1
|
Sarabia I, Koss KM. Search for microglia-specific peptides: advances in the discovery toolbox. Neural Regen Res 2025; 20:471-472. [PMID: 38819052 PMCID: PMC11317953 DOI: 10.4103/nrr.nrr-d-24-00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 06/01/2024] Open
Affiliation(s)
- Ivan Sarabia
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| | - Kyle M. Koss
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
2
|
Wei Y, Xia X, Wang X, Yang W, He S, Wang L, Chen Y, Zhou Y, Chen F, Li H, Peng F, Li G, Xu Z, Fu J, Gao H. Enhanced BBB penetration and microglia-targeting nanomodulator for the two-pronged modulation of chronically activated microglia-mediated neuroinflammation in Alzheimer's disease. Acta Pharm Sin B 2025; 15:1098-1111. [PMID: 40177541 PMCID: PMC11959930 DOI: 10.1016/j.apsb.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/05/2024] [Accepted: 12/25/2024] [Indexed: 04/05/2025] Open
Abstract
Intervention in chronically activated microglia-mediated neuroinflammation is a novel approach to treat Alzheimer's disease (AD). The low permeability of the blood‒brain barrier (BBB) and non-selective distribution in the brain severely restrict AD drugs' disease-modifying efficacy. Here, an immunosuppressant TREM2-lowing antisense oligonucleotides (ASOs) and resveratrol co-loaded cationic liposome is developed as an immune reprogramming nanomodulator modified by acid-cleavable BBB-targeting peptide and microglia-targeting peptide (Res@TcMNP/ASO) for AD management. Res@TcMNP/ASO can enter brain endothelial cells via D-T7 peptides. Then D-T7 undergoes an acid-responsive cleavage, facilitating the escape of Res@MNP/ASO from endo/lysosomes to cross the BBB. The detached Res@MNP/ASO specifically targets M1-phenotype microglia via exposed MG1 peptides to prompt the simultaneous delivery of two drugs into activated microglia. This nanomodulator can not only restore the immune function of microglia through TREM2-lowing ASO but also mitigate the immune stimulation to microglia caused by reactive oxygen species (ROS) through resveratrol, thereby synergistically inhibiting the chronic activation of microglia to alleviate neuroinflammation in AD. Our results indicate that this combination treatment can achieve significant behavioral and cognitive improvements in late APP/PS1 mice.
Collapse
Affiliation(s)
- Ya Wei
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaorong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wenqin Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Siqin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lulu Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Yongke Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yang Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guobo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zheng Xu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jintao Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Huile Gao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Cheng Y, Xu M, Wu J, Qian K, Yang P, Zhou L, Meng R, Li Y, Wang T, Sheng D, Wei Y, Zhang Q. Carcinoma-Astrocyte Gap Junction Interruption by a Dual-Targeted Biomimetic Liposomal System to Attenuate Chemoresistance and Treat Brain Metastasis. ACS NANO 2024; 18:34107-34125. [PMID: 39626120 DOI: 10.1021/acsnano.4c09996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Brain metastasis contributes substantially to the morbidity and mortality of various malignancies and is characterized by high chemoresistance. Intracellular communication between carcinoma cells and astrocytes through gap junctions, which are assembled mainly by the connexin 43 protein, has been shown to play a vital role in this process. However, effectively blocking the gap junctions between the two cell types remains extremely challenging because of insufficient drug delivery to the target site. Herein, we designed a connexin blocker-carbenoxolone (CBX)-loaded biomimetic liposomal system with artificial liposomes fused with brain metastatic cell and reactive astrocyte membranes (LAsomes) to block gap junctions and attenuate chemoresistance. LAsomes effectively penetrated the blood-brain barrier via semaphorin 4D (SEMA 4D)─Plexin B1 interactions and actively migrated to their source cells via homotypic recognition. Consequently, LAsomes effectively inhibited material transfer and Ca2+ flow from metastatic cells to astrocytes via gap junctions, thereby markedly increasing the sensitivity of metastatic tumor cells to chemotherapy. These results reveal that closing the gap junctions may be a promising therapeutic strategy for intractable brain metastasis.
Collapse
Affiliation(s)
- Yunlong Cheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
- Institute of Traditional Chinese Medicine, & Key Laboratory of TCM Drug Delivery, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, China
| | - Minjun Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jing Wu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Kang Qian
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Peng Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lingling Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ran Meng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yixian Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tianying Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Dongyu Sheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Qizhi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
4
|
Dill-Macky AS, Lee EN, Wertheim JA, Koss KM. Glia in tissue engineering: From biomaterial tools to transplantation. Acta Biomater 2024; 190:24-49. [PMID: 39396630 DOI: 10.1016/j.actbio.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Glia are imperative in nearly every function of the nervous system, including neurotransmission, neuronal repair, development, immunity, and myelination. Recently, the reparative roles of glia in the central and peripheral nervous systems have been elucidated, suggesting a tremendous potential for these cells as novel treatments to central nervous system disorders. Glial cells often behave as 'double-edged swords' in neuroinflammation, ultimately deciding the life or death of resident cells. Compared to glia, neuronal cells have limited mobility, lack the ability to divide and self-renew, and are generally more delicate. Glia have been candidates for therapeutic use in many successful grafting studies, which have been largely focused on restoring myelin with Schwann cells, olfactory ensheathing glia, and oligodendrocytes with support from astrocytes. However, few therapeutics of this class have succeeded past clinical trials. Several tools and materials are being developed to understand and re-engineer these grafting concepts for greater success, such as extra cellular matrix-based scaffolds, bioactive peptides, biomolecular delivery systems, biomolecular discovery for neuroinflammatory mediation, composite microstructures such as artificial channels for cell trafficking, and graft enhanced electrical stimulation. Furthermore, advances in stem cell-derived cortical/cerebral organoid differentiation protocols have allowed for the generation of patient-derived glia comparable to those acquired from tissues requiring highly invasive procedures or are otherwise inaccessible. However, research on bioengineered tools that manipulate glial cells is nowhere near as comprehensive as that for systems of neurons and neural stem cells. This article explores the therapeutic potential of glia in transplantation with an emphasis on novel bioengineered tools for enhancement of their reparative properties. STATEMENT OF SIGNIFICANCE: Neural glia are responsible for a host of developmental, homeostatic, and reparative roles in the central nervous system but are often a major cause of tissue damage and cellular loss in insults and degenerative pathologies. Most glial grafts have employed Schwann cells for remyelination, but other glial with novel biomaterials have been employed, emphasizing their diverse functionality. Promising strategies have emerged, including neuroimmune mediation of glial scar tissues and facilitated migration and differentiation of stem cells for neural replacement. Herein, a comprehensive review of biomaterial tools for glia in transplantation is presented, highlighting Schwann cells, astrocytes, olfactory ensheating glia, oligodendrocytes, microglia, and ependymal cells.
Collapse
Affiliation(s)
- A S Dill-Macky
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - E N Lee
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - J A Wertheim
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - K M Koss
- Department of Neurobiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0625, United States; Sealy Institute for Drug Discovery, University of Texas Medical Branch, 105 11th Street Galveston, TX 77555-1110, United States.
| |
Collapse
|
5
|
Benita BA, Koss KM. Peptide discovery across the spectrum of neuroinflammation; microglia and astrocyte phenotypical targeting, mediation, and mechanistic understanding. Front Mol Neurosci 2024; 17:1443985. [PMID: 39634607 PMCID: PMC11616451 DOI: 10.3389/fnmol.2024.1443985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/24/2024] [Indexed: 12/07/2024] Open
Abstract
Uncontrolled and chronic inflammatory states in the Central Nervous System (CNS) are the hallmark of neurodegenerative pathology and every injury or stroke-related insult. The key mediators of these neuroinflammatory states are glial cells known as microglia, the resident immune cell at the core of the inflammatory event, and astroglia, which encapsulate inflammatory insults in proteoglycan-rich scar tissue. Since the majority of neuroinflammation is exclusively based on the responses of said glia, their phenotypes have been identified to be on an inflammatory spectrum encompassing developmental, homeostatic, and reparative behaviors as opposed to their ability to affect devastating cell death cascades and scar tissue formation. Recently, research groups have focused on peptide discovery to identify these phenotypes, find novel mechanisms, and mediate or re-engineer their actions. Peptides retain the diverse function of proteins but significantly reduce the activity dependence on delicate 3D structures. Several peptides targeting unique phenotypes of microglia and astroglia have been identified, along with several capable of mediating deleterious behaviors or promoting beneficial outcomes in the context of neuroinflammation. A comprehensive review of the peptides unique to microglia and astroglia will be provided along with their primary discovery methodologies, including top-down approaches using known biomolecules and naïve strategies using peptide and phage libraries.
Collapse
Affiliation(s)
| | - Kyle M. Koss
- Department of Surgery, University of Arizona, Tucson, AZ, United States
- Department of Neurobiology, University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
- Sealy Institute for Drug Discovery (SIDD), University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
| |
Collapse
|
6
|
Saha P, Sharma SS. RNA Interference Unleashed: Current Perspective of Small Interfering RNA (siRNA) Therapeutics in the Treatment of Neuropathic Pain. ACS Pharmacol Transl Sci 2024; 7:2951-2970. [PMID: 39416962 PMCID: PMC11475279 DOI: 10.1021/acsptsci.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/12/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
Neuropathic pain (NP) is one of the debilitating pain phenotypes that leads to the progressive degeneration of the central as well as peripheral nervous system. NP is often associated with hyperalgesia, allodynia, paresthesia, tingling, and burning sensations leading to disability, motor dysfunction, and compromised psychological state of the patients. Most of the conventional pharmacological agents are unable to improve the devastating conditions of pain because of their limited efficacy, undesirable side effects, and multifaceted pathophysiology of the diseased condition. A rapid rise in new cases of NP warrants further research for identifying the potential novel therapeutic modalities for treating NP. Recently, small interfering RNA (siRNA) approach has shown therapeutic potential in many disease conditions including NP. Delivery of siRNAs led to potential and selective downregulation of target mRNA and abolished the pain-related behaviors/pathophysiological pain response. The crucial role of siRNA in the treatment of NP by considering all of the pathways associated with NP that could be managed by siRNA therapeutics has been discussed. However, their therapeutic use is limited by several hurdles such as instability in systemic circulation due to their negative charge and membrane impermeability, off-target effects, immunogenicity, and inability to reach the intended site of action. This review also emphasizes several strategies and techniques to overcome these hurdles for translating these therapeutic siRNAs from bench to bedside by opening a new avenue for obtaining a potential therapeutic approach for treating NP.
