1
|
Bendig J, Aurup C, Blackman SG, McCune EP, Kim S, Konofagou EE. Transcranial Functional Ultrasound Imaging Detects Focused Ultrasound Neuromodulation Induced Hemodynamic Changes In Vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.08.583971. [PMID: 38559149 PMCID: PMC10979885 DOI: 10.1101/2024.03.08.583971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Focused ultrasound (FUS) is an emerging non-invasive technique for neuromodulation in the central nervous system (CNS). Functional ultrasound imaging (fUSI) leverages ultrafast Power Doppler Imaging (PDI) to detect changes in cerebral blood volume (CBV), which correlate well with neuronal activity and thus hold promise to monitor brain responses to FUS. Objective Investigate the immediate and short-term effects of transcranial FUS neuromodulation in the brain with fUSI by characterizing hemodynamic responses. Methods We designed a setup that aligns a FUS transducer with a linear array to allow immediate subsequent monitoring of the hemodynamic response with fUSI during and after FUS neuromodulation (FUS-fUSI) in lightly anesthetized mice. We investigated the effects of varying pressures and transducer positions on the hemodynamic responses. Results We found that higher FUS pressures increase the size of the activated brain area, as well as the magnitude of change in CBV and could show that sham sonications did not produce hemodynamic responses. Unilateral sonications resulted in bilateral hemodynamic changes with a significantly stronger response on the ipsilateral side. FUS neuromodulation in mice with a cranial window showed distinct activation patterns that were frequency-dependent and different from the activation patterns observed in the transcranial model. Conclusion fUSI is hereby shown capable of transcranially monitoring online and short-term hemodynamic effects in the brain during and following FUS neuromodulation.
Collapse
Affiliation(s)
- Jonas Bendig
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Christian Aurup
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Samuel G. Blackman
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Erica P. McCune
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Seongyeon Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
- Department of Neurosurgery, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Chen HF, Lambers H, Nagelmann N, Sandbrink M, Segelcke D, Pogatzki-Zahn E, Faber C, Pradier B. Generation of a whole-brain hemodynamic response function and sex-specific differences in cerebral processing of mechano-sensation in mice detected by BOLD fMRI. Front Neurosci 2023; 17:1187328. [PMID: 37700753 PMCID: PMC10493293 DOI: 10.3389/fnins.2023.1187328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/05/2023] [Indexed: 09/14/2023] Open
Abstract
BOLD fMRI has become a prevalent method to study cerebral sensory processing in rodent disease models, including pain and mechanical hypersensitivity. fMRI data analysis is frequently combined with a general-linear-model (GLM) -based analysis, which uses the convolution of a hemodynamic response function (HRF) with the stimulus paradigm. However, several studies indicated that the HRF differs across species, sexes, brain structures, and experimental factors, including stimulation modalities or anesthesia, and hence might strongly affect the outcome of BOLD analyzes. While considerable work has been done in humans and rats to understand the HRF, much less is known in mice. As a prerequisite to investigate mechano-sensory processing and BOLD fMRI data in male and female mice, we (1) designed a rotating stimulator that allows application of two different mechanical modalities, including innocuous von Frey and noxious pinprick stimuli and (2) determined and statistically compared HRFs across 30 brain structures and experimental conditions, including sex and, stimulus modalities. We found that mechanical stimulation lead to brain-wide BOLD signal changes thereby allowing extraction of HRFs from multiple brain structures. However, we did not find differences in HRFs across all brain structures and experimental conditions. Hence, we computed a whole-brain mouse HRF, which is based on 88 functional scans from 30 mice. A comparison of this mouse-specific HRF with our previously reported rat-derived HRF showed significantly slower kinetics in mice. Finally, we detected pronounced differences in cerebral BOLD activation between male and female mice with mechanical stimulation, thereby exposing divergent processing of noxious and innocuous stimuli in both sexes.
Collapse
Affiliation(s)
- Hui-Fen Chen
- Clinic of Radiology, Translational Research Imaging Center (TRIC), University of Münster, Münster, Germany
| | - Henriette Lambers
- Clinic of Radiology, Translational Research Imaging Center (TRIC), University of Münster, Münster, Germany
| | - Nina Nagelmann
- Clinic of Radiology, Translational Research Imaging Center (TRIC), University of Münster, Münster, Germany
| | - Martin Sandbrink
- Clinic of Radiology, Translational Research Imaging Center (TRIC), University of Münster, Münster, Germany
| | - Daniel Segelcke
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| | - Esther Pogatzki-Zahn
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| | - Cornelius Faber
- Clinic of Radiology, Translational Research Imaging Center (TRIC), University of Münster, Münster, Germany
| | - Bruno Pradier
- Clinic of Radiology, Translational Research Imaging Center (TRIC), University of Münster, Münster, Germany
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| |
Collapse
|
3
|
An optimized bioluminescent substrate for non-invasive imaging in the brain. Nat Chem Biol 2023; 19:731-739. [PMID: 36759751 DOI: 10.1038/s41589-023-01265-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023]
Abstract
Bioluminescence imaging (BLI) allows non-invasive visualization of cells and biochemical events in vivo and thus has become an indispensable technique in biomedical research. However, BLI in the central nervous system remains challenging because luciferases show relatively poor performance in the brain with existing substrates. Here, we report the discovery of a NanoLuc substrate with improved brain performance, cephalofurimazine (CFz). CFz paired with Antares luciferase produces greater than 20-fold more signal from the brain than the standard combination of D-luciferin with firefly luciferase. At standard doses, Antares-CFz matches AkaLuc-AkaLumine/TokeOni in brightness, while occasional higher dosing of CFz can be performed to obtain threefold more signal. CFz should allow the growing number of NanoLuc-based indicators to be applied to the brain with high sensitivity. Using CFz, we achieve video-rate non-invasive imaging of Antares in brains of freely moving mice and demonstrate non-invasive calcium imaging of sensory-evoked activity in genetically defined neurons.
Collapse
|
4
|
Wireless charging-mediated angiogenesis and nerve repair by adaptable microporous hydrogels from conductive building blocks. Nat Commun 2022; 13:5172. [PMID: 36056007 PMCID: PMC9440098 DOI: 10.1038/s41467-022-32912-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/22/2022] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury causes inflammation and glial scarring that impede brain tissue repair, so stimulating angiogenesis and recovery of brain function remain challenging. Here we present an adaptable conductive microporous hydrogel consisting of gold nanoyarn balls-coated injectable building blocks possessing interconnected pores to improve angiogenesis and recovery of brain function in traumatic brain injury. We show that following minimally invasive implantation, the adaptable hydrogel is able to fill defects with complex shapes and regulate the traumatic brain injury environment in a mouse model. We find that placement of this injectable hydrogel at peri-trauma regions enhances mature brain-derived neurotrophic factor by 180% and improves angiogenesis by 250% in vivo within 2 weeks after electromagnetized stimulation, and that these effects facilitate neuron survival and motor function recovery by 50%. We use blood oxygenation level-dependent functional neuroimaging to reveal the successful restoration of functional brain connectivity in the corticostriatal and corticolimbic circuits.
Collapse
|
5
|
Gong X, Jin T, Wang Y, Zhang R, Qi W, Xi L. Photoacoustic microscopy visualizes glioma-induced disruptions of cortical microvascular structure and function. J Neural Eng 2022; 19. [PMID: 35316796 DOI: 10.1088/1741-2552/ac5fcc] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/22/2022] [Indexed: 11/12/2022]
Abstract
Glioma growth may cause pervasive disruptions of brain vascular structure and function. Revealing both structural and functional alterations at a fine spatial scale is challenging for existing imaging techniques, which could confound the understanding of the basic mechanisms of brain diseases. In this study, we apply photoacoustic microscopy with a high spatial-temporal resolution and a wide field of view (FOV) to investigate the glioma-induced alterations of cortical vascular morphology, hemodynamic response, as well as functional connectivity at resting- and stimulated- states. We find that glioma promotes the growth of microvessels and leads to the increase of vascular proportion in the cerebral cortex by deriving structural parameters. The glioma also causes the loss of response in the ipsilateral hemisphere and abnormal response in the contralateral hemisphere, and further induces brain-wide alterations of functional connectivity in resting and stimulated states. The observed results show the foundation of employing photoacoustic microscopy as a potential technique in revealing the underlying mechanisms of brain diseases.
Collapse
Affiliation(s)
- Xinrui Gong
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, 518055, CHINA
| | - Tian Jin
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, Guangdong, 518055, CHINA
| | - Yongchao Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, Guangdong, 518055, CHINA
| | - Ruoxi Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, Guangdong, 518055, CHINA
| | - Weizhi Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, Guangdong, 518055, CHINA
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, Guangdong, 518055, CHINA
| |
Collapse
|
6
|
Characterization of brain-wide somatosensory BOLD fMRI in mice under dexmedetomidine/isoflurane and ketamine/xylazine. Sci Rep 2021; 11:13110. [PMID: 34162952 PMCID: PMC8222234 DOI: 10.1038/s41598-021-92582-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/10/2021] [Indexed: 02/05/2023] Open
Abstract
Mouse fMRI under anesthesia has become increasingly popular due to improvement in obtaining brain-wide BOLD response. Medetomidine with isoflurane has become well-accepted for resting-state fMRI, but whether this combination allows for stable, expected, and robust brain-wide evoked response in mice has yet to be validated. We thus utilized intravenous infusion of dexmedetomidine with inhaled isoflurane and intravenous infusion of ketamine/xylazine to elucidate whether stable mouse physiology and BOLD response are obtainable in response to simultaneous forepaw and whisker-pad stimulation throughout 8 h. We found both anesthetics result in hypercapnia with depressed heart rate and respiration due to self-breathing, but these values were stable throughout 8 h. Regardless of the mouse condition, brain-wide, robust, and stable BOLD response throughout the somatosensory axis was observed with differences in sensitivity and dynamics. Dexmedetomidine/isoflurane resulted in fast, boxcar-like, BOLD response with consistent hemodynamic shapes throughout the brain. Ketamine/xylazine response showed higher sensitivity, prolonged BOLD response, and evidence for cortical disinhibition as significant bilateral cortical response was observed. In addition, differing hemodynamic shapes were observed between cortical and subcortical areas. Overall, we found both anesthetics are applicable for evoked mouse fMRI studies.
