1
|
Kumari LS, Siriwardhana DM, Liyanapathirana V, Jinadasa R, Wijesinghe P. Rapid whole genome sequencing for AMR surveillance in low- and middle-income countries: Oxford Nanopore Technology reveals multidrug-resistant Enterobacter cloacae complex from dairy farms in Sri Lanka. BMC Vet Res 2025; 21:351. [PMID: 40382559 PMCID: PMC12084958 DOI: 10.1186/s12917-025-04800-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/30/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a major global challenge that disproportionately affects low- and middle-income countries (LMICs). Environmental contamination by resistant bacteria from animal production facilities is a major driver of the spread of AMR through the food chain, requiring a robust one-health control approach. Traditional culture-based AMR surveillance is time-consuming and less sensitive, and fails to fully capture the spectrum of AMR, evolutionary trends, and epidemiological patterns of AMR spread. Whole-genome sequencing (WGS) has revolutionized AMR surveillance capabilities. Rapid WGS captures the full AMR spectrum with minimum samples, aids source attribution, and provides insights into trends in AMR spread. The portable Oxford Nanopore® Technology (ONT) platform, coupled with open-source software such as Galaxy and Konstanz Information Miner (KNIME), enables the establishment of a potentially portable, transferable workflow for low-resource settings. This study aimed to assess the AMR burden on four dairy farms in Kandy, Sri Lanka, via a resource-limited LMIC using a low-cost high-throughput screening assay and rapid WGS via ONT with Galaxy and KNIME processing to obtain full antibiotic resistomes. RESULTS The four isolates exhibiting the highest minimum inhibitory concentrations for amoxicillin were identified as Enterobacter cloacae and E. hormaechei by WGS. Chromosomes (4.8 to 4.9 Mb) carry the strain-specific resistance genes blaCMH-1, blaACT-25, fosA_7, and ramA, which are associated with diverse antibiotic classes. Plasmids, including IncFIB (pECLA), IncFII (pECLA), and IncX3, carry multiple resistance genes, including AAC(3)-IIe, AAC(6')-Ib-cr, APH(3″)-Ib, APH(6)-Id, blaCTX-M-15, blaNDM, blaOXA-1, blaTEM-1, dfrA14, QnrB17, catII, determinant-of-bleomycin-resistance, and sul2. Novel arrangements of insertion sequences were observed in E. hormaechei plasmids. The phenotypic resistance of all the isolates matched the genotypic MDR profiles, including resistance to chloramphenicol, gentamicin, tetracycline, and cotrimoxazole. CONCLUSIONS ONT WGS with Galaxy and KNIME processing may be a feasible option for AMR surveillance in resource-limited LMICs. To the best of our knowledge, this is the first in-house whole-genome analysis workflow in the country tailored for AMR surveillance. The presence of potentially pathogenic high-MIC, MDR Enterobacter spp. with wide resistomes, including the blaNDM gene, emphasizes the urgent need to address AMR in animal production facilities within a one-health framework.
Collapse
Affiliation(s)
- Lakmini S Kumari
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Dinushika M Siriwardhana
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Veranja Liyanapathirana
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Rasika Jinadasa
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine & Animal Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Priyanga Wijesinghe
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| |
Collapse
|
2
|
Grailey K, Finlayson A, Stuijfzand B, McCrudden C, Jones A, Meyer Zu Brickwedde E, Brown H, Huf S, Behrendt H, Darzi A. Differing terminology used to describe antimicrobial resistance can influence comprehension and subsequent behavioural intent. COMMUNICATIONS MEDICINE 2025; 5:146. [PMID: 40301514 PMCID: PMC12041392 DOI: 10.1038/s43856-025-00849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 04/04/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Despite global campaigns, the public's understanding of antimicrobial resistance (AMR) as a global emergency remains limited. Behaviour change is crucial in preserving antimicrobials but requires improved understanding of AMR at a population level. METHODS Members of the public co-designed intervention arms, selecting three alternatives to AMR to be evaluated in a four-armed online randomised behavioural experiment. The primary outcome was attitudes towards AMR. Secondary and exploratory outcomes included comprehension, behavioural intent and recall. RESULTS In April 2024, 4296 participants completed the online survey. Antibiotic Resistance is the most effective terminology for attitudes towards AMR (p < 3.95E-06), comprehension (p = 0.013) and recall (p < 0.0003). Both Antibiotic Resistance and The Antibiotic Crisis reduce behavioural intent to stop a course of antibiotics early. CONCLUSIONS Alternative terminology to describe AMR can impact attitudes, comprehension and behavioural intent towards antimicrobial use. Co-designing such terminology with the public can be an effective way utilising meaningful language in public health campaigns.
Collapse
Affiliation(s)
- Kate Grailey
- The Fleming Initiative, Institute of Global Health Innovation, Imperial College London, London, UK.
| | | | | | - Clare McCrudden
- The Fleming Initiative, Institute of Global Health Innovation, Imperial College London, London, UK
| | - Adam Jones
- The Behavioural Insights Team, London, UK
| | | | | | - Sarah Huf
- The Fleming Initiative, Institute of Global Health Innovation, Imperial College London, London, UK
| | | | - Ara Darzi
- The Fleming Initiative, Institute of Global Health Innovation, Imperial College London, London, UK
| |
Collapse
|
3
|
Peters AC, Larsson DGJ, Laxminarayan R, Munthe C. Barriers and pathways to environmental surveillance of antibiotic resistance in middle- and low-income settings: a qualitative exploratory key expert study. Glob Health Action 2024; 17:2343318. [PMID: 38813982 PMCID: PMC11141306 DOI: 10.1080/16549716.2024.2343318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 04/11/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Local and global surveillance of antibiotic resistance (ABR) has proven a challenge to implement effectively in low- and middleincome (LMI) settings. Environmental surveillance solutions are increasingly highlighted as a strategy to help overcome such problems, and thus to promote global health as well as the local management of ABR in LMI countries. While technical and scientific aspects of such solutions are being probed continuously, no study has investigated their practical feasibility. OBJECTIVE Explore practical barriers for environmental surveillance of ABR in LMI countries, and pathways for surveillance experts to manage these. METHODS To start charting this unknown territory, we conducted an explorative, qualitative interview study with key informants, applying a constructivist grounded theory approach to analyze the results. RESULTS Barriers were identified across infrastructural, institutional and social dimensions, and pathways to manage them were mostly counterproductive from an ABR management perspective, including avoiding entire regions, applying substandard methods and failing to include local collaborators. CONCLUSION The research community as well as international agencies, organizations and states have key roles and responsibilities for improving the prospects of feasible environmental ABR surveillance in LMI-settings.
Collapse
Affiliation(s)
- Ann-Christin Peters
- Department of Philosophy, Linguistics and Theory of Science, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - D. G. Joakim Larsson
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute for Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ramanan Laxminarayan
- One Health Trust, Washington, DC, USA
- One Health Trust, Bangalore, India
- High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
| | - Christian Munthe
- Department of Philosophy, Linguistics and Theory of Science, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| |
Collapse
|
4
|
Raddaoui A, Chebbi Y, Frigui S, Ammeri RW, Ben Abdejlil N, Abbassi MS, Achour W. Deciphering the Resistome and Mobiolme of an Avian-Associated Enterococus faecalis ST249 Clone that Acquired Vancomycin Resistance Isolated from Neutropenic Patient in Tunisia. Microb Drug Resist 2024; 30:481-488. [PMID: 39570677 DOI: 10.1089/mdr.2024.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
This study aimed to characterize the first vancomycin-resistant Enterococcus faecalis (VREfs) isolate from patient with neutropenic in Tunisia by whole-genome sequencing (WGS). This strain was detected from routine rectal swab from an 8-year-old child with bone marrow aplasia, residing in a rural area, on September 20, 2021. The strain was isolated after 12 days of hospitalization at the National Bone Marrow Transplant Center. Minimum Inhibitory Concentrations of vancomycin and teicoplanin were >256 and 16 mg/L, respectively. WGS revealed that the strain belonged to the ST249 clone, exclusively reported in avian (poultry and ducks) vancomycin-susceptible E. faecalis isolates in six studies from four countries, primarily Denmark. The vanA gene was carried by the Tn1546 transposon mobilized by a pTW9-like plasmid. The ardA gene, a CRISPR-Cas system neutralization factor, was detected in this strain. In summary, this is the first report of avian-associated E. faecalis ST249 in clinical samples. Initially vancomycin susceptible, the strain acquired a pTW9-like plasmid carrying the classical vanA-Tn1546 transposon. This acquisition was facilitated by the sex pheromone-response mechanisms and the ardA gene and CRISPR-Cas system neutralization.
Collapse
Affiliation(s)
- Anis Raddaoui
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis, Tunisia
- Faculty of Medicine of Tunis, Laboratory LR18ES39, University of Tunis El Manar, Tunis, Tunisia
| | - Yosra Chebbi
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis, Tunisia
- Faculty of Medicine of Tunis, Laboratory LR18ES39, University of Tunis El Manar, Tunis, Tunisia
| | - Siwar Frigui
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis, Tunisia
- Faculty of Medicine of Tunis, Laboratory LR18ES39, University of Tunis El Manar, Tunis, Tunisia
| | - Rim Werheni Ammeri
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis, Tunisia
- Faculty of Medicine of Tunis, Laboratory LR18ES39, University of Tunis El Manar, Tunis, Tunisia
| | - Nour Ben Abdejlil
- Department of Hematology and Transplantation, National Bone Marrow Transplant Center, Tunis, Tunisia
| | - Mohamed Salah Abbassi
- Faculty of Medicine of Tunis, Laboratory of Antibiotic Resistance LR99ES09, University of Tunis El Manar, Tunis, Tunisia
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis, Tunisia
| | - Wafa Achour
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis, Tunisia
- Faculty of Medicine of Tunis, Laboratory LR18ES39, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
5
|
Kalpana P, Yasobant S, Saxena D, Schreiber C. Microbial Contamination and Antibiotic Resistance in Fresh Produce and Agro-Ecosystems in South Asia-A Systematic Review. Microorganisms 2024; 12:2267. [PMID: 39597656 PMCID: PMC11596128 DOI: 10.3390/microorganisms12112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Fresh produce prone to microbial contamination is a potential reservoir for antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), posing challenges to food safety and public health. This systematic review aims to comprehensively assess the prevalence of bacterial pathogens and the incidence of ARB/ARGs in fresh produce and agro-ecosystems across South Asia. Twenty-two relevant studies published between 2012 and 2022 from three major scientific databases and the grey literature were identified. The results revealed a wide occurrence of microbial contamination in various types of fresh produce across South Asia, with a predominance of E. coli (16/22), Salmonella spp. (13/22), Staphylococcus spp. (5/22), and Klebsiella spp. (4/22). The agro-ecosystem serves as a complex interface for microbial interactions; studies have reported the prevalence of E. coli (1/4), Salmonella spp. (1/4) and Listeria monocytogenes (1/4) in farm environment samples. A concerning prevalence of ARB has been reported, with resistance to multiple classes of antibiotics. The presence of ARGs in fresh produce underscores the potential for gene transfer and the emergence of resistant pathogens. To conclude, our review provides insights into the requirements of enhanced surveillance, collaborative efforts, implementation of good agricultural practices, and public awareness for food safety and safeguarding public health in the region.
Collapse
Affiliation(s)
- Pachillu Kalpana
- Center for Development Research (ZEF), University of Bonn, 53113 Bonn, Germany;
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Bonn, 53113 Bonn, Germany
| | - Sandul Yasobant
- School of Epidemiology & Public Health, Datta Meghe Institute of Higher Education and Research (DMIHER), Wardha 442107, Maharashtra, India
- Department of Public Health Science, Indian Institute of Public Health Gandhinagar (IIPHG), Gandhinagar 382042, Gujarat, India
- Centre for One Health Education, Research & Development (COHERD), Indian Institute of Public Health Gandhinagar (IIPHG), Gandhinagar 382042, Gujarat, India
- Global Health, Institute for Hygiene and Public Health (IHPH), University Hospital Bonn, 53127 Bonn, Germany
| | - Deepak Saxena
- School of Epidemiology & Public Health, Datta Meghe Institute of Higher Education and Research (DMIHER), Wardha 442107, Maharashtra, India
- Department of Public Health Science, Indian Institute of Public Health Gandhinagar (IIPHG), Gandhinagar 382042, Gujarat, India
- Centre for One Health Education, Research & Development (COHERD), Indian Institute of Public Health Gandhinagar (IIPHG), Gandhinagar 382042, Gujarat, India
| | - Christiane Schreiber
- GeoHealth Centre, Institute for Hygiene and Public Health (IHPH), University Hospital Bonn, 53127 Bonn, Germany;
| |
Collapse
|
6
|
Toit SAD, Rip D. Exploring the genetic variability, virulence factors, and antibiotic resistance of Listeria monocytogenes from fresh produce, ready-to-eat hummus, and food-processing environments. J Food Sci 2024; 89:6916-6945. [PMID: 39327637 DOI: 10.1111/1750-3841.17399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/08/2024] [Accepted: 09/01/2024] [Indexed: 09/28/2024]
Abstract
Listeria monocytogenes is ubiquitous in nature and persistent in food-processing facilities, farms, retail stores, and home and restaurant kitchens. Current research suggests ready-to-eat (RTE) products (including RTE hummus and fresh produce) to be of increasing interest and concern. These foods are typically stored at refrigeration temperatures suited to the survival of L. monocytogenes and are consumed without further processing. Since L. monocytogenes is ubiquitous in agricultural environments, the cultivation of fresh produce predisposes it to contamination. The contamination of RTE foods originates either from raw ingredients or, more commonly, from cross-contamination within food-processing facilities. Research on the food-processing environment has been recommended to reduce the incidence of L. monocytogenes in foods. The consumption of contaminated foods by immunocompromised individuals causes invasive listeriosis, with a 20% to 30% fatality rate despite treatment. The emergence of antibiotic-resistant strains has reduced the effectiveness of modern medicine and may increase morbidity and mortality. Without epidemiological surveillance and identifying trends in disease determinants, no action can be taken to improve food safety and mitigate the risk of such outbreaks.
Collapse
Affiliation(s)
- Samantha Anne du Toit
- Department of Food Science, Stellenbosch University Matieland, Stellenbosch, South Africa
| | - Diane Rip
- Department of Food Science, Stellenbosch University Matieland, Stellenbosch, South Africa
| |
Collapse
|
7
|
Swinkels AF, Fischer EAJ, Korving L, Christodoulou R, Wagenaar JA, Zomer AL. Flumequine, a fluoroquinolone in disguise. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:28. [PMID: 39843624 PMCID: PMC11721436 DOI: 10.1038/s44259-024-00044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/27/2024] [Indexed: 01/24/2025]
Abstract
Fluoroquinolone resistance in E. coli isolates from livestock in Europe remains high despite EMA restrictions on fluoroquinolone use in animals. However, flumequine, a quinolone not classified as a fluoroquinolone by various regulatory bodies, is still used in livestock in the Netherlands, Belgium, Greece and France. We investigated whether flumequine selects for the same resistance mechanisms in E. coli. Resistant and non-resistant E. coli isolates were obtained from caecal fermentation assays and broilers exposed to concentrations of flumequine and enrofloxacin. Flumequine usage leads to an approximately 3-fold increase in resistant E. coli in the caecal fermentation, similar to enrofloxacin. In vitro exposure to both flumequine and enrofloxacin revealed the same amino acid substitutions (S83L, D87G) in GyrA. Additionally, the same resistance-causing substitutions were found in phenotypically resistant E. coli isolates from broilers treated with either enrofloxacin or flumequine. Flumequine induces similar resistance mechanisms as enrofloxacin, warranting equivalent restrictions on its use.