Collapse
Affiliation(s)
- Priya Saha
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Shyam S. Sharma
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab 160062, India
| |
Collapse
|
7
|
Rahman MM, Hwang SM, Go EJ, Kim YH, Park CK. Irisin alleviates CFA-induced inflammatory pain by modulating macrophage polarization and spinal glial cell activation. Biomed Pharmacother 2024; 178:117157. [PMID: 39042964 DOI: 10.1016/j.biopha.2024.117157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Although the potent anti-inflammatory effects of irisin have been documented in various inflammatory disorders, its efficacy against inflammatory pain remains unexplored. Herein, we examined the therapeutic effects of irisin in a mouse model of inflammatory pain induced by complete Freund's adjuvant (CFA). Mice were divided into three groups: normal control, CFA-injected (CFA), and CFA plus irisin-treated (CFA+Irisin). The irisin-treated group exhibited a gradual reduction in mechanical allodynia and thermal hyperalgesia when compared with the CFA group. Moreover, treatment with irisin significantly upregulated the expression of M2 macrophage markers (interleukin [IL]-4 and IL-10) and downregulated M1 macrophage markers (IL-1β, IL-6, and tumor necrosis factor-α) in the local paw tissue, dorsal root ganglion, and spinal cord tissue. However, there was no significant difference in the total number of F4/80+ macrophages in the paw tissue and dorsal root ganglion, indicating phenotypic exchange. Treatment with irisin also downregulated the expression of the glial cell activation-related markers Iba-1 and GFAP in the spinal cord tissue. To elucidate the underlying mechanisms, we detected the expression of Toll-like receptor 4 (TLR4), MyD88, and interferon regulatory factor 5 (IRF5) in paw tissues, dorsal root ganglion, and spinal tissues, revealing that irisin could downregulate the expression of these proteins. Irisin alleviated inflammatory pain by modulating local tissue inflammation and peripheral and central neuroinflammation and reducing glial cell activation and M2 macrophage polarization by modulating the TLR4-MyD88-IRF5 signaling pathway. Accordingly, irisin is a promising candidate for treating inflammatory pain in various diseases.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, the Republic of Korea
| | - Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, the Republic of Korea
| | - Eun Jin Go
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, the Republic of Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, the Republic of Korea.
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, the Republic of Korea.
| |
Collapse
|
8
|
Zhang C, Shao W, Yuan H, Xiao R, Zhang Y, Wei C, Ni X, He N, Chen G, Gui S, Cheng Z, Wang Q. Engineered Extracellular Vesicle-Based Nanoformulations That Coordinate Neuroinflammation and Immune Homeostasis, Enhancing Parkinson's Disease Therapy. ACS NANO 2024; 18:23014-23031. [PMID: 39145985 DOI: 10.1021/acsnano.4c04674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Although conventional intervention to microglia can mitigate neuroinflammation in the short term, immune disorders by peripheral inflammatory cells can infiltrate continuously, resulting in an overactivated immune microenvironment of Parkinson's disease (PD). Here, we design engineered extracellular vesicle-based nanoformulations (EVNs) to address multiple factors for the management of PD. Specifically, EVN is developed by coating CCR2-enriched mesenchymal stem cell-derived extracellular vesicles (MSCCCR2 EVs) onto a dihydrotanshinone I-loaded nanocarrier (MSeN-DT). The MSCCCR2 EVs (the shell of EVN) can actively show homing to specific chemokines CCL2 in the substantia nigra, which enables them to block the infiltration of peripheral inflammatory cells. Interestingly, MSeN-DT (the core of EVN) can promote the Nrf2-GPX4 pathway for the suppression of the source of inflammation by inhibiting ferroptosis in microglia. In the PD model mice, a satisfactory therapeutic effect is achieved, with inhibition of peripheral inflammatory cell infiltration, precise regulation of inflammatory microglia in the substantia nigra, as well as promotion of behavioral improvement and repairing damaged neurons. In this way, the combinatorial code of alleviation of inflammation and modulation of immune homeostasis can reshape the immune microenvironment in PD, which bridges internal anti-inflammatory and external immunity. This finding reveals a comprehensive therapeutic paradigm for PD that breaks the vicious cycle of immune overactivation.
Collapse
Affiliation(s)
- Chuan Zhang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Wei Shao
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Hao Yuan
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Ru Xiao
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Yaru Zhang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Chaoqi Wei
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Xinyi Ni
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Ning He
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Guangliang Chen
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Shuangying Gui
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Zhifei Cheng
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Qi Wang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| |
Collapse
|
9
|
Jahandar-Lashaki S, Farajnia S, Faraji-Barhagh A, Hosseini Z, Bakhtiyari N, Rahbarnia L. Phage Display as a Medium for Target Therapy Based Drug Discovery, Review and Update. Mol Biotechnol 2024:10.1007/s12033-024-01195-6. [PMID: 38822912 DOI: 10.1007/s12033-024-01195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Phage libraries are now amongst the most prominent approaches for the identification of high-affinity antibodies/peptides from billions of displayed phages in a specific library through the biopanning process. Due to its ability to discover potential therapeutic candidates that bind specifically to targets, phage display has gained considerable attention in targeted therapy. Using this approach, peptides with high-affinity and specificity can be identified for potential therapeutic or diagnostic use. Furthermore, phage libraries can be used to rapidly screen and identify novel antibodies to develop immunotherapeutics. The Food and Drug Administration (FDA) has approved several phage display-derived peptides and antibodies for the treatment of different diseases. In the current review, we provided a comprehensive insight into the role of phage display-derived peptides and antibodies in the treatment of different diseases including cancers, infectious diseases and neurological disorders. We also explored the applications of phage display in targeted drug delivery, gene therapy, and CAR T-cell.
Collapse
Affiliation(s)
- Samaneh Jahandar-Lashaki
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aref Faraji-Barhagh
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Hosseini
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Nasim Bakhtiyari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Vandermeulen L, Geric I, Fumagalli L, Kreir M, Lu A, Nonneman A, Premereur J, Wolfs L, Policarpo R, Fattorelli N, De Bondt A, Van Den Wyngaert I, Asselbergh B, Fiers M, De Strooper B, d'Ydewalle C, Mancuso R. Regulation of human microglial gene expression and function via RNAase-H active antisense oligonucleotides in vivo in Alzheimer's disease. Mol Neurodegener 2024; 19:37. [PMID: 38654375 PMCID: PMC11040766 DOI: 10.1186/s13024-024-00725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/17/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Microglia play important roles in maintaining brain homeostasis and neurodegeneration. The discovery of genetic variants in genes predominately or exclusively expressed in myeloid cells, such as Apolipoprotein E (APOE) and triggering receptor expressed on myeloid cells 2 (TREM2), as the strongest risk factors for Alzheimer's disease (AD) highlights the importance of microglial biology in the brain. The sequence, structure and function of several microglial proteins are poorly conserved across species, which has hampered the development of strategies aiming to modulate the expression of specific microglial genes. One way to target APOE and TREM2 is to modulate their expression using antisense oligonucleotides (ASOs). METHODS In this study, we identified, produced, and tested novel, selective and potent ASOs for human APOE and TREM2. We used a combination of in vitro iPSC-microglia models, as well as microglial xenotransplanted mice to provide proof of activity in human microglial in vivo. RESULTS We proved their efficacy in human iPSC microglia in vitro, as well as their pharmacological activity in vivo in a xenografted microglia model. We demonstrate ASOs targeting human microglia can modify their transcriptional profile and their response to amyloid-β plaques in vivo in a model of AD. CONCLUSIONS This study is the first proof-of-concept that human microglial can be modulated using ASOs in a dose-dependent manner to manipulate microglia phenotypes and response to neurodegeneration in vivo.
Collapse
Affiliation(s)
- Lina Vandermeulen
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Ivana Geric
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
| | - Laura Fumagalli
- MIND Lab, VIB Center for Molecular Neurology, VIB, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Mohamed Kreir
- Preclinical Development & Safety, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Ashley Lu
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
| | - Annelies Nonneman
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Jessie Premereur
- MIND Lab, VIB Center for Molecular Neurology, VIB, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Leen Wolfs
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
| | - Rafaela Policarpo
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
| | - Nicola Fattorelli
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
| | - An De Bondt
- Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Ilse Van Den Wyngaert
- Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Bob Asselbergh
- Neuromics Support Facility, VIB Center for Molecular Neurology, University of Antwerp, 2610, Antwerp, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Mark Fiers
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
- UK Dementia Research Institute, University College London, London, W1T 7NF, UK
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
- UK Dementia Research Institute, University College London, London, W1T 7NF, UK
| | - Constantin d'Ydewalle
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium.
| | - Renzo Mancuso
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium.
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium.