Collapse
|
7
|
Dinh TNA, Jung WB, Shim HJ, Kim SG. Characteristics of fMRI responses to visual stimulation in anesthetized vs. awake mice. Neuroimage 2020; 226:117542. [PMID: 33186719 DOI: 10.1016/j.neuroimage.2020.117542] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 01/26/2023] Open
Abstract
The functional characteristics of the mouse visual system have not previously been well explored using fMRI. In this research, we examined 9.4 T BOLD fMRI responses to visual stimuli of varying pulse durations (1 - 50 ms) and temporal frequencies (1 - 10 Hz) under ketamine and xylazine anesthesia, and compared fMRI responses of anesthetized and awake mice. Under anesthesia, significant positive BOLD responses were detected bilaterally in the major structures of the visual pathways, including the dorsal lateral geniculate nuclei, superior colliculus, lateral posterior nucleus of thalamus, primary visual area, and higher-order visual area. BOLD responses increased slightly with pulse duration, were maximal at 3 - 5 Hz stimulation, and significantly decreased at 10 Hz, which were all consistent with previous neurophysiological findings. When the mice were awake, the BOLD fMRI response was faster in all active regions and stronger in the subcortical areas compared with the anesthesia condition. In the V1, the BOLD response was biphasic for 5 Hz stimulation and negative for 10 Hz stimulation under wakefulness, whereas prolonged positive BOLD responses were observed at both frequencies under anesthesia. Unexpected activation was detected in the extrastriate postrhinal area and non-visual subiculum complex under anesthesia, but not under wakefulness. Widespread positive BOLD activity under anesthesia likely results from the disinhibition and sensitization of excitatory neurons induced by ketamine. Overall, fMRI can be a viable tool for mapping brain-wide functional networks.
Collapse
Affiliation(s)
- Thi Ngoc Anh Dinh
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Won Beom Jung
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Hyun-Ji Shim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea.
| |
Collapse
|
8
|
Shim H, Lee J, Kim S. BOLD fMRI and hemodynamic responses to somatosensory stimulation in anesthetized mice: spontaneous breathing vs. mechanical ventilation. NMR IN BIOMEDICINE 2020; 33:e4311. [PMID: 32297409 PMCID: PMC7317444 DOI: 10.1002/nbm.4311] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/26/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Mouse functional MRI (fMRI) has been of great interest due to the abundance of transgenic models. Due to a mouse's small size, spontaneous breathing has often been used. Because the vascular physiology affecting fMRI might not be controlled normally, its effects on functional responses were investigated with optical intrinsic signal (OIS) imaging and 9.4 T BOLD fMRI. Three conditions were tested in C57BL/6 mice: spontaneous breathing under ketamine and xylazine anesthesia (KX), mechanical ventilation under KX, and mechanical ventilation under isoflurane. Spontaneous breathing under KX induced an average pCO2 of 83 mmHg, whereas a mechanical ventilation condition achieved a pCO2 of 37-41 mmHg within a physiological range. The baseline diameter of arterial and venous vessels was only 7%-9% larger with spontaneous breathing than with mechanical ventilation under KX, but it was much smaller than that in normocapnic isoflurane-anesthetized mice. Three major functional studies were performed. First, CBV-weighted OIS and arterial dilations to 4-second forepaw stimulation were rapid and larger at normocapnia than hypercapnia under KX, but very small under isoflurane. Second, CBV-weighted OIS and arterial dilations by vasodilator acetazolamide were measured for investigating vascular reactivity and were larger in the normocapnic condition than in the hypercapnic condition under KX. Third, evoked OIS and BOLD fMRI responses in the contralateral mouse somatosensory cortex to 20-second forepaw stimulation were faster and larger in the mechanical ventilation than spontaneous breathing. BOLD fMRI peaked at the end of the 20-second stimulation under hypercapnic spontaneous breathing, and at ~9 seconds under mechanical ventilation. The peak amplitude of BOLD fMRI was 2.2% at hypercapnia and ~3.4% at normocapnia. Overall, spontaneous breathing induces sluggish reduced hemodynamic and fMRI responses, but it is still viable for KX anesthesia due to its simplicity, noninvasiveness, and well-localized BOLD activity in the somatosensory cortex.
Collapse
Affiliation(s)
- Hyun‐Ji Shim
- Center for Neuroscience Imaging Research (CNIR)Institute for Basic Science (IBS)Suwon16419Republic of Korea
- Department of Health Sciences and Technology, SAIHSTSungkyunkwan UniversitySeoul06355Republic of Korea
| | - Joonyeol Lee
- Center for Neuroscience Imaging Research (CNIR)Institute for Basic Science (IBS)Suwon16419Republic of Korea
- Department of Biomedical EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Seong‐Gi Kim
- Center for Neuroscience Imaging Research (CNIR)Institute for Basic Science (IBS)Suwon16419Republic of Korea
- Department of Health Sciences and Technology, SAIHSTSungkyunkwan UniversitySeoul06355Republic of Korea
- Department of Biomedical EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| |
Collapse
|
9
|
Mc Larney B, Hutter MA, Degtyaruk O, Deán-Ben XL, Razansky D. Monitoring of Stimulus Evoked Murine Somatosensory Cortex Hemodynamic Activity With Volumetric Multi-Spectral Optoacoustic Tomography. Front Neurosci 2020; 14:536. [PMID: 32581686 PMCID: PMC7283916 DOI: 10.3389/fnins.2020.00536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/01/2020] [Indexed: 01/17/2023] Open
Abstract
Sensory stimulation is an attractive paradigm for studying brain activity using various optical-, ultrasound- and MRI-based functional neuroimaging methods. Optoacoustics has been recently suggested as a powerful new tool for scalable mapping of multiple hemodynamic parameters with rich contrast and previously unachievable spatio-temporal resolution. Yet, its utility for studying the processing of peripheral inputs at the whole brain level has so far not been quantified. We employed volumetric multi-spectral optoacoustic tomography (vMSOT) to non-invasively monitor the HbO, HbR, and HbT dynamics across the mouse somatosensory cortex evoked by electrical paw stimuli. We show that elevated contralateral activation is preserved in the HbO map (invisible to MRI) under isoflurane anesthesia. Brain activation is shown to be predominantly confined to the somatosensory cortex, with strongest activation in the hindpaw region of the contralateral sensorimotor cortex. Furthermore, vMSOT detected the presence of an initial dip in the contralateral hindpaw region in the delta HbO channel. Sensorimotor cortical activity was identified over all other regions in HbT and HbO but not in HbR. Pearson’s correlation mapping enabled localizing the response to the sensorimotor cortex further highlighting the ability of vMSOT to bridge over imaging performance deficiencies of other functional neuroimaging modalities.
Collapse
Affiliation(s)
- Benedict Mc Larney
- Faculty of Medicine, Technical University of Munich, Munich, Germany.,Institute for Biological and Medical Imaging, Helmholtz Center Munich, Munich, Germany
| | | | - Oleksiy Degtyaruk
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Munich, Germany.,Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Daniel Razansky
- Faculty of Medicine, Technical University of Munich, Munich, Germany.,Institute for Biological and Medical Imaging, Helmholtz Center Munich, Munich, Germany.,Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| |
Collapse
|
10
|
Reimann HM, Niendorf T. The (Un)Conscious Mouse as a Model for Human Brain Functions: Key Principles of Anesthesia and Their Impact on Translational Neuroimaging. Front Syst Neurosci 2020; 14:8. [PMID: 32508601 PMCID: PMC7248373 DOI: 10.3389/fnsys.2020.00008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, technical and procedural advances have brought functional magnetic resonance imaging (fMRI) to the field of murine neuroscience. Due to its unique capacity to measure functional activity non-invasively, across the entire brain, fMRI allows for the direct comparison of large-scale murine and human brain functions. This opens an avenue for bidirectional translational strategies to address fundamental questions ranging from neurological disorders to the nature of consciousness. The key challenges of murine fMRI are: (1) to generate and maintain functional brain states that approximate those of calm and relaxed human volunteers, while (2) preserving neurovascular coupling and physiological baseline conditions. Low-dose anesthetic protocols are commonly applied in murine functional brain studies to prevent stress and facilitate a calm and relaxed condition among animals. Yet, current mono-anesthesia has been shown to impair neural transmission and hemodynamic integrity. By linking the current state of murine electrophysiology, Ca2+ imaging and fMRI of anesthetic effects to findings from human studies, this systematic review proposes general principles to design, apply and monitor anesthetic protocols in a more sophisticated way. The further development of balanced multimodal anesthesia, combining two or more drugs with complementary modes of action helps to shape and maintain specific brain states and relevant aspects of murine physiology. Functional connectivity and its dynamic repertoire as assessed by fMRI can be used to make inferences about cortical states and provide additional information about whole-brain functional dynamics. Based on this, a simple and comprehensive functional neurosignature pattern can be determined for use in defining brain states and anesthetic depth in rest and in response to stimuli. Such a signature can be evaluated and shared between labs to indicate the brain state of a mouse during experiments, an important step toward translating findings across species.
Collapse
Affiliation(s)
- Henning M. Reimann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
11
|
Zhao F, Meng X, Lu S, Hyde LA, Kennedy ME, Houghton AK, Evelhoch JL, Hines CDG. fMRI study of olfactory processing in mice under three anesthesia protocols: Insight into the effect of ketamine on olfactory processing. Neuroimage 2020; 213:116725. [PMID: 32173412 DOI: 10.1016/j.neuroimage.2020.116725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/01/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is a valuable tool for studying neural activations in the central nervous system of animals due to its wide spatial coverage and non-invasive nature. However, the advantages of fMRI have not been fully realized in functional studies in mice, especially in the olfactory system, possibly due to the lack of suitable anesthesia protocols with spontaneous breathing. Since mice are widely used in biomedical research, it is desirable to evaluate different anesthesia protocols for olfactory fMRI studies in mice. Dexmedetomidine (DEX) as a sedative/anesthetic has been introduced to fMRI studies in mice, but it has a limited anesthesia duration. To extend the anesthesia duration, DEX has been combined with a low dose of isoflurane (ISO) or ketamine (KET) in previous functional studies in mice. In this report, olfactory fMRI studies were performed under three anesthesia protocols (DEX alone, DEX/ISO, and DEX/KET) in three different groups of mice. Isoamyl-acetate was used as an odorant, and the odorant-induced neural activations were measured by blood oxygenation-level dependent (BOLD) fMRI. BOLD fMRI responses were observed in the olfactory bulb (OB), anterior olfactory nuclei (AON), and piriform cortex (Pir). Interestingly, BOLD fMRI activations were also observed in the prefrontal cortical region (PFC), which are most likely caused by the draining vein effect. The response in the OB showed no adaptation to either repeated odor stimulations or continuous odor exposure, but the response in the Pir showed adaptation during the continuous odor exposure. The data also shows that ISO suppresses the olfactory response in the OB and AON, while KET enhances the olfactory response in the Pir. Thus, DEX/KET should be an attractive anesthesia for olfactory fMRI in mice.