Collapse
Affiliation(s)
- Aram F Swinkels
- Faculty of Veterinary Medicine, Division of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Egil A J Fischer
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Lisa Korving
- Faculty of Veterinary Medicine, Division of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Rafaella Christodoulou
- Faculty of Veterinary Medicine, Division of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Jaap A Wagenaar
- Faculty of Veterinary Medicine, Division of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
- WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from a One Health Perspective / WOAH Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
| | - Aldert L Zomer
- Faculty of Veterinary Medicine, Division of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands.
- WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from a One Health Perspective / WOAH Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Jiang P, Sun S, Goh SG, Tong X, Chen Y, Yu K, He Y, Gin KYH. A rapid approach with machine learning for quantifying the relative burden of antimicrobial resistance in natural aquatic environments. WATER RESEARCH 2024; 262:122079. [PMID: 39047454 DOI: 10.1016/j.watres.2024.122079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/05/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
The massive use and discharge of antibiotics have led to increasing concerns about antimicrobial resistance (AMR) in natural aquatic environments. Since the dose-response mechanisms of pathogens with AMR have not yet been fully understood, and the antibiotic resistance genes and bacteria-related data collection via field sampling and laboratory testing is time-consuming and expensive, designing a rapid approach to quantify the burden of AMR in the natural aquatic environment has become a challenge. To cope with such a challenge, a new approach involving an integrated machine-learning framework was developed by investigating the associations between the relative burden of AMR and easily accessible variables (i.e., relevant environmental variables and adjacent land-use patterns). The results, based on a real-world case analysis, demonstrate that the quantification speed has been reduced from 3-7 days, which is typical for traditional measurement procedures with field sampling and laboratory testing, to approximately 0.5 hours using the new approach. Moreover, all five metrics for AMR relative burden quantification exceed the threshold level of 85%, with F1-score surpassing 0.92. Compared to logistic regression, decision trees, and basic random forest, the adaptive random forest model within the framework significantly improves quantification accuracy without sacrificing model interpretability. Two environmental variables, dissolved oxygen and resistivity, along with the proportion of green areas were identified as three key feature variables for the rapid quantification. This study contributes to the enrichment of burden analyses and management practices for rapid quantification of the relative burden of AMR without dose-response information.
Collapse
Affiliation(s)
- Peng Jiang
- Department of Industrial Engineering and Management, Business School, Sichuan University, Chengdu 610064, China; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore.
| | - Shuyi Sun
- Department of Industrial Engineering and Management, Business School, Sichuan University, Chengdu 610064, China; Department of Industrial Systems Engineering & Management, National University of Singapore, Singapore 119260, Singapore
| | - Shin Giek Goh
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Xuneng Tong
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Kaifeng Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Department of Civil & Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
9
|
Azuma T, Usui M, Hasei T, Hayashi T. On-Site Inactivation for Disinfection of Antibiotic-Resistant Bacteria in Hospital Effluent by UV and UV-LED. Antibiotics (Basel) 2024; 13:711. [PMID: 39200012 PMCID: PMC11350808 DOI: 10.3390/antibiotics13080711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024] Open
Abstract
The problem of antimicrobial resistance (AMR) is not limited to the medical field but is also becoming prevalent on a global scale in the environmental field. Environmental water pollution caused by the discharge of wastewater into aquatic environments has caused concern in the context of the sustainable development of modern society. However, there have been few studies focused on the treatment of hospital wastewater, and the potential consequences of this remain unknown. This study evaluated the efficacy of the inactivation of antimicrobial-resistant bacteria (AMRB) and antimicrobial resistance genes (AMRGs) in model wastewater treatment plant (WWTP) wastewater and hospital effluent based on direct ultraviolet (UV) light irradiation provided by a conventional mercury lamp with a peak wavelength of 254 nm and an ultraviolet light-emitting diode (UV-LED) with a peak emission of 280 nm under test conditions in which the irradiance of both was adjusted to the same intensity. The overall results indicated that both UV- and UV-LED-mediated disinfection effectively inactivated the AMRB in both wastewater types (>99.9% after 1-3 min of UV and 3 min of UV-LED treatment). Additionally, AMRGs were also removed (0.2-1.4 log10 for UV 254 nm and 0.1-1.3 log10 for UV 280 nm), and notably, there was no statistically significant decrease (p < 0.05) in the AMRGs between the UV and UV-LED treatments. The results of this study highlight the importance of utilizing a local inactivation treatment directly for wastewater generated by a hospital prior to its flow into a WWTP as sewage. Although additional disinfection treatment at the WWTP is likely necessary to remove the entire quantity of AMRB and AMRGs, the present study contributes to a significant reduction in the loads of WWTP and urgent prevention of the spread of infectious diseases, thus alleviating the potential threat to the environment and human health risks associated with AMR problems.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan; (T.H.); (T.H.)
| | - Masaru Usui
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan;
| | - Tomohiro Hasei
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan; (T.H.); (T.H.)
| | - Tetsuya Hayashi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan; (T.H.); (T.H.)
| |
Collapse
|
10
|
Manaia CM, Aga DS, Cytryn E, Gaze WH, Graham DW, Guo J, Leonard AFC, Li L, Murray AK, Nunes OC, Rodriguez-Mozaz S, Topp E, Zhang T. The Complex Interplay Between Antibiotic Resistance and Pharmaceutical and Personal Care Products in the Environment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:637-652. [PMID: 36582150 DOI: 10.1002/etc.5555] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/29/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are important environmental contaminants. Nonetheless, what drives the evolution, spread, and transmission of antibiotic resistance dissemination is still poorly understood. The abundance of ARB and ARGs is often elevated in human-impacted areas, especially in environments receiving fecal wastes, or in the presence of complex mixtures of chemical contaminants, such as pharmaceuticals and personal care products. Self-replication, mutation, horizontal gene transfer, and adaptation to different environmental conditions contribute to the persistence and proliferation of ARB in habitats under strong anthropogenic influence. Our review discusses the interplay between chemical contaminants and ARB and their respective genes, specifically in reference to co-occurrence, potential biostimulation, and selective pressure effects, and gives an overview of mitigation by existing man-made and natural barriers. Evidence and strategies to improve the assessment of human health risks due to environmental antibiotic resistance are also discussed. Environ Toxicol Chem 2024;43:637-652. © 2022 SETAC.
Collapse
Affiliation(s)
- Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Diana S Aga
- Chemistry Department, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Volcani Institute, Agricultural Research Organization, Rishon-Lezion, Israel
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Cornwall, UK
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle, UK
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Queensland, Australia
| | - Anne F C Leonard
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Cornwall, UK
| | - Liguan Li
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, The University of Hong Kong, Hong Kong, China
| | - Aimee K Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Cornwall, UK
| | - Olga C Nunes
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Sara Rodriguez-Mozaz
- Catalan Institute for Water Research, Girona, Spain
- Universitat de Girona, Girona, Spain
| | - Edward Topp
- Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Siri Y, Bumyut A, Precha N, Sirikanchana K, Haramoto E, Makkaew P. Multidrug antibiotic resistance in hospital wastewater as a reflection of antibiotic prescription and infection cases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168453. [PMID: 37956835 DOI: 10.1016/j.scitotenv.2023.168453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/14/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
Antimicrobial resistance (AMR) is an escalating issue that can render illnesses more difficult to treat if effective antibiotics become resistant. Many studies have explored antibiotic resistance in bacteria (ARB) in wastewater, comparing results with clinical data to ascertain the public health risk. However, few investigations have linked the prevalence of ARB in hospital wastewater (HWW) with these outcomes. This study aimed to bridge this gap by assessing the prevalence of ARB in HWW and its receiving waters. Among the 144 isolates examined, 24 were obtained from each of the six sites (untreated wastewater, aeration tank, sedimentation tank, effluent after disinfection, upstream canal, and downstream canal). A significant portion (87.5 %) belonged to the Enterobacteriaceae family, with Klebsiella pneumoniae as the predominant species (47.9 %). The antimicrobial sensitivity testing (AST) showed that 57.6 % of the isolates were resistant to amoxicillin/clavulanic acid (AMX), the most prevalent antibiotic used within the studied hospital. The total resistance rate before and after treatment was 27.7 % and 28.0 %, respectively, with an overall multi-drug resistance (MDR) rate of 33.3 %. The multiple antibiotic resistance index (MARI) range varied between 0.0 and 0.9. The outpatient ward's three-day mean bacterial infection cases showed a significant association (Spearman's rho = 0.98) with the MARI in the sedimentation tank. Moreover, a strong correlation (Spearman's rho = 0.88) was found between hospital effluent's MARI and the seven-day mean inpatient ward case. These findings indicate that applying wastewater-based epidemiology (WBE) to hospital wastewater could provide valuable insights into understanding ARB contamination across human domains and water cycles. Future studies, including more comprehensive collection data on symptomatic patients and asymptomatic carriers, will be crucial in fully unravelling the complexities between human health and environmental impacts related to AMR.
Collapse
Affiliation(s)
- Yadpiroon Siri
- Environmental, Safety Technology and Health Program, School of Public Health, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Apirak Bumyut
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Nopadol Precha
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Yamanashi 400-8511, Japan
| | - Prasert Makkaew
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
12
|
Azuma T, Usui M, Hayashi T. Inactivation of antibiotic-resistant bacteria in hospital wastewater by ozone-based advanced water treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167432. [PMID: 37777130 DOI: 10.1016/j.scitotenv.2023.167432] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
The emergence and spread of antimicrobial resistance (AMR) continue on a global scale. The impacts of wastewater on the environment and human health have been identified, and understanding the environmental impacts of hospital wastewater and exploring appropriate forms of treatment are major societal challenges. In the present research, we evaluated the efficacy of ozone (O3)-based advanced wastewater treatment systems (O3, O3/H2O2, O3/UV, and O3/UV/H2O2) for the treatment of antimicrobials, antimicrobial-resistant bacteria (AMRB), and antimicrobial resistance genes (AMRGs) in wastewater from medical facilities. Our results indicated that the O3-based advanced wastewater treatment inactivated multiple antimicrobials (>99.9%) and AMRB after 10-30 min of treatment. Additionally, AMRGs were effectively removed (1.4-6.6 log10) during hospital wastewater treatment. The inactivation and/or removal performances of these pollutants through the O3/UV and O3/UV/H2O2 treatments were significantly (P < 0.05) better than those in the O3 and O3/H2O2 treatments. Altered taxonomic diversity of microorganisms based on 16S rRNA gene sequencing following the O3-based treatment showed that advanced wastewater treatments not only removed viable bacteria but also removed genes constituting microorganisms in the wastewater. Consequently, the objective of this study was to apply advanced wastewater treatments to treat wastewater, mitigate environmental pollution, and alleviate potential threats to environmental and human health associated with AMR. Our findings will contribute to enhancing the effectiveness of advanced wastewater treatment systems through on-site application, not only in wastewater treatment plants (WWTPs) but also in medical facilities. Moreover, our results will help reduce the discharge of AMRB and AMRGs into rivers and maintain the safety of aquatic environments.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Masaru Usui
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Tetsuya Hayashi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan; Faculty of Human Development, Department of Food and Nutrition Management Studies, Soai University, 4-4-1 Nankonaka, Osaka Suminoeku, Osaka 559-0033, Japan
| |
Collapse
|
13
|
Alhusein N, Charoenboon N, Wichuwaranan K, Poonsawad K, Montrivade V, Avison MB, Sringernyuang L, Lambert H. The unseen use of antimicrobials: Drivers of human antibiotic use in a community in Thailand and implications for surveillance. Glob Public Health 2024; 19:2298940. [PMID: 38190612 DOI: 10.1080/17441692.2023.2298940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024]
Abstract
We investigated sociocultural and economic drivers of human antimicrobial use (AMU) in Thailand through ethnographic research, interviews, focus groups and a cross-sectional survey. This community-based study generated findings clustered around three key themes: treatment-seeking practices, medicine use, and interpretation of biomedical constructs. Participants sought care from public health facilities for chronic conditions, but medicines from the private sector were considered more powerful and were preferred for acute complaints. Many antibiotics were unrecognised as such by consumers due to the practice at private healthcare facilities of dispensing repackaged medicines without identifying labels. This unseen use of antibiotics is probably driven by economic drivers including market competition in the private sector, policy implementation drivers whereby rational drug use policies mainly target the public sector, behavioural drivers relating to treatment seeking-practices, and sociocultural drivers that influenced participants' understanding of medical terms and concepts. Participants regarded antibiotics as reducing inflammation and were uncertain about the distinctions between anti-inflammatories, antibiotics, and pain relievers. Antimicrobial Resistance (AMR) was understood as a form of drug tolerance to be remedied by changing the medicine. Community surveys may not provide accurate estimates of AMU where people are unable to distinguish antibiotics reliably from other medicines.
Collapse
Affiliation(s)
- Nour Alhusein
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nutcha Charoenboon
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kantima Wichuwaranan
- Faculty of Social Science and Humanities, Mahidol University, Nakhon Pathom, Thailand
| | - Kornrawan Poonsawad
- Faculty of Social Science and Humanities, Mahidol University, Nakhon Pathom, Thailand
| | - Varapon Montrivade
- Faculty of Social Science and Humanities, Mahidol University, Nakhon Pathom, Thailand
| | - Matthew B Avison
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Luechai Sringernyuang
- Faculty of Social Science and Humanities, Mahidol University, Nakhon Pathom, Thailand
| | - Helen Lambert
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
14
|
Mudenda S, Chisha P, Chabalenge B, Daka V, Mfune RL, Kasanga M, Kampamba M, Skosana P, Nsofu E, Hangoma J, Siachalinga L, Hikaambo CN, Chimombe T, Allabi AC, Boya B, Mufwambi W, Saleem Z, Matafwali SK. Antimicrobial stewardship: knowledge, attitudes and practices regarding antimicrobial use and resistance among non-healthcare students at the University of Zambia. JAC Antimicrob Resist 2023; 5:dlad116. [PMID: 37954639 PMCID: PMC10635582 DOI: 10.1093/jacamr/dlad116] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
Background Antimicrobial resistance (AMR) poses a significant threat to the world and could become humanity's next major challenge. This study assessed non-healthcare students' knowledge, attitude and practices (KAP) towards antimicrobial use (AMU) and AMR at the University of Zambia. Methods This cross-sectional study was conducted among 443 non-healthcare students from August to October 2022 using a structured questionnaire. Data analysis was done using IBM SPSS version 24.0. Results Of the 433 participants, 55.2%, 63.5% and 45% had moderate KAP scores regarding AMU and AMR. The prevalence of self-medication with antibiotics was 76.7%. Male participants were less likely to have good knowledge (OR = 0.524, 95% CI: 0.347-0.792) and positive attitudes (OR = 0.585, 95% CI: 0.364-0.940) towards AMU and AMR compared with females. Students who were studying Engineering and Mining were more likely to have good knowledge of AMR (OR = 1.891, 95% CI: 1.197-2.987) compared with those in Social Sciences. Those who were in their fourth and fifth years were more likely to have positive attitudes towards AMU and AMR (OR = 1.851, 95% CI: 1.147-2.986) compared with those who were in the first, second and third years. Finally, students who practised self-medication were less likely to have good self-reported practice towards AMR (OR = 0.442, 95% CI: 0.278-0.702) compared with those who did not. Conclusions This study demonstrated that non-healthcare students had moderate KAP regarding AMU and AMR. All university students should be provided with education about AMU and AMR through free short courses, seminars, workshops, and AMR and antimicrobial stewardship awareness campaigns.
