1
|
Puri A, Mohite P, Maitra S, Subramaniyan V, Kumarasamy V, Uti DE, Sayed AA, El-Demerdash FM, Algahtani M, El-Kott AF, Shati AA, Albaik M, Abdel-Daim MM, Atangwho IJ. From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability. Biomed Pharmacother 2024; 170:116083. [PMID: 38163395 DOI: 10.1016/j.biopha.2023.116083] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
As we navigate the modern era, the intersection of time-honoured natural remedies and contemporary scientific approaches forms a burgeoning frontier in global healthcare. For generations, natural products have been foundational to health solutions, serving as the primary healthcare choice for 80% to 85% of the world's population. These herbal-based, nature-derived substances, significant across diverse geographies, necessitate a renewed emphasis on enhancing their quality, efficacy, and safety. In the current century, the advent of biogenic phytonanoparticles has emerged as an innovative therapeutic conduit, perfectly aligning with principles of environmental safety and scientific ingenuity. Utilizing green chemistry techniques, a spectrum of metallic nanoparticles including elements such as copper, silver, iron, zinc, and titanium oxide can be produced with attributes of non-toxicity, sustainability, and economic efficiency. Sophisticated herb-mediated processes yield an array of plant-originated nanomaterials, each demonstrating unique physical, chemical, and biological characteristics. These attributes herald new therapeutic potentials, encompassing antioxidants, anti-aging applications, and more. Modern technology further accelerates the synthesis of natural products within laboratory settings, providing an efficient alternative to conventional isolation methods. The collaboration between traditional wisdom and advanced methodologies now signals a new epoch in healthcare. Here, the augmentation of traditional medicine is realized through rigorous scientific examination. By intertwining ethical considerations, cutting-edge technology, and natural philosophy, the realms of biogenic phytonanoparticles and traditional medicine forge promising pathways for research, development, and healing. The narrative of this seamless integration marks an exciting evolution in healthcare, where the fusion of sustainability and innovation crafts a future filled with endless possibilities for human well-being. The research in the development of metallic nanoparticles is crucial for unlocking their potential in revolutionizing fields such as medicine, catalysis, and electronics, promising groundbreaking applications with enhanced efficiency and tailored functionalities in future technologies. This exploration is essential for harnessing the unique properties of metallic nanoparticles to address pressing challenges and advance innovations across diverse scientific and industrial domains.
Collapse
Affiliation(s)
- Abhijeet Puri
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India
| | - Popat Mohite
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India.
| | - Swastika Maitra
- Centre for Global Health Research, Saveetha Medical College and Hospital, Chennai, India; Department of Science and Engineering, Novel Global Community and Educational Foundation, Hebasham, Australia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, 600077, India..
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Daniel E Uti
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria.
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, College of Science, Damounhour University, Egypt
| | - Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mai Albaik
- Chemistry Department, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Item J Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
2
|
Hosseini SA, Kardani A, Yaghoobi H. A comprehensive review of cancer therapies mediated by conjugated gold nanoparticles with nucleic acid. Int J Biol Macromol 2023; 253:127184. [PMID: 37797860 DOI: 10.1016/j.ijbiomac.2023.127184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
Nucleic acids provide a promising therapeutic platform by targeting various cell signaling pathways involved in cancer and genetic disorders. However, maintaining optimal stability during delivery limits their utility. Nucleic acid delivery vehicles are generally categorized into biological and synthetic carriers. Regardless of the efficiency of biological vectors, such as viral vectors, issues related to their immunogenicity and carcinogenesis are very important and vital for clinical applications. On the other hand, synthetic vectors such as lipids or polymers, have been widely used for nucleic acid delivery. Despite their transfection efficiency, low storage stability, targeting inefficiency, and tracking limitations are among the limitations of the clinical application of these vectors. In the past decades, gold nanoparticles with unique properties have been shown to be highly efficient mineral vectors for overcoming these obstacles. In this review, we focus on gold nanoparticle-nucleic acid combinations and highlight their use in the treatment of various types of cancers. Furthermore, by stating the biological applications of these structures, we will discuss their clinical applications.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Arefeh Kardani
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
3
|
Kaur H, Kumar S, Kaur G, Kaur N, Badru R, Saini R. An emerging expanse: Novel and eco-friendly-biogenic synthesis of E. cardamomum-wrapped TiO 2 nanoparticles for environmental and biological applications. ENVIRONMENTAL RESEARCH 2023; 234:116599. [PMID: 37429400 DOI: 10.1016/j.envres.2023.116599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/29/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
The present research is targeted at E. cardamomum-derived TiO2-photocatalyst synthesis, reporting for the first time. The structural properties observed from the XRD pattern reveal that EC:TiO2 has an anatase phase and crystallite size is assessed by Debye-Scherrer's method (3.56 nm), WH-method (3.30 nm), and Modified-Debye-Scherrer's method (3.27 nm). An optical study by the UV-Vis spectrum shows strong absorption at 313 nm, and the corresponding band gap value is 3.28 eV. The topographical and morphological properties revealed by SEM and HRTEM images, elucidate the formation of multi-shaped particles of nano-size. Further, the phytochemicals on the EC:TiO2 NPs' surface are confirmed by the FTIR spectrum. The photocatalytic activity is well studied under UV light towards Congo Red dye, along with an effect of the dose of catalyst. EC:TiO2 (20 mg) has exhibited high photocatalytic efficiency up to 97% for 150 min of exposure due to the morphological, structural, and optical properties. CR degradation reaction exhibits pseudo-first-order kinetics, displaying a rate constant value of 0.01320 min-1. Reusability investigations reveal that after four photocatalysis cycles, EC:TiO2 has an effective efficiency of >85%. Additionally, EC:TiO2 NPs have been assessed for antibacterial activity and show potential against two bacterial species (S. aureus and P. aeruginosa). Therefore, these research outcomes from the eco-friendly and low-cost synthesis, are promising for the use of EC:TiO2 as a talented photocatalyst towards the removal of crystal violet dye as well as an antibacterial agent against bacterial pathogens.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Physics, Chandigarh University, Gharuan, Mohali, 140413, India.
| | - Sanjeev Kumar
- Department of Physics, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406, Punjab, India.