Collapse
Affiliation(s)
| | | | - Sherry Lu
- Merck & Co. Inc, West Point, PA, 19486, USA
| | | | | | | | | | | |
Collapse
|
12
|
Mandino F, Cerri DH, Garin CM, Straathof M, van Tilborg GAF, Chakravarty MM, Dhenain M, Dijkhuizen RM, Gozzi A, Hess A, Keilholz SD, Lerch JP, Shih YYI, Grandjean J. Animal Functional Magnetic Resonance Imaging: Trends and Path Toward Standardization. Front Neuroinform 2020; 13:78. [PMID: 32038217 PMCID: PMC6987455 DOI: 10.3389/fninf.2019.00078] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
Animal whole-brain functional magnetic resonance imaging (fMRI) provides a non-invasive window into brain activity. A collection of associated methods aims to replicate observations made in humans and to identify the mechanisms underlying the distributed neuronal activity in the healthy and disordered brain. Animal fMRI studies have developed rapidly over the past years, fueled by the development of resting-state fMRI connectivity and genetically encoded neuromodulatory tools. Yet, comparisons between sites remain hampered by lack of standardization. Recently, we highlighted that mouse resting-state functional connectivity converges across centers, although large discrepancies in sensitivity and specificity remained. Here, we explore past and present trends within the animal fMRI community and highlight critical aspects in study design, data acquisition, and post-processing operations, that may affect the results and influence the comparability between studies. We also suggest practices aimed to promote the adoption of standards within the community and improve between-lab reproducibility. The implementation of standardized animal neuroimaging protocols will facilitate animal population imaging efforts as well as meta-analysis and replication studies, the gold standards in evidence-based science.
Collapse
Affiliation(s)
- Francesca Mandino
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Domenic H. Cerri
- Center for Animal MRI, Department of Neurology, Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Clement M. Garin
- Direction de la Recherche Fondamentale, MIRCen, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Milou Straathof
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Geralda A. F. van Tilborg
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - M. Mallar Chakravarty
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Biological and Biomedical Engineering, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Marc Dhenain
- Direction de la Recherche Fondamentale, MIRCen, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Rick M. Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Centre for Neuroscience and Cognitive Systems @ UNITN, Rovereto, Italy
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich–Alexander University Erlangen–Nürnberg, Erlangen, Germany
| | - Shella D. Keilholz
- Department of Biomedical Engineering, Georgia Tech, Emory University, Atlanta, GA, United States
| | - Jason P. Lerch
- Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Wellcome Centre for Integrative NeuroImaging, University of Oxford, Oxford, United Kingdom
| | - Yen-Yu Ian Shih
- Center for Animal MRI, Department of Neurology, Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joanes Grandjean
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Radiology and Nuclear Medicine, Donders Institute for Brain, Cognition, and Behaviour, Donders Institute, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
13
|
Functional spectroscopic imaging reveals specificity of glutamate response in mouse brain to peripheral sensory stimulation. Sci Rep 2019; 9:10563. [PMID: 31332260 PMCID: PMC6646328 DOI: 10.1038/s41598-019-46477-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/28/2019] [Indexed: 12/18/2022] Open
Abstract
Non-invasive investigation of physiological changes and metabolic events associated with brain activity in mice constitutes a major challenge. Conventionally, fMRI assesses neuronal activity by evaluating activity-evoked local changes in blood oxygenation levels (BOLD). In isoflurane-anaethetized mice, however, we found that BOLD signal changes during paw stimulation appear to be dominated by arousal responses even when using innocuous stimuli. Widespread responses involving both hemispheres have been observed in response to unilateral stimulation. MRS allows probing metabolic changes associated with neuronal activation and provides a complementary readout to BOLD fMRI for investigating brain activity. In this study we evaluated the sensitivity of a free induction decay (FID) based spectroscopic imaging (MRSI) protocol for the measurement of alterations in glutamate levels elicited by unilateral electrical paw stimulation at different current amplitudes. Coronal MRSI maps of glutamate distribution with 17 × 17 voxels of 1 µl volume have been recorded with a temporal resolution of 12 min. Significant region-specific increases in glutamate levels have been observed in the contralateral but not in the ispiateral S1 somatosensory cortex upon stimulation. The amplitude of glutamate changes increased in a dose-dependent manner with the stimulus amplitude. The study demonstrates feasibility of functional MRSI in mice for studying activity-evoked glutamate changes in a temporo-spatially resolved manner.
Collapse
|
14
|
Jung WB, Shim HJ, Kim SG. Mouse BOLD fMRI at ultrahigh field detects somatosensory networks including thalamic nuclei. Neuroimage 2019; 195:203-214. [DOI: 10.1016/j.neuroimage.2019.03.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/14/2019] [Accepted: 03/27/2019] [Indexed: 01/16/2023] Open
|
15
|
Noninvasive technique to evaluate the muscle fiber characteristics using q-space imaging. PLoS One 2019; 14:e0214805. [PMID: 30947237 PMCID: PMC6449066 DOI: 10.1371/journal.pone.0214805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/20/2019] [Indexed: 01/23/2023] Open
Abstract
Background Skeletal muscles include fast and slow muscle fibers. The tibialis anterior muscle (TA) is mainly composed of fast muscle fibers, whereas the soleus muscle (SOL) is mainly composed of slow muscle fibers. However, a noninvasive approach for appropriately investigating the characteristics of muscles is not available. Monitoring of skeletal muscle characteristics can help in the evaluation of the effects of strength training and diseases on skeletal muscles. Purpose The present study aimed to determine whether q-space imaging can distinguish between TA and SOL in in vivo mice. Methods In vivo magnetic resonance imaging of the right calves of mice (n = 8) was performed using a 7-Tesla magnetic resonance imaging system with a cryogenic probe. TA and SOL were assessed. q-space imaging was performed with a field of view of 10 mm × 10 mm, matrix of 48 × 48, and section thickness of 1000 μm. There were ten b-values ranging from 0 to 4244 s/mm2, and each b-value had diffusion encoding in three directions. Magnetic resonance imaging findings were compared with immunohistological findings. Results Full width at half maximum and Kurtosis maps of q-space imaging showed signal intensities consistent with immunohistological findings for both fast (myosin heavy chain II) and slow (myosin heavy chain I) muscle fibers. With regard to quantification, both full width at half maximum and Kurtosis could represent the immunohistological findings that the cell diameter of TA was larger than that of SOL (P < 0.01). Conclusion q-space imaging could clearly differentiate TA from SOL using differences in cell diameters. This technique is a promising method to noninvasively estimate the fiber type ratio in skeletal muscles, and it can be further developed as an indicator of muscle characteristics.
Collapse
|
16
|
Patz S, Fovargue D, Schregel K, Nazari N, Palotai M, Barbone PE, Fabry B, Hammers A, Holm S, Kozerke S, Nordsletten D, Sinkus R. Imaging localized neuronal activity at fast time scales through biomechanics. SCIENCE ADVANCES 2019; 5:eaav3816. [PMID: 31001585 PMCID: PMC6469937 DOI: 10.1126/sciadv.aav3816] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Mapping neuronal activity noninvasively is a key requirement for in vivo human neuroscience. Traditional functional magnetic resonance (MR) imaging, with a temporal response of seconds, cannot measure high-level cognitive processes evolving in tens of milliseconds. To advance neuroscience, imaging of fast neuronal processes is required. Here, we show in vivo imaging of fast neuronal processes at 100-ms time scales by quantifying brain biomechanics noninvasively with MR elastography. We show brain stiffness changes of ~10% in response to repetitive electric stimulation of a mouse hind paw over two orders of frequency from 0.1 to 10 Hz. We demonstrate in mice that regional patterns of stiffness modulation are synchronous with stimulus switching and evolve with frequency. For very fast stimuli (100 ms), mechanical changes are mainly located in the thalamus, the relay location for afferent cortical input. Our results demonstrate a new methodology for noninvasively tracking brain functional activity at high speed.
Collapse
Affiliation(s)
- Samuel Patz
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daniel Fovargue
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
| | - Katharina Schregel
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Institute of Neuroradiology, University Medical Center Goettingen, Goettingen, Germany
| | - Navid Nazari
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Miklos Palotai
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Paul E. Barbone
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Ben Fabry
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Alexander Hammers
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
| | - Sverre Holm
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University of Zurich and ETH, Zurich, Switzerland
| | - David Nordsletten
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
- Department of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Ralph Sinkus
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
- Inserm U1148, LVTS, University Paris Diderot, University Paris 13, Paris, France
| |
Collapse
|
17
|
Han Z, Chen W, Chen X, Zhang K, Tong C, Zhang X, Li CT, Liang Z. Awake and behaving mouse fMRI during Go/No-Go task. Neuroimage 2019; 188:733-742. [PMID: 30611875 DOI: 10.1016/j.neuroimage.2019.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 11/19/2022] Open
Abstract
Functional magnetic imaging (fMRI) has been widely used to examine the functional neural networks in both the evoked and resting states. However, most fMRI studies in rodents are performed under anesthesia, which greatly limits the scope of their application, and behavioral relevance. Efforts have been made to image rodents in the awake condition, either in the resting state or in response to sensory or optogenetic stimulation. However, fMRI in awake behaving rodents has not yet been achieved. In the current study, a novel fMRI paradigm for awake and behaving mice was developed, allowing functional imaging of the mouse brain in an olfaction-based go/no-go task. High resolution functional imaging with limited motion and image distortion were achieved at 9.4T with a cryogenic coil in awake and behaving mice. Distributed whole-brain spatiotemporal patterns were revealed, with drastically different activity profiles for go versus no-go trials. Therefore, we have demonstrated the feasibility of functional imaging of an olfactory behavior in awake mice. This fMRI paradigm in awake behaving mice could lead to novel insights into neural mechanisms underlying behaviors at a whole-brain level.
Collapse
Affiliation(s)
- Zhe Han
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjing Chen
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xifan Chen
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Kaiwei Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chuanjun Tong
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Xiaoxing Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Chengyu T Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhifeng Liang
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
18
|
Chung MH, Martins B, Privratsky A, James GA, Kilts CD, Bush KA. Individual differences in rate of acquiring stable neural representations of tasks in fMRI. PLoS One 2018; 13:e0207352. [PMID: 30475812 PMCID: PMC6261022 DOI: 10.1371/journal.pone.0207352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022] Open
Abstract
Task-related functional magnetic resonance imaging (fMRI) is a widely-used tool for studying the neural processing correlates of human behavior in both healthy and clinical populations. There is growing interest in mapping individual differences in fMRI task behavior and neural responses. By utilizing neuroadaptive task designs accounting for such individual differences, task durations can be personalized to potentially optimize neuroimaging study outcomes (e.g., classification of task-related brain states). To test this hypothesis, we first retrospectively tracked the volume-by-volume changes of beta weights generated from general linear models (GLM) for 67 adult subjects performing a stop-signal task (SST). We then modeled the convergence of the volume-by-volume changes of beta weights according to their exponential decay (ED) in units of half-life. Our results showed significant differences in beta weight convergence estimates of optimal stopping times (OSTs) between go following successful stop trials and failed stop trials for both cocaine dependent (CD) and control group (Con), and between go following successful stop trials and go following failed stop trials for Con group. Further, we implemented support vector machine (SVM) classification for 67 CD/Con labeled subjects and compared the classification accuracies of fMRI-based features derived from (1) the full fMRI task versus (2) the fMRI task truncated to multiples of the unit of half-life. Among the computed binary classification accuracies, two types of task durations based on 2 half-lives significantly outperformed the accuracies using fully acquired trials, supporting this length as the OST for the SST. In conclusion, we demonstrate the potential of a neuroadaptive task design that can be widely applied to personalizing other task-based fMRI experiments in either dynamic real-time fMRI applications or within fMRI preprocessing pipelines.