- MIND Lab, VIB Center for Molecular Neurology, VIB, 2610, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium.
| |
Collapse
|
11
|
Lu Y, Liu S, Wang P, Guo X, Qin Z, Hou H, Tao T. A novel microglia-targeting strategy based on nanoparticle-mediated delivery of miR-26a-5p for long-lasting analgesia in chronic pain. J Nanobiotechnology 2024; 22:128. [PMID: 38519978 PMCID: PMC10960380 DOI: 10.1186/s12951-024-02420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
Accumulating evidence supports the notion that microglia play versatile roles in different chronic pain conditions. However, therapeutic strategies of chronic pain by targeting microglia remain largely overlooked. This study seeks to develop a miRNA-loaded nano-delivery system by targeting microglia, which could provide a decent and long-lasting analgesia for chronic pain. Surface aminated mesoporous silica nanoparticles were adopted to load miR-26a-5p, a potent analgesic miRNA, by electrostatic adsorption, which can avoid miR-26a-5p is rapidly released and degraded. Then, targeting peptide MG1 was modified on the surface of aminated mesoporous silica particles for microglia targeting. In peripheral nerve injury induced neuropathic pain model, a satisfactory anti-allodynia effect with about 6 weeks pain-relief duration were achieved through targeting microglia strategy, which decreased microglia activation and inflammation by Wnt5a, a non-canonical Wnt pathway. In inflammatory pain and chemotherapy induced peripheral neuropathic pain, microglia targeting strategy also exhibited more efficient analgesia and longer pain-relief duration than others. Overall, we developed a microglia-targeting nano-delivery system, which facilitates precisely miR-26a-5p delivery to enhance analgesic effect and duration for several chronic pain conditions.
Collapse
Affiliation(s)
- Yitian Lu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Shuai Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Peng Wang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiangna Guo
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zaisheng Qin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Tao Tao
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.
| |
Collapse
|
12
|
Lopez-Gordo E, Chamberlain K, Riyad JM, Kohlbrenner E, Weber T. Natural Adeno-Associated Virus Serotypes and Engineered Adeno-Associated Virus Capsid Variants: Tropism Differences and Mechanistic Insights. Viruses 2024; 16:442. [PMID: 38543807 PMCID: PMC10975205 DOI: 10.3390/v16030442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
Today, adeno-associated virus (AAV)-based vectors are arguably the most promising in vivo gene delivery vehicles for durable therapeutic gene expression. Advances in molecular engineering, high-throughput screening platforms, and computational techniques have resulted in a toolbox of capsid variants with enhanced performance over parental serotypes. Despite their considerable promise and emerging clinical success, there are still obstacles hindering their broader use, including limited transduction capabilities, tissue/cell type-specific tropism and penetration into tissues through anatomical barriers, off-target tissue biodistribution, intracellular degradation, immune recognition, and a lack of translatability from preclinical models to clinical settings. Here, we first describe the transduction mechanisms of natural AAV serotypes and explore the current understanding of the systemic and cellular hurdles to efficient transduction. We then outline progress in developing designer AAV capsid variants, highlighting the seminal discoveries of variants which can transduce the central nervous system upon systemic administration, and, to a lesser extent, discuss the targeting of the peripheral nervous system, eye, ear, lung, liver, heart, and skeletal muscle, emphasizing their tissue and cell specificity and translational promise. In particular, we dive deeper into the molecular mechanisms behind their enhanced properties, with a focus on their engagement with host cell receptors previously inaccessible to natural AAV serotypes. Finally, we summarize the main findings of our review and discuss future directions.
Collapse
|
13
|
Shin HJ, Choi SG, Qu F, Yi MH, Lee CH, Kim SR, Kim HG, Beom J, Yi Y, Kim DK, Joe EH, Song HJ, Kim Y, Kim DW. Peptide-mediated targeted delivery of SOX9 nanoparticles into astrocytes ameliorates ischemic brain injury. NANOSCALE 2024; 16:833-847. [PMID: 38093712 DOI: 10.1039/d3nr01318a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Astrocytes are highly activated following brain injuries, and their activation influences neuronal survival. Additionally, SOX9 expression is known to increase in reactive astrocytes. However, the role of SOX9 in activated astrocytes following ischemic brain damage has not been clearly elucidated yet. Therefore, in the present study, we investigated the role of SOX9 in reactive astrocytes using a poly-lactic-co-glycolic acid (PLGA) nanoparticle plasmid delivery system in a photothrombotic stroke animal model. We designed PLGA nanoparticles to exclusively enhance SOX9 gene expression in glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes. Our observations indicate that PLGA nanoparticles encapsulated with GFAP:SOX9:tdTOM reduce ischemia-induced neurological deficits and infarct volume through the prostaglandin D2 pathway. Thus, the astrocyte-targeting PLGA nanoparticle plasmid delivery system provides a potential opportunity for stroke treatment. Since the only effective treatment currently available is reinstating the blood supply, cell-specific gene therapy using PLGA nanoparticles will open a new therapeutic paradigm for brain injury patients in the future.
Collapse
Affiliation(s)
- Hyo Jung Shin
- Department of Medical Science, Chungnam National University, Daejeon 35015, Korea.
- Department of Anatomy and Cell Biology, Chungnam National University, Daejeon 35015, Korea
- Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| | - Seung Gyu Choi
- Department of Medical Science, Chungnam National University, Daejeon 35015, Korea.
- Department of Anatomy and Cell Biology, Chungnam National University, Daejeon 35015, Korea
| | - Fengrui Qu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Min-Hee Yi
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
| | - Hyeong-Geug Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jaewon Beom
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Yoonyoung Yi
- Department of Pediatrics, College of Medicine, Hallym University and Gangdong Sacred Heart Hospital, Seoul 05355, Korea
| | - Do Kyung Kim
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Eun-Hye Joe
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, Korea
| | - Hee-Jung Song
- Department of Neurology, Chungnam National University and Sejong Hospital, Sejong 30099, Korea
| | - Yonghyun Kim
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University, Daejeon 35015, Korea.
- Department of Anatomy and Cell Biology, Chungnam National University, Daejeon 35015, Korea
- Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
14
|
Cao J, Hu C, Ding Z, Chen J, Liu S, Li Q. Mechanism of IRF5-regulated CXCL13/CXCR5 Signaling Axis in CCI-induced Neuropathic Pain in Rats. Curr Mol Med 2024; 24:940-949. [PMID: 37622691 DOI: 10.2174/1566524023666230825120836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Neuropathic pain is chronic and affects the patient's life. Studies have shown that IRF5 and CXCL13/CXCR5 are involved in neuropathic pain; however, their interactions are unknown. OBJECTIVE In this study, a rat neuropathic pain model was constructed by inducing chronic compression injury (CCI). IRF5 recombinant lentiviral vector and CXCL13 neutralizing antibody were administered to investigate their action mechanisms in neuropathic pain. Consequently, the new strategies for disease treatment could be evolved. METHODS The CCI rats were intrathecally injected with recombinant lentivirus plasmid LV-IRF5 (overexpression), LV-SH-IRF5 (silencing), and CXCL13 neutralizing antibody. Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured. The tumor necrosis factor (TNF)-alpha, interleukin (IL)-1β, and IL-6 levels were recorded via the enzyme-linked immunosorbent assay (ELISA). The spinal cord was stained using hematoxylin-eosin (HE). The binding of IRF5 to CXCL13 was analyzed by chromatin immunoprecipitation (ChIP) and dual luciferase reporter assay. The IRF5, neuronal nuclei (NeuN), CXCL13, and CXCR5 expressions were detected through quantitative real-time polymerase chain reaction and Western blot. RESULTS The MWT and TWL values in the CCI group were lower than in the Sham group. The expressions of CXCL13, CXCR5, and IRF5 in CCI rats were gradually increased with the modeling time. IRF5 silencing suppressed the expression of NeuN and lumbar enlargement in CCI rats and promoted MWT and TWL. Moreover, IRF5 silencing inhibited the expressions of CXCR5 and CXCL13 genes and down-regulated the expression levels of inflammatory factors. IRF5 was directly and specifically bound with the endogenous CXCL13 promoter and thus regulated it. IRF5 overexpression exacerbated the disease phenotype of CCI-induced neuropathic pain in rats. Administration of CXCL13 neutralizing antibodies reversed the IRF5 overexpression effects. CONCLUSION The IRF5 silencing alleviated neuropathic pain in CCI rats by downregulating the pain threshold, inflammatory cytokine levels, and CXCL13/CXCR5 signaling. IRF5 overexpression exacerbated the disease parameters of CCI-induced neuropathic pain in rats; however, they were reversed by neutralizing antibodies against CXCL13.
Collapse
Affiliation(s)
- Jiawei Cao
- Department of Anesthesiology, Changsha Central Hospital Affiliated to South China University, Changsha, 410028, Hunan, China
| | - Chungu Hu
- Department of Anesthesiology, Changsha Central Hospital Affiliated to South China University, Changsha, 410028, Hunan, China
| | - Zhuofeng Ding
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Juan Chen
- Department of Anesthesiology, Changsha Central Hospital Affiliated to South China University, Changsha, 410028, Hunan, China
| | - Songhua Liu
- Department of Anesthesiology, Changsha Central Hospital Affiliated to South China University, Changsha, 410028, Hunan, China
| | - Qiongcan Li
- Department of Anesthesiology, Changsha Central Hospital Affiliated to South China University, Changsha, 410028, Hunan, China
| |
Collapse
|
15
|
Fleiss B, Gressens P. Role of Microglial Modulation in Therapies for Perinatal Brain Injuries Leading to Neurodevelopmental Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:591-606. [PMID: 39207715 DOI: 10.1007/978-3-031-55529-9_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurodevelopmental disorders (NDDs) encompass various conditions stemming from changes during brain development, typically diagnosed early in life. Examples include autism spectrum disorder, intellectual disability, cerebral palsy, seizures, dyslexia, and attention deficit hyperactivity disorder. Many NDDs are linked to perinatal events like infections, oxygen disturbances, or insults in combination. This chapter outlines the causes and effects of perinatal brain injury as they relate to microglia, along with efforts to prevent or treat such damage. We primarily discuss therapies targeting microglia modulation, focusing on those either clinically used or in advanced development, often tested in large animal models such as sheep, non-human primates, and piglets-standard translational models in perinatal medicine. Additionally, it touches on experimental studies showcasing advancements in the field.
