1
|
Nahid S, Rahman FI, Du Y, Spitznagel BD, Singh SK, Chhonker YS, Murry DJ, Weaver CD, Hopkins CR. Further Structure-Activity Relationship of G Protein-Gated Inwardly Rectifying Potassium Channels 1/2 Activators: Synthesis and Biological Characterization of In Vitro Tool Compounds. ChemMedChem 2025:e2500037. [PMID: 40238995 DOI: 10.1002/cmdc.202500037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/18/2025]
Abstract
The work presented herein outlines the ongoing structure-activity relationship studies centered around a potent, efficacious, and selective activators of the G protein-gated inwardly rectifying potassium channels (GIRK)1/2 channel. Optimization studies centered around the pyrazole privileged scaffold, the N-1-position of the pyrazole, and the right-hand ether. The work confirms the necessity of the pyrazole, and a more potent GIRK1/2 activator is identified with ≈12-fold selectivity against GIRK1/4. The metabolite ID study is reported which shows the instability of the amide bond as the major site of metabolism (nonNADPH mediated). This work discovers another highly potent and selective GIRK1/2 activator for use as an in vitro tool compound.
Collapse
Affiliation(s)
- Sumaiya Nahid
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Fahad Imtiaz Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yu Du
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Brittany D Spitznagel
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Sandeep K Singh
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - C David Weaver
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- UNMC Center for Drug Design and Innovation, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
2
|
Adamczyk K, Zuzda K, Jankowski M, Świerczyński R, Chudziński K, Czapski B, Szułdrzyński K. Effects of Opioids in Cancer Pain: An Interplay Among Genetic Factors, Immune Response, and Clinical Outcomes-A Scoping Review. Cancers (Basel) 2025; 17:863. [PMID: 40075716 PMCID: PMC11899605 DOI: 10.3390/cancers17050863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/10/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Managing cancer-related pain presents complex challenges involving the interplay between analgesic efficacy, immune system responses, and patient outcomes. Methods: Following the Scale for the Assessment of Narrative Review Articles (SANRA) criteria, we conducted a comprehensive literature search in Medline, Scopus, and Web of Science databases. The review synthesized evidence regarding opioid pain management modalities, genetic variations affecting pain perception, and associated drug metabolism. Results: The literature reveals significant associations between opioid administration and immune function, with potential implications for cancer progression and survival. Genetic polymorphisms in key genes influence individual responses to pain opioid metabolism and, finally, pain management strategies. The immunosuppressive effects of opioids emerge as a critical consideration in cancer pain management, potentially influencing disease progression and treatment outcomes. Conclusions: Genetic variants influence analgesic efficacy, while the interaction between opioid-induced immunosuppression and genetic factors impacts both pain control and survival outcomes. This emphasizes the need for personalized treatment approaches considering individual genetic profiles and immune function.
Collapse
Affiliation(s)
- Kamil Adamczyk
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Konrad Zuzda
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Miłosz Jankowski
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Rafał Świerczyński
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Kamil Chudziński
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Bartosz Czapski
- Department of Neurosurgery, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Konstanty Szułdrzyński
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| |
Collapse
|
3
|
Murphy J, Pak S, Shteynman L, Winkeler I, Jin Z, Kaczocha M, Bergese SD. Mechanisms and Preventative Strategies for Persistent Pain following Knee and Hip Joint Replacement Surgery: A Narrative Review. Int J Mol Sci 2024; 25:4722. [PMID: 38731944 PMCID: PMC11083264 DOI: 10.3390/ijms25094722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Chronic postsurgical pain (CPSP) following total knee arthroplasty (TKA) and total hip arthroplasty (THA) is a prevalent complication of joint replacement surgery which has the potential to decrease patient satisfaction, increase financial burden, and lead to long-term disability. The identification of risk factors for CPSP following TKA and THA is challenging but essential for targeted preventative therapy. Recent meta-analyses and individual studies highlight associations between elevated state anxiety, depression scores, preoperative pain, diabetes, sleep disturbances, and various other factors with an increased risk of CPSP, with differences observed in prevalence between TKA and THA. While the etiology of CPSP is not fully understood, several factors such as chronic inflammation and preoperative central sensitization have been identified. Other potential mechanisms include genetic factors (e.g., catechol-O-methyltransferase (COMT) and potassium inwardly rectifying channel subfamily J member 6 (KCNJ6) genes), lipid markers, and psychological risk factors (anxiety and depression). With regards to therapeutics and prevention, multimodal pharmacological analgesia, emphasizing nonopioid analgesics like acetaminophen and non-steroidal anti-inflammatory drugs (NSAIDs), has gained prominence over epidural analgesia. Nerve blocks and local infiltrative anesthesia have shown mixed results in preventing CPSP. Ketamine, an N-methyl-D-aspartate (NMDA)-receptor antagonist, exhibits antihyperalgesic properties, but its efficacy in reducing CPSP is inconclusive. Lidocaine, an amide-type local anesthetic, shows tentative positive effects on CPSP. Selective serotonin reuptake inhibitors (SSRIs) and serotonin norepinephrine reuptake inhibitors (SNRIs) have mixed results, while gabapentinoids, like gabapentin and pregabalin, present hopeful data but require further research, especially in the context of TKA and THA, to justify their use for CPSP prevention.