Collapse
Affiliation(s)
- Ming-Hua Chung
- Brain Imaging Research Center, Psychiatric Research Institute, Department of Psychiatry, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| | - Bradford Martins
- Brain Imaging Research Center, Psychiatric Research Institute, Department of Psychiatry, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Anthony Privratsky
- Brain Imaging Research Center, Psychiatric Research Institute, Department of Psychiatry, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - G. Andrew James
- Brain Imaging Research Center, Psychiatric Research Institute, Department of Psychiatry, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Clint D. Kilts
- Brain Imaging Research Center, Psychiatric Research Institute, Department of Psychiatry, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Keith A. Bush
- Brain Imaging Research Center, Psychiatric Research Institute, Department of Psychiatry, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| |
Collapse
|
19
|
Mouse fMRI under ketamine and xylazine anesthesia: Robust contralateral somatosensory cortex activation in response to forepaw stimulation. Neuroimage 2018; 177:30-44. [DOI: 10.1016/j.neuroimage.2018.04.062] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 12/22/2022] Open
|
20
|
Paquette T, Jeffrey-Gauthier R, Leblond H, PichÉ M. Functional Neuroimaging of Nociceptive and Pain-Related Activity in the Spinal Cord and Brain: Insights From Neurovascular Coupling Studies. Anat Rec (Hoboken) 2018; 301:1585-1595. [PMID: 29752872 DOI: 10.1002/ar.23854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/22/2018] [Accepted: 03/31/2018] [Indexed: 12/12/2022]
Abstract
Spinal cord and brain processes underlie pain perception, which produces systemic cardiovascular changes. In turn, the autonomic nervous system regulates vascular function in the spinal cord and brain in order to adapt to these systemic changes, while neuronal activity induces local vascular changes. Thus, autonomic regulation and pain processes in the brain and spinal cord are tightly linked and interrelated. The objective of this topical review is to discuss work on neurovascular coupling during nociceptive processing in order to highlight supporting evidence and limitations for the use of cerebral and spinal fMRI to investigate pain mechanisms and spinal nociceptive processes. Work on functional neuroimaging of pain is presented and discussed in relation to available neurovascular coupling studies and related issues. Perspectives on future work are also discussed with an emphasis on differences between the brain and the spinal cord and on different approaches that may be useful to improve current methods, data analyses and interpretation. In summary, this review highlights the lack of data on neurovascular coupling during nociceptive stimulation and indicates that hemodynamic and BOLD responses measured with fMRI may be biased by nonspecific vascular changes. Future neuroimaging studies on nociceptive and pain-related processes would gain further understanding of neurovascular coupling in the brain and spinal cord and should take into account the effects of systemic vascular changes that may affect hemodynamic responses. Anat Rec, 301:1585-1595, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thierry Paquette
- Department of Chiropractic, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Renaud Jeffrey-Gauthier
- Department of Chiropractic, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Hugues Leblond
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Mathieu PichÉ
- Department of Chiropractic, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| |
Collapse
|
21
|
Asaad M, Lee JH. A guide to using functional magnetic resonance imaging to study Alzheimer's disease in animal models. Dis Model Mech 2018; 11:dmm031724. [PMID: 29784664 PMCID: PMC5992611 DOI: 10.1242/dmm.031724] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease is a leading healthcare challenge facing our society today. Functional magnetic resonance imaging (fMRI) of the brain has played an important role in our efforts to understand how Alzheimer's disease alters brain function. Using fMRI in animal models of Alzheimer's disease has the potential to provide us with a more comprehensive understanding of the observations made in human clinical fMRI studies. However, using fMRI in animal models of Alzheimer's disease presents some unique challenges. Here, we highlight some of these challenges and discuss potential solutions for researchers interested in performing fMRI in animal models. First, we briefly summarize our current understanding of Alzheimer's disease from a mechanistic standpoint. We then overview the wide array of animal models available for studying this disease and how to choose the most appropriate model to study, depending on which aspects of the condition researchers seek to investigate. Finally, we discuss the contributions of fMRI to our understanding of Alzheimer's disease and the issues to consider when designing fMRI studies for animal models, such as differences in brain activity based on anesthetic choice and ways to interrogate more specific questions in rodents beyond those that can be addressed in humans. The goal of this article is to provide information on the utility of fMRI, and approaches to consider when using fMRI, for studies of Alzheimer's disease in animal models.
Collapse
Affiliation(s)
- Mazen Asaad
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
22
|
Somatosensory BOLD fMRI reveals close link between salient blood pressure changes and the murine neuromatrix. Neuroimage 2018; 172:562-574. [DOI: 10.1016/j.neuroimage.2018.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
|
23
|
Suzuki T, Nagase M, Saitoh Y, Someya T, Sekino M. An MRI-compatible and quantifiable mechanical stimulator for allodynia in a rat model of neuropathic pain. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2015:4298-301. [PMID: 26737245 DOI: 10.1109/embc.2015.7319345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We developed an MRI-compatible and quantifiable mechanical stimulator for rats. Functional MRI (fMRI) was used to investigate brain activations resulting from mechanical stimulation in normal rats and in a rat model of neuropathic pain. In the previous MRI-compatible mechanical stimulator, stimulation intensity was not adjustable. In this study, the strength of mechanical stimulation was controlled by von Frey filaments, which were used for mechanical nociception assessment. It provides us to investigate correlations between behavioral sensitivities in von Frey tests and BOLD signal changes during mechanical stimulation. In order to transmit mechanical force to a stimulation site under the strong magnetic field of a 7-T MRI system, a tube-rod structure consisting of nonmagnetic materials was used. The mechanical stimulation evoked a change in blood oxygenation level dependent (BOLD) signals in normal rats. Changes in brain activation were investigated at around- and supra-threshold conditions of mechanical nociception using the filaments for 15 g and 60 g forces. The mechanical stimulation from the 60-g-force filament, which was over the mechanical nociceptive threshold, induced strong brain activation in the areas related to nociceptive pain perception. This result was consistent with that associated with strong electrical stimulation. Mechanical stimulation in the neuropathic pain model evoked brain activity even at around-threshold conditions of mechanical nociception. Higher brain activity in the neuropathic pain model compared with normal rats was considered to be associated with allodynia.
Collapse
|
24
|
Schlegel F, Sych Y, Schroeter A, Stobart J, Weber B, Helmchen F, Rudin M. Fiber-optic implant for simultaneous fluorescence-based calcium recordings and BOLD fMRI in mice. Nat Protoc 2018; 13:840-855. [PMID: 29599439 DOI: 10.1038/nprot.2018.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite the growing popularity of blood oxygen level-dependent (BOLD) functional MRI (fMRI), understanding of its underlying principles is still limited. This protocol describes a technique for simultaneous measurement of neural activity using fluorescent calcium indicators together with the corresponding hemodynamic BOLD fMRI response in the mouse brain. Our early work using small-molecule fluorophores in rats gave encouraging results but was limited to acute measurements using synthetic dyes. Our latest procedure combines fMRI with optical detection of cell-type-specific virally delivered GCaMP6, a genetically encoded calcium indicator (GECI). GCaMP6 fluorescence, which increases upon calcium binding, is collected by a chronically implanted optical fiber, allowing longitudinal studies in mice. The chronic implant, placed horizontally on the skull, has an angulated tip that reflects light into the brain and is connected via fiber optics to a remote optical setup. The technique allows access to the neocortex and does not require adaptations of commercial MRI hardware. The hybrid approach permits fiber-optic calcium recordings with simultaneous artifact-free BOLD fMRI with full brain coverage and 1-s temporal resolution using standard gradient-echo echo-planar imaging (GE-EPI) sequences. The method provides robust, cell-type-specific readouts to link neural activity to BOLD signals, as emonstrated for task-free ('resting-state') conditions and in response to hind-paw stimulation. These results highlight the power of fiber photometry combined with fMRI, which we aim to further advance in this protocol. The approach can be easily adapted to study other molecular processes using suitable fluorescent indicators.
Collapse
Affiliation(s)
- Felix Schlegel
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Yaroslav Sych
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Aileen Schroeter
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Jillian Stobart
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Bruno Weber
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Markus Rudin
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Abstract
Magnetic Resonance Imaging (MRI) is an important tool to study various animal models of degenerative diseases. This chapter describes routine protocols of T 1-, T 2-, and T 2*-weighted and diffusion-weighted MRI for rodent brain and spinal cord. These protocols can be used to measure atrophy, axonal and myelin injury and changes in white matter connectivity.
Collapse
Affiliation(s)
- Nyoman D Kurniawan
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
26
|
Schroeter A, Grandjean J, Schlegel F, Saab BJ, Rudin M. Contributions of structural connectivity and cerebrovascular parameters to functional magnetic resonance imaging signals in mice at rest and during sensory paw stimulation. J Cereb Blood Flow Metab 2017; 37:2368-2382. [PMID: 27596833 PMCID: PMC5531337 DOI: 10.1177/0271678x16666292] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Previously, we reported widespread bilateral increases in stimulus-evoked functional magnetic resonance imaging signals in mouse brain to unilateral sensory paw stimulation. We attributed the pattern to arousal-related cardiovascular changes overruling cerebral autoregulation thereby masking specific signal changes elicited by local neuronal activity. To rule out the possibility that interhemispheric neuronal communication might contribute to bilateral functional magnetic resonance imaging responses, we compared stimulus-evoked functional magnetic resonance imaging responses to unilateral hindpaw stimulation in acallosal I/LnJ, C57BL/6, and BALB/c mice. We found bilateral blood-oxygenation-level dependent signal changes in all three strains, ruling out a dominant contribution of transcallosal communication as reason for bilaterality. Analysis of functional connectivity derived from resting-state functional magnetic resonance imaging, revealed that bilateral cortical functional connectivity is largely abolished in I/LnJ animals. Cortical functional connectivity in all strains correlated with structural connectivity in corpus callosum as revealed by diffusion tensor imaging. Given the profound influence of systemic hemodynamics on stimulus-evoked functional magnetic resonance imaging outcomes, we evaluated whether functional connectivity data might be affected by cerebrovascular parameters, i.e. baseline cerebral blood volume, vascular reactivity, and reserve. We found that effects of cerebral hemodynamics on functional connectivity are largely outweighed by dominating contributions of structural connectivity. In contrast, contributions of transcallosal interhemispheric communication to the occurrence of ipsilateral functional magnetic resonance imaging response of equal amplitude to unilateral stimuli seem negligible.