| | - Gaganpreet Kaur
- Department of Physics, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406, Punjab, India
| | - Navjot Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406, Punjab, India
| | - Rahul Badru
- Department of Chemistry, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406, Punjab, India
| | - Rahul Saini
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J1P3, Canada
| |
Collapse
|
4
|
Nikolova MP, Joshi PB, Chavali MS. Updates on Biogenic Metallic and Metal Oxide Nanoparticles: Therapy, Drug Delivery and Cytotoxicity. Pharmaceutics 2023; 15:1650. [PMID: 37376098 PMCID: PMC10301310 DOI: 10.3390/pharmaceutics15061650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The ambition to combat the issues affecting the environment and human health triggers the development of biosynthesis that incorporates the production of natural compounds by living organisms via eco-friendly nano assembly. Biosynthesized nanoparticles (NPs) have various pharmaceutical applications, such as tumoricidal, anti-inflammatory, antimicrobials, antiviral, etc. When combined, bio-nanotechnology and drug delivery give rise to the development of various pharmaceutics with site-specific biomedical applications. In this review, we have attempted to summarize in brief the types of renewable biological systems used for the biosynthesis of metallic and metal oxide NPs and the vital contribution of biogenic NPs as pharmaceutics and drug carriers simultaneously. The biosystem used for nano assembly further affects the morphology, size, shape, and structure of the produced nanomaterial. The toxicity of the biogenic NPs, because of their pharmacokinetic behavior in vitro and in vivo, is also discussed, together with some recent achievements towards enhanced biocompatibility, bioavailability, and reduced side effects. Because of the large biodiversity, the potential biomedical application of metal NPs produced via natural extracts in biogenic nanomedicine is yet to be explored.
Collapse
Affiliation(s)
- Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “A. Kanchev”, 8 Studentska Str., 7017 Ruse, Bulgaria
| | - Payal B. Joshi
- Shefali Research Laboratories, 203/454, Sai Section, Ambernath (East), Mumbai 421501, Maharashtra, India;
| | - Murthy S. Chavali
- Office of the Dean (Research), Dr. Vishwanath Karad MIT World Peace University (MIT-WPU), Kothrud, Pune 411038, Maharashtra, India;
| |
Collapse
|
5
|
Mbatha LS, Akinyelu J, Chukwuma CI, Mokoena MP, Kudanga T. Current Trends and Prospects for Application of Green Synthesized Metal Nanoparticles in Cancer and COVID-19 Therapies. Viruses 2023; 15:741. [PMID: 36992450 PMCID: PMC10054370 DOI: 10.3390/v15030741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Cancer and COVID-19 have been deemed as world health concerns due to the millions of lives that they have claimed over the years. Extensive efforts have been made to develop sophisticated, site-specific, and safe strategies that can effectively diagnose, prevent, manage, and treat these diseases. These strategies involve the implementation of metal nanoparticles and metal oxides such as gold, silver, iron oxide, titanium oxide, zinc oxide, and copper oxide, formulated through nanotechnology as alternative anticancer or antiviral therapeutics or drug delivery systems. This review provides a perspective on metal nanoparticles and their potential application in cancer and COVID-19 treatments. The data of published studies were critically analysed to expose the potential therapeutic relevance of green synthesized metal nanoparticles in cancer and COVID-19. Although various research reports highlight the great potential of metal and metal oxide nanoparticles as alternative nanotherapeutics, issues of nanotoxicity, complex methods of preparation, biodegradability, and clearance are lingering challenges for the successful clinical application of the NPs. Thus, future innovations include fabricating metal nanoparticles with eco-friendly materials, tailor making them with optimal therapeutics for specific disease targeting, and in vitro and in vivo evaluation of safety, therapeutic efficiency, pharmacokinetics, and biodistribution.
Collapse
Affiliation(s)
- Londiwe Simphiwe Mbatha
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Jude Akinyelu
- Department of Biochemistry, Federal University Oye-Ekiti, Private Mail Bag 373, Ekiti State 370111, Nigeria
| | - Chika Ifeanyi Chukwuma
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa
| | - Mduduzi Paul Mokoena
- Department of Pathology, Pre-Clinical Sciences Division, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Tukayi Kudanga
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| |
Collapse
|
6
|
Waghchaure RH, Adole VA. Biosynthesis of metal and metal oxide nanoparticles using various parts of plants for antibacterial, antifungal and anticancer activity: A review. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
Patel A. Metal nanoparticles produced by plants with antibacterial properties against Staphylococcus aureus. BRAZ J BIOL 2023; 82:e268052. [PMID: 36888798 DOI: 10.1590/1519-6984.268052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/15/2022] [Indexed: 03/08/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a pathogenic bacteria that causes a variety of potentially fatal infections. The emergence of antibiotic-resistant strains of S. aureus has made treatment even more difficult. In recent years, nanoparticles have been used as an alternative therapeutic agent for S. aureus infections. Among various methods for the synthesis of nanoparticles, the method utilizing plant extracts from different parts of a plant, such as root, stem, leaf, flower, seeds, etc. is gaining widespread usage. Phytochemicals present in plant extract are an inexpensive, eco-friendly, natural material that act as reducing and stabilization agent for the nanoparticle synthesis. The utilization of plant-fabricated nanoparticles against S. aureus is currently in trend. The current review discusses recent findings in the therapeutic application of phytofabricated metal-based nanoparticles against Staphylococcus aureus.
Collapse
Affiliation(s)
- A Patel
- King Khalid University, College of Medicine, Department of Clinical Biochemistry, Abha, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Pathania D, Sharma M, Thakur P, Chaudhary V, Kaushik A, Furukawa H, Khosla A. Exploring phytochemical composition, photocatalytic, antibacterial, and antifungal efficacies of Au NPs supported by Cymbopogon flexuosus essential oil. Sci Rep 2022; 12:14249. [PMID: 35995807 PMCID: PMC9395529 DOI: 10.1038/s41598-022-15899-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Biofabrication of gold nanoparticles (AuNPs) using the aromatic essential oils is highlighted due to its simple, economical, low toxicity, and eco-friendly nature. Essential oil of Cymbopogon flexuosus (CF), an economically valuable medicinal plant, exhibits anti-inflammatory, anti-tumor, antioxidant, and antimicrobial activities. For the first time, this research accounts for the biosynthesis, physicochemical, photocatalytic, antifungal, antibacterial properties of biogenic AuNPs, fabricated using CF essential oil collected from different altitudes (S1-Palampur, S2-Haryana, S3-Dehradun). The altitudinal disparity in the phytochemical composition of essential oils is highlighted. The average crystallite size ranged from 10 to 32 nm and was influenced by CF samples used in the synthesis. The spectroscopic outcomes revealed the involvement of bioactive reagents from CF essential oil in the fabrication and stabilization of AuNPs. The fabricated AuNPs exhibited excellent antimicrobial activities against all tested strains (Staphyloccucs aureus, Escherichia coli, Fusarium oxysporum), showing their efficacy as an antimicrobial agent to treat infectious diseases. Moreover, AuNPs exhibited excellent photocatalytic efficacy of around 91.8% for the degradation of methylene blue under exposure of direct sunlight for 3 h without the assistance of an external reducing agent. The outcomes highlight a potential economic and environmentally friendly strategy to fabricate biogenic AuNPs for diversified industrial applications where antimicrobial and photocatalytic efficacies are the key requirements.
