstrate that direct binding assays can be used to organize a vector library into families with varied affinity for their target receptor. Our data indicate that efficient central nervous system transduction requires high levels of target receptor expression at the BBB, but it is not a requirement for receptor expression to be limited to the target tissue. We observed that enhanced receptor affinity leads to reduced transduction of off-target tissues but can negatively impact on-target cellular transduction and penetration of endothelial barriers. Together, this work provides a set of tools for defining vector-receptor affinities and demonstrates how receptor expression and affinity interact to impact the performance of engineered AAV vectors in targeting the central nervous system. IMPORTANCE Novel methods for measuring adeno-associated virus (AAV)-receptor affinities, especially in relation to vector performance in vivo, would be useful to capsid engineers as they develop AAV vectors for gene therapy applications and characterize their interactions with native or engineered receptors. Here, we use the AAV-PHP.B-Ly6a model system to assess the impact of receptor affinity on the systemic delivery and endothelial penetration properties of AAV-PHP.B vectors. We discuss how receptor affinity analysis can be used to isolate vectors with optimized properties, improve the interpretation of library selections, and ultimately translate vector activities between preclinical animal models and humans.
Collapse
Affiliation(s)
- R. Alexander Martino
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qiang Wang
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hao Xu
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gui Hu
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Peter Bell
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edgardo J. Arroyo
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joshua J. Sims
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James M. Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Xiang YS, Hao GG. Biophysical characterization of adeno-associated virus capsid through the viral transduction life cycle. J Genet Eng Biotechnol 2023; 21:62. [PMID: 37195476 DOI: 10.1186/s43141-023-00518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/11/2023] [Indexed: 05/18/2023]
Abstract
Adeno-associated virus (AAV) vectors have emerged as the leading delivery platforms for gene therapy. Throughout the life cycle of the virions, the capsid vector carries out diverse functions, ranging from cell surface receptor engagement, cellular entry, endosomal escape, nuclear import to new particle packaging, and assembly. Each of these steps is mediated by exquisite structure features of the viral capsid and its interaction with viral genome, Rep proteins, and cellular organelle and apparatus. In this brief review, we provide an overview of results from over a decade of extensive biophysical studies of the capsid employing various techniques. The remaining unaddressed questions and perspective are also discussed. The detailed understanding of the structure and function interplay would provide insight to the strategy for improving the efficacy and safety of the viral vectors.
Collapse
Affiliation(s)
| | - Gang Gary Hao
- Weston Biomedical Reviews, 65 Autumn Road, Weston, MA, 02493, USA.
| |
Collapse
|
21
|
Shay TF, Sullivan EE, Ding X, Chen X, Ravindra Kumar S, Goertsen D, Brown D, Crosby A, Vielmetter J, Borsos M, Wolfe DA, Lam AW, Gradinaru V. Primate-conserved carbonic anhydrase IV and murine-restricted LY6C1 enable blood-brain barrier crossing by engineered viral vectors. SCIENCE ADVANCES 2023; 9:eadg6618. [PMID: 37075114 PMCID: PMC10115422 DOI: 10.1126/sciadv.adg6618] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The blood-brain barrier (BBB) presents a major challenge for delivering large molecules to study and treat the central nervous system. This is due in part to the scarcity of targets known to mediate BBB crossing. To identify novel targets, we leverage a panel of adeno-associated viruses (AAVs) previously identified through mechanism-agnostic directed evolution for improved BBB transcytosis. Screening potential cognate receptors for enhanced BBB crossing, we identify two targets: murine-restricted LY6C1 and widely conserved carbonic anhydrase IV (CA-IV). We apply AlphaFold-based in silico methods to generate capsid-receptor binding models to predict the affinity of AAVs for these identified receptors. Demonstrating how these tools can unlock target-focused engineering strategies, we create an enhanced LY6C1-binding vector, AAV-PHP.eC, that, unlike our prior PHP.eB, also works in Ly6a-deficient mouse strains such as BALB/cJ. Combined with structural insights from computational modeling, the identification of primate-conserved CA-IV enables the design of more specific and potent human brain-penetrant chemicals and biologicals, including gene delivery vectors.