Collapse
Affiliation(s)
- Aileen Schroeter
- 1 Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.,2 Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Joanes Grandjean
- 1 Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.,2 Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Felix Schlegel
- 1 Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.,2 Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Bechara J Saab
- 2 Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.,3 Preclinical Laboratory for Translational Research into Affective Disorders, University of Zurich Hospital for Psychiatry, Zurich, Switzerland
| | - Markus Rudin
- 1 Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.,2 Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.,4 Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Lin YT, Liu HL, Day YJ, Chang CC, Hsu PH, Chen JC. Activation of NPFFR2 leads to hyperalgesia through the spinal inflammatory mediator CGRP in mice. Exp Neurol 2017; 291:62-73. [DOI: 10.1016/j.expneurol.2017.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/25/2017] [Accepted: 02/01/2017] [Indexed: 01/22/2023]
|
28
|
Activity and connectivity changes of central projection areas revealed by functional magnetic resonance imaging in Na V1.8-deficient mice upon cold signaling. Sci Rep 2017; 7:543. [PMID: 28373680 PMCID: PMC5428718 DOI: 10.1038/s41598-017-00524-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/03/2017] [Indexed: 12/19/2022] Open
Abstract
The voltage-gated sodium channel subtype NaV1.8 is expressed in the peripheral nervous system in primary afferent nociceptive C-fibers and is essential for noxious cold signaling. We utilized functional magnetic resonance imaging on NaV1.8-deficient (NaV1.8−/−) compared with wildtype (WT) mice to identify brain structures decoding noxious cold and/or heat signals. In NaV1.8−/− mice functional activity patterns, activated volumes and BOLD signal amplitudes are significantly reduced upon noxious cold stimulation whereas differences of noxious heat processing are less pronounced. Graph-theoretical analysis of the functional connectivity also shows dramatic alterations in noxious cold sensation in NaV1.8−/− mice and clearly reduced interactions between certain brain structures. In contrast, upon heat stimulation qualitatively quite the same functional connectivity pattern and consequently less prominent connectivity differences were observed between NaV1.8−/− and WT mice. Thus, the fact that NaV1.8−/− mice do not perceive nociceptive aspects of strong cooling in contrast to their WT littermates seems not only to be a pure peripheral phenomenon with diminished peripheral transmission, but also consists of upstream effects leading to altered subsequent nociceptive processing in the central nervous system and consequently altered connectivity between pain-relevant brain structures.
Collapse
|
29
|
Kao YCJ, Oyarzabal EA, Zhang H, Faber JE, Shih YYI. Role of Genetic Variation in Collateral Circulation in the Evolution of Acute Stroke: A Multimodal Magnetic Resonance Imaging Study. Stroke 2017; 48:754-761. [PMID: 28188261 DOI: 10.1161/strokeaha.116.015878] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE No studies have determined the effect of differences in pial collateral extent (number and diameter), independent of differences in environmental factors and unknown genetic factors, on severity of stroke. We examined ischemic tissue evolution during acute stroke, as measured by magnetic resonance imaging and histology, by comparing 2 congenic mouse strains with otherwise identical genetic backgrounds but with different alleles of the Determinant of collateral extent-1 (Dce1) genetic locus. We also optimized magnetic resonance perfusion and diffusion-deficit thresholds by using histological measures of ischemic tissue. METHODS Perfusion, diffusion, and T2-weighted magnetic resonance imaging were performed on collateral-poor (congenic-Bc) and collateral-rich (congenic-B6) mice at 1, 5, and 24 hours after permanent middle cerebral artery occlusion. Magnetic resonance imaging-derived penumbra and ischemic core volumes were confirmed by histology in a subset of mice at 5 and 24 hours after permanent middle cerebral artery occlusion. RESULTS Although perfusion-deficit volumes were similar between strains 1 hour after permanent middle cerebral artery occlusion, diffusion-deficit volumes were 32% smaller in collateral-rich mice. At 5 hours, collateral-rich mice had markedly restored perfusion patterns showing reduced perfusion-deficit volumes, smaller infarct volumes, and smaller perfusion-diffusion mismatch volumes compared with the collateral-poor mice (P<0.05). At 24 hours, collateral-rich mice had 45% smaller T2-weighted lesion volumes (P<0.005) than collateral-poor mice, with no difference in perfusion-diffusion mismatch volumes because of penumbral death occurring 5 to 24 hours after permanent middle cerebral artery occlusion in collateral-poor mice. CONCLUSIONS Variation in collateral extent significantly alters infarct volume expansion, transiently affects perfusion and diffusion magnetic resonance imaging signatures, and impacts salvage of ischemic penumbra after stroke onset.
Collapse
Affiliation(s)
- Yu-Chieh Jill Kao
- From the Department of Neurology (Y.-C.J.K., E.A.O.), Biomedical Research Imaging Center (Y.-C.J.K., E.A.O., Y.-Y.I.S.), Neurobiology Curriculum (E.A.O., J.E.F.), Department of Cell Biology and Physiology (H.Z., J.E.F.), McAllister Heart Institute (H.Z., J.E.F., Y.-Y.I.S.), and Department of Biomedical Engineering (Y.-Y.I.S.), University of North Carolina, Chapel Hill; and Translational Imaging Research Center (Y.-C.J.K.) and Department of Radiology, School of Medicine (Y.-C.J.K.), College of Medicine, Taipei Medical University, Taiwan
| | - Esteban A Oyarzabal
- From the Department of Neurology (Y.-C.J.K., E.A.O.), Biomedical Research Imaging Center (Y.-C.J.K., E.A.O., Y.-Y.I.S.), Neurobiology Curriculum (E.A.O., J.E.F.), Department of Cell Biology and Physiology (H.Z., J.E.F.), McAllister Heart Institute (H.Z., J.E.F., Y.-Y.I.S.), and Department of Biomedical Engineering (Y.-Y.I.S.), University of North Carolina, Chapel Hill; and Translational Imaging Research Center (Y.-C.J.K.) and Department of Radiology, School of Medicine (Y.-C.J.K.), College of Medicine, Taipei Medical University, Taiwan
| | - Hua Zhang
- From the Department of Neurology (Y.-C.J.K., E.A.O.), Biomedical Research Imaging Center (Y.-C.J.K., E.A.O., Y.-Y.I.S.), Neurobiology Curriculum (E.A.O., J.E.F.), Department of Cell Biology and Physiology (H.Z., J.E.F.), McAllister Heart Institute (H.Z., J.E.F., Y.-Y.I.S.), and Department of Biomedical Engineering (Y.-Y.I.S.), University of North Carolina, Chapel Hill; and Translational Imaging Research Center (Y.-C.J.K.) and Department of Radiology, School of Medicine (Y.-C.J.K.), College of Medicine, Taipei Medical University, Taiwan
| | - James E Faber
- From the Department of Neurology (Y.-C.J.K., E.A.O.), Biomedical Research Imaging Center (Y.-C.J.K., E.A.O., Y.-Y.I.S.), Neurobiology Curriculum (E.A.O., J.E.F.), Department of Cell Biology and Physiology (H.Z., J.E.F.), McAllister Heart Institute (H.Z., J.E.F., Y.-Y.I.S.), and Department of Biomedical Engineering (Y.-Y.I.S.), University of North Carolina, Chapel Hill; and Translational Imaging Research Center (Y.-C.J.K.) and Department of Radiology, School of Medicine (Y.-C.J.K.), College of Medicine, Taipei Medical University, Taiwan
| | - Yen-Yu Ian Shih
- From the Department of Neurology (Y.-C.J.K., E.A.O.), Biomedical Research Imaging Center (Y.-C.J.K., E.A.O., Y.-Y.I.S.), Neurobiology Curriculum (E.A.O., J.E.F.), Department of Cell Biology and Physiology (H.Z., J.E.F.), McAllister Heart Institute (H.Z., J.E.F., Y.-Y.I.S.), and Department of Biomedical Engineering (Y.-Y.I.S.), University of North Carolina, Chapel Hill; and Translational Imaging Research Center (Y.-C.J.K.) and Department of Radiology, School of Medicine (Y.-C.J.K.), College of Medicine, Taipei Medical University, Taiwan.
| |
Collapse
|
30
|
Functional MRI of the Reserpine-Induced Putative Rat Model of Fibromyalgia Reveals Discriminatory Patterns of Functional Augmentation to Acute Nociceptive Stimuli. Sci Rep 2017; 7:38325. [PMID: 28079057 PMCID: PMC5228122 DOI: 10.1038/srep38325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 11/08/2016] [Indexed: 11/23/2022] Open
Abstract
Functional neuroimaging, applied to pre-clinical models of chronic pain, offers unique advantages in the drive to discover new treatments for this prevalent and oppressive condition. The high spatial and temporal resolution of fMRI affords detailed mapping of regional pharmacodynamics that underlie mechanisms of pain suppression by new analgesics. Despite evidence supporting the translational relevance of this approach, relatively few studies have investigated fMRI abnormalities in rodent models of chronic pain. In this study, we used fMRI to map the BOLD response in a recently developed putative rat model of fibromyalgia to innocuous and acute nociceptive stimuli by applying a step-wise graded electrical forepaw stimulation paradigm, with comparison to healthy controls. We observed discriminatory functional signatures (p < 0.001) to 2 mA electrical forepaw stimulation, found to be innocuous in the control group. As such, this translational approach provides sensitive and quantitative neural correlates of the underlying chronic disease. The regional patterns of functional augmentation were found to be concordant with previous studies of nociception in the anaesthetised rat brain, supporting the specificity of this approach in the study of altered central pain processing in reserpine induced myalgia. The methodology introduced in this work represents a novel platform for emerging treatment evaluation in highly experimentally controlled conditions.
Collapse
|
31
|
Functional brain mapping using specific sensory-circuit stimulation and a theoretical graph network analysis in mice with neuropathic allodynia. Sci Rep 2016; 6:37802. [PMID: 27898057 PMCID: PMC5127182 DOI: 10.1038/srep37802] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/02/2016] [Indexed: 11/08/2022] Open
Abstract
Allodynia, a form of neuropathic pain, is defined as pain in response to a non-nociceptive stimulus. The brain regions responsible for pain, which are not normally activated, can be activated in allodynic mice by providing a suitable stimulus to Aβ-fibers, which transmit signals from tactile sensory fibers. Functional MRI (fMRI) can be used to objectively observe abnormal brain activation. In the present study, fMRI was conducted to investigate allodynia in mice; allodynia was generated by surgical injury at the L4 spinal nerve root, thus selectively stimulating sensory nerve fibers. In intact mice, only the primary somatosensory cortex (S1) was activated by stimulation of Aβ-fibers. Meanwhile, allodynic mice showed significantly higher BOLD signals in the anterior cingulate area (ACA) and thalamus. Using resting state fMRI, both degree and eigenvector centrality were significantly decreased in the contralateral S1, clustering coefficient and local efficiency were significantly increased in the ACA, and betweenness centrality was significantly higher in the ventral posterolateral nucleus of the thalamus. These results suggest that the observed abnormal BOLD activation is associated with defects in Aβ-fibers when Aβ-fibers in allodynic mice are selectively stimulated. The objective approach enabled by fMRI can improve our understanding of pathophysiological mechanisms and therapeutic efficacy.