Collapse
Affiliation(s)
- Diksha Pathania
- School of Biological and Environmental Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Mamta Sharma
- School of Biological and Environmental Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
- Department of Botany, Sardar Patel University, Mandi, Himachal Pradesh, 175001, India.
| | - Pankaj Thakur
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vishal Chaudhary
- Research Cell and Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, 110075, India.
| | - Ajeet Kaushik
- NanoBio Tech Laboratory, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, 33805-8531, USA
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| | - Hidemitsu Furukawa
- Department of Mechanical Systems Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Ajit Khosla
- Department of Mechanical Systems Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan.
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, People's Republic of China.
| |
Collapse
|
9
|
Formation Mechanism and Lattice Parameter Investigation for Copper-Substituted Cobalt Ferrites from Zingiber officinale and Elettaria cardamom Seed Extracts Using Biogenic Route. MATERIALS 2022; 15:ma15134374. [PMID: 35806499 PMCID: PMC9267341 DOI: 10.3390/ma15134374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023]
Abstract
Biogenic routes for the synthesis of nanoparticles are environmentally friendly, nontoxic, biocompatible, and cost-effective compared to traditional synthesis methods. In this study, cobalt ferrite was synthesized using Zingiber officinale and Elettaria cardamom Seed extracts. Effect of copper contents (x = 0.0, 0.3, 0.6 and 0.9) on the plant extracted Cux(Co1−xFe2O4) was investigated by XRD, SEM, EDX, UV-Vis., PL, FE-SEM, FTIR and photocatalytic activity. XRD results revealed that nanoparticles exhibit a cubical spinel structure with an average diameter of 7–45 nm, calculated by the Debye Scherer formula. The value of the lattice parameter decreased from 8.36 Å to 8.08 Å with substitution of copper, which can be attributed to mismatch of ionic radii of Cu2+ (0.73 Å) and Co2+ (0.74 Å) ions. SEM analysis showed that nanoparticles exhibit a spherical shape (~13 nm diameter) for undoped samples and low Cu concentration, while they changed to a hexagonal structure at higher Cu concentration (x = 0.9) with a diameter ~46 nm and a decreased degree of agglomeration. FE-SEM further confirmed the nanoparticles’ size and shape. EDX analysis confirmed the presence of cobalt, iron, and oxygen without contamination. The optical absorption spectra of UV-vis and PL showed red-shift, which can be accredited to larger crystalline sizes of nanoparticles. FTIR spectra showed two main bands at 410 and 605 cm−1, indicating the presence of intrinsic vibrations of the octahedral and tetrahedral complexes, respectively. The photocatalytic activity of Co0.4Cu0.6 Fe2O4 nanoparticles was investigated using methylene blue (MB) and methyl orange (MO) dyes under visible light irradiation. The degradation rate (93.39% and 83.15%), regression correlation coefficient (0.9868 and 0.9737) and rate constant (0.04286 and 0.03203 rate·min−1) were calculated for MB and MO, respectively. Mechanisms for the formation and photocatalytic activity of Cu-substituted plant-extracted cobalt ferrite were discussed. The Co0.4Cu0.6 Fe2O4 nanoferrite was found to be an efficient photocatalyst, and can be exploited for wastewater treatment applications for MB/MO elimination.
Collapse
|
10
|
Perveen S, Nadeem R, Rehman SU, Afzal N, Anjum S, Noreen S, Saeed R, Amami M, Al-Mijalli SH, Iqbal M. Green synthesis of iron (Fe) nanoparticles using Plumeria obtusa extract as a reducing and stabilizing agent: Antimicrobial, antioxidant and biocompatibility studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
11
|
Gold Nanoparticles Green-Synthesized by the Suaeda japonica Leaf Extract and Screening of Anti-Inflammatory Activities on RAW 267.4 Macrophages. COATINGS 2022. [DOI: 10.3390/coatings12040460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biosynthesis of gold nanoparticles from medicinal plants has become a modern strategy in biomedical research based on their exclusive properties, including specific targeting, lower toxicity, and biocompatibility. In this study, gold nanoparticles, reduced by the Suaeda japonica leaf extract, were promptly validated by UV–visible (UV–Vis) spectroscopy at 548 nm. No additional reducing agents were needed in this kind of a reduction reaction, which provided evidence of green synthesis. Dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDX), field-emission transmission electron microscopy (FE-TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) analyses were used to illustrate the nanoscale characterization of S. japonica gold nanoparticles (Sj-AuNps). Furthermore, the cytotoxicity effect of Sj-AuNps against the RAW 264.7 cell line was determined by performing an MTT assay. We also investigated Sj-AuNps’ anti-inflammatory properties in LPS-induced murine macrophages. These nanoparticles reduced the generation of nitric oxide (NO) and prostaglandin E2 (PGE2) and repressed the expression of the LPS-stimulated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) genes. This study presents a significant biomedical application of S. japonica AuNps. The anti-inflammatory capabilities of Sj-AuNps underline their potential as possible options for suppressing inflammation-mediated diseases.