Collapse
Affiliation(s)
- Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Pierre Gressens
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
- Université de Paris, NeuroDiderot, Inserm, Paris, France.
| |
Collapse
|
16
|
Ghazisaeidi S, Muley MM, Tu Y, Finn DP, Kolahdouzan M, Pitcher GM, Kim D, Sengar AS, Ramani AK, Brudno M, Salter MW. Conserved transcriptional programming across sex and species after peripheral nerve injury predicts treatments for neuropathic pain. Br J Pharmacol 2023; 180:2822-2836. [PMID: 37336547 DOI: 10.1111/bph.16168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/28/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Chronic pain is a devastating problem affecting one in five individuals around the globe, with neuropathic pain the most debilitating and poorly treated type of chronic pain. Advances in transcriptomics have contributed to cataloguing diverse cellular pathways and transcriptomic alterations in response to peripheral nerve injury but have focused on phenomenology and classifying transcriptomic responses. EXPERIMENTAL APPROACH To identifying new types of pain-relieving agents, we compared transcriptional reprogramming changes in the dorsal spinal cord after peripheral nerve injury cross-sex and cross-species, and imputed commonalities, as well as differences in cellular pathways and gene regulation. KEY RESULTS We identified 93 transcripts in the dorsal horn that were increased by peripheral nerve injury in male and female mice and rats. Following gene ontology and transcription factor analyses, we constructed a pain interactome for the proteins encoded by the differentially expressed genes, discovering new, conserved signalling nodes. We investigated the interactome with the Drug-Gene database to predict FDA-approved medications that may modulate key nodes within the network. The top hit from the analysis was fostamatinib, the molecular target of which is the non-receptor spleen associated tyrosine kinase (Syk), which our analysis had identified as a key node in the interactome. We found that intrathecally administrating the active metabolite of fostamatinib, R406 and another Syk inhibitor P505-15, significantly reversed pain hypersensitivity in both sexes. CONCLUSIONS AND IMPLICATIONS Thus, we have identified and shown the efficacy of an agent that could not have been previously predicted to have analgesic properties.
Collapse
Affiliation(s)
- Shahrzad Ghazisaeidi
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Program in Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Milind M Muley
- Program in Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - YuShan Tu
- Program in Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, Centre for Pain Research, University of Galway, Galway, Ireland
| | - Mahshad Kolahdouzan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Program in Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Graham M Pitcher
- Program in Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Doyeon Kim
- Program in Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ameet S Sengar
- Program in Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Arun K Ramani
- Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Michael Brudno
- Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Canada
- Department of Computer Science, University of Toronto, Toronto, Canada
- Techna Institute, University Health Network, Toronto, Canada
- Vector Institute for Artificial Intelligence, Toronto, Canada
| | - Michael W Salter
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Program in Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Jang MJ, Coughlin GM, Jackson CR, Chen X, Chuapoco MR, Vendemiatti JL, Wang AZ, Gradinaru V. Spatial transcriptomics for profiling the tropism of viral vectors in tissues. Nat Biotechnol 2023; 41:1272-1286. [PMID: 36702899 PMCID: PMC10443732 DOI: 10.1038/s41587-022-01648-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/15/2022] [Indexed: 01/27/2023]
Abstract
A barrier to advancing engineered adeno-associated viral vectors (AAVs) for precision access to cell subtypes is a lack of high-throughput, high-resolution assays to characterize in vivo transduction profiles. In this study, we developed an ultrasensitive, sequential fluorescence in situ hybridization (USeqFISH) method for spatial transcriptomic profiling of endogenous and viral RNA with a short barcode in intact tissue volumes by integrating hydrogel-based tissue clearing, enhanced signal amplification and multiplexing using sequential labeling. Using USeqFISH, we investigated the transduction and cell subtype tropisms across mouse brain regions of six systemic AAVs, including AAV-PHP.AX, a new variant that transduces robustly and efficiently across neurons and astrocytes. Here we reveal distinct cell subtype biases of each AAV variant, including a bias of AAV-PHP.N toward excitatory neurons. USeqFISH also enables profiling of pooled regulatory cargos, as we show for a 13-variant pool of microRNA target sites in AAV genomes. Lastly, we demonstrate potential applications of USeqFISH for in situ AAV profiling and multimodal single-cell analysis in non-human primates.
Collapse
Affiliation(s)
- Min J Jang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Gerard M Coughlin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Cameron R Jackson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Miguel R Chuapoco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Julia L Vendemiatti
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alexander Z Wang
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
18
|
Yu Z, Yin J, Tang Z, Hu T, Wang Z, Chen Y, Liu T, Zhang W. Non-coding RNAs are key players and promising therapeutic targets in atherosclerosis. Front Cell Dev Biol 2023; 11:1237941. [PMID: 37719883 PMCID: PMC10502512 DOI: 10.3389/fcell.2023.1237941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Cardiovascular disease (CVD) is the primary cause of death in humans. Atherosclerosis (AS) is the most common CVD and a major cause of many CVD-related fatalities. AS has numerous risk factors and complex pathogenesis, and while it has long been a research focus, most mechanisms underlying its progression remain unknown. Noncoding RNAs (ncRNAs) represent an important focus in epigenetics studies and are critical biological regulators that form a complex network of gene regulation. Abnormal ncRNA expression disrupts the normal function of tissues or cells, leading to disease development. A large body of evidence suggests that ncRNAs are involved in all stages of atherosclerosis, from initiation to progression, and that some are significantly differentially expressed during AS development, suggesting that they may be powerful markers for screening AS or potential treatment targets. Here, we review the role of ncRNAs in AS development and recent developments in the use of ncRNAs for AS-targeted therapy, providing evidence for ncRNAs as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Zhun Yu
- School of Clinical Medical, Changchun University of Chinese Medicine, Jilin, China
| | - JinZhu Yin
- Cardiology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - ZhiTong Tang
- Department of Massage, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - Ting Hu
- Internal Medicine of Chinese Medicine, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - ZhuoEr Wang
- School of Clinical Medical, Changchun University of Chinese Medicine, Jilin, China
| | - Ying Chen
- Cardiology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - Tianjia Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| | - Wei Zhang
- Orthopedics Department, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|
19
|
Zhu J, Qiu W, Wei F, Wang Y, Wang Q, Ma W, Xiong H, Cui Y, Li X, Xu R, Lin Y. Reactive A1 Astrocyte-Targeted Nucleic Acid Nanoantiepileptic Drug Downregulating Adenosine Kinase to Rescue Endogenous Antiepileptic Pathway. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37334941 DOI: 10.1021/acsami.3c03455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Resistance to traditional antiepileptic drugs is a major challenge in chronic epilepsy treatment. MicroRNA-based gene therapy is a promising alternative but has demonstrated limited efficacy due to poor blood-brain barrier permeability, cellular uptake, and targeting efficiency. Adenosine is an endogenous antiseizure agent deficient in the epileptic brain due to elevated adenosine kinase (ADK) activity in reactive A1 astrocytes. We designed a nucleic acid nanoantiepileptic drug (tFNA-ADKASO@AS1) based on a tetrahedral framework nucleic acid (tFNA), carrying an antisense oligonucleotide targeting ADK (ADKASO) and A1 astrocyte-targeted peptide (AS1). This tFNA-ADKASO@AS1 construct effectively reduced brain ADK, increased brain adenosine, mitigated aberrant mossy fiber sprouting, and reduced the recurrent spontaneous epileptic spike frequency in a mouse model of chronic temporal lobe epilepsy. Further, the treatment did not induce any neurotoxicity or major organ damage. This work provides proof-of-concept for a novel antiepileptic drug delivery strategy and for endogenous adenosine as a promising target for gene-based modulation.
Collapse
Affiliation(s)
- Jianwei Zhu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wenqiao Qiu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Wei
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yangyang Wang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qiguang Wang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Huan Xiong
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yan Cui
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xinda Li
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
20
|
Fàbrega C, Aviñó A, Navarro N, Jorge AF, Grijalvo S, Eritja R. Lipid and Peptide-Oligonucleotide Conjugates for Therapeutic Purposes: From Simple Hybrids to Complex Multifunctional Assemblies. Pharmaceutics 2023; 15:320. [PMID: 36839642 PMCID: PMC9959333 DOI: 10.3390/pharmaceutics15020320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Antisense and small interfering RNA (siRNA) oligonucleotides have been recognized as powerful therapeutic compounds for targeting mRNAs and inducing their degradation. However, a major obstacle is that unmodified oligonucleotides are not readily taken up into tissues and are susceptible to degradation by nucleases. For these reasons, the design and preparation of modified DNA/RNA derivatives with better stability and an ability to be produced at large scale with enhanced uptake properties is of vital importance to improve current limitations. In the present study, we review the conjugation of oligonucleotides with lipids and peptides in order to produce oligonucleotide conjugates for therapeutics aiming to develop novel compounds with favorable pharmacokinetics.
Collapse
Affiliation(s)
- Carme Fàbrega
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Anna Aviñó
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Natalia Navarro
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Andreia F. Jorge
- Department of Chemistry, Coimbra Chemistry Centre (CQC), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Santiago Grijalvo
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Colloidal and Interfacial Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), E-08034 Barcelona, Spain
| | - Ramon Eritja
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| |
Collapse
|
21
|
CNS Delivery of Nucleic Acid Therapeutics: Beyond the Blood-Brain Barrier and Towards Specific Cellular Targeting. Pharm Res 2023; 40:77-105. [PMID: 36380168 DOI: 10.1007/s11095-022-03433-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Nucleic acid-based therapeutic molecules including small interfering RNA (siRNA), microRNA(miRNA), antisense oligonucleotides (ASOs), messenger RNA (mRNA), and DNA-based gene therapy have tremendous potential for treating diseases in the central nervous system (CNS). However, achieving clinically meaningful delivery to the brain and particularly to target cells and sub-cellular compartments is typically very challenging. Mediating cell-specific delivery in the CNS would be a crucial advance that mitigates off-target effects and toxicities. In this review, we describe these challenges and provide contemporary evidence of advances in cellular and sub-cellular delivery using a variety of delivery mechanisms and alternative routes of administration, including the nose-to-brain approach. Strategies to achieve subcellular localization, endosomal escape, cytosolic bioavailability, and nuclear transfer are also discussed. Ultimately, there are still many challenges to translating these experimental strategies into effective and clinically viable approaches for treating patients.