Collapse
Affiliation(s)
- Timothy F. Shay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Corresponding author. (T.F.S.); (V.G.)
| | - Erin E. Sullivan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Xiaozhe Ding
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sripriya Ravindra Kumar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David Goertsen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David Brown
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anaya Crosby
- California State Polytechnic University, Pomona, Pomona, CA, USA
| | - Jost Vielmetter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Máté Borsos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Damien A. Wolfe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Annie W. Lam
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Corresponding author. (T.F.S.); (V.G.)
| |
Collapse
|
22
|
Large EE, Chapman MS. Adeno-associated virus receptor complexes and implications for adeno-associated virus immune neutralization. Front Microbiol 2023; 14:1116896. [PMID: 36846761 PMCID: PMC9950413 DOI: 10.3389/fmicb.2023.1116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/20/2023] [Indexed: 02/12/2023] Open
Abstract
Adeno-associated viruses (AAV) are among the foremost vectors for in vivo gene therapy. A number of monoclonal antibodies against several serotypes of AAV have previously been prepared. Many are neutralizing, and the predominant mechanisms have been reported as the inhibition of binding to extracellular glycan receptors or interference with some post-entry step. The identification of a protein receptor and recent structural characterization of its interactions with AAV compel reconsideration of this tenet. AAVs can be divided into two families based on which domain of the receptor is strongly bound. Neighboring domains, unseen in the high-resolution electron microscopy structures have now been located by electron tomography, pointing away from the virus. The epitopes of neutralizing antibodies, previously characterized, are now compared to the distinct protein receptor footprints of the two families of AAV. Comparative structural analysis suggests that antibody interference with protein receptor binding might be the more prevalent mechanism than interference with glycan attachment. Limited competitive binding assays give some support to the hypothesis that inhibition of binding to the protein receptor has been an overlooked mechanism of neutralization. More extensive testing is warranted.
Collapse
Affiliation(s)
| | - Michael S. Chapman
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| |
Collapse
|
23
|
Zane G, Silveria M, Meyer N, White T, Duan R, Zou X, Chapman M. Cryo-EM structure of adeno-associated virus 4 at 2.2 Å resolution. Acta Crystallogr D Struct Biol 2023; 79:140-153. [PMID: 36762860 PMCID: PMC9912921 DOI: 10.1107/s2059798322012190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/26/2022] [Indexed: 01/21/2023] Open
Abstract
Adeno-associated virus (AAV) is the vector of choice for several approved gene-therapy treatments and is the basis for many ongoing clinical trials. Various strains of AAV exist (referred to as serotypes), each with their own transfection characteristics. Here, a high-resolution cryo-electron microscopy structure (2.2 Å) of AAV serotype 4 (AAV4) is presented. The receptor responsible for transduction of the AAV4 clade of AAV viruses (including AAV11, AAV12 and AAVrh32.33) is unknown. Other AAVs interact with the same cell receptor, adeno-associated virus receptor (AAVR), in one of two different ways. AAV5-like viruses interact exclusively with the polycystic kidney disease-like 1 (PKD1) domain of AAVR, while most other AAVs interact primarily with the PKD2 domain. A comparison of the present AAV4 structure with prior corresponding structures of AAV5, AAV2 and AAV1 in complex with AAVR provides a foundation for understanding why the AAV4-like clade is unable to interact with either PKD1 or PKD2 of AAVR. The conformation of the AAV4 capsid in variable regions I, III, IV and V on the viral surface appears to be sufficiently different from AAV2 to ablate binding with PKD2. Differences between AAV4 and AAV5 in variable region VII appear to be sufficient to exclude binding with PKD1.