Collapse
Affiliation(s)
- Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
- Surveillance and Research Technical Working Group, Antimicrobial Resistance, Zambia National Public Health Institute, Lusaka, Zambia
| | - Patience Chisha
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Billy Chabalenge
- Department of Medicines Control, Zambia Medicines Regulatory Authority, Lusaka, Zambia
| | - Victor Daka
- Department of Public Health, Michael Chilufya Sata School of Medicine, Copperbelt University, Ndola, Zambia
| | - Ruth Lindizyani Mfune
- Department of Public Health, Michael Chilufya Sata School of Medicine, Copperbelt University, Ndola, Zambia
| | - Maisa Kasanga
- College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Martin Kampamba
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Phumzile Skosana
- Department of Clinical Pharmacy, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Eustus Nsofu
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Jimmy Hangoma
- Department of Pharmacy, School of Health Sciences, Levy Mwanawasa Medical University, Lusaka, Zambia
| | - Linda Siachalinga
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
- Department of Pharmacy, School of Health Sciences, Levy Mwanawasa Medical University, Lusaka, Zambia
| | | | - Tadious Chimombe
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Aurel Constant Allabi
- Laboratory of Pharmacology and Toxicology, University of Abomey-Calavi and Teaching Hospital of Abomey-Calavi/Sô-Ava, Abomey-Calavi, Benin
| | - Bawa Boya
- Laboratory of Biology and Molecular Typing in Microbiology, University of Abomey-Calavi, Cotonou, Benin
| | - Webrod Mufwambi
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Zikria Saleem
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Scott Kaba Matafwali
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
15
|
Emes ET, Waage J, Knight GM, Naylor NR. AHHME: A model for estimating the holistic cost-effectiveness of antimicrobial resistance interventions in food animal production. One Health 2023; 17:100629. [PMID: 38024268 PMCID: PMC10665148 DOI: 10.1016/j.onehlt.2023.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 12/01/2023] Open
Abstract
Antimicrobial resistance (AMR) is considered a global priority for human health, and reducing antimicrobial use in food animals has been suggested as a key area for interventions aiming to reduce resistant infections in humans. In addition to the effect on human health, such interventions may have effects across food animal productivity, healthcare sector costs, and the broader macroeconomy, but these effects are rarely captured in the AMR health economic literature. Without being able to estimate these effects, it is difficult to understand the true cost-effectiveness of antimicrobial stewardship interventions in food animal production, or to correctly design and prioritise such interventions. We explore and demonstrate the potential use of a novel compartment-based mathematical model to estimate the holistic cost-effectiveness of AMR-related interventions in food animal production from a One Health perspective. The Agriculture Human Health Micro-Economic model (AHHME) uses Markov state transition models to model the movement of humans and food animals between health states. It assigns values to these health states utilising empiric approaches, from the perspectives of human health, food animal productivity, labour productivity and healthcare sector costs. Providing AHHME open-source code and interactive online modelling tools allow for capacity building in AMR intervention modelling. This model represents a useful framework for capturing the cost-effectiveness of AMR-related interventions in food animal production in a more holistic way: it can allow us to capture the often-overlooked benefits of such interventions in like terms while considering distributional concerns. It also demonstrates that methodological assumptions such as willingness-to-pay thresholds and discount rates can be just as important to health decision models as epidemiological parameters, and allows these assumptions to be altered. We provide example outputs, and encourage researchers and policymakers to use and adapt our code to explore, design, and prioritise AMR-related interventions in their own country contexts.
Collapse
Affiliation(s)
- Eve T. Emes
- Centre for the Mathematical Modelling of Infectious Diseases, The London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, The London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Jeff Waage
- Department of Global Health and Development, Faculty of Public Health and Policy, The London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Gwenan M. Knight
- Centre for the Mathematical Modelling of Infectious Diseases, The London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- AMR Centre, The London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Nichola R. Naylor
- Department of Health Services Research and Policy, Faculty of Public Health and Policy, The London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- HCAI, Fungal, AMR, AMU & Sepsis Division, UK Health Security Agency, London NW9 5EQ, UK
| |
Collapse
|
16
|
Siri Y, Precha N, Sirikanchana K, Haramoto E, Makkaew P. Antimicrobial resistance in southeast Asian water environments: A systematic review of current evidence and future research directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165229. [PMID: 37394072 DOI: 10.1016/j.scitotenv.2023.165229] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
Antimicrobial resistance has been a serious and complex issue for over a decade. Although research on antimicrobial resistance (AMR) has mainly focused on clinical and animal samples as essential for treatment, the AMR situation in aquatic environments may vary and have complicated patterns according to geographical area. Therefore, this study aimed to examine recent literature on the current situation and identify gaps in the AMR research on freshwater, seawater, and wastewater in Southeast Asia. The PubMed, Scopus, and ScienceDirect databases were searched for relevant publications published from January 2013 to June 2023 that focused on antimicrobial resistance bacteria (ARB) and antimicrobial resistance genes (ARGs) among water sources. Based on the inclusion criteria, the final screening included 41 studies, with acceptable agreement assessed using Cohen's inter-examiner kappa equal to 0.866. This review found that 23 out of 41 included studies investigated ARGs and ARB reservoirs in freshwater rather than in seawater and wastewater, and it frequently found that Escherichia coli was a predominant indicator in AMR detection conducted by both phenotypic and genotypic methods. Different ARGs, such as blaTEM, sul1, and tetA genes, were found to be at a high prevalence in wastewater, freshwater, and seawater. Existing evidence highlights the importance of wastewater management and constant water monitoring in preventing AMR dissemination and strengthening effective mitigation strategies. This review may be beneficial for updating current evidence and providing a framework for spreading ARB and ARGs, particularly region-specific water sources. Future AMR research should include samples from various water systems, such as drinking water or seawater, to generate contextually appropriate results. Robust evidence regarding standard detection methods is required for prospective-era work to raise practical policies and alerts for developing microbial source tracking and identifying sources of contamination-specific indicators in aquatic environment markers.
Collapse
Affiliation(s)
- Yadpiroon Siri
- Environmental, Safety Technology and Health Program, School of Public Health, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Nopadol Precha
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Yamanashi 400-8511, Japan
| | - Prasert Makkaew
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
17
|
Anderson M, Panteli D, van Kessel R, Ljungqvist G, Colombo F, Mossialos E. Challenges and opportunities for incentivising antibiotic research and development in Europe. THE LANCET REGIONAL HEALTH. EUROPE 2023; 33:100705. [PMID: 37546576 PMCID: PMC10403717 DOI: 10.1016/j.lanepe.2023.100705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023]
Abstract
Antimicrobial, and particularly antibiotic resistance are one of the world's biggest challenges today, and urgent action is needed to reinvigorate the antibiotic development pipeline. To inform policy discussions during and after the 2023 Swedish Presidency of the Council of the European Union, we critically appraise incentive options recently proposed by the European Commission, and member states, and consider what has been achieved over the last two decades in relation to antibiotic research and development. While several new antibiotics have achieved regulatory approval in recent years, almost none have innovative characteristics such as new chemical classes or novel mechanisms of action. We consider four incentive options to incentivise research and development of new antibiotics, including subscription payments, market entry rewards, transferable exclusivity extensions, and milestone payments. While each option has advantages and drawbacks, a combination of incentives may be required and continued investment is needed by the EU in push incentives, such as direct funding and grants, to incentivise drug discovery and preclinical stages of development. The EU must also coordinate with international initiatives and support access to new and pre-existing antibiotics in LMICs through platforms such as the WHO, and G7 and G20 group of countries.
Collapse
Affiliation(s)
- Michael Anderson
- Department of Health Policy, London School of Economics and Political Science, London, United Kingdom
- European Observatory on Health Systems and Policies, Brussels, Belgium
| | - Dimitra Panteli
- European Observatory on Health Systems and Policies, Brussels, Belgium
| | - Robin van Kessel
- Department of Health Policy, London School of Economics and Political Science, London, United Kingdom
- Faculty of Health, Medicine and Life Sciences, Department of International Health, School CAPHRI (School for Public Health and Primary Care), Maastricht University, Maastricht, Netherlands
| | - Gunnar Ljungqvist
- Department of Health Policy, London School of Economics and Political Science, London, United Kingdom
| | - Francesca Colombo
- Health Division, Organisation for Economic Co-operation and Development, Paris, France
| | - Elias Mossialos
- Department of Health Policy, London School of Economics and Political Science, London, United Kingdom
- European Observatory on Health Systems and Policies, Brussels, Belgium
| |
Collapse
|
18
|
Boggs C, Shiferawe K, Karsten E, Hamlet J, Altheide ST, Marion JW. Evaluation of a Tetracycline-Resistant E. coli Enumeration Method for Correctly Classifying E. coli in Environmental Waters in Kentucky, USA. Pathogens 2023; 12:1090. [PMID: 37764898 PMCID: PMC10537314 DOI: 10.3390/pathogens12091090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The global concern over antimicrobial resistance (AMR) and its impact on human health is evident, with approximately 4.95 million annual deaths attributed to antibiotic resistance. Regions with inadequate water, sanitation, and hygiene face challenges in responding to AMR threats. Enteric bacteria, particularly E. coli, are common agents linked to AMR-related deaths (23% of cases). Culture-based methods for detecting tetracycline-resistant E. coli may be of practical value for AMR monitoring in limited resource environments. This study evaluated the ColiGlow™ method with tetracycline for classifying tetracycline-resistant E. coli. A total of 61 surface water samples from Kentucky, USA (2020-2022), provided 61 presumed E. coli isolates, of which 28 isolates were obtained from tetracycline-treated media. Species identification and tetracycline resistance evaluation were performed. It was found that 82% of isolates were E. coli, and 18% were other species; 97% were identified as E. coli when using the API20E identification system. The MicroScan system yielded Enterobacter cloacae false positives in 20% of isolates. Adding tetracycline to ColiGlow increased the odds of isolating tetracycline-resistant E. coli 18-fold. Tetracycline-treated samples yielded 100% tetracycline-resistant E. coli when the total E. coli densities were within the enumeration range of the method. ColiGlow with tetracycline shows promise for monitoring tetracycline-resistant E. coli in natural waters and potentially aiding AMR surveillance in resource-limited settings among other environments.
Collapse
Affiliation(s)
- Callie Boggs
- Environmental Health Science and Sustainability Program, Eastern Kentucky University, Richmond, KY 40475, USA; (C.B.); (K.S.)
| | - Kidus Shiferawe
- Environmental Health Science and Sustainability Program, Eastern Kentucky University, Richmond, KY 40475, USA; (C.B.); (K.S.)
| | - Eckhardt Karsten
- Department of Microbiology, Miami University, Oxford, OH 45042, USA;
| | - Jayden Hamlet
- School of Natural Sciences and Mathematics, Stockton University, Galloway, NJ 08205, USA;
| | - S. Travis Altheide
- Medical Laboratory Science Program, Eastern Kentucky University, Richmond, KY 40475, USA;
| | - Jason W. Marion
- Environmental Health Science and Sustainability Program, Eastern Kentucky University, Richmond, KY 40475, USA; (C.B.); (K.S.)
- Eastern Scientific LLC, Richmond, KY 40475, USA
| |
Collapse
|
19
|
Cella E, Giovanetti M, Benedetti F, Scarpa F, Johnston C, Borsetti A, Ceccarelli G, Azarian T, Zella D, Ciccozzi M. Joining Forces against Antibiotic Resistance: The One Health Solution. Pathogens 2023; 12:1074. [PMID: 37764882 PMCID: PMC10535744 DOI: 10.3390/pathogens12091074] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic resistance is a significant global health concern that affects both human and animal populations. The One Health approach acknowledges the interconnectedness of human health, animal health, and the environment. It emphasizes the importance of collaboration and coordination across these sectors to tackle complex health challenges such as antibiotic resistance. In the context of One Health, antibiotic resistance refers to the ability of bacteria to withstand the efficacy of antibiotics, rendering them less effective or completely ineffective in treating infections. The emergence and spread of antibiotic-resistant bacteria pose a threat to human and animal health, as well as to the effectiveness of medical treatments and veterinary interventions. In particular, One Health recognizes that antibiotic use in human medicine, animal agriculture, and the environment are interconnected factors contributing to the development and spread of antibiotic resistance. For example, the misuse and overuse of antibiotics in human healthcare, including inappropriate prescribing and patient non-compliance, can contribute to the selection and spread of resistant bacteria. Similarly, the use of antibiotics in livestock production for growth promotion and disease prevention can contribute to the development of antibiotic resistance in animals and subsequent transmission to humans through the food chain. Addressing antibiotic resistance requires a collaborative One Health approach that involves multiple participants, including healthcare professionals, veterinarians, researchers, and policymakers.
Collapse
Affiliation(s)
- Eleonora Cella
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA; (C.J.); (T.A.)
| | - Marta Giovanetti
- Sciences and Technologies for Sustainable Development and One Health, University Campus Bio-Medico of Roma, 00128 Roma, Italy;
- Instituto Rene Rachou Fundação Oswaldo Cruz, Belo Horizonte 31310-260, Minas Gerais, Brazil
| | - Francesca Benedetti
- Department of Biochemistry and Molecular Biology, Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (D.Z.)
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Catherine Johnston
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA; (C.J.); (T.A.)
| | - Alessandra Borsetti
- National HIV/AIDS Research Center (CNAIDS), National Institute of Health, 00161 Rome, Italy;
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00161 Rome, Italy;
| | - Taj Azarian
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA; (C.J.); (T.A.)
| | - Davide Zella
- Department of Biochemistry and Molecular Biology, Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (D.Z.)