Collapse
|
12
|
Noah NM, Ndangili PM. Green synthesis of nanomaterials from sustainable materials for biosensors and drug delivery. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100166] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
13
|
Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods. Biotechnol Adv 2022; 58:107905. [DOI: 10.1016/j.biotechadv.2022.107905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022]
|
14
|
El-Maghrabi N, El-Borady OM, Hosny M, Fawzy M. Catalytic and Medical Potential of a Phyto-Functionalized Reduced Graphene Oxide-Gold Nanocomposite Using Willow-Leaved Knotgrass. ACS OMEGA 2021; 6:34954-34966. [PMID: 34963977 PMCID: PMC8697594 DOI: 10.1021/acsomega.1c05596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/24/2021] [Indexed: 05/02/2023]
Abstract
In the current study, a simple, environmentally friendly, and cost-effective reduced graphene oxide-gold nanoparticle (rGO-AuNP) nanocomposite was successfully phytosynthesized using the aqueous leaf extract of a common weed found on the Nile banks, Persicaria salicifolia, for the first time. The phytosynthesis of rGO-AuNPs was first confirmed via the color transformation from brown to black as well as throughvarious techniques such as transmission electron microscopy (TEM) and Raman spectroscopy. Two UV-vis peaks at 275 and 530 nm were observed for the nanocomposite with a typical particle size of mostly spherical AuNPs of 15-20 nm. However, other shapes were occasionally detected including rods, triangles, and rhomboids. Existing phytoconstituents such as flavonoids and glycosides in the plant extract were suggested to be responsible for the phytosynthesis of rGO-AuNPs. The excellent catalytic efficacy of rGO-AuNPs against MB degradation was confirmed, and a high antibacterial efficiency against Escherichia coli and Klebsiella pneumonia was also confirmed. Promising antioxidant performance of rGO-AuNPs was also proved. Furthermore, it was concluded that rGO-AuNPs acquired higher efficiency than AuNPs synthesized from the same plant extract in all of the studied applications.
Collapse
Affiliation(s)
- Nourhan El-Maghrabi
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
| | - Ola M. El-Borady
- Institute
of Nanoscience and Nanotechnology, Kafrelsheikh
University, Kafrelsheikh 33516, Egypt
| | - Mohamed Hosny
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
- ,
| | - Manal Fawzy
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
- National
Egyptian Biotechnology Experts Network, National Egyptian Academy for Scientific Research and Technology, 101 Kasr Al Aini Street, Cairo 33516, Egypt
| |
Collapse
|
15
|
Green Synthesis of Metal and Metal Oxide Nanoparticles Using Different Plants’ Parts for Antimicrobial Activity and Anticancer Activity: A Review Article. COATINGS 2021. [DOI: 10.3390/coatings11111374] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanotechnology emerged as a scientific innovation in the 21st century. Metallic nanoparticles (metal or metal oxide nanoparticles) have attained remarkable popularity due to their interesting biological, physical, chemical, magnetic, and optical properties. Metal-based nanoparticles can be prepared by utilizing different biological, physical, and chemical methods. The biological method is preferred as it provides a green, simple, facile, ecofriendly, rapid, and cost-effective route for the green synthesis of nanoparticles. Plants have complex phytochemical constituents such as carbohydrates, amino acids, phenolics, flavonoids, terpenoids, and proteins, which can behave as reducing and stabilizing agents. However, the mechanism of green synthesis by using plants is still highly debatable. In this report, we summarized basic principles or mechanisms of green synthesis especially for metal or metal oxide (i.e., ZnO, Au, Ag, and TiO2, Fe, Fe2O3, Cu, CuO, Co) nanoparticles. Finally, we explored the medical applications of plant-based nanoparticles in terms of antibacterial, antifungal, and anticancer activity.
Collapse
|
16
|
Green Synthesis of Gold Nanoparticles Using Plant Extracts as Beneficial Prospect for Cancer Theranostics. Molecules 2021; 26:molecules26216389. [PMID: 34770796 PMCID: PMC8586976 DOI: 10.3390/molecules26216389] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Gold nanoparticles (AuNPs) have been widely explored and are well-known for their medical applications. Chemical and physical synthesis methods are a way to make AuNPs. In any case, the hunt for other more ecologically friendly and cost-effective large-scale technologies, such as environmentally friendly biological processes known as green synthesis, has been gaining interest by worldwide researchers. The international focus on green nanotechnology research has resulted in various nanomaterials being used in environmentally and physiologically acceptable applications. Several advantages over conventional physical and chemical synthesis (simple, one-step approach to synthesize, cost-effectiveness, energy efficiency, and biocompatibility) have drawn scientists’ attention to exploring the green synthesis of AuNPs by exploiting plants’ secondary metabolites. Biogenic approaches, mainly the plant-based synthesis of metal nanoparticles, have been chosen as the ideal strategy due to their environmental and in vivo safety, as well as their ease of synthesis. In this review, we reviewed the use of green synthesized AuNPs in the treatment of cancer by utilizing phytochemicals found in plant extracts. This article reviews plant-based methods for producing AuNPs, characterization methods of synthesized AuNPs, and discusses their physiochemical properties. This study also discusses recent breakthroughs and achievements in using green synthesized AuNPs in cancer treatment and different mechanisms of action, such as reactive oxygen species (ROS), mediated mitochondrial dysfunction and caspase activation, leading to apoptosis, etc., for their anticancer and cytotoxic effects. Understanding the mechanisms underlying AuNPs therapeutic efficacy will aid in developing personalized medicines and treatments for cancer as a potential cancer therapeutic strategy.
Collapse
|
17
|
Fritea L, Banica F, Costea TO, Moldovan L, Dobjanschi L, Muresan M, Cavalu S. Metal Nanoparticles and Carbon-Based Nanomaterials for Improved Performances of Electrochemical (Bio)Sensors with Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6319. [PMID: 34771844 PMCID: PMC8585379 DOI: 10.3390/ma14216319] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
Monitoring human health for early detection of disease conditions or health disorders is of major clinical importance for maintaining a healthy life. Sensors are small devices employed for qualitative and quantitative determination of various analytes by monitoring their properties using a certain transduction method. A "real-time" biosensor includes a biological recognition receptor (such as an antibody, enzyme, nucleic acid or whole cell) and a transducer to convert the biological binding event to a detectable signal, which is read out indicating both the presence and concentration of the analyte molecule. A wide range of specific analytes with biomedical significance at ultralow concentration can be sensitively detected. In nano(bio)sensors, nanoparticles (NPs) are incorporated into the (bio)sensor design by attachment to the suitably modified platforms. For this purpose, metal nanoparticles have many advantageous properties making them useful in the transducer component of the (bio)sensors. Gold, silver and platinum NPs have been the most popular ones, each form of these metallic NPs exhibiting special surface and interface features, which significantly improve the biocompatibility and transduction of the (bio)sensor compared to the same process in the absence of these NPs. This comprehensive review is focused on the main types of NPs used for electrochemical (bio)sensors design, especially screen-printed electrodes, with their specific medical application due to their improved analytical performances and miniaturized form. Other advantages such as supporting real-time decision and rapid manipulation are pointed out. A special attention is paid to carbon-based nanomaterials (especially carbon nanotubes and graphene), used by themselves or decorated with metal nanoparticles, with excellent features such as high surface area, excellent conductivity, effective catalytic properties and biocompatibility, which confer to these hybrid nanocomposites a wide biomedical applicability.