Collapse
|
22
|
Sharifiaghdam M, Shaabani E, Faridi-Majidi R, De Smedt SC, Braeckmans K, Fraire JC. Macrophages as a therapeutic target to promote diabetic wound healing. Mol Ther 2022; 30:2891-2908. [PMID: 35918892 PMCID: PMC9482022 DOI: 10.1016/j.ymthe.2022.07.016] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
It is well established that macrophages are key regulators of wound healing, displaying impressive plasticity and an evolving phenotype, from an aggressive pro-inflammatory or "M1" phenotype to a pro-healing or "M2" phenotype, depending on the wound healing stage, to ensure proper healing. Because dysregulated macrophage responses have been linked to impaired healing of diabetic wounds, macrophages are being considered as a therapeutic target for improved wound healing. In this review, we first discuss the role of macrophages in a normal skin wound healing process and discuss the aberrations that occur in macrophages under diabetic conditions. Next we provide an overview of recent macrophage-based therapeutic approaches, including delivery of ex-vivo-activated macrophages and delivery of pharmacological strategies aimed at eliminating or re-educating local skin macrophages. In particular, we focus on strategies to silence key regulator genes to repolarize wound macrophages to the M2 phenotype, and we provide a discussion of their potential future clinical translation.
Collapse
Affiliation(s)
- Maryam Sharifiaghdam
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, 9000 Ghent, Belgium; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Shaabani
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, 9000 Ghent, Belgium; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, 9000 Ghent, Belgium; Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium.
| | - Juan C Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
23
|
van Schaik PEM, Zuhorn IS, Baron W. Targeting Fibronectin to Overcome Remyelination Failure in Multiple Sclerosis: The Need for Brain- and Lesion-Targeted Drug Delivery. Int J Mol Sci 2022; 23:8418. [PMID: 35955549 PMCID: PMC9368816 DOI: 10.3390/ijms23158418] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease with unknown etiology that can be characterized by the presence of demyelinated lesions. Prevailing treatment protocols in MS rely on the modulation of the inflammatory process but do not impact disease progression. Remyelination is an essential factor for both axonal survival and functional neurological recovery but is often insufficient. The extracellular matrix protein fibronectin contributes to the inhibitory environment created in MS lesions and likely plays a causative role in remyelination failure. The presence of the blood-brain barrier (BBB) hinders the delivery of remyelination therapeutics to lesions. Therefore, therapeutic interventions to normalize the pathogenic MS lesion environment need to be able to cross the BBB. In this review, we outline the multifaceted roles of fibronectin in MS pathogenesis and discuss promising therapeutic targets and agents to overcome fibronectin-mediated inhibition of remyelination. In addition, to pave the way for clinical use, we reflect on opportunities to deliver MS therapeutics to lesions through the utilization of nanomedicine and discuss strategies to deliver fibronectin-directed therapeutics across the BBB. The use of well-designed nanocarriers with appropriate surface functionalization to cross the BBB and target the lesion sites is recommended.
Collapse
Affiliation(s)
- Pauline E. M. van Schaik
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Inge S. Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wia Baron
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| |
Collapse
|
24
|
Yin N, Zhao Y, Liu C, Yang Y, Wang ZH, Yu W, Zhang K, Zhang Z, Liu J, Zhang Y, Shi J. Engineered Nanoerythrocytes Alleviate Central Nervous System Inflammation by Regulating the Polarization of Inflammatory Microglia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201322. [PMID: 35483045 DOI: 10.1002/adma.202201322] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Microglial polarization is one of the most promising therapeutic strategies for multiple central nervous system (CNS) disorders. However, safe, effective, and controllable microglial regulation still faces formidable challenges. Although some anti-inflammatory factors promote microglia polarization, their short half-life, high cost, unpredictable in vivo behavior, and complex delivery operations, hamper their clinical application. Here, inspired by the natural microhemorrhage cleaning mechanism, an MG1 peptide and RVG29 peptide engineered nanoerythrocyte (NEMR) that can reprogram microglia are developed from classical M1 toward alternative M2 by inducing heme oxygenase-1 (HO-1), stimulating Notch1/Hes1/Stat3 signaling, and further inhibiting NF-κB p65 translocation. Moreover, anti-inflammatory carbon monoxide (CO) and bilirubin produced by endogenous metabolism of heme further reinforces the anti-inflammatory effect. In middle cerebral artery occlusion and experimental autoimmune encephalomyelitis models, a satisfactory prognosis is achieved, with precise regulation of inflammatory microglia in lesion sites, increased expression of anti-inflammatory factors, reduced blood-brain barrier permeability, as well as promotion of neurogenesis and functional recovery. Furthermore, NEMR can be integrated with clinical therapeutic agents, which facilitates precise drug delivery to enhance therapeutic effects. Hence, the natural nanoerythrocytes, as a feasible, efficient, safe, and practical tool, provides a new strategy for rebalancing of the immune environment in the CNS disorders.
Collapse
Affiliation(s)
- Na Yin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China
| | - Yuzhen Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China
| | - Changhua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China
| | - Yue Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China
| | - Zhi-Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China
| | - Wenyan Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, P. R. China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, P. R. China
| | - Yun Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, P. R. China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, P. R. China
| |
Collapse
|
25
|
He X, Xie J, Zhang J, Wang X, Jia X, Yin H, Qiu Z, Yang Z, Chen J, Ji Z, Yu W, Chen M, Xu W, Gao H. Acid-Responsive Dual-Targeted Nanoparticles Encapsulated Aspirin Rescue the Immune Activation and Phenotype in Autism Spectrum Disorder. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104286. [PMID: 35285177 PMCID: PMC9108608 DOI: 10.1002/advs.202104286] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/21/2022] [Indexed: 05/07/2023]
Abstract
The treatment of autism spectrum disorder (ASD) is one of the most difficult challenges in neurodevelopmental diseases, because of the unclear pathogenesis research and low brain-lesion targeting efficiency. Besides, maternal immune activation has been reported as the most mature and widely used model of ASD and aspirin-triggered lipoxin A4 is a potent anti-inflammatory mediator being involved in the resolution of neuroinflammation in ASD. Therefore, an aspirin encapsulated cascade drug delivery system (Asp@TMNPs) is established, which can successively target the blood-brain barrier (BBB) and microglial cells and response to the acid microenvironment in lysosome. As a result, the mitochondrial oxidative stress, DNA damage, and inflammation of microglial cells are prominently alleviated. After the treatment of Asp@TMNPs, the social interaction, stereotype behavior, and anxious condition of ASD mice are notably improved and the activation of microglial cells is inhibited. Overall, this system successively penetrates the BBB and targets microglial cells, therefore, it significantly enhances the intracephalic drug accumulation and improves anti-neuroinflammatory efficacy of aspirin, providing a promising strategy for ASD treatment.
Collapse
Affiliation(s)
- Xueqin He
- Key Laboratory of Drug‐Targeting and Drug Delivery of MOE, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalWest China School of PharmacySichuan UniversityChengdu610041China
| | - Jiang Xie
- Key Laboratory of Drug‐Targeting and Drug Delivery of MOE, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalWest China School of PharmacySichuan UniversityChengdu610041China
- Department of pediatricsChengdu Third People's HospitalChengdu610041China
| | - Jing Zhang
- Key Laboratory of Drug‐Targeting and Drug Delivery of MOE, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalWest China School of PharmacySichuan UniversityChengdu610041China
| | - Xiaorong Wang
- Key Laboratory of Drug‐Targeting and Drug Delivery of MOE, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalWest China School of PharmacySichuan UniversityChengdu610041China
| | - Xufeng Jia
- Key Laboratory of Drug‐Targeting and Drug Delivery of MOE, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalWest China School of PharmacySichuan UniversityChengdu610041China
- Department of pediatricsChengdu Third People's HospitalChengdu610041China
| | - Heng Yin
- Key Laboratory of Drug‐Targeting and Drug Delivery of MOE, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalWest China School of PharmacySichuan UniversityChengdu610041China
- Department of pediatricsChengdu Third People's HospitalChengdu610041China
| | - Zhongqing Qiu
- Key Laboratory of Drug‐Targeting and Drug Delivery of MOE, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalWest China School of PharmacySichuan UniversityChengdu610041China
- Department of pediatricsChengdu Third People's HospitalChengdu610041China
| | - Zhihang Yang
- Key Laboratory of Drug‐Targeting and Drug Delivery of MOE, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalWest China School of PharmacySichuan UniversityChengdu610041China
| | - Jiao Chen
- State Key Laboratory of Stress Cell BiologySchool of Life SciencesXiamen UniversityXiamen361102China
| | - Zhiliang Ji
- State Key Laboratory of Stress Cell BiologySchool of Life SciencesXiamen UniversityXiamen361102China
| | - Wenqi Yu
- Key Laboratory of Drug‐Targeting and Drug Delivery of MOE, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalWest China School of PharmacySichuan UniversityChengdu610041China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacau999078China
| | - Wenming Xu
- Key Laboratory of Drug‐Targeting and Drug Delivery of MOE, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalWest China School of PharmacySichuan UniversityChengdu610041China
| | - Huile Gao
- Key Laboratory of Drug‐Targeting and Drug Delivery of MOE, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalWest China School of PharmacySichuan UniversityChengdu610041China
| |
Collapse
|
26
|
Nguyen H, Zerimech S, Baltan S. Astrocyte Mitochondria in White-Matter Injury. Neurochem Res 2021; 46:2696-2714. [PMID: 33527218 PMCID: PMC8935665 DOI: 10.1007/s11064-021-03239-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
This review summarizes the diverse structure and function of astrocytes to describe the bioenergetic versatility required of astrocytes that are situated at different locations. The intercellular domain of astrocyte mitochondria defines their roles in supporting and regulating astrocyte-neuron coupling and survival against ischemia. The heterogeneity of astrocyte mitochondria, and how subpopulations of astrocyte mitochondria adapt to interact with other glia and regulate axon function, require further investigation. It has become clear that mitochondrial permeability transition pores play a key role in a wide variety of human diseases, whose common pathology may be based on mitochondrial dysfunction triggered by Ca2+ and potentiated by oxidative stress. Reactive oxygen species cause axonal degeneration and a reduction in axonal transport, leading to axonal dystrophies and neurodegeneration including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease. Developing new tools to allow better investigation of mitochondrial structure and function in astrocytes, and techniques to specifically target astrocyte mitochondria, can help to unravel the role of mitochondrial health and dysfunction in a more inclusive context outside of neuronal cells. Overall, this review will assess the value of astrocyte mitochondria as a therapeutic target to mitigate acute and chronic injury in the CNS.