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| |
Collapse
|
20
|
Fastl C, De Carvalho Ferreira HC, Babo Martins S, Sucena Afonso J, di Bari C, Venkateswaran N, Pires SM, Mughini-Gras L, Huntington B, Rushton J, Pigott D, Devleesschauwer B. Animal sources of antimicrobial-resistant bacterial infections in humans: a systematic review. Epidemiol Infect 2023; 151:e143. [PMID: 37577944 PMCID: PMC10540179 DOI: 10.1017/s0950268823001309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023] Open
Abstract
Bacterial antimicrobial resistance (AMR) is among the leading global health challenges of the century. Animals and their products are known contributors to the human AMR burden, but the extent of this contribution is not clear. This systematic literature review aimed to identify studies investigating the direct impact of animal sources, defined as livestock, aquaculture, pets, and animal-based food, on human AMR. We searched four scientific databases and identified 31 relevant publications, including 12 risk assessments, 16 source attribution studies, and three other studies. Most studies were published between 2012 and 2022, and most came from Europe and North America, but we also identified five articles from South and South-East Asia. The studies differed in their methodologies, conceptual approaches (bottom-up, top-down, and complex), definitions of the AMR hazard and outcome, the number and type of sources they addressed, and the outcome measures they reported. The most frequently addressed animal source was chicken, followed by cattle and pigs. Most studies investigated bacteria-resistance combinations. Overall, studies on the direct contribution of animal sources of AMR are rare but increasing. More recent publications tailor their methodologies increasingly towards the AMR hazard as a whole, providing grounds for future research to build on.
Collapse
Affiliation(s)
- Christina Fastl
- Global Burden of Animal Diseases Programme, University of Liverpool, Liverpool, UK
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | | | - Sara Babo Martins
- Global Burden of Animal Diseases Programme, University of Liverpool, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| | - João Sucena Afonso
- Global Burden of Animal Diseases Programme, University of Liverpool, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| | - Carlotta di Bari
- Global Burden of Animal Diseases Programme, University of Liverpool, Liverpool, UK
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Narmada Venkateswaran
- Global Burden of Animal Diseases Programme, University of Liverpool, Liverpool, UK
- Institute for Health Metrics and Evaluation, Department of Health Metrics Sciences, University of Washington, Seattle, WA, USA
| | | | - Lapo Mughini-Gras
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Institute for Risk Assessment Sciences (IRAS), Utrecht, The Netherlands
| | - Ben Huntington
- Global Burden of Animal Diseases Programme, University of Liverpool, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
- Pengwern Animal Health Ltd, Wallasey, UK
| | - Jonathan Rushton
- Global Burden of Animal Diseases Programme, University of Liverpool, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| | - David Pigott
- Global Burden of Animal Diseases Programme, University of Liverpool, Liverpool, UK
- Institute for Health Metrics and Evaluation, Department of Health Metrics Sciences, University of Washington, Seattle, WA, USA
| | - Brecht Devleesschauwer
- Global Burden of Animal Diseases Programme, University of Liverpool, Liverpool, UK
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| |
Collapse
|
21
|
Walia K, Mendelson M, Kang G, Venkatasubramanian R, Sinha R, Vijay S, Veeraraghavan B, Basnyat B, Rodrigues C, Bansal N, Ray P, Mathur P, Gopalakrishnan R, Ohri VC. How can lessons from the COVID-19 pandemic enhance antimicrobial resistance surveillance and stewardship? THE LANCET. INFECTIOUS DISEASES 2023; 23:e301-e309. [PMID: 37290476 DOI: 10.1016/s1473-3099(23)00124-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 06/10/2023]
Abstract
COVID-19 demanded urgent and immediate global attention, during which other public health crises such as antimicrobial resistance (AMR) increased silently, undermining patient safety and the life-saving ability of several antimicrobials. In 2019, WHO declared AMR a top ten global public health threat facing humanity, with misuse and overuse of antimicrobials as the main drivers in the development of antimicrobial-resistant pathogens. AMR is steadily on the rise, especially in low-income and middle-income countries across south Asia, South America, and Africa. Extraordinary circumstances often demand an extraordinary response as did the COVID-19 pandemic, underscoring the fragility of health systems across the world and forcing governments and global agencies to think creatively. The key strategies that helped to contain the increasing SARS-CoV-2 infections included a focus on centralised governance with localised implementation, evidence-based risk communication and community engagement, use of technological methods for tracking and accountability, extensive expansion of access to diagnostics, and a global adult vaccination programme. The extensive and indiscriminate use of antimicrobials to treat patients, particularly in the early phase of the pandemic, have adversely affected AMR stewardship practices. However, there were important lessons learnt during the pandemic, which can be leveraged to strengthen surveillance and stewardship, and revitalise efforts to address the AMR crisis.
Collapse
Affiliation(s)
- Kamini Walia
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi 110029, India.
| | - Marc Mendelson
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Gagandeep Kang
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | | | - Rina Sinha
- World Health Organization, Country Office for India, New Delhi, India
| | - Sonam Vijay
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi 110029, India
| | | | - Buddha Basnyat
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Camilla Rodrigues
- Department of Microbiology, PD Hinduja Hospital, Mumbai, Maharashtra, India
| | - Nitin Bansal
- Division of Infectious Diseases, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Pallab Ray
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Purva Mathur
- Department of Laboratory Medicine, Jai Prakash Narayan Apex Trauma Center, All India Institute of Medical Sciences, New Delhi, India
| | | | - Vinod C Ohri
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi 110029, India
| |
Collapse
|
22
|
Habiba UE, Khan A, Mmbaga EJ, Green IR, Asaduzzaman M. Use of antibiotics in poultry and poultry farmers- a cross-sectional survey in Pakistan. Front Public Health 2023; 11:1154668. [PMID: 37497033 PMCID: PMC10366442 DOI: 10.3389/fpubh.2023.1154668] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/09/2023] [Indexed: 07/28/2023] Open
Abstract
Background Antimicrobial resistance (AMR) which has been ascribed to be due to community carriage of antibiotic-resistant bacteria is highly prevalent in the WHO South-East Asia region. One of the major reasons for this is the misuse of antibiotics in animal farming practices and at the community level, which threatens both human and animal health. However, this problem of antibiotic misuse in poultry farms and in respective farmers is not well studied in countries like Pakistan. Methods We conducted a cross-sectional study in rural Punjab to explore the current practices of antibiotic use in poultry and poultry farmers, associated factors, their healthcare-seeking behavior and biosecurity practices. Results In the context of antibiotic use for poultry, 60% comprised of Colistin sulfate and Amoxicillin trihydrate whereas Colistin is considered as the last resort antibiotic. In addition, the significant consumption of antibiotics in poultry farms (60%) and poultry farmers (50%) was without prescription by either human health physicians or veterinarians. Most of the farms (85%) had no wastewater drainage system, which resulted in the direct shedding of poultry waste and antibiotic residue into the surrounding environment. The lack of farmers' education, professional farm training and farming experience were the most significant factors associated with antibiotic use and knowledge of AMR. Conclusion Our study findings show that it is necessary for an integrated AMR policy with the inclusion of all poultry farmers to be educated, a mass awareness program to be undertaken and that strict antibiotic usage guidelines be available to them. Such initiatives are also important to ensure food safety and farm biosecurity practices.
Collapse
Affiliation(s)
- Um e Habiba
- Department of Community Medicine and Global Health, Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Amjad Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Elia John Mmbaga
- Department of Community Medicine and Global Health, Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ivan Robert Green
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, South Africa
| | - Muhammad Asaduzzaman
- Department of Community Medicine and Global Health, Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Cocker D, Chidziwisano K, Mphasa M, Mwapasa T, Lewis JM, Rowlingson B, Sammarro M, Bakali W, Salifu C, Zuza A, Charles M, Mandula T, Maiden V, Amos S, Jacob ST, Kajumbula H, Mugisha L, Musoke D, Byrne R, Edwards T, Lester R, Elviss N, Roberts AP, Singer AC, Jewell C, Morse T, Feasey NA. Investigating One Health risks for human colonisation with extended spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Malawian households: a longitudinal cohort study. THE LANCET. MICROBE 2023; 4:e534-e543. [PMID: 37207684 PMCID: PMC10319635 DOI: 10.1016/s2666-5247(23)00062-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Low-income countries have high morbidity and mortality from drug-resistant infections, especially from enteric bacteria such as Escherichia coli. In these settings, sanitation infrastructure is of variable and often inadequate quality, creating risks of extended-spectrum β-lactamase (ESBL)-producing Enterobacterales transmission. We aimed to describe the prevalence, distribution, and risks of ESBL-producing Enterobacterales colonisation in sub-Saharan Africa using a One Health approach. METHODS Between April 29, 2019, and Dec 3, 2020, we recruited 300 households in Malawi for this longitudinal cohort study: 100 each in urban, peri-urban, and rural settings. All households underwent a baseline visit and 195 were selected for longitudinal follow-up, comprising up to three additional visits over a 6 month period. Data on human health, antibiotic usage, health-seeking behaviours, structural and behavioural environmental health practices, and animal husbandry were captured alongside human, animal, and environmental samples. Microbiological processing determined the presence of ESBL-producing E coli and Klebsiella pneumoniae, and hierarchical logistic regression was performed to evaluate the risks of human ESBL-producing Enterobacterales colonisation. FINDINGS A paucity of environmental health infrastructure and materials for safe sanitation was identified across all sites. A total of 11 975 samples were cultured, and ESBL-producing Enterobacterales were isolated from 1190 (41·8%) of 2845 samples of human stool, 290 (29·8%) of 973 samples of animal stool, 339 (66·2%) of 512 samples of river water, and 138 (46·0%) of 300 samples of drain water. Multivariable models illustrated that human ESBL-producing E coli colonisation was associated with the wet season (adjusted odds ratio 1·66, 95% credible interval 1·38-2·00), living in urban areas (2·01, 1·26-3·24), advanced age (1·14, 1·05-1·25), and living in households where animals were observed interacting with food (1·62, 1·17-2·28) or kept inside (1·58, 1·00-2·43). Human ESBL-producing K pneumoniae colonisation was associated with the wet season (2·12, 1·63-2·76). INTERPRETATION There are extremely high levels of ESBL-producing Enterobacterales colonisation in humans and animals and extensive contamination of the wider environment in southern Malawi. Urbanisation and seasonality are key risks for ESBL-producing Enterobacterales colonisation, probably reflecting environmental drivers. Without adequate efforts to improve environmental health, ESBL-producing Enterobacterales transmission is likely to persist in this setting. FUNDING Medical Research Council, National Institute for Health and Care Research, and Wellcome Trust. TRANSLATION For the Chichewa translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Derek Cocker
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Kondwani Chidziwisano
- Centre for Water, Sanitation, Health and Appropriate Technology Development, Malawi University of Business and Applied Sciences, Blantyre, Malawi; Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK
| | - Madalitso Mphasa
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Taonga Mwapasa
- Centre for Water, Sanitation, Health and Appropriate Technology Development, Malawi University of Business and Applied Sciences, Blantyre, Malawi
| | - Joseph M Lewis
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Barry Rowlingson
- Centre for Health Informatics Computing and Statistics, Lancaster University, Lancaster, UK
| | - Melodie Sammarro
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Centre for Health Informatics Computing and Statistics, Lancaster University, Lancaster, UK
| | - Winnie Bakali
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Chifundo Salifu
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Allan Zuza
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Mary Charles
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Tamandani Mandula
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Victor Maiden
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Stevie Amos
- Centre for Water, Sanitation, Health and Appropriate Technology Development, Malawi University of Business and Applied Sciences, Blantyre, Malawi
| | - Shevin T Jacob
- Global Health Security Department, Infectious Disease Institute, Makerere University, Kampala, Uganda
| | - Henry Kajumbula
- Department of Medical Microbiology, Makerere University, Kampala, Uganda
| | - Lawrence Mugisha
- College of Health Sciences, and College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda; Conservation and Ecosystem Health Alliance, Kampala, Uganda
| | - David Musoke
- Department of Disease Control and Environmental Health, Makerere University, Kampala, Uganda
| | - Rachel Byrne
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Thomas Edwards
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Rebecca Lester
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Nicola Elviss
- Science Group, United Kingdom Health Security Agency, London, UK
| | - Adam P Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Christopher Jewell
- Centre for Health Informatics Computing and Statistics, Lancaster University, Lancaster, UK
| | - Tracy Morse
- Centre for Water, Sanitation, Health and Appropriate Technology Development, Malawi University of Business and Applied Sciences, Blantyre, Malawi; Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK
| | - Nicholas A Feasey
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
24
|
Pungartnik PC, Abreu A, dos Santos CVB, Cavalcante JR, Faerstein E, Werneck GL. The interfaces between One Health and Global Health: A scoping review. One Health 2023; 16:100573. [PMID: 37363235 PMCID: PMC10288129 DOI: 10.1016/j.onehlt.2023.100573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
One Health (OH) and Global Health (GH) are interconnected perspectives that may contribute to subsidizing GH policies. This scoping review aims to map the volume, nature, and characteristics of studies focused on the interface of OH and GH concepts. We used PubMed (MEDLINE), Embase, Scopus, and The Virtual Health Library (BVS) as the literature data sources for the review. The search strategy used the descriptors "one health", "one health concept", "one medicine", "global health", "international health", and "planetary health" in title and abstracts. We included original research presented as articles in scientific journals, book chapters or conference papers written in English, Spanish, or Portuguese, exploring the intersections between OH and GH concepts, not necessarily as their primary objectives, and published up to December 31, 2021. A total of 1.060 references were identified in the databases after removing duplicates, 139 publications selected for full-text evaluation and 45 publications were included for analysis. All included publications were published between 2011 and 2021, with the highest concentration in 2014 (22.2%). First authors were most frequently from the United States (35.6%), followed by the United Kingdom (15.6%). Overall, seven key themes were identified zoonosis, emerging infectious diseases, antimicrobial resistance, food safety, policy, human resources, and Sustainable Development Goals (SDG). The majority of the included publications employed OH concepts based on the United States Centre for Disease Control and Prevention, and the American Veterinary Medical Association definitions. We observed a common understanding of OH as an area of knowledge involving multiple disciplines and professionals and recognizing that both humans' and animals' health and the environment are interdependent. Although most authors demonstrated that health issues transcend national boundaries, a formal definition for GH was frequently not clearly identified. OH and GH interfaces are essential for accomplishing the 2030 Agenda and its SDG.