Collapse
Affiliation(s)
- Grant Zane
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Mark Silveria
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Nancy Meyer
- Center for Spatial Systems Biomedicine, Oregon Health Sciences University, Portland, Oregon, USA
| | - Tommi White
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
- Bayer Crop Science, Bayer (United States), Chesterfield, MO 63017, USA
- Electron Microscopy Core, University of Missouri, Columbia, MO 65211, USA
| | - Rui Duan
- Dalton Cardiovascular Center, University of Missouri, Columbia, MO 65211, USA
| | - Xiaoqin Zou
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
- Dalton Cardiovascular Center, University of Missouri, Columbia, MO 65211, USA
- Department of Physics, University of Missouri, Columbia, MO 65211, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Michael Chapman
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
24
|
Large EE, Silveria MA, Weerakoon O, White TA, Chapman MS. Cross-Species Permissivity: Structure of a Goat Adeno-Associated Virus and Its Complex with the Human Receptor AAVR. J Virol 2022; 96:e0148422. [PMID: 36453885 PMCID: PMC9769368 DOI: 10.1128/jvi.01484-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/06/2022] [Indexed: 12/05/2022] Open
Abstract
Adeno-associated virus (AAV) is a small ssDNA satellite virus of high interest (in recombinant form) as a safe and effective gene therapy vector. AAV's human cell entry receptor (AAVR) contains polycystic kidney disease (PKD) domains bound by AAV. Seeking understanding of the spectrum of interactions, goat AAVGo.1 is investigated, because its host is the species most distant from human with reciprocal cross-species cell susceptibility. The structure of AAVGo.1, solved by cryo-EM to 2.9 Å resolution, is most similar to AAV5. Through ELISA (enzyme-linked immunosorbent assay) studies, it is shown that AAVGo.1 binds to human AAVR more strongly than do AAV2 or AAV5, and that it joins AAV5 in a class that binds exclusively to PKD domain 1 (PKD1), in contrast to other AAVs that interact primarily with PKD2. The AAVGo.1 cryo-EM structure of a complex with a PKD12 fragment of AAVR at 2.4 Å resolution shows PKD1 bound with minimal change in virus structure. There are only minor conformational adaptations in AAVR, but there is a near-rigid rotation of PKD1 with maximal displacement of the receptor domain by ~1 Å compared to PKD1 bound to AAV5. AAVGo.1 joins AAV5 as the second member of an emerging class of AAVs whose mode of receptor-binding is completely different from other AAVs, typified by AAV2. IMPORTANCE Adeno-associated virus (AAV) is a small ssDNA satellite parvovirus. As a recombinant vector with a protein shell encapsidating a transgene, recombinant AAV (rAAV) is a leading delivery vehicle for gene therapy, with two FDA-approved treatments and 150 clinical trials for 30 diseases. The human entry receptor AAVR has five PKD domains. To date, all serotypes, except AAV5, have interacted primarily with the second PKD domain, PKD2. Goat is the AAV host most distant from human with cross-species cell infectivity. AAVGo.1 is similar in structure to AAV5, the two forming a class with a distinct mode of receptor-binding. Within the two classes, binding interactions are mostly conserved, giving an indication of the latitude available in modulating delivery vectors.