Collapse
|
32
|
Niranjan A, Christie IN, Solomon SG, Wells JA, Lythgoe MF. fMRI mapping of the visual system in the mouse brain with interleaved snapshot GE-EPI. Neuroimage 2016; 139:337-345. [PMID: 27296012 PMCID: PMC4988789 DOI: 10.1016/j.neuroimage.2016.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/01/2016] [Accepted: 06/09/2016] [Indexed: 12/01/2022] Open
Abstract
The use of functional magnetic resonance imaging (fMRI) in mice is increasingly prevalent, providing a means to non-invasively characterise functional abnormalities associated with genetic models of human diseases. The predominant stimulus used in task-based fMRI in the mouse is electrical stimulation of the paw. Task-based fMRI in mice using visual stimuli remains underexplored, despite visual stimuli being common in human fMRI studies. In this study, we map the mouse brain visual system with BOLD measurements at 9.4T using flashing light stimuli with medetomidine anaesthesia. BOLD responses were observed in the lateral geniculate nucleus, the superior colliculus and the primary visual area of the cortex, and were modulated by the flashing frequency, diffuse vs focussed light and stimulus context. Negative BOLD responses were measured in the visual cortex at 10Hz flashing frequency; but turned positive below 5Hz. In addition, the use of interleaved snapshot GE-EPI improved fMRI image quality without diminishing the temporal contrast-noise-ratio. Taken together, this work demonstrates a novel methodological protocol in which the mouse brain visual system can be non-invasively investigated using BOLD fMRI.
Collapse
Affiliation(s)
- Arun Niranjan
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London, London, UK
| | - Isabel N Christie
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London, London, UK; Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Samuel G Solomon
- Department of Experimental Psychology, University College London, London, UK
| | - Jack A Wells
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London, London, UK
| | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London, London, UK
| |
Collapse
|
33
|
A novel anesthesia regime enables neurofunctional studies and imaging genetics across mouse strains. Sci Rep 2016; 6:24523. [PMID: 27080031 PMCID: PMC4832200 DOI: 10.1038/srep24523] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/30/2016] [Indexed: 12/18/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) has revolutionized neuroscience by opening a unique window that allows neurocircuitry function and pathological alterations to be probed non-invasively across brain disorders. Here we report a novel sustainable anesthesia procedure for small animal neuroimaging that overcomes shortcomings of anesthetics commonly used in rodent fMRI. The significantly improved preservation of cerebrovascular dynamics enhances sensitivity to neural activity changes for which it serves as a proxy in fMRI readouts. Excellent cross-species/strain applicability provides coherence among preclinical findings and is expected to improve translation to clinical fMRI investigations. The novel anesthesia procedure based on the GABAergic anesthetic etomidate was extensively validated in fMRI studies conducted in a range of genetically engineered rodent models of autism and strains commonly used for transgenic manipulations. Etomidate proved effective, yielded long-term stable physiology with basal cerebral blood flow of ~0.5 ml/g/min and full recovery. Cerebrovascular responsiveness of up to 180% was maintained as demonstrated with perfusion- and BOLD-based fMRI upon hypercapnic, pharmacological and sensory stimulation. Hence, etomidate lends itself as an anesthetic-of-choice for translational neuroimaging studies across rodent models of brain disorders.
Collapse
|
34
|
Lebhardt P, Hohenberg CCV, Weber-Fahr W, Kelsch W, Sartorius A. Optogenetic fMRI in the mouse hippocampus: Hemodynamic response to brief glutamatergic stimuli. J Cereb Blood Flow Metab 2016; 36:629-38. [PMID: 26661158 PMCID: PMC4794094 DOI: 10.1177/0271678x15606455] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/24/2015] [Indexed: 01/03/2023]
Abstract
The combination of optogenetics with functional magnetic resonance imaging is a promising tool to study the causal relationship between specific neuronal populations and global brain activity. We employed this technique to study the brain response to recruitment of glutamatergic neurons in the mouse hippocampus. The light-sensitive protein channelrhodopsin-2 was expressed in α-CamKII-positive glutamatergic neurons in the left hippocampus (N = 10). Functional magnetic resonance imaging was performed during local laser stimulation, with stimulus duration of 1 second. The hemodynamic response to these stimuli was analyzed on a whole-brain level. In a secondary analysis, we examined the impact of the stimulation locus on the dorso-ventral axis within the hippocampal formation. The hemodynamic response in the mouse hippocampus had an earlier peak and a shorter duration compared to those observed in humans. Photostimulation was associated with significantly increased blood oxygen level-dependent signal in group statistics: bilaterally in the hippocampus, frontal lobe and septum, ipsilaterally in the nucleus accumbens and contralaterally in the striatum. More dorsal position of the laser fiber was associated with a stronger activation in projection regions (insular cortex and striatum). The characterization of brain-region-specific hemodynamic response functions may enable more precise interpretation of future functional magnetic resonance imaging experiments.
Collapse
Affiliation(s)
- Philipp Lebhardt
- RG Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany Shared first authorship
| | - Christian Clemm von Hohenberg
- RG Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany Shared first authorship
| | - Wolfgang Weber-Fahr
- RG Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
| | - Wolfgang Kelsch
- RG Developmental Biology of Psychiatric Disorders, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany Shared last authorship
| | - Alexander Sartorius
- RG Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany Shared last authorship
| |
Collapse
|
35
|
Reimann HM, Hentschel J, Marek J, Huelnhagen T, Todiras M, Kox S, Waiczies S, Hodge R, Bader M, Pohlmann A, Niendorf T. Normothermic Mouse Functional MRI of Acute Focal Thermostimulation for Probing Nociception. Sci Rep 2016; 6:17230. [PMID: 26821826 PMCID: PMC4731789 DOI: 10.1038/srep17230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 10/27/2015] [Indexed: 11/30/2022] Open
Abstract
Combining mouse genomics and functional magnetic resonance imaging (fMRI) provides a promising tool to unravel the molecular mechanisms of chronic pain. Probing murine nociception via the blood oxygenation level-dependent (BOLD) effect is still challenging due to methodological constraints. Here we report on the reproducible application of acute noxious heat stimuli to examine the feasibility and limitations of functional brain mapping for central pain processing in mice. Recent technical and procedural advances were applied for enhanced BOLD signal detection and a tight control of physiological parameters. The latter includes the development of a novel mouse cradle designed to maintain whole-body normothermia in anesthetized mice during fMRI in a way that reflects the thermal status of awake, resting mice. Applying mild noxious heat stimuli to wildtype mice resulted in highly significant BOLD patterns in anatomical brain structures forming the pain matrix, which comprise temporal signal intensity changes of up to 6% magnitude. We also observed sub-threshold correlation patterns in large areas of the brain, as well as alterations in mean arterial blood pressure (MABP) in response to the applied stimulus.
Collapse
Affiliation(s)
- Henning Matthias Reimann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Jan Hentschel
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Jaroslav Marek
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Till Huelnhagen
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Mihail Todiras
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Stefanie Kox
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Russ Hodge
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Michael Bader
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
36
|
Niendorf T, Pohlmann A, Reimann HM, Waiczies H, Peper E, Huelnhagen T, Seeliger E, Schreiber A, Kettritz R, Strobel K, Ku MC, Waiczies S. Advancing Cardiovascular, Neurovascular, and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology. Front Pharmacol 2015; 6:255. [PMID: 26617515 PMCID: PMC4642111 DOI: 10.3389/fphar.2015.00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022] Open
Abstract
Research in pathologies of the brain, heart and kidney have gained immensely from the plethora of studies that have helped shape new methods in magnetic resonance (MR) for characterizing preclinical disease models. Methodical probing into preclinical animal models by MR is invaluable since it allows a careful interpretation and extrapolation of data derived from these models to human disease. In this review we will focus on the applications of cryogenic radiofrequency (RF) coils in small animal MR as a means of boosting image quality (e.g., by supporting MR microscopy) and making data acquisition more efficient (e.g., by reducing measuring time); both being important constituents for thorough investigational studies on animal models of disease. This review attempts to make the (bio)medical imaging, molecular medicine, and pharmaceutical communities aware of this productive ferment and its outstanding significance for anatomical and functional MR in small rodents. The goal is to inspire a more intense interdisciplinary collaboration across the fields to further advance and progress non-invasive MR methods that ultimately support thorough (patho)physiological characterization of animal disease models. In this review, current and potential future applications for the RF coil technology in cardiovascular, neurovascular, and renal disease will be discussed.
Collapse
Affiliation(s)
- Thoralf Niendorf
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
- German Centre for Cardiovascular ResearchBerlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | - Henning M. Reimann
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | | | - Eva Peper
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | - Till Huelnhagen
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | - Erdmann Seeliger
- Center for Cardiovascular Research, Institute of Physiology, Charité—Universitätsmedizin BerlinBerlin, Germany
| | - Adrian Schreiber
- Clinic for Nephrology and Intensive Care Medicine, Charité Medical Faculty and Experimental and Clinical Research CenterBerlin, Germany
| | - Ralph Kettritz
- Clinic for Nephrology and Intensive Care Medicine, Charité Medical Faculty and Experimental and Clinical Research CenterBerlin, Germany
| | | | - Min-Chi Ku
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| |
Collapse
|
37
|
Lin AJ, Ponticorvo A, Durkin AJ, Venugopalan V, Choi B, Tromberg BJ. Differential pathlength factor informs evoked stimulus response in a mouse model of Alzheimer's disease. NEUROPHOTONICS 2015; 2:045001. [PMID: 26835482 PMCID: PMC4718154 DOI: 10.1117/1.nph.2.4.045001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 09/15/2015] [Indexed: 05/03/2023]
Abstract
Baseline optical properties are typically assumed in calculating the differential pathlength factor (DPF) of mouse brains, a value used in the modified Beer-Lambert law to characterize an evoked stimulus response. We used spatial frequency domain imaging to measure in vivo baseline optical properties in 20-month-old control ([Formula: see text]) and triple transgenic APP/PS1/tau (3xTg-AD) ([Formula: see text]) mouse brains. Average [Formula: see text] for control and 3xTg-AD mice was [Formula: see text] and [Formula: see text], respectively, at 460 nm; and [Formula: see text] and [Formula: see text], respectively, at 530 nm. Average [Formula: see text] for control and 3xTg-AD mice was [Formula: see text] and [Formula: see text], respectively, at 460 nm; and [Formula: see text] and [Formula: see text], respectively, at 530 nm. The calculated DPF for control and 3xTg-AD mice was [Formula: see text] and [Formula: see text] OD mm, respectively, at 460 nm; and [Formula: see text] and [Formula: see text] OD mm, respectively, at 530 nm. In hindpaw stimulation experiments, the hemodynamic increase in brain tissue concentration of oxyhemoglobin was threefold larger and two times longer in the control mice compared to 3xTg-AD mice. Furthermore, the washout of deoxyhemoglobin from increased brain perfusion was seven times larger in controls compared to 3xTg-AD mice ([Formula: see text]).