Collapse
Affiliation(s)
- Paula Cristina Pungartnik
- Institute of Colletive Health Studies, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Department of Epidemiology, Social Medicine Institute, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Ariane Abreu
- Public Health School, University of São Paulo (USP), São Paulo, Brazil
| | | | - João Roberto Cavalcante
- Department of Epidemiology, Social Medicine Institute, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Eduardo Faerstein
- Department of Epidemiology, Social Medicine Institute, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Guilherme Loureiro Werneck
- Institute of Colletive Health Studies, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Department of Epidemiology, Social Medicine Institute, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Azuma T, Katagiri M, Sasaki N, Kuroda M, Watanabe M. Performance of a Pilot-Scale Continuous Flow Ozone-Based Hospital Wastewater Treatment System. Antibiotics (Basel) 2023; 12:antibiotics12050932. [PMID: 37237835 DOI: 10.3390/antibiotics12050932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Antimicrobial resistance (AMR) is becoming a global concern. Recently, research has emerged to evaluate the human and environmental health implications of wastewater from medical facilities and to identify acceptable wastewater treatment methods. In this study, a disinfection wastewater treatment system using an ozone-based continuous flow system was installed in a general hospital located in Japan. The effectiveness of antimicrobial-resistant bacteria (ARB) and antimicrobials in mitigating the environmental impact of hospital wastewater was evaluated. Metagenomic analysis was conducted to characterize the microorganisms in the wastewater before and after treatment. The results demonstrated that ozone treatment enables effective inactivation of general gut bacteria, including Bacteroides, Prevotella, Escherichia coli, Klebsiella, DNA molecules, and ARGs, as well as antimicrobials. Azithromycin and doxycycline removal rates were >99% immediately after treatment, and levofloxacin and vancomycin removal rates remained between 90% and 97% for approximately one month. Clarithromycin was more readily removed than the other antimicrobials (81-91%), and no clear removal trend was observed for ampicillin. Our findings provide a better understanding of the environmental management of hospital wastewater and enhance the effectiveness of disinfection wastewater treatment systems at medical facilities for mitigating the discharge of pollutants into aquatic environments.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan
| | - Miwa Katagiri
- Department of Surgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan
| | - Naobumi Sasaki
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Manabu Watanabe
- Department of Surgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan
| |
Collapse
|
26
|
Zhu Y, Pang L, Lai S, Xie X, Zhang H, Yu J, Wu J, Qi H, Zhou Q, Feng J, Zhang A. Deciphering risks of resistomes and pathogens in intensive laying hen production chain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161790. [PMID: 36702267 DOI: 10.1016/j.scitotenv.2023.161790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobial resistance (AMR) and pathogens derived from food animals and their associated environments have emerged as challenging threats to humans from a health perspective, but our understanding of these risks and their key prevention and control points in the current intensive breeding industry remains poor. By creating an integral composition and risk profile of the resistome and microbiome through metagenomics in feces, flies, dust, sewage, and soil along the four-stage laying hen production chain, we found that the whole production chain is a hotspot for antimicrobial resistance genes (ARGs) with 374 known subtypes and pathogens, including 157 human pathogenic bacteria (HPB). Feces and flies were identified as major risk sources for these contaminations. Also, we confirmed a twin-risk of AMR and pathogenicity prevailing throughout the chain, but with different frequencies in each stage; thus, high-risk ARGs in the young chicken stage and highly prioritized HPB in the chick stage contributed 37.33 % to the total AMR risk and 36.36 % to the pathogenic risks, respectively, thus rendering the two stages to be the key prevention points. Moreover, the prevalence of 112 binned ARG supercarriers (for example, Klebsiella pneumoniae harboring 20 ARGs) was unraveled along the production chain, especially in feces, flies, and dust, and 87 potential hosts exhibited high pathogenic risk, high-risk AMR, or both, with 262 ARGs and 816 virulence factor genes. Overall, this study provides first-hand comprehensive data on high-risk ARGs and their pathogenic hosts in the intensive laying hen production chain, and thus is fundamentally important for developing new measures to help control the global AMR crisis induced through the animal-environment-human pathway.
Collapse
Affiliation(s)
- Yixiao Zhu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Lina Pang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Shanming Lai
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xianjun Xie
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Haoyu Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jing Yu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jie Wu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Haoxuan Qi
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Quan Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jingyi Feng
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Anyun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
27
|
Valia D, Kouanda JS, Ingelbeen B, Derra K, Kaboré B, Kiemdé F, Rouamba T, Rouamba E, Hien FS, Campbell L, Meudec M, Robert A, Tinto H, van der Sande MAB, Villalobos HR. Healthcare seeking outside healthcare facilities and antibiotic dispensing patterns in rural Burkina Faso: A mixed methods study. Trop Med Int Health 2023; 28:391-400. [PMID: 36871194 DOI: 10.1111/tmi.13868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
OBJECTIVE Optimising antibiotic use is important to limit increasing antibiotic resistance. In rural Burkina Faso, over-the-counter dispensing of antibiotics in community pharmacies and non-licensed medicine retail outlets facilitates self-medication. We investigated its extent, reasons and dispensing patterns. METHODS In an exploratory mixed-method design conducted between October 2020 and December 2021, this study first explored illness perceptions, the range of healthcare providers in communities, antibiotics knowledge and reasons for seeking healthcare outside healthcare facilities. Second, frequencies of illness and healthcare utilisation in the last 3 months were quantitatively measured. RESULTS Participants distinguished between natural and magico-religious illnesses, according to origins. For illnesses considered to be 'natural', healthcare was mainly sought at healthcare facilities, private pharmacies and informal drug outlets. For illnesses considered as magico-religious, traditional healers were mainly visited. Antibiotics were perceived in the community as medicines similar to painkillers. Healthcare-seeking outside healthcare facilities was reported by 660/1973 (33.5%) participants reporting symptoms, including 315 (47.7%) to informal vendors. Healthcare seeking outside facilities was less common for 0-4-year-olds (58/534, 10.9% vs. 379/850, 44.1% for ≥5-year-olds) and decreased with improving socio-economic status (108/237, 45.6% in the lowest quintile; 96/418, 23.0% in the highest). Reported reasons included financial limitation, and also proximity to informal drug vendors, long waiting times at healthcare facilities, and health professionals' non-empathetic attitudes towards their patients. CONCLUSION This study highlights the need to facilitate and promote access to healthcare facilities through universal health insurance and patient-centred care including reducing patients' waiting time. Furthermore, community-level antibiotic stewardship programmes should include community pharmacies and informal vendors.
Collapse
Affiliation(s)
- Daniel Valia
- Institut de Recherche en Sciences de la Santé, Direction Régionale du Centre-Ouest/Clinical Research Unit of Nanoro, Nanoro, Burkina Faso.,Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium.,Epidemiology and Biostatistics Unit, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels, Belgium
| | - Juste Stéphane Kouanda
- Institut de Recherche en Sciences de la Santé, Direction Régionale du Centre-Ouest/Clinical Research Unit of Nanoro, Nanoro, Burkina Faso
| | - Brecht Ingelbeen
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium.,Julius Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Karim Derra
- Institut de Recherche en Sciences de la Santé, Direction Régionale du Centre-Ouest/Clinical Research Unit of Nanoro, Nanoro, Burkina Faso
| | - Bérenger Kaboré
- Institut de Recherche en Sciences de la Santé, Direction Régionale du Centre-Ouest/Clinical Research Unit of Nanoro, Nanoro, Burkina Faso
| | - François Kiemdé
- Institut de Recherche en Sciences de la Santé, Direction Régionale du Centre-Ouest/Clinical Research Unit of Nanoro, Nanoro, Burkina Faso
| | - Toussaint Rouamba
- Institut de Recherche en Sciences de la Santé, Direction Régionale du Centre-Ouest/Clinical Research Unit of Nanoro, Nanoro, Burkina Faso
| | - Eli Rouamba
- Institut de Recherche en Sciences de la Santé, Direction Régionale du Centre-Ouest/Clinical Research Unit of Nanoro, Nanoro, Burkina Faso
| | - Franck Sovi Hien
- Institut de Recherche en Sciences de la Santé, Direction Régionale du Centre-Ouest/Clinical Research Unit of Nanoro, Nanoro, Burkina Faso
| | - Linda Campbell
- Centre for Population, Family and Health, University of Antwerp, Antwerp, Belgium.,Department for Public Health and Primary Care, University of Ghent, Ghent, Belgium
| | - Marie Meudec
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Annie Robert
- Epidemiology and Biostatistics Unit, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels, Belgium
| | - Halidou Tinto
- Institut de Recherche en Sciences de la Santé, Direction Régionale du Centre-Ouest/Clinical Research Unit of Nanoro, Nanoro, Burkina Faso.,Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Marianne A B van der Sande
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium.,Julius Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hector Rodriguez Villalobos
- Microbiology Unit, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
28
|
Haindongo EH, Ndakolo D, Hedimbi M, Vainio O, Hakanen A, Vuopio J. Antimicrobial resistance prevalence of Escherichia coli and Staphylococcus aureus amongst bacteremic patients in Africa: a systematic review. J Glob Antimicrob Resist 2023; 32:35-43. [PMID: 36526264 DOI: 10.1016/j.jgar.2022.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Antimicrobial resistance (AMR) is a global concern among infectious diseases. Bloodstream infections can potentially become life-threatening if they become untreatable with conventional antimicrobials. This review aims to provide an understanding of the AMR prevalence and trends of common bacteremic pathogens, namely Escherichia coli and Staphylococcus aureus in the World Health Organization (WHO) Africa region. METHODS PubMed and Google Scholar were searched using relevant keywords for published human studies (excluding case reports and reviews) reporting bacteremic AMR data on the pathogens of interest between 2008 and 2019. Two reviewers independently screened the articles against a pre-defined eligibility criterion. Data extraction and analysis were achieved with different platforms: Covidence, Excel, R version 3.6.3, and QGIS v3.4.5. The pooled prevalence, 95% confidence intervals, and I2 index (a measure of heterogeneity) were calculated for the various pathogen-antibiotic combinations. RESULTS Five hundred sixty-two papers were retrieved, with 27 papers included in the final analysis. Only 23.4% (11/47) of member states of the WHO African region had reports on AMR in bacteremia. The Clinical and Laboratory Standards Institute (CLSI) (78.5%) was the most common standard used in the region. For E. coli, the pooled resistance was: cefotaxime (42%), imipenem (4%), meropenem (0%), and colistin (0%). For S. aureus, the calculated pooled resistance was cloxacillin (34%), oxacillin (12%), and vancomycin (0%). There was a high degree of variation across studies (I2 > 90%). CONCLUSION The pooled resistance rates indicate a concerning degree of methicillin-resistant and Extended Spectrum-ß-lactamase-producing pathogens. The paucity of AMR data also presents challenges for a comprehensive understanding of the situation in the region. Continent-wide and standardized surveillance efforts therefore need strengthening.
Collapse
Affiliation(s)
- Erastus Hanganeni Haindongo
- School of Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia; Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Diana Ndakolo
- School of Pharmacy, Faculty of Health Sciences, University of Namibia, Windhoek, Namibia; Pharmaceutical Services, Ministry of Health and Social Services, Namibia
| | - Marius Hedimbi
- School of Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia; Graduate School of Business and Postgraduate, International University of Management, Namibia
| | - Olli Vainio
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Antti Hakanen
- Institute of Biomedicine, University of Turku, Turku, Finland; Clinical Microbiology Laboratory, Turku University Hospital, Turku, Finland
| | - Jaana Vuopio
- Institute of Biomedicine, University of Turku, Turku, Finland; Clinical Microbiology Laboratory, Turku University Hospital, Turku, Finland
| |
Collapse
|
29
|
Ahmad N, Joji RM, Shahid M. Evolution and implementation of One Health to control the dissemination of antibiotic-resistant bacteria and resistance genes: A review. Front Cell Infect Microbiol 2023; 12:1065796. [PMID: 36726644 PMCID: PMC9884834 DOI: 10.3389/fcimb.2022.1065796] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/16/2022] [Indexed: 01/19/2023] Open
Abstract
Antibiotic resistance is a serious threat to humanity and its environment. Aberrant usage of antibiotics in the human, animal, and environmental sectors, as well as the dissemination of resistant bacteria and resistance genes among these sectors and globally, are all contributing factors. In humans, antibiotics are generally used to treat infections and prevent illnesses. Antibiotic usage in food-producing animals has lately emerged as a major public health concern. These medicines are currently being utilized to prevent and treat infectious diseases and also for its growth-promoting qualities. These methods have resulted in the induction and spread of antibiotic resistant infections from animals to humans. Antibiotics can be introduced into the environment from a variety of sources, including human wastes, veterinary wastes, and livestock husbandry waste. The soil has been recognized as a reservoir of ABR genes, not only because of the presence of a wide and varied range of bacteria capable of producing natural antibiotics but also for the usage of natural manure on crop fields, which may contain ABR genes or antibiotics. Fears about the human health hazards of ABR related to environmental antibiotic residues include the possible threat of modifying the human microbiota and promoting the rise and selection of resistant bacteria, and the possible danger of generating a selection pressure on the environmental microflora resulting in environmental antibiotic resistance. Because of the connectivity of these sectors, antibiotic use, antibiotic residue persistence, and the existence of antibiotic-resistant bacteria in human-animal-environment habitats are all linked to the One Health triangle. The pillars of support including rigorous ABR surveillance among different sectors individually and in combination, and at national and international level, overcoming laboratory resource challenges, and core plan and action execution should be strictly implemented to combat and contain ABR under one health approach. Implementing One Health could help to avoid the emergence and dissemination of antibiotic resistance while also promoting a healthier One World. This review aims to emphasize antibiotic resistance and its regulatory approaches from the perspective of One Health by highlighting the interconnectedness and multi-sectoral nature of the human, animal, and environmental health or ill-health facets.
Collapse
Affiliation(s)
| | | | - Mohammad Shahid
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
30
|
Sun L, Meng N, Wang Z, Hong J, Dai Y, Wang Z, Wang J, Jiao X. Genomic Characterization of ESBL/AmpC-Producing Escherichia coli in Stray Dogs Sheltered in Yangzhou, China. Infect Drug Resist 2022; 15:7741-7750. [PMID: 36597449 PMCID: PMC9805715 DOI: 10.2147/idr.s397872] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Purpose Limited data are available on the prevalence and antimicrobial resistance of extended spectrum β-lactamase- (ESBL) and AmpC β-lactamase-producing Escherichia coli in stray dogs. We aimed to investigate the genomic characteristics of ESBL/AmpC-producing E. coli isolated from stray dogs sheltered in Yangzhou, China. Methods We collected 156 samples including 115 fecal swabs, 35 kennel floor swabs, two breeder hand and shoe sole swabs, and four feed samples. The isolates were tested for resistance by antimicrobial susceptibility testing and further analyzed for cefotaxime-resistant E. coli isolates by whole genome sequencing. Results We identified 80 cefotaxime-resistant E. coli isolates (51.3%), 59 isolates (73.8%) from feces and 21 (26.2%) from the environment. Whole-genome sequencing analysis showed that bla CTX-M-15 (n=30) and bla CTX-M-55 (n=29) were the most prevalent genotypes. Two isolates only carried the AmpC β-lactamase gene bla CMY-2; one isolate had a combination of AmpC β-lactamase gene bla DHA-1 and ESBL β-lactamase gene bla CTX-M-14. Other important resistance genes such as bla OXA-10, bla TEM-1B, bla TEM-135, bla TEM-106, tet(A), qnrS1, qnrB4, and oqxAB were also detected. The serotype combination was highly abundant, with O10:H25 predominating (n=12). Most cefotaxime-resistant E. coli isolates belonged to phylogroup A (62.5%, n=50), followed by phylogroup B1 (26.3%, n=21). Thirty different sequence types (STs) and 27 distinct plasmid replicons were identified, among which ST2325 (n=12) and IncFII (n=38) was the most frequent ST and plasmid, respectively. ESBL/AmpC-producing isolates were divided into four major clades; clade IV was the primary lineage containing 37 isolates from feces and 13 from the environment. Three high-risk E. coli clone ST23 strains and one ST10 strain belonged to clades III and IV, respectively. Conclusion Our study provides a comprehensive overview of resistance profiles and genomic characteristics in ESBL/AmpC-producing E. coli and highlights the possible role of stray dogs as an antibiotic resistance gene reservoir.