Collapse
Affiliation(s)
- Hung Nguyen
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, OR, 97239, USA
| | - Sarah Zerimech
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, OR, 97239, USA
| | - Selva Baltan
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
27
|
Sharifiaghdam M, Shaabani E, Sharifiaghdam Z, De Keersmaecker H, Lucas B, Lammens J, Ghanbari H, Teimoori-Toolabi L, Vervaet C, De Beer T, Faridi-Majidi R, De Smedt SC, Braeckmans K, Fraire JC. Macrophage reprogramming into a pro-healing phenotype by siRNA delivered with LBL assembled nanocomplexes for wound healing applications. NANOSCALE 2021; 13:15445-15463. [PMID: 34505619 DOI: 10.1039/d1nr03830c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Excessive inflammatory responses in wounds are characterized by the presence of high levels of pro-inflammatory M1 macrophages rather than pro-healing M2 macrophages, which leads to delayed wound healing. Macrophage reprogramming from the M1 to M2 phenotype through knockdown of interferon regulatory factor 5 (irf5) has emerged as a possible therapeutic strategy. While downregulation of irf5 could be achieved by siRNA, it very much depends on successful intracellular delivery by suitable siRNA carriers. Here, we report on highly stable selenium-based layer-by-layer (LBL) nanocomplexes (NCs) for siRNA delivery with polyethyleneimine (PEI-LBL-NCs) as the final polymer layer. PEI-LBL-NCs showed good protection of siRNA with only 40% siRNA release in a buffer of pH = 8.5 after 72 h or in simulated wound fluid after 4 h. PEI-LBL-NCs also proved to be able to transfect RAW 264.7 cells with irf5-siRNA, resulting in successful reprogramming to the M2 phenotype as evidenced by a 3.4 and 2.6 times decrease in NOS-2 and TNF-α mRNA expression levels, respectively. Moreover, irf5-siRNA transfected cells exhibited a 2.5 times increase of the healing mediator Arg-1 and a 64% increase in expression of the M2 cell surface marker CD206+. Incubation of fibroblast cells with conditioned medium isolated from irf5-siRNA transfected RAW 264.7 cells resulted in accelerated wound healing in an in vitro scratch assay. These results show that irf5-siRNA loaded PEI-LBL-NCs are a promising therapeutic approach to tune macrophage polarization for improved wound healing.
Collapse
Affiliation(s)
- Maryam Sharifiaghdam
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Elnaz Shaabani
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zeynab Sharifiaghdam
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Herlinde De Keersmaecker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
- Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium
| | - Bart Lucas
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
| | - Joris Lammens
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology (LPPAT), Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
- Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium
| | - Juan C Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
| |
Collapse
|
28
|
Valori CF, Possenti A, Brambilla L, Rossi D. Challenges and Opportunities of Targeting Astrocytes to Halt Neurodegenerative Disorders. Cells 2021; 10:cells10082019. [PMID: 34440788 PMCID: PMC8395029 DOI: 10.3390/cells10082019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders whose incidence is likely to duplicate in the next 30 years along with the progressive aging of the western population. Non-cell-specific therapeutics or therapeutics designed to tackle aberrant pathways within neurons failed to slow down or halt neurodegeneration. Yet, in the last few years, our knowledge of the importance of glial cells to maintain the central nervous system homeostasis in health conditions has increased exponentially, along with our awareness of their fundamental and multifaced role in pathological conditions. Among glial cells, astrocytes emerge as promising therapeutic targets in various neurodegenerative disorders. In this review, we present the latest evidence showing the astonishing level of specialization that astrocytes display to fulfill the demands of their neuronal partners as well as their plasticity upon injury. Then, we discuss the controversies that fuel the current debate on these cells. We tackle evidence of a potential beneficial effect of cell therapy, achieved by transplanting astrocytes or their precursors. Afterwards, we introduce the different strategies proposed to modulate astrocyte functions in neurodegeneration, ranging from lifestyle changes to environmental cues. Finally, we discuss the challenges and the recent advancements to develop astrocyte-specific delivery systems.
Collapse
Affiliation(s)
- Chiara F. Valori
- Molecular Neuropathology of Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Correspondence: (C.F.V.); (D.R.); Tel.: +49-7071-9254-122 (C.F.V.); +39-0382-592064 (D.R.)
| | - Agostino Possenti
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (A.P.); (L.B.)
| | - Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (A.P.); (L.B.)
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (A.P.); (L.B.)
- Correspondence: (C.F.V.); (D.R.); Tel.: +49-7071-9254-122 (C.F.V.); +39-0382-592064 (D.R.)
| |
Collapse
|
29
|
Moulson AJ, Squair JW, Franklin RJM, Tetzlaff W, Assinck P. Diversity of Reactive Astrogliosis in CNS Pathology: Heterogeneity or Plasticity? Front Cell Neurosci 2021; 15:703810. [PMID: 34381334 PMCID: PMC8349991 DOI: 10.3389/fncel.2021.703810] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/02/2021] [Indexed: 01/02/2023] Open
Abstract
Astrocytes are essential for the development and homeostatic maintenance of the central nervous system (CNS). They are also critical players in the CNS injury response during which they undergo a process referred to as "reactive astrogliosis." Diversity in astrocyte morphology and gene expression, as revealed by transcriptional analysis, is well-recognized and has been reported in several CNS pathologies, including ischemic stroke, CNS demyelination, and traumatic injury. This diversity appears unique to the specific pathology, with significant variance across temporal, topographical, age, and sex-specific variables. Despite this, there is limited functional data corroborating this diversity. Furthermore, as reactive astrocytes display significant environmental-dependent plasticity and fate-mapping data on astrocyte subsets in the adult CNS is limited, it remains unclear whether this diversity represents heterogeneity or plasticity. As astrocytes are important for neuronal survival and CNS function post-injury, establishing to what extent this diversity reflects distinct established heterogeneous astrocyte subpopulations vs. environmentally dependent plasticity within established astrocyte subsets will be critical for guiding therapeutic development. To that end, we review the current state of knowledge on astrocyte diversity in the context of three representative CNS pathologies: ischemic stroke, demyelination, and traumatic injury, with the goal of identifying key limitations in our current knowledge and suggesting future areas of research needed to address them. We suggest that the majority of identified astrocyte diversity in CNS pathologies to date represents plasticity in response to dynamically changing post-injury environments as opposed to heterogeneity, an important consideration for the understanding of disease pathogenesis and the development of therapeutic interventions.
Collapse
Affiliation(s)
- Aaron J. Moulson
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
| | - Jordan W. Squair
- Department of Clinical Neuroscience, Faculty of Life Sciences, Center for Neuroprosthetics and Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), NeuroRestore, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Robin J. M. Franklin
- Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Peggy Assinck
- Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
30
|
Rayatpour A, Javan M. Targeting the brain lesions using peptides: A review focused on the possibility of targeted drug delivery to multiple sclerosis lesions. Pharmacol Res 2021; 167:105441. [PMID: 33503478 DOI: 10.1016/j.phrs.2021.105441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/05/2020] [Accepted: 01/15/2021] [Indexed: 12/13/2022]
Abstract
As described by Jean Martin Charcot in 1868, multiple sclerosis (MS) is an inflammatory, demyelinating and neurodegenerative disease of the central nervous system (CNS) which leads to permanent disability in patients. Following CNS insults, astrocytes and microglial cells undergo changes, which lead to scar formation in the site of injury. Owning to the pathophysiology of MS lesions, changes in both cellular and extracellular matrix (ECM) components occur over the progression of disease. In spite of advances in therapeutic approaches, drug delivery to MS lesions appears of great interest with big challenges and limitations. Targeting with peptides is a novel promising approach in the field of drug delivery. Recently peptides have been used for active targeting of different pathological disorders in which specific peptides make targeted accumulation of cargos to enhance local drug concentration at the pathological area, lead to increased therapeutic efficacy and decreased side effects. However, specific approaches for targeting the lesion in MS are still lacking. In this review, we discuss the changes of the ECM components as well as the cellular characteristics of demyelinated lesions and emphasis on opportunities for peptide based targeted drug delivery to highlight the possibility of such approaches for neurodegenerative disease with specific focus on MS.
Collapse
Affiliation(s)
- Atefeh Rayatpour
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran; Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
31
|
Phạm TL, Kim DW. Poly(lactic-co-glycolic acid) nanomaterial-based treatment options for pain management: a review. Nanomedicine (Lond) 2020; 15:1897-1913. [PMID: 32757701 DOI: 10.2217/nnm-2020-0114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain is one of the most intense types of chronic pain; it constitutes a pervasive complaint throughout the public health system. With few effective treatments, it remains a significant challenge. Commercially available drugs for neuropathic pain are still limited and have disappointing efficacy. Therefore, chronic neuropathic pain imposes a tremendous burden on patients' quality of life. Recently, the introduction and application of nanotechnology in multiple fields has accelerated the development of new drugs. This review highlights the application of poly(lactic-co-glycolic acid) nanomaterial-based vehicles for drug delivery and how they improve the therapeutic outcomes for neuropathic pain treatment. Finally, future developments for pain research and effective management are presented.