Collapse
Affiliation(s)
- Edward E. Large
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Mark A. Silveria
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Onellah Weerakoon
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Tommi A. White
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Michael S. Chapman
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
25
|
Gomez Limia C, Baird M, Schwartz M, Saxena S, Meyer K, Wein N. Emerging Perspectives on Gene Therapy Delivery for Neurodegenerative and Neuromuscular Disorders. J Pers Med 2022; 12:1979. [PMID: 36556200 PMCID: PMC9788053 DOI: 10.3390/jpm12121979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD) and Parkinson's Disease (PD), are a group of heterogeneous diseases that mainly affect central nervous system (CNS) functions. A subset of NDDs exhibit CNS dysfunction and muscle degeneration, as observed in Gangliosidosis 1 (GM1) and late stages of PD. Neuromuscular disorders (NMDs) are a group of diseases in which patients show primary progressive muscle weaknesses, including Duchenne Muscular Dystrophy (DMD), Pompe disease, and Spinal Muscular Atrophy (SMA). NDDs and NMDs typically have a genetic component, which affects the physiological functioning of critical cellular processes, leading to pathogenesis. Currently, there is no cure or efficient treatment for most of these diseases. More than 200 clinical trials have been completed or are currently underway in order to establish safety, tolerability, and efficacy of promising gene therapy approaches. Thus, gene therapy-based therapeutics, including viral or non-viral delivery, are very appealing for the treatment of NDDs and NMDs. In particular, adeno-associated viral vectors (AAV) are an attractive option for gene therapy for NDDs and NMDs. However, limitations have been identified after systemic delivery, including the suboptimal capacity of these therapies to traverse the blood-brain barrier (BBB), degradation of the particles during the delivery, high reactivity of the patient's immune system during the treatment, and the potential need for redosing. To circumvent these limitations, several preclinical and clinical studies have suggested intrathecal (IT) delivery to target the CNS and peripheral organs via cerebrospinal fluid (CSF). CSF administration can vastly improve the delivery of small molecules and drugs to the brain and spinal cord as compared to systemic delivery. Here, we review AAV biology and vector design elements, different therapeutic routes of administration, and highlight CSF delivery as an attractive route of administration. We discuss the different aspects of neuromuscular and neurodegenerative diseases, such as pathogenesis, the landscape of mutations, and the biological processes associated with the disease. We also describe the hallmarks of NDDs and NMDs as well as discuss current therapeutic approaches and clinical progress in viral and non-viral gene therapy and enzyme replacement strategies for those diseases.
Collapse
Affiliation(s)
- Cintia Gomez Limia
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Megan Baird
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Maura Schwartz
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Smita Saxena
- Department of Neurology, Inselspital, 3010 Bern, Switzerland
| | - Kathrin Meyer
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | - Nicolas Wein
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
26
|
Guo L, Li Z, Li Y, Qu B, Jiao G, Liang C, Lu Z, Wang XG, Huang C, Du H, Liang J, Zhou Q, Li W. Treatment of glutaric aciduria type I (GA-I) via intracerebroventricular delivery of GCDH. FUNDAMENTAL RESEARCH 2022; 2:836-842. [PMID: 38933374 PMCID: PMC11197790 DOI: 10.1016/j.fmre.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/24/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022] Open
Abstract
Glutaric aciduria type I (GA-I) is an autosomal recessive genetic disorder caused by a deficiency in glutaryl-CoA dehydrogenase (GCDH). Patients who do not receive proper treatment may die from acute encephalopathic crisis. Current treatments for GA-I include a low-lysine diet combined with oral supplementation of L-carnitine. A mouse model of Gcdh c.422_428del/c.422_428del (Gcdh -/-) was generated in our laboratory using CRISPR/Cas9. Gcdh -/- mice had significantly higher levels of glutaric acid (GA) in the plasma, liver, and brain than those in wild-type C57BL/6 mice. When given a high-protein diet (HPD) for two days, approximately 60% of Gcdh -/- mice did not survive the metabolic stress. To evaluate whether GCDH gene replacement therapy could be used to provide sustained treatment for patients with GA-1, we prepared a recombinant adeno-associated virus (rAAV) carrying a human GCDH expression cassette and injected it into Gcdh -/- neonates for a proof-of-concept (PoC) study. Our study demonstrated that delivering rAAV to the central nervous system (CNS), but not the peripheral system, significantly increased the survival rate under HPD exposure. Our study also demonstrated that rAAVPHP.eB mediated a higher efficiency than that of rAAV9 in increasing the survival rate. Surviving mice showed dose-dependent GCDH protein expression in the CNS and downregulation of GA levels. Our study demonstrated that AAV-based gene replacement therapy was effective for GA-I treatment and provided a feasible solution for this unmet medical need.
Collapse
Affiliation(s)
- Lu Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhikun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhuan Li
- The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Bin Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanyi Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongbao Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Ge Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Huang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Du
- The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jianmin Liang
- The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|