Collapse
Affiliation(s)
- Lin Sun
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Nan Meng
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Zecheng Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Jiaxin Hong
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yuqi Dai
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Zhenyu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Jing Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China,Correspondence: Jing Wang; Xinan Jiao, Email ;
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
31
|
Mencía-Ares O, Borowiak M, Argüello H, Cobo-Díaz JF, Malorny B, Álvarez-Ordóñez A, Carvajal A, Deneke C. Genomic Insights into the Mobilome and Resistome of Sentinel Microorganisms Originating from Farms of Two Different Swine Production Systems. Microbiol Spectr 2022; 10:e0289622. [PMID: 36377950 PMCID: PMC9769681 DOI: 10.1128/spectrum.02896-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance (AMR) is a threat to public health due to long-term antimicrobial use (AMU), which promotes the bacterial acquisition of antimicrobial resistance determinants (ARDs). Within food-producing animals, organic and extensive Iberian swine production is based on sustainable and eco-friendly management systems, providing an excellent opportunity to evaluate how sustained differences in AMU impact the development and spread of AMR. Here, through a whole-genome sequencing approach, we provide an in-depth characterization of the resistome and mobilome and their interaction in 466 sentinel bacteria, namely, Escherichia coli, Enterococcus spp., Campylobacter coli, and Staphylococcus spp., recovered from 37 intensive and organic-extensive pig farms. Both ARDs and mobile genetic elements (MGEs) were primarily taxon-associated, with higher similarities among bacteria which were closely phylogenetically related. E. coli exhibited the most diverse resistome and mobilome, with 85.4% mobilizable ARDs, 50.3% of which were plasmid-associated. Staphylococcus spp. exhibited a broad repertoire of ARDs and MGEs, with 52.3% of its resistome being mobilizable. Although Enterococcus spp. carried the highest number of ARDs per isolate and its plasmidome was similar in size to that of E. coli, 43.7% of its resistome was mobilizable. A narrow spectrum of ARDs constituted the C. coli resistome, with point mutations as its main AMR driver. A constrained AMU, as observed in organic-extensive herds, determined a reduction in the quantitative composition of the resistome and the complexity of the resistome-mobilome interaction. These results demonstrate taxon-associated AMR-MGE interactions and evidence that responsible AMU can contribute to reducing AMR pressure in the food chain. IMPORTANCE This study provides the first integral genomic characterization of the resistome and mobilome of sentinel microorganisms for antimicrobial resistance (AMR) surveillance from two different swine production systems. Relevant differences were observed among taxa in the resistomes and mobilomes they harbored, revealing their distinctive risk in AMR dissemination and spread. Thus, Escherichia coli and, to a lesser extent, Staphylococcus spp. constituted the main reservoirs of mobilizable antimicrobial resistance genes, which were predominantly plasmid-associated; in contrast to Campylobacter coli, whose resistome was mainly determined by point mutations. The reduced complexity of mobilome-resistome interaction in Enterococcus spp. suggested its limited role in AMR dissemination from swine farms. The significant differences in antimicrobial use among the studied farms allowed us to assess the suitability of whole-genome sequencing as a rapid and efficient technique for the assessment of mid- to long-term on-farm interventions for the reduction of antimicrobial use and the evaluation of AMR status.
Collapse
Affiliation(s)
- Oscar Mencía-Ares
- Department of Animal Health, Veterinary Faculty, Universidad de León, León, Spain
| | - Maria Borowiak
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Héctor Argüello
- Department of Animal Health, Veterinary Faculty, Universidad de León, León, Spain
| | - José Francisco Cobo-Díaz
- Department of Food Hygiene and Technology, Veterinary Faculty, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Burkhard Malorny
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology, Veterinary Faculty, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Ana Carvajal
- Department of Animal Health, Veterinary Faculty, Universidad de León, León, Spain
| | - Carlus Deneke
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
32
|
Malijan GM, Howteerakul N, Ali N, Siri S, Kengganpanich M, OH-DART Study Group, Nascimento R, Booton RD, Turner KM, Cooper BS, Meeyai A. A scoping review of antibiotic use practices and drivers of inappropriate antibiotic use in animal farms in WHO Southeast Asia region. One Health 2022; 15:100412. [PMID: 36277092 PMCID: PMC9582544 DOI: 10.1016/j.onehlt.2022.100412] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Antibiotic use (ABU) plays an important role in the proliferation of antimicrobial resistance (AMR). Global antimicrobial consumption in food production is projected to rise by 67% from 2010 to 2030, but available estimates are limited by the scarcity of ABU data and absence of global surveillance systems. The WHO South-East Asia (WHO SEA) region is at high risk of emergence of AMR, likely driven by intensifying farm operations and worsening ABU hotspots. However, little is known about farm-level ABU practices in the region. To summarize emerging evidence and research gaps, we conducted a scoping review of ABU practices following the Arksey and O'Malley methodological framework. We included studies published between 2010 and 2021 on farm-level ABU/AMR in the 11 WHO SEA member states, and databases were last searched on 31 October 2021. Our search strategy identified 184 unique articles, and 25 publications underwent full-text eligibility assessment. Seventeen studies, reported in 18 publications, were included in the scoping review. We found heterogeneity in the categorizations, definitions, and ABU characterization methods used across studies and farm types. Most studies involved poultry, pig, and cattle farms, and only one study examined aquaculture. Most studies evaluated ABU prevalence by asking respondents about the presence or absence of ABU in the farm. Only two studies quantified antibiotic consumption, and sampling bias and lack of standardized data collection methods were identified as key limitations. Emerging evidence that farm workers had difficulty differentiating antibiotics from other substances contributed to the uncertainty about the reliability of self-reported data without other validation techniques. ABU for growth promotion and treatment were prevalent. We found a large overlap in the critically important antibiotics used in farm animals and humans. The ease of access to antibiotics compounded by the difficulties in accessing quality veterinary care and preventive services likely drive inappropriate ABU in complex ways.
Collapse
Affiliation(s)
- Greco Mark Malijan
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - Nopporn Howteerakul
- Department of Epidemiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Rd., Ratchathewi District, Bangkok 10400, Thailand
| | - Natasha Ali
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - Sukhontha Siri
- Department of Epidemiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Rd., Ratchathewi District, Bangkok 10400, Thailand
| | - Mondha Kengganpanich
- Department of Health Education and Behavioral Sciences, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Rd., Ratchathewi District, Bangkok 10400, Thailand
| | | | - Roger Nascimento
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - Ross D. Booton
- UK Health Security Agency, 133-155 Waterloo Road, London, SE1 8UG, United Kingdom
| | | | - Ben S. Cooper
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Aronrag Meeyai
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom
- Department of Epidemiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Rd., Ratchathewi District, Bangkok 10400, Thailand
| |
Collapse
|
33
|
Türkmen E, Parmaksız S, Nigiz Ş, Sağıroğlu M, Şenel S. A safe bioadhesive system for topical delivery of combined antimicrobials in treatment of skin infections in veterinary medicine. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Jantharadej K, Kongprajug A, Mhuantong W, Limpiyakorn T, Suwannasilp BB, Mongkolsuk S, Sirikanchana K. Comparative genomic analyses of pathogenic bacteria and viruses and antimicrobial resistance genes in an urban transportation canal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157652. [PMID: 35905960 DOI: 10.1016/j.scitotenv.2022.157652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Water commuting is a major urban transportation method in Thailand. However, urban boat commuters risk exposure to microbially contaminated bioaerosols or splash. We aimed to investigate the microbial community structures, identify bacterial and viral pathogens, and assess the abundance of antimicrobial resistance genes (ARGs) using next-generation sequencing (NGS) at 10 sampling sites along an 18 km transportation boat route in the Saen Saep Canal, which traverses cultural, commercial, and suburban land-based zones. The shotgun metagenomic (Illumina HiSeq) and 16S rRNA gene amplicon (V4 region) (Illumina MiSeq) sequencing platforms revealed diverse microbial clusters aligned with the zones, with explicit segregation between the cultural and suburban sites. The shotgun metagenomic sequencing further identified bacterial and viral pathogens, and ARGs. The predominant bacterial pathogens (>0.5 % relative abundance) were the Burkholderia cepacia complex, Arcobacter butzleri, Burkholderia vietnamiensis, Klebsiella pneumoniae, and the Enterobacter cloacae complex. The viruses (0.28 %-0.67 % abundance in all microbial sequences) comprised mainly vertebrate viruses and bacteriophages, with encephalomyocarditis virus (33.3 %-58.2 % abundance in viral sequences), hepatitis C virus genotype 1, human alphaherpesvirus 1, and human betaherpesvirus 6A among the human viral pathogens. The 15 ARG types contained 611 ARG subtypes, including those resistant to beta-lactam, which was the most diverse and abundant group (206 subtypes; 17.0 %-27.5 %), aminoglycoside (94 subtypes; 9.6 %-15.3 %), tetracycline (80 subtypes; 15.6 %-20.2 %), and macrolide (79 subtypes; 14.5 %-32.1 %). Interestingly, the abundance of ARGs associated with resistance to beta-lactam, trimethoprim, and sulphonamide, as well as A. butzleri and crAssphage, at the cultural sites was significantly different from the other sites (p < 0.05). We demonstrated the benefits of using NGS to deliver insights into microbial communities, and antimicrobial resistance, both of which pose a risk to human health. Using NGS may facilitate microbial risk mitigation and management for urban water commuters and proximal residents.
Collapse
Affiliation(s)
- Krittayapong Jantharadej
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Akechai Kongprajug
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology, Enzyme Technology Research Team, Pathum Thani, Thailand
| | - Tawan Limpiyakorn
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, Thailand; Biotechnology for Wastewater Engineering Research Group, Chulalongkorn University, Bangkok, Thailand
| | - Benjaporn Boonchayaanant Suwannasilp
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, Thailand; Biotechnology for Wastewater Engineering Research Group, Chulalongkorn University, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand.
| |
Collapse
|
35
|
Incidence and predictors of Escherichia coli producing extended-spectrum beta-lactamase (ESBL-Ec) in Queensland, Australia from 2010 to 2019: a population-based spatial analysis. Epidemiol Infect 2022; 150:e178. [PMID: 36285816 PMCID: PMC9987021 DOI: 10.1017/s0950268822001637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The dissemination of Escherichia coli producing extended-spectrum beta-lactamase (ESBL-Ec) is evident in the community. A population-based spatial analysis is necessary to investigate community risk factors for ESBL-Ec occurrence. The study population was defined as individuals with ESBL-Ec isolated in Queensland, Australia, from 2010 to 2019. Choropleth maps, global Moran's index and Getis-Ord Gi* were used to describe ESBL-Ec distribution and identify hot spots. Multivariable Poisson regression models with or without spatially structured random effects were performed. A total of 12 786 individuals with ESBL-Ec isolate were identified. The crude incidence rate increased annually from 9.1 per 100 000 residents in 2010 to 49.8 per 100 000 residents in 2019. The geographical distribution of ESBL-Ec changed from random to clustered after 2014, suggesting presence of community-specific factors that can enhance occurrence. Hot spots were more frequently identified in Outback and Far North Queensland, future public health measures to reduce transmission should prioritise these communities. Communities with higher socioeconomic status (RR = 0.66, 95% CI 0.55-0.79, per 100 units increase) and higher proportion of residents employed in the agricultural industry (RR = 0.79, 95% CI 0.67-0.95, per 10% increase) had lower ESBL-Ec incidence. Risk factors for occurrence appear differential between remote and city settings and this should be further investigated.
Collapse
|
36
|
Lepper HC, Woolhouse MEJ, van Bunnik BAD. The Role of the Environment in Dynamics of Antibiotic Resistance in Humans and Animals: A Modelling Study. Antibiotics (Basel) 2022; 11:1361. [PMID: 36290019 PMCID: PMC9598675 DOI: 10.3390/antibiotics11101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022] Open
Abstract
Antibiotic resistance is transmitted between animals and humans either directly or indirectly, through transmission via the environment. However, little is known about the contribution of the environment to resistance epidemiology. Here, we use a mathematical model to study the effect of the environment on human resistance levels and the impact of interventions to reduce antibiotic consumption in animals. We developed a model of resistance transmission with human, animal, and environmental compartments. We compared the model outcomes under different transmission scenarios, conducted a sensitivity analysis, and investigated the impacts of curtailing antibiotic usage in animals. Human resistance levels were most sensitive to parameters associated with the human compartment (rate of loss of resistance from humans) and with the environmental compartment (rate of loss of environmental resistance and rate of environment-to-human transmission). Increasing environmental transmission could lead to increased or reduced impact of curtailing antibiotic consumption in animals on resistance in humans. We highlight that environment-human sharing of resistance can influence the epidemiology of resistant bacterial infections in humans and reduce the impact of interventions that curtail antibiotic consumption in animals. More data on resistance in the environment and frequency of human-environment transmission is crucial to understanding antibiotic resistance dynamics.