Collapse
Affiliation(s)
- Thuỳ Linh Phạm
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Anatomy, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Histology & Embryology, Hai Phong University of Medicine & Pharmacy Hospital, Hai Phong, 042-12, Vietnam
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Anatomy, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| |
Collapse
|
32
|
Gollihue J, Norris C. Astrocyte mitochondria: Central players and potential therapeutic targets for neurodegenerative diseases and injury. Ageing Res Rev 2020; 59:101039. [PMID: 32105849 DOI: 10.1016/j.arr.2020.101039] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/23/2020] [Accepted: 02/23/2020] [Indexed: 01/16/2023]
Abstract
Mitochondrial function has long been the focus of many therapeutic strategies for ameliorating age-related neurodegeneration and cognitive decline. Historically, the role of mitochondria in non-neuronal cell types has been overshadowed by neuronal mitochondria, which are responsible for the bulk of oxidative metabolism in the brain. Despite this neuronal bias, mitochondrial function in glial cells, particularly astrocytes, is increasingly recognized to play crucial roles in overall brain metabolism, synaptic transmission, and neuronal protection. Changes in astrocytic mitochondrial function appear to be intimately linked to astrocyte activation/reactivity found in most all age-related neurodegenerative diseases. Here, we address the importance of mitochondrial function to astrocyte signaling and consider how mitochondria could contribute to both the detrimental and protective properties of activated astrocytes. Strategies for protecting astrocytic mitochondrial function, promoting bidirectional transfer of mitochondria between astrocytes and neurons, and transplanting healthy mitochondria to diseased nervous tissue are also discussed.
Collapse
|
33
|
Takamura H, Terashima T, Mori K, Katagi M, Okano J, Suzuki Y, Imai S, Kojima H. Bone-Marrow-Derived Mononuclear Cells Relieve Neuropathic Pain after Spinal Nerve Injury in Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:657-665. [PMID: 32322604 PMCID: PMC7160523 DOI: 10.1016/j.omtm.2020.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022]
Abstract
Treating neuropathic pain is a critical clinical issue. Although numerous therapies have been proposed, effective treatments have not been established. Therefore, safe and feasible treatment methods are urgently needed. In this study, we investigated the therapeutic effects of autologous intrathecal administration of bone-marrow-derived mononuclear cells (MNCs) on neuropathic pain. We generated a mouse model of neuropathic pain by transecting the spinal nerve and evaluated neuropathic pain by measuring the mechanical threshold in the following 14 days. Mice in the MNC injection group had a higher mechanical threshold than those in the buffer group. We assessed the effect of MNC treatment on the dorsal root ganglia and spinal cord by immunohistochemistry, mRNA expression, and cytokine assay. The migration and accumulation of microglia were significantly suppressed in the MNC group, and the mRNA expression of inflammatory cytokines such as interleukin (IL)-6, IL-1β, and tumor necrosis factor alpha (TNF-α) was markedly downregulated. Furthermore, MNC administration tended to suppress various cytokines in the cerebrospinal fluid of the model mice. In conclusion, our results suggest that intrathecal injection of MNCs relieves neuropathic pain and might be a promising cell therapy for the treatment of this condition.
Collapse
Affiliation(s)
- Hiroshi Takamura
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan.,Department of Orthopedic Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Tomoya Terashima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Kanji Mori
- Department of Orthopedic Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Miwako Katagi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Junko Okano
- Department of Plastic and Reconstructive Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Yoshihisa Suzuki
- Department of Plastic and Reconstructive Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Shinji Imai
- Department of Orthopedic Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| |
Collapse
|
34
|
Wang G, Rayner S, Chung R, Shi B, Liang X. Advances in nanotechnology-based strategies for the treatments of amyotrophic lateral sclerosis. Mater Today Bio 2020; 6:100055. [PMID: 32529183 PMCID: PMC7280770 DOI: 10.1016/j.mtbio.2020.100055] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND), is a progressive neurodegenerative disease that affects both upper and lower motor neurons, which results in loss of muscle control and eventual paralysis [1]. Currently, there are as yet unresolved challenges regarding efficient drug delivery into the central nervous system (CNS). These challenges can be attributed to multiple factors including the presence of the blood-brain barrier (BBB), blood-spinal cord barrier (BSCB), as well as the inherent characteristics of the drugs themselves (e.g. low solubility, insufficient bioavailability/bio-stability, 'off-target' effects) etc. As a result, conventional drug delivery systems may not facilitate adequate dosage of the required drugs for functional recovery in ALS patients. Nanotechnology-based strategies, however, employ engineered nanostructures that show great potential in delivering single or combined therapeutic agents to overcome the biological barriers, enhance interaction with targeted sites, improve drug bioavailability/bio-stability and achieve real-time tracking while minimizing the systemic side-effects. This review provides a concise discussion of recent advances in nanotechnology-based strategies in relation to combating specific pathophysiology relevant to ALS disease progression and investigates the future scope of using nanotechnology to develop innovative treatments for ALS patients.
Collapse
Affiliation(s)
- G.Y. Wang
- Huaihe Hospital, Henan University, Kaifeng, Henan, 475004, China
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - S.L. Rayner
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - R. Chung
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - B.Y. Shi
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - X.J. Liang
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
35
|
Begum AA, Toth I, Hussein WM, Moyle PM. Advances in Targeted Gene Delivery. Curr Drug Deliv 2020; 16:588-608. [PMID: 31142250 DOI: 10.2174/1567201816666190529072914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/31/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
Abstract
Gene therapy has the potential to treat both acquired and inherited genetic diseases. Generally, two types of gene delivery vectors are used - viral vectors and non-viral vectors. Non-viral gene delivery systems have attracted significant interest (e.g. 115 gene therapies approved for clinical trials in 2018; clinicaltrials.gov) due to their lower toxicity, lack of immunogenicity and ease of production compared to viral vectors. To achieve the goal of maximal therapeutic efficacy with minimal adverse effects, the cell-specific targeting of non-viral gene delivery systems has attracted research interest. Targeting through cell surface receptors; the enhanced permeability and retention effect, or pH differences are potential means to target genes to specific organs, tissues, or cells. As for targeting moieties, receptorspecific ligand peptides, antibodies, aptamers and affibodies have been incorporated into synthetic nonviral gene delivery vectors to fulfill the requirement of active targeting. This review provides an overview of different potential targets and targeting moieties to target specific gene delivery systems.
Collapse
Affiliation(s)
- Anjuman A Begum
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St Lucia 4072, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St Lucia 4072, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia.,Institute for Molecular Bioscience (IMB), The University of Queensland, St Lucia, St Lucia 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St Lucia 4072, Australia
| | - Peter M Moyle
- School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia
| |
Collapse
|
36
|
Moore Z, Taylor JM, Crack PJ. The involvement of microglia in Alzheimer's disease: a new dog in the fight. Br J Pharmacol 2019; 176:3533-3543. [PMID: 30445661 PMCID: PMC6715787 DOI: 10.1111/bph.14546] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/17/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022] Open
Abstract
First described clinically in 1906, Alzheimer's disease (AD) is the most common neurodegenerative disease and form of dementia worldwide. Despite its prevalence, only five therapies are currently approved for AD, all dealing with the symptoms rather than the underlying causes of the disease. A multitude of experimental evidence has suggested that the once thought inconsequential process of neuroinflammation does, in fact, contribute to the AD pathogenesis. One such CNS cell type critical to this process are microglia. Plastic in nature with varied roles, microglia are emerging as key contributors to AD pathology. This review will focus on the role of microglia in the neuroinflammatory response in AD, highlighting recent studies implicating aberrant changes in microglial function in disease progression. Of critical note is that with these advances, a reconceptualization of the framework in which we view microglia is required. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
Collapse
Affiliation(s)
- Zachery Moore
- Neuropharmacology Laboratory, Department of Pharmacology and TherapeuticsUniversity of MelbourneMelbourneVICAustralia
| | - Juliet M Taylor
- Neuropharmacology Laboratory, Department of Pharmacology and TherapeuticsUniversity of MelbourneMelbourneVICAustralia
| | - Peter J Crack
- Neuropharmacology Laboratory, Department of Pharmacology and TherapeuticsUniversity of MelbourneMelbourneVICAustralia
| |
Collapse
|
37
|
Astrocytes: Emerging Therapeutic Targets in Neurological Disorders. Trends Mol Med 2019; 25:750-759. [DOI: 10.1016/j.molmed.2019.04.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
|
38
|
Terashima T, Ogawa N, Sato T, Katagi M, Nakae Y, Okano J, Maegawa H, Kojima H. Advanced Technology for Gene Delivery with Homing Peptides to Spinal Cord through Systemic Circulation in Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:474-483. [PMID: 31193742 PMCID: PMC6538929 DOI: 10.1016/j.omtm.2019.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/25/2019] [Indexed: 11/17/2022]
Abstract
Homing peptides to the spinal cord were identified and isolated using phage display technology. In vivo biopanning was performed by intravenous systemic injection of a phage library to screen specific peptides targeting the spinal cord of mice. Analyses of the sequences of targeted phages yielded two candidate peptides targeting the spinal cord: SP1 (C-LHQSPHI-C) and SP2 (C-PTNNPRS-C). These peptides were synthesized and intravenously injected into mice to evaluate their tissue specificity and potential as gene delivery carriers. The complexes between SP1 or SP2 peptides and the plasmid vector expressing the reporter gene could induce gene transduction in the spinal cord through systemic injection without gene expression in the brain, liver, and kidney. In addition, intravenous injection of the complex between SP1 and the vectors induced interleukin-4 expression in the spinal cord, resulting in effective suppression of lipopolysaccharide-induced hyperalgesia. Therefore, intravenously administered spinal cord homing peptides complexed with a plasmid vector provided tissue-specific treatment featuring gene delivery to the CNS through systemic circulation. This novel method of gene delivery is feasible and has great potential for clinical application.