Collapse
Affiliation(s)
- Luminita Fritea
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Florin Banica
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Traian Octavian Costea
- Advanced Materials Research Infrastructure—SMARTMAT, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania;
| | - Liviu Moldovan
- Faculty of Electrical Engineering and Information Technology, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania
| | - Luciana Dobjanschi
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Mariana Muresan
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| |
Collapse
|
18
|
Cárdenas Garza GR, Elizondo Luévano JH, Bazaldúa Rodríguez AF, Chávez Montes A, Pérez Hernández RA, Martínez Delgado AJ, López Villarreal SM, Rodríguez Rodríguez J, Sánchez Casas RM, Castillo Velázquez U, Rodríguez Luis OE. Benefits of Cardamom ( Elettaria cardamomum (L.) Maton) and Turmeric ( Curcuma longa L.) Extracts for Their Applications as Natural Anti-Inflammatory Adjuvants. PLANTS 2021; 10:plants10091908. [PMID: 34579443 PMCID: PMC8467221 DOI: 10.3390/plants10091908] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022]
Abstract
The genus Zingiberaceae has been widely used for phytotherapeutic purposes in traditional medicine throughout the world for its anti-inflammatory activity. Experimental studies have established that inflammation caused by chronic infections represents a risk factor for different forms of cancer. The objective of this study was focused on determining the anti-inflammatory capacity and cytotoxic activity of aqueous extracts of Elettaria cardamomum (cardamom) and Curcuma Longa (turmeric). The extracts were obtained by maceration and, through GC-MS/MS, a total of 11 different chemical components were determined in the aqueous extract of cardamom and 7 in the extract of turmeric. The main compounds found in cardamom and turmeric were α-terpinyl acetate (54.46%) and β-turmerone (33.45%), respectively. RT-qPCR results showed significantly lower gene expression levels of innate inflammatory cytokines (IL-6 and TNF-α) compared to the control (LPS). Also, it was observed that the extracts do not possess cytotoxic activity against different cell lines, where E. cardamomum showed EC50 (µg/mL) of 473.84 (HeLa cells), 237.36 (J774A.1 cells), 257.51 (Vero E6 cells), and 431.16 (Balb/C peritoneal cells) and C. longa showed EC50 (µg/mL) of 351.17 (HeLa cells), 430.96 (J774A.1 cells), 396.24 (Vero E6 cells), and 362.86 (Balb/C peritoneal cells). The results of this research suggest that natural extracts of E. cardamomum and C. longa possess anti-inflammatory effects and no cytotoxic activity against HeLa, J774A.1, Vero E6, and Balb/C peritoneal cell lines. Finally, it was observed that the extracts also decreased nitric oxide (NO) production in peritoneal macrophages.
Collapse
Affiliation(s)
- Gustavo R. Cárdenas Garza
- Faculty of Dentistry, Autonomous University of Nuevo León, Monterrey 64460, NL, Mexico; (G.R.C.G.); (R.A.P.H.); (A.J.M.D.); (S.M.L.V.)
| | - Joel H. Elizondo Luévano
- Faculty of Biological Sciences, Autonomous University of Nuevo León, San Nicolás de los Garza 66455, NL, Mexico; (J.H.E.L.); (A.F.B.R.); (A.C.M.)
| | - Aldo F. Bazaldúa Rodríguez
- Faculty of Biological Sciences, Autonomous University of Nuevo León, San Nicolás de los Garza 66455, NL, Mexico; (J.H.E.L.); (A.F.B.R.); (A.C.M.)
| | - Abelardo Chávez Montes
- Faculty of Biological Sciences, Autonomous University of Nuevo León, San Nicolás de los Garza 66455, NL, Mexico; (J.H.E.L.); (A.F.B.R.); (A.C.M.)
| | - Raymundo A. Pérez Hernández
- Faculty of Dentistry, Autonomous University of Nuevo León, Monterrey 64460, NL, Mexico; (G.R.C.G.); (R.A.P.H.); (A.J.M.D.); (S.M.L.V.)
| | - Ameyalli J. Martínez Delgado
- Faculty of Dentistry, Autonomous University of Nuevo León, Monterrey 64460, NL, Mexico; (G.R.C.G.); (R.A.P.H.); (A.J.M.D.); (S.M.L.V.)
| | - Sonia M. López Villarreal
- Faculty of Dentistry, Autonomous University of Nuevo León, Monterrey 64460, NL, Mexico; (G.R.C.G.); (R.A.P.H.); (A.J.M.D.); (S.M.L.V.)
| | | | - Rosa M. Sánchez Casas
- Faculty of Veterinary Medicine and Zootechny, Autonomous University of Nuevo León, Monterrey 64460, NL, Mexico;
| | - Uziel Castillo Velázquez
- Faculty of Veterinary Medicine and Zootechny, Autonomous University of Nuevo León, Monterrey 64460, NL, Mexico;
- Correspondence: (U.C.V.); (O.E.R.L.); Tel.: +52-8113404390 (U.C.V.); +52-8183294230 (ext. 3117) (O.E.R.L.)
| | - Osvelia E. Rodríguez Luis
- Faculty of Dentistry, Autonomous University of Nuevo León, Monterrey 64460, NL, Mexico; (G.R.C.G.); (R.A.P.H.); (A.J.M.D.); (S.M.L.V.)