Collapse
Affiliation(s)
- Hannah C. Lepper
- Usher Institute, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Mark E. J. Woolhouse
- Usher Institute, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Bram A. D. van Bunnik
- Usher Institute, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, UK
- Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| |
Collapse
|
37
|
Azuma T, Murakami M, Sonoda Y, Ozaki A, Hayashi T. Occurrence and Quantitative Microbial Risk Assessment of Methicillin-Resistant Staphylococcus aureus (MRSA) in a Sub-Catchment of the Yodo River Basin, Japan. Antibiotics (Basel) 2022; 11:1355. [PMID: 36290013 PMCID: PMC9598951 DOI: 10.3390/antibiotics11101355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
The occurrence of Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA) in a sub-catchment of the Yodo River Basin, a representative water system of a drinking water source in Japan, was investigated. The chromogenic enzyme-substrate medium method was used for the detection of S. aureus and MRSA by the presence or absence of antimicrobials in the medium for viable bacteria in a culture-based setting. The contributions of S. aureus and MRSA from wastewater to the rivers were estimated based on mass flux-based analysis, and quantitative microbial risk assessment (QMRA) was further conducted for S. aureus and MRSA in river environments. The mean abundance of S. aureus and MRSA was 31 and 29 CFU/mL in hospital effluent, 124 and 117 CFU/mL in sewage treatment plant (STP) influent, 16 and 13 CFU/mL in STP effluent, and 8 and 9 CFU/mL in river water, respectively. Contribution of the pollution load derived from the target STP effluent to river water ranged from 2% to 25%. The QMRA showed that to achieve the established health benchmarks, the drinking water treatment process would need to yield 1.7 log10 and 2.9 log10 inactivation in terms of infection risk and disability-adjusted life year (DALY) indexes, respectively. These findings highlight the link between medical environment and the importance of environmental risk management for antimicrobial-resistant bacteria in aquatic environments.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Japan
| | - Michio Murakami
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Techno Alliance C209, 2-8 Yamadaoka, Suita 565-0871, Japan
| | - Yuki Sonoda
- Nursing Unit, Jyoban Hospital of Tokiwa Foundation, 57 Kaminodai, Jyoban-Kamiyunaga-Yamachi, Iwaki 972-8322, Japan
| | - Akihiko Ozaki
- Department of Breast and Thyroid Surgery, Jyoban Hospital of Tokiwa Foundation, 57 Kaminodai, Jyoban-Kamiyunaga-Yamachi, Iwaki 972-8322, Japan
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Tetsuya Hayashi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Japan
- Department of Food and Nutrition Management Studies, Faculty of Human Development, Soai University, 4-4-1 Nankonaka, Osaka 559-0033, Japan
| |
Collapse
|
38
|
Pulsrikarn C, Kedsin A, Boueroy P, Chopjitt P, Hatrongjit R, Chansiripornchai P, Suanpairintr N, Nuanualsuwan S. Quantitative Risk Assessment of Susceptible and Ciprofloxacin-Resistant Salmonella from Retail Pork in Chiang Mai Province in Northern Thailand. Foods 2022; 11:2942. [PMID: 36230018 PMCID: PMC9562186 DOI: 10.3390/foods11192942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/26/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
The adverse human health effects as a result of antimicrobial resistance have been recognized worldwide. Salmonella is a leading cause of foodborne illnesses while antimicrobial resistant (AMR) Salmonella has been isolated from foods of animal origin. The quantitative risk assessment (RA) as part of the guidelines for the risk analysis of foodborne antimicrobial resistance was issued by the Codex Alimentarius Commission more than a decade ago. However, only two risk assessments reported the human health effects of AMR Salmonella in dry-cured pork sausage and pork mince. Therefore, the objective of this study was to quantitatively evaluate the adverse health effects attributable to consuming retail pork contaminated with Salmonella using risk assessment models. The sampling frame covered pork at the fresh market (n = 100) and modern trade where pork is refrigerated (n = 50) in Chiang Mai province in northern Thailand. The predictive microbiology models were used in the steps where data were lacking. Susceptible and quinolone-resistant (QR) Salmonella were determined by antimicrobial susceptibility testing and the presence of AMR genes. The probability of mortality conditional to foodborne illness by susceptible Salmonella was modeled as the hazard characterization of susceptible and QR Salmonella. For QR Salmonella, the probabilistic prevalences from the fresh market and modern trade were 28.4 and 1.9%, respectively; the mean concentrations from the fresh market and modern trade were 346 and 0.02 colony forming units/g, respectively. The probability of illness (PI) and probability of mortality given illness (PMI) from QR Salmonella-contaminated pork at retails in Chiang Mai province were in the range of 2.2 × 10-8-3.1 × 10-4 and 3.9 × 10-10-5.4 × 10-6, respectively, while those from susceptible Salmonella contaminated-pork at retails were in the range 1.8 × 10-4-3.2 × 10-4 and 2.3 × 10-7-4.2 × 10-7, respectively. After 1000 iterations of Monte Carlo simulations of the risk assessment models, the annual mortality rates for QR salmonellosis simulated by the risk assessment models were in the range of 0-32, which is in line with the AMR adverse health effects previously reported. Therefore, the risk assessment models used in both exposure assessment and hazard characterization were applicable to evaluate the adverse health effects of AMR Salmonella spp. in Thailand.
Collapse
Affiliation(s)
- Chaiwat Pulsrikarn
- National Institute of Health, Department of Medical Science, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Anusak Kedsin
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Rujirat Hatrongjit
- Faculty of Science and Engineering, Chalermphrakiat Sakon Nakhon Province Campus, Kasetsart University, Sakon Nakhon 47000, Thailand
| | - Piyarat Chansiripornchai
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nipattra Suanpairintr
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence for Food and Water Risk Analysis (FAWRA), Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suphachai Nuanualsuwan
- Center of Excellence for Food and Water Risk Analysis (FAWRA), Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
39
|
Azuma T, Uchiyama T, Zhang D, Usui M, Hayashi T. Distribution and characteristics of carbapenem-resistant and extended-spectrum β-lactamase (ESBL) producing Escherichia coli in hospital effluents, sewage treatment plants, and river water in an urban area of Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156232. [PMID: 35623520 DOI: 10.1016/j.scitotenv.2022.156232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Occurrence of profiles of the carbapenem-resistant Escherichia coli (CRE-E) and extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (ESBL-E) in an urban river in a sub-catchment of the Yodo River Basin, one of the representative water systems of Japan was investigated. We conducted seasonal and year-round surveys for the antimicrobial-resistant bacteria (AMRB) and antimicrobial-resistance genes (AMRGs) in hospital effluents, sewage treatment plant (STP) wastewater, and river water; subsequently, contributions to wastewater discharge into the rivers were estimated by analyses based on the mass flux. Furthermore, the characteristics of AMRB in the water samples were evaluated on the basis of antimicrobial susceptibility tests. CRE-E and ESBL-E were detected in all water samples with mean values 11 and 1900 CFU/mL in the hospital effluent, 58 and 4550 CFU/mL in the STP influent, not detected to 1 CFU/mL in the STP effluent, and 1 and 1 CFU/mL in the STP discharge into the river, respectively. Contributions of the pollution load derived from the STP effluent discharged into the river water were 1 to 21%. The resistome profiles for blaIMP, blaTEM, and blaCTX-M genes in each water sample showed that AMRGs were not completely removed in the wastewater treatment process in the STP, and the relative abundances of blaIMP, blaTEM, and blaCTX-M genes were almost similar (P<0.05). Susceptibility testing of antimicrobial-resistant E. coli isolates showed that CRE-E and ESBL-E detected in wastewaters and river water were linked to the prevalence of AMRB in clinical settings. These results suggest the importance of conducting environmental risk management of AMRB and AMRGs in the river environment. To our knowledge, this is the first detailed study that links the medical environment to CRE-E and ESBL-E for evaluating the AMRB and AMRGs in hospital effluents, STP wastewater, and river water at the basin scale on the basis of mass flux as well as the contributions of CRE-E and ESBL-E to wastewater discharge into the river.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Tomoharu Uchiyama
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Dongsheng Zhang
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Masaru Usui
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Tetsuya Hayashi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan; Faculty of Human Development, Department of Food and Nutrition Management Studies, Soai University, 4-4-1 Nankonaka, Osaka Suminoeku, Osaka 559-0033, Japan
| |
Collapse
|
40
|
Zhou N, Cheng Z, Zhang X, Lv C, Guo C, Liu H, Dong K, Zhang Y, Liu C, Chang Y, Chen S, Guo X, Zhou XN, Li M, Zhu Y. Global antimicrobial resistance: a system-wide comprehensive investigation using the Global One Health Index. Infect Dis Poverty 2022; 11:92. [PMID: 35996187 PMCID: PMC9395850 DOI: 10.1186/s40249-022-01016-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/15/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is one of the top ten global public health challenges. However, given the lack of a comprehensive assessment of worldwide AMR status, our objective is to develop a One Health-based system-wide evaluation tool on global AMR. METHODS We have further developed the three-hierarchical Global One Health Index (GOHI)-AMR indicator scheme, which consists of five key indicators, 17 indicators, and 49 sub-indicators, by incorporating 146 countries' data from diverse authoritative databases, including WHO's Global Antimicrobial Resistance and Use Surveillance System (GLASS) and the European CDC. We investigated the overall- or sub-rankings of GOHI-AMR at the international/regional/national levels for data preprocessing and score calculation utilizing the existing GOHI methodology. Additionally, a correlation analysis was conducted between the GOHI-AMR and other socioeconomic factors. RESULTS The average GOHI-AMR score for 146 countries is 38.45. As expected, high-income countries (HICs) outperform the other three income groups on overall rankings and all five key indicators of GOHI-AMR, whereas low-income countries unexpectedly outperform upper-middle-income countries and lower-middle-income countries on the antibiotics-resistant key indicator (ARR) and ARR-subordinate indicators, including carbapenem-, β-lactam-, and quinolone resistance, and even HICs on aminoglycoside resistance. There were no significant differences among the four groups on the environmental-monitoring indicator (P > 0.05). GOHI-AMR was positively correlated with gross domestic product, life expectancy, and AMR-related publications, but negatively with natural growth rate and chronic respiratory disease. In contrast to Cyprus, the remarkably lower prevalence of "ESKAPE pathogens" in high-scoring Sweden and Denmark highlights Europe's huge gaps. China and Russia outperformed the other three BRICS countries on all key indicators, particularly India's ARR and Brazil's AMR laboratory network and coordination capacity. Furthermore, significant internal disparities in carbapenem-resistant Klebsiella pneumoniae (CRKP) and methicillin-resistant Staphylococcus aureus (MRSA) prevalence were observed between China and the USA, with MRSA prevalence both gradually declining, whereas CRKP prevalence has been declining in the USA but increasing in China, consistent with higher carbapenems-related indicator' performance in USA. CONCLUSIONS GOHI-AMR is the most comprehensive tool currently available for the assessment of AMR status worldwide. We discovered unique features impacting AMR in each country and offered precise recommendations to improve the capacity to tackle AMR in low-ranking countries.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025 China
| | - Zile Cheng
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025 China
| | - Xiaoxi Zhang
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025 China
| | - Chao Lv
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025 China
| | - Chaoyi Guo
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025 China
| | - Haodong Liu
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025 China
| | - Ke Dong
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025 China
| | - Yan Zhang
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025 China
| | - Chang Liu
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025 China
| | - Yunfu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY USA
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xiaokui Guo
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025 China
| | - Xiao-Nong Zhou
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025 China
- National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Min Li
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025 China
| | - Yongzhang Zhu
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025 China
| |
Collapse
|
41
|
Sealey JE, Hammond A, Mounsey O, Gould VC, Reyher KK, Avison MB. Molecular ecology and risk factors for third-generation cephalosporin-resistant Escherichia coli carriage by dogs living in urban and nearby rural settings. J Antimicrob Chemother 2022; 77:2399-2405. [PMID: 35858661 PMCID: PMC9410662 DOI: 10.1093/jac/dkac208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/02/2022] [Indexed: 11/23/2022] Open
Abstract
Objectives To compare faecal third-generation cephalosporin-resistant (3GC-R) Escherichia coli isolates from dogs living in a city and in a rural area ∼30 km away; to compare isolates from dogs, cattle and humans in these regions; and to determine risk factors associated with 3GC-R E. coli carriage in these two cohorts of dogs. Methods Six hundred dogs were included, with faecal samples processed to recover 3GC-R E. coli using 2 mg/L cefotaxime. WGS was by Illumina and risk factor analyses were by multivariable linear regression using the results of an owner-completed survey. Results 3GC-R E. coli were excreted by 20/303 rural and 31/297 urban dogs. The dominant canine 3GC-R ST was ST963 (blaCMY-2), which also accounted for 25% of CMY-2-producing E. coli in humans. Phylogenetic overlap between cattle and rural dog CTX-M-14-producing E. coli ST117 was observed as well as acquisition of pMOO-32-positive E. coli ST10 by a rural dog, a plasmid common on cattle farms in the area. Feeding raw meat was associated with carrying 3GC-R E. coli in rural dogs, but not in urban dogs, where swimming in rivers was a weak risk factor. Conclusions Given clear zoonotic potential for resistant canine E. coli, our work suggests interventions that may reduce this threat. In rural dogs, carriage of 3GC-R E. coli, particularly CTX-M producers, was phylogenetically associated with interaction with local cattle and epidemiologically associated with feeding raw meat. In urban dogs, sources of 3GC-R E. coli appear to be more varied and include environments such as rivers.
Collapse
Affiliation(s)
- Jordan E Sealey
- University of Bristol School of Cellular & Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Ashley Hammond
- University of Bristol Medical School, Population Health Sciences, Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS, UK
| | - Oliver Mounsey
- University of Bristol School of Cellular & Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Virginia C Gould
- University of Bristol School of Cellular & Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.,University of Bristol Veterinary School, Langford House, Langford, Bristol, BS40 5DU, UK
| | - Kristen K Reyher
- University of Bristol Veterinary School, Langford House, Langford, Bristol, BS40 5DU, UK
| | - Matthew B Avison
- University of Bristol School of Cellular & Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
42
|
Characterisation of the triclosan efflux pump TriABC and its regulator TriR in Agrobacterium tumefaciens C58. Microbiol Res 2022; 263:127112. [DOI: 10.1016/j.micres.2022.127112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
|
43
|
Olesen SW. Uses of mathematical modeling to estimate the impact of mass drug administration of antibiotics on antimicrobial resistance within and between communities. Infect Dis Poverty 2022; 11:75. [PMID: 35773748 PMCID: PMC9245243 DOI: 10.1186/s40249-022-00997-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/09/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Antibiotics are a key part of modern healthcare, but their use has downsides, including selecting for antibiotic resistance, both in the individuals treated with antibiotics and in the community at large. When evaluating the benefits and costs of mass administration of azithromycin to reduce childhood mortality, effects of antibiotic use on antibiotic resistance are important but difficult to measure, especially when evaluating resistance that "spills over" from antibiotic-treated individuals to other members of their community. The aim of this scoping review was to identify how the existing literature on antibiotic resistance modeling could be better leveraged to understand the effect of mass drug administration (MDA) on antibiotic resistance. MAIN TEXT Mathematical models of antibiotic use and resistance may be useful for estimating the expected effects of different MDA implementations on different populations, as well as aiding interpretation of existing data and guiding future experimental design. Here, strengths and limitations of models of antibiotic resistance are reviewed, and possible applications of those models in the context of mass drug administration with azithromycin are discussed. CONCLUSIONS Statistical models of antibiotic use and resistance may provide robust and relevant estimates of the possible effects of MDA on resistance. Mechanistic models of resistance, while able to more precisely estimate the effects of different implementations of MDA on resistance, may require more data from MDA trials to be accurately parameterized.