Collapse
Affiliation(s)
- Alexander J. Lin
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, 1002 Health Sciences Road, Irvine, California 92612, United States
- University of California, Irvine, Department of Biomedical Engineering, 3120 Natural Sciences II, Irvine, California 92697-2715, United States
| | - Adrien Ponticorvo
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, 1002 Health Sciences Road, Irvine, California 92612, United States
| | - Anthony J. Durkin
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, 1002 Health Sciences Road, Irvine, California 92612, United States
| | - Vasan Venugopalan
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, 1002 Health Sciences Road, Irvine, California 92612, United States
- University of California, Irvine, Department of Chemical Engineering and Materials Science, 916 Engineering Tower, Irvine, California 92697-2575, United States
| | - Bernard Choi
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, 1002 Health Sciences Road, Irvine, California 92612, United States
- University of California, Irvine, Department of Biomedical Engineering, 3120 Natural Sciences II, Irvine, California 92697-2715, United States
- University of California, Irvine, Edwards Lifesciences Center for Advanced Cardiovascular Technology, 2400 Engineering Hall, Irvine, California 92697-2730, United States
| | - Bruce J. Tromberg
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, 1002 Health Sciences Road, Irvine, California 92612, United States
- University of California, Irvine, Department of Biomedical Engineering, 3120 Natural Sciences II, Irvine, California 92697-2715, United States
- Address all correspondence to: Bruce J. Tromberg, E-mail:
| |
Collapse
|
38
|
The hemodynamic response to somatosensory stimulation in mice depends on the anesthetic used: Implications on analysis of mouse fMRI data. Neuroimage 2015; 116:40-9. [DOI: 10.1016/j.neuroimage.2015.05.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 11/23/2022] Open
|
39
|
Comparison of stimulus-evoked cerebral hemodynamics in the awake mouse and under a novel anesthetic regime. Sci Rep 2015. [PMID: 26218081 PMCID: PMC4517464 DOI: 10.1038/srep12621] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neural activity is closely followed by a localised change in cerebral blood flow, a process termed neurovascular coupling. These hemodynamic changes form the basis of contrast in functional magnetic resonance imaging (fMRI) and are used as a correlate for neural activity. Anesthesia is widely employed in animal fMRI and neurovascular studies, however anesthetics are known to profoundly affect neural and vascular physiology, particularly in mice. Therefore, we investigated the efficacy of a novel ‘modular’ anesthesia that combined injectable (fentanyl-fluanisone/midazolam) and volatile (isoflurane) anesthetics in mice. To characterize sensory-evoked cortical hemodynamic responses, we used optical imaging spectroscopy to produce functional maps of changes in tissue oxygenation and blood volume in response to mechanical whisker stimulation. Following fine-tuning of the anesthetic regime, stimulation elicited large and robust hemodynamic responses in the somatosensory cortex, characterized by fast arterial activation, increases in total and oxygenated hemoglobin, and decreases in deoxygenated hemoglobin. Overall, the magnitude and speed of evoked hemodynamic responses under anesthesia resembled those in the awake state, indicating that the novel anesthetic combination significantly minimizes the impact of anesthesia. Our findings have broad implications for both neurovascular research and longitudinal fMRI studies that increasingly require the use of genetically engineered mice.
Collapse
|
40
|
BOLD fMRI of C-Fiber Mediated Nociceptive Processing in Mouse Brain in Response to Thermal Stimulation of the Forepaws. PLoS One 2015; 10:e0126513. [PMID: 25950440 PMCID: PMC4423852 DOI: 10.1371/journal.pone.0126513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/17/2015] [Indexed: 11/30/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) in rodents enables non-invasive studies of brain function in response to peripheral input or at rest. In this study we describe a thermal stimulation paradigm using infrared laser diodes to apply noxious heat to the forepaw of mice in order to study nociceptive processing. Stimulation at 45 and 46°C led to robust BOLD signal changes in various brain structures including the somatosensory cortices and the thalamus. The BOLD signal amplitude scaled with the temperature applied but not with the area irradiated by the laser beam. To demonstrate the specificity of the paradigm for assessing nociceptive signaling we administered the quaternary lidocaine derivative QX-314 to the forepaws, which due to its positive charge cannot readily cross biological membranes. However, upon activation of TRPV1 channels following the administration of capsaicin the BOLD signal was largely abolished, indicative of a selective block of the C-fiber nociceptors due to QX-314 having entered the cells via the now open TRPV1 channels. This demonstrates that the cerebral BOLD response to thermal noxious paw stimulation is specifically mediated by C-fibers.
Collapse
|
41
|
Specificity of hemodynamic brain responses to painful stimuli: a functional near-infrared spectroscopy study. Sci Rep 2015; 5:9469. [PMID: 25820289 PMCID: PMC4377554 DOI: 10.1038/srep09469] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/04/2015] [Indexed: 12/02/2022] Open
Abstract
Assessing pain in individuals not able to communicate (e.g. infants, under surgery, or following stroke) is difficult due to the lack of non-verbal objective measures of pain. Near-infrared spectroscopy (NIRS) being a portable, non-invasive and inexpensive method of monitoring cerebral hemodynamic activity has the potential to provide such a measure. Here we used functional NIRS to evaluate brain activation to an innocuous and a noxious electrical stimulus on healthy human subjects (n = 11). For both innocuous and noxious stimuli, we observed a signal change in the primary somatosensory cortex contralateral to the stimulus. The painful and non-painful stimuli can be differentiated based on their signal size and profile. We also observed that repetitive noxious stimuli resulted in adaptation of the signal. Furthermore, the signal was distinguishable from a skin sympathetic response to pain that tended to mask it. Our results support the notion that functional NIRS has a potential utility as an objective measure of pain.
Collapse
|
42
|
Kundu P, Santin MD, Bandettini PA, Bullmore ET, Petiet A. Differentiating BOLD and non-BOLD signals in fMRI time series from anesthetized rats using multi-echo EPI at 11.7 T. Neuroimage 2014; 102 Pt 2:861-74. [PMID: 25064668 DOI: 10.1016/j.neuroimage.2014.07.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 07/13/2014] [Accepted: 07/15/2014] [Indexed: 12/11/2022] Open
Abstract
The study of spontaneous brain activity using fMRI is central to mapping brain networks. However, current fMRI methodology has limitations in the study of small animal brain organization using ultra-high field fMRI experiments, as imaging artifacts are difficult to control and the relationship between classical neuroanatomy and spontaneous functional BOLD activity is not fully established. Challenges are especially prevalent during the fMRI study of individual rodent brains, which could be instrumental to studies of disease progression and pharmacology. A recent advance in fMRI methodology enables unbiased, accurate, and comprehensive identification of functional BOLD signals by interfacing multi-echo (ME) fMRI acquisition, NMR signal decay analysis, and independent components analysis (ICA), in a procedure called ME-ICA. Here we present a pilot study on the suitability of ME-ICA for ultra high field animal fMRI studies of spontaneous brain activity under anesthesia. ME-ICA applied to 11.7 T fMRI data of rats first showed robust performance in automatic high dimensionality estimation and ICA decomposition, similar to that previously reported for 3.0 T human data. ME sequence optimization for 11.7 T indicated that 3 echoes, 0.5mm isotropic voxel size and TR=3s was adequate for sensitive and specific BOLD signal acquisition. Next, in seeking optimal inhaled isoflurane anesthesia dosage, we report that progressive increase in anesthesia goes with concomitant decrease in statistical complexity of "global" functional activity, as measured by the number of BOLD components, or degrees of freedom (DOF). Finally, BOLD functional connectivity maps for individual rodents at the component level show that spontaneous BOLD activity follows classical neuroanatomy, and seed-based analysis shows plausible cortical-cortical and cortical-subcortical functional interactions.
Collapse
Affiliation(s)
- Prantik Kundu
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA; Behavioural Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
| | - Mathieu D Santin
- Center for Neuroimaging Research, Brain and Spine Institute, Paris, France
| | - Peter A Bandettini
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA; Functional MRI Core Facility, National Institute of Mental Health, Bethesda, MD, USA
| | - Edward T Bullmore
- Behavioural Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK; NIHR Cambridge Biomedical Research Centre, Cambridgeshire Peterborough NHS Foundation Trust, UK; ImmunoPsychiatry, Alternative Discovery & Development, GlaxoSmithKline, Stevenage, UK
| | - Alexandra Petiet
- Center for Neuroimaging Research, Brain and Spine Institute, Paris, France
| |
Collapse
|
43
|
Lai HY, Albaugh DL, Kao YCJ, Younce JR, Shih YYI. Robust deep brain stimulation functional MRI procedures in rats and mice using an MR-compatible tungsten microwire electrode. Magn Reson Med 2014; 73:1246-51. [DOI: 10.1002/mrm.25239] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/14/2014] [Accepted: 03/11/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Hsin-Yi Lai
- Department of Neurology; University of North Carolina; Chapel Hill North Carolina USA
- Biomedical Research Imaging Center; University of North Carolina; Chapel Hill North Carolina USA
| | - Daniel L. Albaugh
- Department of Neurology; University of North Carolina; Chapel Hill North Carolina USA
- Biomedical Research Imaging Center; University of North Carolina; Chapel Hill North Carolina USA
- Curriculum in Neurobiology; University of North Carolina; Chapel Hill North Carolina USA
| | - Yu-Chieh Jill Kao
- Department of Neurology; University of North Carolina; Chapel Hill North Carolina USA
- Biomedical Research Imaging Center; University of North Carolina; Chapel Hill North Carolina USA
| | - John R. Younce
- Department of Neurology; University of North Carolina; Chapel Hill North Carolina USA
- Biomedical Research Imaging Center; University of North Carolina; Chapel Hill North Carolina USA
- School of Medicine; University of North Carolina; Chapel Hill North Carolina USA
| | - Yen-Yu Ian Shih
- Department of Neurology; University of North Carolina; Chapel Hill North Carolina USA
- Biomedical Research Imaging Center; University of North Carolina; Chapel Hill North Carolina USA
- Curriculum in Neurobiology; University of North Carolina; Chapel Hill North Carolina USA
- Department of Biomedical Engineering; University of North Carolina; Chapel Hill North Carolina USA
| |
Collapse
|
44
|
Wehrl HF, Martirosian P, Schick F, Reischl G, Pichler BJ. Assessment of rodent brain activity using combined [15O]H2O-PET and BOLD-fMRI. Neuroimage 2014; 89:271-9. [DOI: 10.1016/j.neuroimage.2013.11.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/08/2013] [Accepted: 11/18/2013] [Indexed: 12/01/2022] Open
|
45
|
Klohs J, Rudin M, Shimshek DR, Beckmann N. Imaging of cerebrovascular pathology in animal models of Alzheimer's disease. Front Aging Neurosci 2014; 6:32. [PMID: 24659966 PMCID: PMC3952109 DOI: 10.3389/fnagi.2014.00032] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/19/2014] [Indexed: 01/04/2023] Open
Abstract
In Alzheimer's disease (AD), vascular pathology may interact with neurodegeneration and thus aggravate cognitive decline. As the relationship between these two processes is poorly understood, research has been increasingly focused on understanding the link between cerebrovascular alterations and AD. This has at last been spurred by the engineering of transgenic animals, which display pathological features of AD and develop cerebral amyloid angiopathy to various degrees. Transgenic models are versatile for investigating the role of amyloid deposition and vascular dysfunction, and for evaluating novel therapeutic concepts. In addition, research has benefited from the development of novel imaging techniques, which are capable of characterizing vascular pathology in vivo. They provide vascular structural read-outs and have the ability to assess the functional consequences of vascular dysfunction as well as to visualize and monitor the molecular processes underlying these pathological alterations. This article focusses on recent in vivo small animal imaging studies addressing vascular aspects related to AD. With the technical advances of imaging modalities such as magnetic resonance, nuclear and microscopic imaging, molecular, functional and structural information related to vascular pathology can now be visualized in vivo in small rodents. Imaging vascular and parenchymal amyloid-β (Aβ) deposition as well as Aβ transport pathways have been shown to be useful to characterize their dynamics and to elucidate their role in the development of cerebral amyloid angiopathy and AD. Structural and functional imaging read-outs have been employed to describe the deleterious affects of Aβ on vessel morphology, hemodynamics and vascular integrity. More recent imaging studies have also addressed how inflammatory processes partake in the pathogenesis of the disease. Moreover, imaging can be pivotal in the search for novel therapies targeting the vasculature.