- Correspondence: (U.C.V.); (O.E.R.L.); Tel.: +52-8113404390 (U.C.V.); +52-8183294230 (ext. 3117) (O.E.R.L.)
| |
Collapse
|
19
|
Hosny M, Fawzy M, Abdelfatah AM, Fawzy EE, Eltaweil AS. Comparative study on the potentialities of two halophytic species in the green synthesis of gold nanoparticles and their anticancer, antioxidant and catalytic efficiencies. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
Li S, Zhong L, Wang H, Li J, Cheng H, Ma Q. Process optimization of polyphenol oxidase immobilization: Isotherm, kinetic, thermodynamic and removal of phenolic compounds. Int J Biol Macromol 2021; 185:792-803. [PMID: 34229015 DOI: 10.1016/j.ijbiomac.2021.06.188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/12/2023]
Abstract
Chitosan/montmorillonite (CTS/MMT) and chitosan‑gold nanoparticles/montmorillonite (CTS-Au/MMT) composites were prepared, characterized through Fourier transformed infrared (FT-IR), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM), and utilized as support for immobilization of polyphenol oxidase (PPO). PPO was immobilized on CTS/MMT (IPPO) and CTS-Au/MMT (IPPO-Au) by physical adsorption, respectively. In order to achieve simultaneous maximization of immobilization efficiency and enzyme activity, the immobilization process parameters were optimized by Taguchi-Grey relational analysis (TGRA) approach. Under the optimal immobilization condition, the immobilization efficiency and enzyme activity reached at 50.16% and 1.46 × 104 U/mg for IPPO, and 63.35% and 3.01 × 104 U/mg for IPPO-Au, respectively. The isotherm, kinetic and thermodynamics of PPO adsorption were investigated in detail. The adsorption process was better explained by Toth isotherm and Fractal-like pseudo second order model, respectively. Intra-particle diffusion and film diffusion were involved in the adsorption process and intra-particle diffusion was not the only rate-controlling step. The adsorption of PPO was exothermic, physical and spontaneous at the investigated temperature range. The immobilized PPO were used to oxidize phenolic compounds. All investigated phenolic compounds showed the higher conversion as catalyzed by IPPO-Au. For both IPPO and IPPO-Au, the conversion of substituted phenols was higher than that of phenol.
Collapse
Affiliation(s)
- Shiqian Li
- College of Ocean and Bio-chemical Engineering, Fujian provincial Key Laboratory of Coastal Basin Environment, Fuqing Branch of Fujian Normal University, Fuqing 350300, China
| | - Lian Zhong
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Han Wang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jin Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Huali Cheng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Qimin Ma
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
21
|
Green Biosynthesis of Flaxseed Gold Nanoparticles (Au-NPs) as Potent Anti-cancer Agent Against Breast Cancer Cells. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101243] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Potentials of phytosynthesized silver nanoparticles in biomedical fields: a review. INTERNATIONAL NANO LETTERS 2021. [DOI: 10.1007/s40089-021-00341-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Tan KB, Sun D, Huang J, Odoom-Wubah T, Li Q. State of arts on the bio-synthesis of noble metal nanoparticles and their biological application. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Salem SS, Fouda A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: an Overview. Biol Trace Elem Res 2021; 199:344-370. [PMID: 32377944 DOI: 10.1007/s12011-020-02138-3] [Citation(s) in RCA: 404] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
The green synthesis of nanoparticles (NPs) using living cells is a promising and novelty tool in bionanotechnology. Chemical and physical methods are used to synthesize NPs; however, biological methods are preferred due to its eco-friendly, clean, safe, cost-effective, easy, and effective sources for high productivity and purity. High pressure or temperature is not required for the green synthesis of NPs, and the use of toxic and hazardous substances and the addition of external reducing, stabilizing, or capping agents are avoided. Intra- or extracellular biosynthesis of NPs can be achieved by numerous biological entities including bacteria, fungi, yeast, algae, actinomycetes, and plant extracts. Recently, numerous methods are used to increase the productivity of nanoparticles with variable size, shape, and stability. The different mechanical, optical, magnetic, and chemical properties of NPs have been related to their shape, size, surface charge, and surface area. Detection and characterization of biosynthesized NPs are conducted using different techniques such as UV-vis spectroscopy, FT-IR, TEM, SEM, AFM, DLS, XRD, zeta potential analyses, etc. NPs synthesized by the green approach can be incorporated into different biotechnological fields as antimicrobial, antitumor, and antioxidant agents; as a control for phytopathogens; and as bioremediative factors, and they are also used in the food and textile industries, in smart agriculture, and in wastewater treatment. This review will address biological entities that can be used for the green synthesis of NPs and their prospects for biotechnological applications.
Collapse
Affiliation(s)
- Salem S Salem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt.
| |
Collapse
|
25
|
Green biosynthesis of Pt-nanoparticles from Anbara fruits: Toxic and protective effects on CCl4 induced hepatotoxicity in Wister rats. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
26
|
Barabadi H, Vahidi H, Mahjoub MA, Kosar Z, Damavandi Kamali K, Ponmurugan K, Hosseini O, Rashedi M, Saravanan M. Emerging Antineoplastic Gold Nanomaterials for Cervical Cancer Therapeutics: A Systematic Review. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01733-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Baskaran XR, Vigila AVG, Rajan K, Zhang S, Liao W. Free Radical Scavenging and Some Pharmaceutical Utilities of Nanoparticles in the Recent Scenario. Curr Pharm Des 2019; 25:2677-2693. [PMID: 31333102 DOI: 10.2174/1381612825666190716110330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/03/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nanopharmaceuticals have rapidly emerged as a means to cure several diseases. There are numerous reports describing the development and application of nanopharmaceuticals. Here, we discussed nanoparticle synthesis and the mechanisms to scavenge free radicals. We also discuss their major properties and list several commercially available nanomedicines. RESULTS Reactive oxygen and hydrogen species are formed during normal metabolism, and excessive reactive species can damage proteins, lipids, and DNA and cause disease. Plant- and microbe-based nanoparticles, which can protect tissues from free radical damage, have recently gained research momentum because they are inexpensive and safe. CONCLUSION Synthetic and biocompatible nanoparticles exhibit antioxidant, antidiabetic, anti-inflammatory, and anticancer properties, which can be used to treat several diseases. Further studies are needed to investigate their sizes, dose-dependent activities, and mechanisms of action.