Collapse
Affiliation(s)
- Scott W Olesen
- Department of Immunology and Infectious Diseases, Harvard Chan School, Boston, MA, USA.
| |
Collapse
|
44
|
Azuma T, Katagiri M, Sekizuka T, Kuroda M, Watanabe M. Inactivation of Bacteria and Residual Antimicrobials in Hospital Wastewater by Ozone Treatment. Antibiotics (Basel) 2022; 11:antibiotics11070862. [PMID: 35884116 PMCID: PMC9311624 DOI: 10.3390/antibiotics11070862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
The emergence and spread of antimicrobial resistance (AMR) has become a persistent problem globally. In this study, an ozone treatment facility was established for an advanced hospital wastewater treatment in a core hospital facility in an urban area in Japan to evaluate the inactivation of antimicrobial-resistant bacteria and antimicrobials. Metagenomic DNA-seq analysis and the isolation of potential extended-spectrum β-lactamase (ESBL)-producing bacteria suggested that ozone exposure for at least 20 min is required for the adequate inactivation of DNA and ESBL-producing bacteria. Escherichia coli and Klebsiella species were markedly susceptible to 20-min ozone exposure, whereas Raoultella ornithinolytica and Pseudomonas putida were isolated even after an 80-min exposure. These ozone-resistant bacteria might play a pivotal role as AMR reservoirs in the environment. Nine antimicrobials (ampicillin, cefdinir, cefpodoxime, ciprofloxacin, levofloxacin, clarithromycin, chlortetracycline, minocycline, and vancomycin) were detected at 373 ng/L to 27 μg/L in the hospital wastewater, and these were removed (96–100% removal) after a 40-min treatment. These results facilitate a comprehensive understanding of the AMR risk posed by hospital wastewater and provides insights for devising strategies to eliminate or mitigate the burden of antimicrobial-resistant bacteria and the flow of antimicrobials into the environment. To the best of our knowledge, this is the first report on the implementation of a batch-type, plant-scale ozone treatment system in a hospital facility to execute and evaluate the inactivation of drug-resistant bacteria and antimicrobials.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan;
| | - Miwa Katagiri
- Department of Surgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Meguro-ku, Japan;
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo 162-8640, Shinjyuku-ku, Japan;
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo 162-8640, Shinjyuku-ku, Japan;
- Correspondence: (M.K.); (M.W.); Tel.: +81-3-5285-1111 (M.K.); +81-3-3468-1251 (M.W.)
| | - Manabu Watanabe
- Department of Surgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Meguro-ku, Japan;
- Correspondence: (M.K.); (M.W.); Tel.: +81-3-5285-1111 (M.K.); +81-3-3468-1251 (M.W.)
| |
Collapse
|
45
|
Villacorta Linaza R, Genovezos C, Garner T, Panford-Quainoo E, Roberts AP. Global antimicrobial stewardship and the need for pharmaceutical system strengthening for antimicrobials within a One Health approach. INTERNATIONAL JOURNAL OF PHARMACY PRACTICE 2022; 30:175-179. [PMID: 35325142 DOI: 10.1093/ijpp/riac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 02/07/2022] [Indexed: 11/14/2022]
Abstract
OBJECTIVES The COVID-19 pandemic has highlighted both the vulnerabilities and the critical role of global pharmaceutical systems in enabling equitable access to medicines. In this personal view, we position the pharmaceutical system as a missed research and investment opportunity that, if integrated properly, would benefit antimicrobial stewardship (AMS) programmes within a One Health approach. KEY FINDINGS The pharmaceutical supply management cycle (PSMC) illustrates the continuous interdependence between four key phases: selection, procurement, distribution and use. Furthermore, a PSMC is subject to external forces of market competition, policy and regulation - across human, animal and environmental health. We present examples of overlap in PSMCs across different One Health sectors and discuss the need for integration within human, animal and environmental health contexts. SUMMARY Despite pharmaceutical systems being fundamental to successful AMS programmes, they are currently neglected and undervalued. Research and investment into pharmaceutical system optimisation and integration into AMS programmes present an opportunity for both high-income countries and low- and middle-income countries to develop responsible, comparable and international AMS innovations and interventions.
Collapse
Affiliation(s)
- Rocio Villacorta Linaza
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | | | - Timothy Garner
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Edwin Panford-Quainoo
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Adam P Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| |
Collapse
|
46
|
Valia D, Ingelbeen B, Kaboré B, Karama I, Peeters M, Lompo P, Vlieghe E, Post A, Cox J, de Mast Q, Robert A, van der Sande MAB, Villalobos HR, van der Ven A, Tinto H, Jacobs J. Use of WATCH antibiotics prior to presentation to the hospital in rural Burkina Faso. Antimicrob Resist Infect Control 2022; 11:59. [PMID: 35418154 PMCID: PMC9008950 DOI: 10.1186/s13756-022-01098-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background In low- and middle-income countries, the prevalence of antimicrobial resistance (AMR) is increasing. To control AMR, WHO recommends monitoring antibiotic use, in particular Watch antibiotics. These are critically important antibiotics, with restricted use because at risk of becoming ineffective due to increasing AMR. We investigated pre-hospital antibiotic use in rural Burkina Faso.
Methods During 2016–2017, we collected data from patients aged > 3 months presenting with severe acute fever to the rural hospital of Nanoro Health District, Burkina Faso, including antibiotic use in the two weeks prior to consultation or hospitalization. We analysed reported antibiotic use by applying the WHO Access, Watch, Reserve classification. Results Of 920 febrile participants (63.0% ≤ 14 years), pre-hospital antibiotic use was reported by 363 (39.5%). Among these 363, microbiological diagnoses were available for 275 (75.8%) patients, of whom 162 (58.9%) were non-bacterial infections. Use of more than one antibiotic was reported by 58/363 (16.0%) participants. Of 491 self-referred patients who did not previously visit a primary health care center, 131 (26.7%) reported antibiotic use. Of 424 antibiotics reported, 265 (62.5%) were Access and 159 (37.5%) Watch antibiotics. Watch antibiotic use was more frequent among patients > 14 year olds (51.1%) compared to those 0–14 year old (30.7%, p < 0.001) and among referrals from the primary health care centers (42.2%) compared to self-referred patients (28.1%, p = 0.004). Most frequently reported Watch antibiotics were ceftriaxone (114, 71.7%) and ciprofloxacin (32, 20.1%). Conclusion The reported frequent use of Watch group antibiotics among febrile patients prior to presentation to the hospital in rural Burkina Faso highlights the need to develop targeted interventions to improve antibiotic use in community settings as part of strengthening antibiotic stewardship in low- and middle-income countries. This should include facilitating referral, access to qualified prescribers and diagnostic tools in rural primary health care centers. Trial registration ClinicalTrials.gov identifier: NCT02669823. Registration date was February 1, 2016.
Collapse
Affiliation(s)
- Daniel Valia
- Institut de Recherche en Sciences de La Santé, Direction Régional du Centre-Ouest/Clinical Research Unit of Nanoro, Nanoro, Burkina Faso. .,Institute of Tropical Medicine (ITM), Antwerp, Belgium. .,Epidemiology and Biostatistics Unit, Institut de Recherche Expérimentale Et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| | | | - Bérenger Kaboré
- Institut de Recherche en Sciences de La Santé, Direction Régional du Centre-Ouest/Clinical Research Unit of Nanoro, Nanoro, Burkina Faso
| | - Ibrahima Karama
- Institut de Recherche en Sciences de La Santé, Direction Régional du Centre-Ouest/Clinical Research Unit of Nanoro, Nanoro, Burkina Faso
| | | | - Palpouguini Lompo
- Institut de Recherche en Sciences de La Santé, Direction Régional du Centre-Ouest/Clinical Research Unit of Nanoro, Nanoro, Burkina Faso
| | | | - Annelies Post
- Radboud University Medical Center, Radboud Center for Infectious Diseases, Nijmegen, The Netherlands
| | | | - Quirijn de Mast
- Radboud University Medical Center, Radboud Center for Infectious Diseases, Nijmegen, The Netherlands
| | - Annie Robert
- Epidemiology and Biostatistics Unit, Institut de Recherche Expérimentale Et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Marianne A B van der Sande
- Institute of Tropical Medicine (ITM), Antwerp, Belgium.,Julius Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hector Rodriguez Villalobos
- Microbiology Unit, Institut de Recherche Expérimentale Et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Andre van der Ven
- Radboud University Medical Center, Radboud Center for Infectious Diseases, Nijmegen, The Netherlands
| | - Halidou Tinto
- Institut de Recherche en Sciences de La Santé, Direction Régional du Centre-Ouest/Clinical Research Unit of Nanoro, Nanoro, Burkina Faso
| | - Jan Jacobs
- Institute of Tropical Medicine (ITM), Antwerp, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| |
Collapse
|
47
|
Inactivation of Antibiotic-Resistant Bacteria in Wastewater by Ozone-Based Advanced Water Treatment Processes. Antibiotics (Basel) 2022; 11:antibiotics11020210. [PMID: 35203813 PMCID: PMC8868322 DOI: 10.3390/antibiotics11020210] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/27/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
The inactivating effect of ozone (O3)-based advanced oxidation processes (AOPs) (O3/H2O2, O3/UV, and O3/UV/H2O2 systems) on antimicrobial-resistant bacteria (AMRB) and antimicrobial-susceptible bacteria (AMSB) in sewage treatment plant (STP) wastewater was investigated. The AMRB were grouped into six classes: carbapenem-resistant Enterobacteriaceae (CRE), extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae (ESBL-E), multidrug-resistant Acinetobacter (MDRA), multidrug-resistant Pseudomonas aeruginosa (MDRP), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE); these classes constituted the World Health Organization (WHO) global priority list of AMRB. The results indicate that O3-based advanced wastewater treatment inactivated all AMRB and AMSB (>99.9%) after 10 min of treatment, and significant differences (p < 0.5) were not observed in the disinfection of AMRB and AMSB by each treatment. Altered taxonomic diversity of micro-organisms based on 16S rRNA gene sequencing via O3/UV and O3/UV/H2O2 treatment showed that advanced wastewater treatments not only inactivated AMRB but also removed antimicrobial resistance genes (AMRGs) in the wastewater. Consequently, this study recommends the use of advanced wastewater treatments for treating the STP effluent, reducing environmental pollution, and alleviating the potential hazard to human health caused by AMRB, AMSB, and infectious diseases. Overall, this study provides a new method for assessing environmental risks associated with the spread of AMRB and AMSB in aquatic environments, while keeping the water environment safe and maintaining human health.
Collapse
|
48
|
Brunn A, Kadri-Alabi Z, Moodley A, Guardabassi L, Taylor P, Mateus A, Waage J. Characteristics and Global Occurrence of Human Pathogens Harboring Antimicrobial Resistance in Food Crops: A Scoping Review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.824714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BackgroundThe role of the crop environment as a conduit for antimicrobial resistance (AMR) through soil, water, and plants has received less attention than other sectors. Food crops may provide a link between the agro-environmental reservoir of AMR and acquisition by humans, adding to existing food safety hazards associated with microbial contamination of food crops.ObjectivesThe objectives of this review were: (1) to use a systematic methodology to characterize AMR in food crop value chains globally, and (2) to identify knowledge gaps in understanding exposure risks to humans.MethodsFour bibliographic databases were searched using synonyms of AMR in food crop value chains. Following two-stage screening, phenotypic results were extracted and categorized into primary and secondary combinations of acquired resistance in microbes of concern based on established prioritization. Occurrence of these pathogen-AMR phenotype combinations were summarized by sample group, value chain stage, and world region. Sub-analyses on antimicrobial resistance genes (ARG) focused on extended-spectrum beta-lactamase and tetracycline resistance genes.ResultsScreening of 4,455 citations yielded 196 studies originating from 49 countries, predominantly in Asia (89 studies) and Africa (38). Observations of pathogen-phenotype combinations of interest were reported in a subset of 133 studies (68%). Primary combinations, which include resistance to antimicrobials of critical importance to human medicine varied from 3% (carbapenem resistance) to 13% (fluoroquinolones), whereas secondary combinations, which include resistance to antimicrobials also used in agriculture ranged from 14% (aminoglycoside resistance) to 20% (aminopenicillins). Salad crops, vegetables, and culinary herbs were the most sampled crops with almost twice as many studies testing post-harvest samples. Sub-analysis of ARG found similar patterns corresponding to phenotypic results.DiscussionThese results suggest that acquired AMR in opportunistic and obligate human pathogens is disseminated throughout food crop value chains in multiple world regions. However, few longitudinal studies exist and substantial heterogeneity in sampling methods currently limit quantification of exposure risks to consumers. This review highlights the need to include agriculturally-derived AMR in monitoring food safety risks from plant-based foods, and the challenges facing its surveillance.
Collapse
|
49
|
Leonard AF, Morris D, Schmitt H, Gaze WH. Natural recreational waters and the risk that exposure to antibiotic resistant bacteria poses to human health. Curr Opin Microbiol 2022; 65:40-46. [PMID: 34739925 DOI: 10.1016/j.mib.2021.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/15/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022]
Abstract
Antimicrobial resistance (AMR) is widely recognised as a considerable threat to human health, wellbeing and prosperity. Many clinically important antibiotic resistance genes are understood to have originated in the natural environment. However, the complex interactions between humans, animals and the environment makes the health implications of environmental AMR difficult to quantify. This narrative review focuses on the current state of knowledge regarding antibiotic resistant bacteria (ARB) in natural bathing waters and implications for human health. It considers the latest research focusing on the transmission of ARB from bathing waters to humans. The limitations of existing evidence are discussed, as well as research priorities. The authors are of the opinion that future studies should include faecally contaminated bathing waters and people exposed to these environments to accurately parameterise environment-to-human transmission.
Collapse
Affiliation(s)
- Anne Fc Leonard
- University of Exeter Medical School, Environment and Sustainability Institute, University of Exeter, Cornwall TR10 9FE, UK.
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland
| | - Heike Schmitt
- National Institute for Public Health and the Environment (RIVM), Centre for Zoonoses and Environmental Microbiology - Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - William H Gaze
- University of Exeter Medical School, Environment and Sustainability Institute, University of Exeter, Cornwall TR10 9FE, UK.
| |
Collapse
|
50
|
Emes D, Naylor N, Waage J, Knight G. Quantifying the Relationship between Antibiotic Use in Food-Producing Animals and Antibiotic Resistance in Humans. Antibiotics (Basel) 2022; 11:antibiotics11010066. [PMID: 35052943 PMCID: PMC8772955 DOI: 10.3390/antibiotics11010066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/06/2021] [Accepted: 12/23/2021] [Indexed: 12/20/2022] Open
Abstract
It is commonly asserted that agricultural production systems must use fewer antibiotics in food-producing animals in order to mitigate the global spread of antimicrobial resistance (AMR). In order to assess the cost-effectiveness of such interventions, especially given the potential trade-off with rural livelihoods, we must quantify more precisely the relationship between food-producing animal antimicrobial use and AMR in humans. Here, we outline and compare methods that can be used to estimate this relationship, calling on key literature in this area. Mechanistic mathematical models have the advantage of being rooted in epidemiological theory, but may struggle to capture relevant non-epidemiological covariates which have an uncertain relationship with human AMR. We advocate greater use of panel regression models which can incorporate these factors in a flexible way, capturing both shape and scale variation. We provide recommendations for future panel regression studies to follow in order to inform cost-effectiveness analyses of AMR containment interventions across the One Health spectrum, which will be key in the age of increasing AMR.
Collapse
Affiliation(s)
- David Emes
- Centre for the Mathematical Modelling of Infectious Diseases (CMMID), Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, The London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK;
| | - Nichola Naylor
- AMR Centre, Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, The London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK;
- Healthcare Associated Infection and Antimicrobial Resistance Division, UK Health Security Agency, London SE1 8UG, UK
| | - Jeff Waage
- London International Development Centre, University of London, London WC1A 2NS, UK;
- Leverhulme Centre for Integrative Research on Agriculture and Health (CGIAR), London WC1E 7HT, UK
| | - Gwenan Knight
- Centre for the Mathematical Modelling of Infectious Diseases (CMMID), Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, The London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK;
- AMR Centre, Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, The London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK;
- Correspondence:
| |
Collapse
|