Collapse
Affiliation(s)
- Tomoya Terashima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
- Corresponding author: Tomoya Terashima, Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.
| | - Nobuhiro Ogawa
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Toshiyuki Sato
- Pain & Neuroscience Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Miwako Katagi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Yuki Nakae
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Junko Okano
- Division of Anatomy and Cell Biology, Shiga University of Medical Science, Shiga, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
39
|
Yu H, Shin SM, Xiang H, Chao D, Cai Y, Xu H, Khanna R, Pan B, Hogan QH. AAV-encoded Ca V2.2 peptide aptamer CBD3A6K for primary sensory neuron-targeted treatment of established neuropathic pain. Gene Ther 2019; 26:308-323. [PMID: 31118475 DOI: 10.1038/s41434-019-0082-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/25/2019] [Accepted: 03/20/2019] [Indexed: 12/17/2022]
Abstract
Transmission of pain signals from primary sensory neurons to secondary neurons of the central nervous system is critically dependent on presynaptic voltage-gated calcium channels. Calcium channel-binding domain 3 (CBD3), derived from the collapsin response mediator protein 2 (CRMP2), is a peptide aptamer that is effective in blocking N-type voltage-gated calcium channel (CaV2.2) activity. We previously reported that recombinant adeno-associated virus (AAV)-mediated restricted expression of CBD3 affixed to enhanced green fluorescent protein (EGFP) in primary sensory neurons prevents the development of cutaneous mechanical hypersensitivity in a rat neuropathic pain model. In this study, we tested whether this strategy is effective in treating established pain. We constructed AAV6-EGFP-CBD3A6K (AAV6-CBD3A6K) expressing a fluorescent CBD3A6K (replacing A to K at position 6 of CBD3 peptide), which is an optimized variant of the parental CBD3 peptide that is a more potent blocker of CaV2.2. Delivery of AAV6-CBD3A6K into lumbar (L) 4 and 5 dorsal root ganglia (DRG) of rats 2 weeks following tibial nerve injury (TNI) induced transgene expression in neurons of these DRG and their axonal projections, accompanied by attenuation of pain behavior. We additionally observed that the increased CaV2.2α1b immunoreactivity in the ipsilateral spinal cord dorsal horn and DRG following TNI was significantly normalized by AAV6-CBD3A6K treatment. Finally, the increased neuronal activity in the ipsilateral dorsal horn that developed after TNI was reduced by AAV6-CBD3A6K treatment. Collectively, these results indicate that DRG-restricted AAV6 delivery of CBD3A6K is an effective analgesic molecular strategy for the treatment of established neuropathic pain.
Collapse
Affiliation(s)
- Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. .,Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA.
| | - Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Hongfei Xiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Dongman Chao
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Yongsong Cai
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, PR China
| | - Hao Xu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Rajesh Khanna
- Departments of Pharmacology, Neuroscience and Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| |
Collapse
|
40
|
|
41
|
de la Peña JBI, Song JJ, Campbell ZT. RNA control in pain: Blame it on the messenger. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1546. [PMID: 31090211 DOI: 10.1002/wrna.1546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 12/12/2022]
Abstract
mRNA function is meticulously controlled. We provide an overview of the integral role that posttranscriptional controls play in the perception of painful stimuli by sensory neurons. These specialized cells, termed nociceptors, precisely regulate mRNA polarity, translation, and stability. A growing body of evidence has revealed that targeted disruption of mRNAs and RNA-binding proteins robustly diminishes pain-associated behaviors. We propose that the use of multiple independent regulatory paradigms facilitates robust temporal and spatial precision of protein expression in response to a range of pain-promoting stimuli. This article is categorized under: RNA in Disease and Development > RNA in Disease Translation > Translation Regulation RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- June Bryan I de la Peña
- Department of Biological Sciences and the Center for Advanced Pain Studies, University of Texas, Dallas, Richardson, Texas
| | - Jane J Song
- Department of Biological Sciences and the Center for Advanced Pain Studies, University of Texas, Dallas, Richardson, Texas
| | - Zachary T Campbell
- Department of Biological Sciences and the Center for Advanced Pain Studies, University of Texas, Dallas, Richardson, Texas
| |
Collapse
|
42
|
Wada A, Terashima T, Kageyama S, Yoshida T, Narita M, Kawauchi A, Kojima H. Efficient Prostate Cancer Therapy with Tissue-Specific Homing Peptides Identified by Advanced Phage Display Technology. MOLECULAR THERAPY-ONCOLYTICS 2019; 12:138-146. [PMID: 30788426 PMCID: PMC6369249 DOI: 10.1016/j.omto.2019.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/10/2019] [Indexed: 11/01/2022]
Abstract
Selective targeting of drugs to tumor cells is a key goal in oncology. Here, we performed an in vivo phage display to identify peptides that specifically target xenografted prostate cancer cells. This yielded three peptide candidates, LN1 (C-TGTPARQ-C), LN2 (C-KNSMFAT-C), and LN3 (C-TNKHSPK-C); each of these peptides was synthesized and evaluated for binding and biological activity. LN1 showed the highest avidity for LNCaP prostate cancer cells in vitro and was thus administered to tumor-bearing mice to evaluate in vivo binding. Strikingly, LN1 specifically bound to the tumor tissue and exhibited very low reactivity with normal liver and kidney tissues. To demonstrate that LN1 could specifically deliver drugs to prostate cancer tissue, a therapeutic peptide, LN1-KLA (C-TGTPARQ-C-GGG-D[KLAKLAK]2), was prepared and used to treat LNCaP cells in vitro and was also administered to tumor-bearing mice. The therapeutic peptide significantly suppressed growth of the cells both in vitro and in vivo. Our study shows that a selective homing peptide strategy could facilitate cell-specific targeting of therapeutics while avoiding adverse reactions in normal tissues.
Collapse
Affiliation(s)
- Akinori Wada
- Department of Urology, Shiga University of Medical Science, Shiga, Japan.,Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Tomoya Terashima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Susumu Kageyama
- Department of Urology, Shiga University of Medical Science, Shiga, Japan
| | - Tetsuya Yoshida
- Department of Urology, Shiga University of Medical Science, Shiga, Japan
| | - Mitsuhiro Narita
- Department of Urology, Shiga University of Medical Science, Shiga, Japan
| | - Akihiro Kawauchi
- Department of Urology, Shiga University of Medical Science, Shiga, Japan
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
43
|
Thompson CD, Matta B, Barnes BJ. Therapeutic Targeting of IRFs: Pathway-Dependence or Structure-Based? Front Immunol 2018; 9:2622. [PMID: 30515152 PMCID: PMC6255967 DOI: 10.3389/fimmu.2018.02622] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
The interferon regulatory factors (IRFs) are a family of master transcription factors that regulate pathogen-induced innate and acquired immune responses. Aberration(s) in IRF signaling pathways due to infection, genetic predisposition and/or mutation, which can lead to increased expression of type I interferon (IFN) genes, IFN-stimulated genes (ISGs), and other pro-inflammatory cytokines/chemokines, has been linked to the development of numerous diseases, including (but not limited to) autoimmune and cancer. What is currently lacking in the field is an understanding of how best to therapeutically target these transcription factors. Many IRFs are regulated by post-translational modifications downstream of pattern recognition receptors (PRRs) and some of these modifications lead to activation or inhibition. We and others have been able to utilize structural features of the IRFs in order to generate dominant negative mutants that inhibit function. Here, we will review potential therapeutic strategies for targeting all IRFs by using IRF5 as a candidate targeting molecule.
Collapse
Affiliation(s)
- Cherrie D Thompson
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| |
Collapse
|
44
|
Terashima T, Nakae Y, Katagi M, Okano J, Suzuki Y, Kojima H. Stem cell factor induces polarization of microglia to the neuroprotective phenotype in vitro. Heliyon 2018; 4:e00837. [PMID: 30294687 PMCID: PMC6171080 DOI: 10.1016/j.heliyon.2018.e00837] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/16/2018] [Accepted: 09/27/2018] [Indexed: 02/05/2023] Open
Abstract
Microglia are classified mainly into the M1 or M2 phenotypes, which evoke either proinflammatory or neuroprotective responses. Given the association of microglia with the pathogenesis of neuronal diseases, they are in focus as therapeutic targets for the treatment of such conditions. Stem cell factor (SCF) is a ligand for the c-kit receptor, one of the differentiation factors for bone marrow cells. In this study, characteristics of SCF-activated microglia and their effects on neurons were analyzed to investigate the therapeutic potential of SCF in neuronal diseases. SCF was found to induce proliferation, migration, and phagocytosis of microglia. In addition, SCF-derived microglia showed a neuroprotective phenotype expressing anti-inflammatory cytokines, growth factors, and M2 markers as compared to the phenotype shown by granulocyte macrophage-colony stimulating factor-derived microglia expressing inflammatory cytokines and M1 markers. Furthermore, supernatant medium from SCF-activated microglia enhanced cell proliferation and protection from cell death in NSC-34 neuronal cells. We conclude that SCF modulates microglial functions and induces activation of the neuroprotective effects of microglia, which could be used for treatment of neuronal diseases.
Collapse
Affiliation(s)
- Tomoya Terashima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Yuki Nakae
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Miwako Katagi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Junko Okano
- Division of Anatomy and Cell Biology, Shiga University of Medical Science, Shiga, Japan.,Department of Plastic Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Yoshihisa Suzuki
- Department of Plastic Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|