Collapse
Affiliation(s)
- Xavier-Ravi Baskaran
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510 275, China.,Shenzhen Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518 004, China
| | - Antony-Varuvel G Vigila
- Department of Zoology, St. Xavier's College, Palayamkottai 627 002, Tamil Nadu, India.,Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627 012, Tamil Nadu, India
| | - Kilimas Rajan
- Department of Botany, St. Joseph's College, Tiruchirappalli 620 002, Tamil Nadu, India
| | - Shouzhou Zhang
- Shenzhen Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518 004, China
| | - Wenbo Liao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510 275, China
| |
Collapse
|
28
|
Faraz A, Faizan M, Sami F, Siddiqui H, Pichtel J, Hayat S. Nanoparticles: biosynthesis, translocation and role in plant metabolism. IET Nanobiotechnol 2019; 13:345-352. [PMID: 31171737 PMCID: PMC8676279 DOI: 10.1049/iet-nbt.2018.5251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/31/2018] [Accepted: 01/24/2019] [Indexed: 11/19/2022] Open
Abstract
Nanotechnology is an emerging field of science that applies particles between 1 and 100 nm in size for a range of practical uses. Nano-technological discoveries have opened novel applications in biotechnology and agriculture. Many reactions involving nanoparticles (NPs) are more efficient compared to those of their respective bulk materials. NPs obtained from plant material, denoted as biogenic or phytosynthesised NPs, are preferred over chemically synthesised NPs due to their low toxicity, rapid reactions and cost-effective production. NPs impart both positive and negative impacts on plant growth and development. NPs exhibit their unique actions as a function of their size, reactivity, surface area and concentration. An insight into NP biosynthesis and translocation within the plant system will shed some light on the roles and mechanisms of NP-mediated regulation of plant metabolism. This review is a step towards that goal.
Collapse
Affiliation(s)
- Ahmad Faraz
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Faizan
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Fareen Sami
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Husna Siddiqui
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - John Pichtel
- Natural Resources and Environmental Management, Ball State University, Muncie, IN 47306, USA
| | - Shamsul Hayat
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
29
|
López-Miranda JL, Esparza R, Rosas G, Pérez R, Estévez-González M. Catalytic and antibacterial properties of gold nanoparticles synthesized by a green approach for bioremediation applications. 3 Biotech 2019; 9:135. [PMID: 30863714 PMCID: PMC6409132 DOI: 10.1007/s13205-019-1666-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 03/01/2019] [Indexed: 12/27/2022] Open
Abstract
In this work, we are proposing the green synthesis of gold nanoparticles (AuNPs) using aqueous extracts of A. triphylla and evaluating their antibacterial and catalytic properties. Characterization was performed by UV-Vis and FT-IR spectroscopies, X-ray diffraction, and transmission electron microscopy (TEM). Antibacterial activity of AuNPs was analyzed using E. coli and S. Aureus and catalytic activity was determined by the degradation of methylene blue and congo red. UV-Vis analysis showed an increase in AuNPs concentration by increasing the extract concentration, volume extract, and precursor salt concentration. The crystalline nature of AuNPs was corroborated by X-ray diffraction. TEM analysis showed nanoparticles with spherical morphology (mostly) and size between 40 and 60 nm. These results are novel because they showed a homogeneous morphology and a narrow size distribution which is difficult to obtain in green synthesis processes. Results of antibacterial activity showed inhibition zones of 11.3 mm and 10.6 mm for S. Aureus and E. coli, respectively, indicating the bactericidal capacity of the nanoparticles. The degradation periods for methylene blue and congo red were 5 and 11 min, respectively, which are very short compared with previous reports. These results are of great significance for catalytic applications. Therefore, A. triphylla extracts made possible AuNPs synthesis and the nanoparticles obtained can be used as catalytic and antibacterial materials for water remediation.
Collapse
Affiliation(s)
- J. Luis López-Miranda
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230 Santiago de Querétaro, Querétaro Mexico
| | - R. Esparza
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230 Santiago de Querétaro, Querétaro Mexico
| | - G. Rosas
- Instituto de Investigaciones Metalúrgicas, UMSNH, edificio U, ciudad universitaria, 58060 Morelia Michoacán, Mexico
| | - R. Pérez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, P.O. Box 48-3, 62251 Cuernavaca Morelos, Mexico
| | - M. Estévez-González
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230 Santiago de Querétaro, Querétaro Mexico
| |
Collapse
|
30
|
Eco-friendly synthesis of gold nanoparticles using carboxymethylated gum Cochlospermum gossypium (CMGK) and their catalytic and antibacterial applications. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00722-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Green synthesis of platinum nanoparticles using Saudi’s Dates extract and their usage on the cancer cell treatment. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2018.05.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Biological synthesis of metallic nanoparticles (MNPs) by plants and microbes: their cellular uptake, biocompatibility, and biomedical applications. Appl Microbiol Biotechnol 2019; 103:2913-2935. [PMID: 30778643 DOI: 10.1007/s00253-019-09675-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 12/13/2022]
Abstract
Metallic nanoparticles (MNPs) with their diverse physical and chemical properties have been applied in various biomedical domains. The increasing demand for MNPs has attracted researchers to develop straightforward, inexpensive, simple, and eco-friendly processes for the enhanced production of MNPs. To discover new biomedical applications first requires knowledge of the interactions of MNPs with target cells. This review focuses on plant and microbial synthesis of biological MNPs, their cellular uptake, biocompatibility, any biological consequences such as cytotoxicity, and biomedical applications. We highlighted the involvement of biomolecules in capping and stabilization of MNPs and the effect of physicochemical parameters particularly the pH on the synthesis of MNPs. Recently achieved milestones to understand the role of synthetic biology (SynBiol) in the synthesis of tailored MNPs are also discussed.