Collapse
Affiliation(s)
- Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich Zurich, Switzerland ; Neuroscience Center Zurich, University of Zurich and ETH Zurich Zurich, Switzerland
| | - Markus Rudin
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich Zurich, Switzerland ; Neuroscience Center Zurich, University of Zurich and ETH Zurich Zurich, Switzerland ; Institute of Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| | - Derya R Shimshek
- Autoimmunity, Transplantation and Inflammation/Neuroinflammation Department, Novartis Institutes for BioMedical Research Basel, Switzerland
| | - Nicolau Beckmann
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research Basel, Switzerland
| |
Collapse
|
46
|
Takano M, Kawabata S, Komaki Y, Shibata S, Hikishima K, Toyama Y, Okano H, Nakamura M. Inflammatory cascades mediate synapse elimination in spinal cord compression. J Neuroinflammation 2014; 11:40. [PMID: 24589419 PMCID: PMC3975877 DOI: 10.1186/1742-2094-11-40] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 02/17/2014] [Indexed: 01/15/2023] Open
Abstract
Background Cervical compressive myelopathy (CCM) is caused by chronic spinal cord compression due to spondylosis, a degenerative disc disease, and ossification of the ligaments. Tip-toe walking Yoshimura (twy) mice are reported to be an ideal animal model for CCM-related neuronal dysfunction, because they develop spontaneous spinal cord compression without any artificial manipulation. Previous histological studies showed that neurons are lost due to apoptosis in CCM, but the mechanism underlying this neurodegeneration was not fully elucidated. The purpose of this study was to investigate the pathophysiology of CCM by evaluating the global gene expression of the compressed spinal cord and comparing the transcriptome analysis with the physical and histological findings in twy mice. Methods Twenty-week-old twy mice were divided into two groups according to the magnetic resonance imaging (MRI) findings: a severe compression (S) group and a mild compression (M) group. The transcriptome was analyzed by microarray and RT-PCR. The cellular pathophysiology was examined by immunohistological analysis and immuno-electron microscopy. Motor function was assessed by Rotarod treadmill latency and stride-length tests. Results Severe cervical calcification caused spinal canal stenosis and low functional capacity in twy mice. The microarray analysis revealed 215 genes that showed significantly different expression levels between the S and the M groups. Pathway analysis revealed that genes expressed at higher levels in the S group were enriched for terms related to the regulation of inflammation in the compressed spinal cord. M1 macrophage-dominant inflammation was present in the S group, and cysteine-rich protein 61 (Cyr61), an inducer of M1 macrophages, was markedly upregulated in these spinal cords. Furthermore, C1q, which initiates the classical complement cascade, was more upregulated in the S group than in the M group. The confocal and electron microscopy observations indicated that classically activated microglia/macrophages had migrated to the compressed spinal cord and eliminated synaptic terminals. Conclusions We revealed the detailed pathophysiology of the inflammatory response in an animal model of chronic spinal cord compression. Our findings suggest that complement-mediated synapse elimination is a central mechanism underlying the neurodegeneration in CCM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hideyuki Okano
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | |
Collapse
|
47
|
Specificity of stimulus-evoked fMRI responses in the mouse: the influence of systemic physiological changes associated with innocuous stimulation under four different anesthetics. Neuroimage 2014; 94:372-384. [PMID: 24495809 DOI: 10.1016/j.neuroimage.2014.01.046] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/09/2014] [Accepted: 01/24/2014] [Indexed: 02/07/2023] Open
Abstract
Functional magnetic resonance (fMRI) in mice has become an attractive tool for mechanistic studies, for characterizing models of human disease, and for evaluation of novel therapies. Yet, controlling the physiological state of mice is challenging, but nevertheless important as changes in cardiovascular parameters might affect the hemodynamic readout which constitutes the basics of the fMRI signal. In contrast to rats, fMRI studies in mice report less robust brain activation of rather widespread character to innocuous sensory stimulation. Anesthesia is known to influence the characteristics of the fMRI signal. To evaluate modulatory effects imposed by the anesthesia on stimulus-evoked fMRI responses, we compared blood oxygenation level dependent (BOLD) and cerebral blood volume (CBV) signal changes to electrical hindpaw stimulation using the four commonly used anesthetics isoflurane, medetomidine, propofol and urethane. fMRI measurements were complemented by assessing systemic physiological parameters throughout the experiment. Unilateral stimulation of the hindpaw elicited widespread fMRI responses in the mouse brain displaying a bilateral pattern irrespective of the anesthetic used. Analysis of magnitude and temporal profile of BOLD and CBV signals indicated anesthesia-specific modulation of cerebral hemodynamic responses and differences observed for the four anesthetics could be largely explained by their known effects on animal physiology. Strikingly, independent of the anesthetic used our results reveal that fMRI responses are influenced by stimulus-induced cardiovascular changes, which indicate an arousal response, even to innocuous stimulation. This may mask specific fMRI signal associated to the stimulus. Hence, studying the processing of peripheral input in mice using fMRI techniques constitutes a major challenge and adapted paradigms and/or alternative fMRI readouts should also be considered when studying sensory processing in mice.
Collapse
|
48
|
Thompson SJ, Millecamps M, Aliaga A, Seminowicz DA, Low LA, Bedell BJ, Stone LS, Schweinhardt P, Bushnell MC. Metabolic brain activity suggestive of persistent pain in a rat model of neuropathic pain. Neuroimage 2014; 91:344-52. [PMID: 24462776 DOI: 10.1016/j.neuroimage.2014.01.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 11/07/2013] [Accepted: 01/13/2014] [Indexed: 10/25/2022] Open
Abstract
Persistent pain is a central characteristic of neuropathic pain conditions in humans. Knowing whether rodent models of neuropathic pain produce persistent pain is therefore crucial to their translational applicability. We investigated the spared nerve injury (SNI) model of neuropathic pain and the formalin pain model in rats using positron emission tomography (PET) with the metabolic tracer [18F]fluorodeoxyglucose (FDG) to determine if there is ongoing brain activity suggestive of persistent pain. For the formalin model, under brief anesthesia we injected one hindpaw with 5% formalin and the FDG tracer into a tail vein. We then allowed the animals to awaken and observed pain behavior for 30min during the FDG uptake period. The rat was then anesthetized and placed in the scanner for static image acquisition, which took place between minutes 45 and 75 post-tracer injection. A single reference rat brain magnetic resonance image (MRI) was used to align the PET images with the Paxinos and Watson rat brain atlas. Increased glucose metabolism was observed in the somatosensory region associated with the injection site (S1 hindlimb contralateral), S1 jaw/upper lip and cingulate cortex. Decreases were observed in the prelimbic cortex and hippocampus. Second, SNI rats were scanned 3weeks post-surgery using the same scanning paradigm, and region-of-interest analyses revealed increased metabolic activity in the contralateral S1 hindlimb. Finally, a second cohort of SNI rats was scanned while anesthetized during the tracer uptake period, and the S1 hindlimb increase was not observed. Increased brain activity in the somatosensory cortex of SNI rats resembled the activity produced with the injection of formalin, suggesting that the SNI model may produce persistent pain. The lack of increased activity in S1 hindlimb with general anesthetic demonstrates that this effect can be blocked, as well as highlights the importance of investigating brain activity in awake and behaving rodents.
Collapse
Affiliation(s)
- Scott J Thompson
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3G 0G1, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2T5, Canada.
| | - Magali Millecamps
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3G 0G1, Canada; Faculty of Dentistry, McGill University, Montreal, QC H3A 2T5, Canada
| | - Antonio Aliaga
- Small Animal Imaging Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - David A Seminowicz
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Lucie A Low
- Division of Intramural Research, National Center for Complementary and Alternative Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barry J Bedell
- Small Animal Imaging Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Department of Neurology & Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Laura S Stone
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3G 0G1, Canada; Faculty of Dentistry, McGill University, Montreal, QC H3A 2T5, Canada; Department of Neurology & Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Petra Schweinhardt
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3G 0G1, Canada; Faculty of Dentistry, McGill University, Montreal, QC H3A 2T5, Canada; Department of Neurology & Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - M Catherine Bushnell
- Division of Intramural Research, National Center for Complementary and Alternative Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
49
|
Bokacheva L, Ackerstaff E, LeKaye HC, Zakian K, Koutcher JA. High-field small animal magnetic resonance oncology studies. Phys Med Biol 2013; 59:R65-R127. [PMID: 24374985 DOI: 10.1088/0031-9155/59/2/r65] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review focuses on the applications of high magnetic field magnetic resonance imaging (MRI) and spectroscopy (MRS) to cancer studies in small animals. High-field MRI can provide information about tumor physiology, the microenvironment, metabolism, vascularity and cellularity. Such studies are invaluable for understanding tumor growth and proliferation, response to treatment and drug development. The MR techniques reviewed here include (1)H, (31)P, chemical exchange saturation transfer imaging and hyperpolarized (13)C MRS as well as diffusion-weighted, blood oxygen level dependent contrast imaging and dynamic contrast-enhanced MRI. These methods have been proven effective in animal studies and are highly relevant to human clinical studies.
Collapse
Affiliation(s)
- Louisa Bokacheva
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 415 East 68 Street, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
50
|
Simultaneous PET-MRI reveals brain function in activated and resting state on metabolic, hemodynamic and multiple temporal scales. Nat Med 2013; 19:1184-9. [PMID: 23975025 DOI: 10.1038/nm.3290] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 01/28/2013] [Indexed: 02/07/2023]
Abstract
Combined positron emission tomography (PET) and magnetic resonance imaging (MRI) is a new tool to study functional processes in the brain. Here we study brain function in response to a barrel-field stimulus simultaneously using PET, which traces changes in glucose metabolism on a slow time scale, and functional MRI (fMRI), which assesses fast vascular and oxygenation changes during activation. We found spatial and quantitative discrepancies between the PET and the fMRI activation data. The functional connectivity of the rat brain was assessed by both modalities: the fMRI approach determined a total of nine known neural networks, whereas the PET method identified seven glucose metabolism-related networks. These results demonstrate the feasibility of combined PET-MRI for the simultaneous study of the brain at activation and rest, revealing comprehensive and complementary information to further decode brain function and brain networks.
Collapse
|