Collapse
|
33
|
Hajji S, Khedir SB, Hamza-Mnif I, Hamdi M, Jedidi I, Kallel R, Boufi S, Nasri M. Biomedical potential of chitosan-silver nanoparticles with special reference to antioxidant, antibacterial, hemolytic and in vivo cutaneous wound healing effects. Biochim Biophys Acta Gen Subj 2019; 1863:241-254. [DOI: 10.1016/j.bbagen.2018.10.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/03/2018] [Accepted: 10/13/2018] [Indexed: 12/22/2022]
|
34
|
Katas H, Lim CS, Nor Azlan AYH, Buang F, Mh Busra MF. Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from Lignosus rhinocerotis and chitosan. Saudi Pharm J 2018; 27:283-292. [PMID: 30766441 PMCID: PMC6362174 DOI: 10.1016/j.jsps.2018.11.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/17/2018] [Indexed: 12/19/2022] Open
Abstract
A simple, cost-effective, and environmentally friendly method is needed for synthesizing metal nanoparticles, including gold nanoparticles (AuNPs). In this study, AuNPs were synthesized with Lignosus rhinocerotis sclerotial extract (LRE) and chitosan (CS) as reducing and stabilizing agents, respectively. Different LRE concentrations from cold and hot water extraction (CWE and HWE, respectively) were used to reduce chloroauric acid (HAuCl4) to form AuNPs. Positively charged chitosan stabilized AuNPs (CS-AuNPs) mediated by LRE exhibited a surface plasmon resonance (SPR) band at 533 nm. The CS-AuNPs synthesized using CWE had a smaller particle size (49.5 ± 6.7-82.4 ± 28.0 nm) compared to that of the HWE samples (80.3 ± 23.4-125.3 ± 41.5 nm), depending on LRE concentration. FTIR results suggested protein and polysaccharides in LRE were the sources of reducing power, reducing gold ions to AuNPs. CS-AuNPs were mostly spherical with higher LRE concentrations, whereas some triangular, pentagonal, irregular, and rod shaped AuNPs were observed at lower LRE concentrations. CS-AuNPs mediated by LRE displayed effective antibacterial activity against gram-negative (Pseudomonas aeruginosa and Escherichia coli) and gram-positive bacteria (Staphylococcus aureus and Bacillus sp.). Thus, the biosynthesized AuNPs using LRE and chitosan provide opportunities for developing stable and eco-friendly nanoparticles with effective antibacterial properties.
Collapse
Affiliation(s)
- Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Chei Sin Lim
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Ahmad Yasser Hamdi Nor Azlan
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Fhataheya Buang
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Mohd Fauzi Mh Busra
- Tissue Engineering Centre, UKM Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
35
|
Rapid Room-Temperature Synthesis of Gold Nanoparticles Using Sargentgloryvine Stem Extract and Their Photocatalytic Activity. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0985-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Dhayalan M, Denison MIJ, Ayyar M, Gandhi NN, Krishnan K, Abdulhadi B. Biogenic synthesis, characterization of gold and silver nanoparticles from Coleus forskohlii and their clinical importance. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:251-257. [PMID: 29734113 DOI: 10.1016/j.jphotobiol.2018.04.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/22/2018] [Accepted: 04/26/2018] [Indexed: 10/17/2022]
Abstract
In modern era, the great interest and demand among chemists and researchers for metal nanoparticles is increasing in the application of biomedical fields, textiles, cosmetics and various sectors. Consequently, the present study reports an eco-friendly, cost-effective, rapid and easy method to produce environment-friendly metal nanoparticles to prevent exhaustion of metal resources. In this context, gold and silver metal nanoparticles were green synthesized using the Root Extract of Coleous forskohlii (RECo) as capping and reducing agent. The synthesized gold (GNPs) and silver nanoparticles (SNPs) were characterized using UV-Visible spectrophotometer, High-resolution transmission electron microscopy (HR-TEM), Particle size analysis (PSA), Fourier-transform infrared spectroscopy (FT-IR) and X-Ray Diffractometer (XRD). Their clinical importance was analysed using anti-oxidant assay (DPPH - 2,2-diphenyl-1-picrylhydrazyl and Phosphomolybdenum PMA) and cytotoxicity (MTT assay) against HEPG2 (liver cancer cell lines). Further, the antimicrobial activity against two microorganisms were tested using disc diffusion method against Proteus vulgaris pathogen and Micrococcus luteus pathogen. RECo-GNPs and SNPs were found to be stable in aqueous medium for a longer time and exhibited favorable anti-oxidant, anti-bacterial and anti-cancer activity. The phytoconstituents present in the root extract of Coleous forskohlii was elucidated using GC-MS analysis.
Collapse
Affiliation(s)
- Manikandan Dhayalan
- Department of Chemistry, Bharath Institute of Higher Education and Research (BIHER), Bharath University, Selaiyur, Chennai, Tamil Nadu 600073, India.
| | | | - Manikandan Ayyar
- Department of Chemistry, Bharath Institute of Higher Education and Research (BIHER), Bharath University, Selaiyur, Chennai, Tamil Nadu 600073, India
| | - N N Gandhi
- Department of Chemical Engineering, A.C. College of Technology, Anna University, Tamil Nadu 600025, India
| | - Kathiravan Krishnan
- Department of Biotechnology, University of Madras, Guindy, Chennai 600025, India
| | - Baykal Abdulhadi
- Department of Nano-Medicine Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
37
|
Elbagory AM, Meyer M, Cupido CN, Hussein AA. Inhibition of Bacteria Associated with Wound Infection by Biocompatible Green Synthesized Gold Nanoparticles from South African Plant Extracts. NANOMATERIALS 2017; 7:nano7120417. [PMID: 29186826 PMCID: PMC5746907 DOI: 10.3390/nano7120417] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 01/15/2023]
Abstract
Unlike conventional physical and chemical methods, the biogenic synthesis of gold nanoparticles (GNPs) is considered a green and non-toxic approach to produce biocompatible GNPs that can be utilized in various biomedical applications. This can be achieved by using plant-derived phytochemicals to reduce gold salt into GNPs. Several green synthesized GNPs have been shown to have antibacterial effects, which can be applied in wound dressings to prevent wound infections. Therefore, the aim of this study is to synthesize biogenic GNPs from the South African Galenia africana and Hypoxis hemerocallidea plants extracts and evaluate their antibacterial activity, using the Alamar blue assay, against bacterial strains that are known to cause wound infections. Additionally, we investigated the toxicity of the biogenic GNPs to non-cancerous human fibroblast cells (KMST-6) using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. In this paper, spherical GNPs, with particle sizes ranging from 9 to 27 nm, were synthesized and fully characterized. The GNPs from H. hemerocallidea exhibited antibacterial activity against all the tested bacterial strains, whereas GNPs produced from G. africana only exhibited antibacterial activity against Pseudomonas aeruginosa. The GNPs did not show any significant toxicity towards KMST-6 cells, which may suggest that these nanoparticles can be safely applied in wound dressings.
Collapse
Affiliation(s)
- Abdulrahman M. Elbagory
- DST/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (A.M.E.); (M.M.)
| | - Mervin Meyer
- DST/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (A.M.E.); (M.M.)
| | - Christopher N. Cupido
- Botany Department, University of Forte Hare, Private Bag X1314, Alice 5700, South Africa;
| | - Ahmed A. Hussein
- Chemistry Department, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
- Correspondence: ; Tel.: +27-21-9596193
| |
Collapse
|