Collapse
Affiliation(s)
- Jasper Murphy
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (J.M.); (S.P.); (L.S.); (I.W.)
| | - Sery Pak
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (J.M.); (S.P.); (L.S.); (I.W.)
| | - Lana Shteynman
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (J.M.); (S.P.); (L.S.); (I.W.)
| | - Ian Winkeler
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (J.M.); (S.P.); (L.S.); (I.W.)
| | - Zhaosheng Jin
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA; (M.K.); (S.D.B.)
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA; (M.K.); (S.D.B.)
| | - Sergio D. Bergese
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA; (M.K.); (S.D.B.)
| |
Collapse
|
4
|
Li Y, Duan J, Li Y, Zhang M, Wu J, Wang G, Li S, Hu Z, Qu Y, Li Y, Hu X, Guo F, Cao L, Lu J. Transcriptomic profiling across human serotonin neuron differentiation via the FEV reporter system. Stem Cell Res Ther 2024; 15:107. [PMID: 38637896 PMCID: PMC11027224 DOI: 10.1186/s13287-024-03728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND The detailed transcriptomic profiles during human serotonin neuron (SN) differentiation remain elusive. The establishment of a reporter system based on SN terminal selector holds promise to produce highly-purified cells with an early serotonergic fate and help elucidate the molecular events during human SN development process. METHODS A fifth Ewing variant (FEV)-EGFP reporter system was established by CRISPR/Cas9 technology to indicate SN since postmitotic stage. FACS was performed to purify SN from the heterogeneous cell populations. RNA-sequencing analysis was performed for cells at four key stages of differentiation (pluripotent stem cells, serotonergic neural progenitors, purified postmitotic SN and purifed mature SN) to explore the transcriptomic dynamics during SN differentiation. RESULTS We found that human serotonergic fate specification may commence as early as day 21 of differentiation from human pluripotent stem cells. Furthermore, the transcriptional factors ZIC1, HOXA2 and MSX2 were identified as the hub genes responsible for orchestrating serotonergic fate determination. CONCLUSIONS For the first time, we exposed the developmental transcriptomic profiles of human SN via FEV reporter system, which will further our understanding for the development process of human SN.
Collapse
Affiliation(s)
- Yingqi Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinjin Duan
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - You Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meihui Zhang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiaan Wu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guanhao Wang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuanqing Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhangsen Hu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yi Qu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yunhe Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiran Hu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Fei Guo
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lining Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Jianfeng Lu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Suzhou Institute of Tongji University, Suzhou, China.
| |
Collapse
|
5
|
Sluka KA, Wager TD, Sutherland SP, Labosky PA, Balach T, Bayman EO, Berardi G, Brummett CM, Burns J, Buvanendran A, Caffo B, Calhoun VD, Clauw D, Chang A, Coffey CS, Dailey DL, Ecklund D, Fiehn O, Fisch KM, Frey Law LA, Harris RE, Harte SE, Howard TD, Jacobs J, Jacobs JM, Jepsen K, Johnston N, Langefeld CD, Laurent LC, Lenzi R, Lindquist MA, Lokshin A, Kahn A, McCarthy RJ, Olivier M, Porter L, Qian WJ, Sankar CA, Satterlee J, Swensen AC, Vance CG, Waljee J, Wandner LD, Williams DA, Wixson RL, Zhou XJ. Predicting chronic postsurgical pain: current evidence and a novel program to develop predictive biomarker signatures. Pain 2023; 164:1912-1926. [PMID: 37326643 PMCID: PMC10436361 DOI: 10.1097/j.pain.0000000000002938] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 06/17/2023]
Abstract
ABSTRACT Chronic pain affects more than 50 million Americans. Treatments remain inadequate, in large part, because the pathophysiological mechanisms underlying the development of chronic pain remain poorly understood. Pain biomarkers could potentially identify and measure biological pathways and phenotypical expressions that are altered by pain, provide insight into biological treatment targets, and help identify at-risk patients who might benefit from early intervention. Biomarkers are used to diagnose, track, and treat other diseases, but no validated clinical biomarkers exist yet for chronic pain. To address this problem, the National Institutes of Health Common Fund launched the Acute to Chronic Pain Signatures (A2CPS) program to evaluate candidate biomarkers, develop them into biosignatures, and discover novel biomarkers for chronification of pain after surgery. This article discusses candidate biomarkers identified by A2CPS for evaluation, including genomic, proteomic, metabolomic, lipidomic, neuroimaging, psychophysical, psychological, and behavioral measures. Acute to Chronic Pain Signatures will provide the most comprehensive investigation of biomarkers for the transition to chronic postsurgical pain undertaken to date. Data and analytic resources generatedby A2CPS will be shared with the scientific community in hopes that other investigators will extract valuable insights beyond A2CPS's initial findings. This article will review the identified biomarkers and rationale for including them, the current state of the science on biomarkers of the transition from acute to chronic pain, gaps in the literature, and how A2CPS will address these gaps.
Collapse
Affiliation(s)
- Kathleen A. Sluka
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Tor D. Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH
| | - Stephani P. Sutherland
- Department of Biostatistics, Johns Hopkins Bloomberg Schools of Public Health, Baltimore, MD
| | - Patricia A. Labosky
- Office of Strategic Coordination, Division of Program Coordination, Planning and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, MD
| | - Tessa Balach
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago, Chicago, IL
| | - Emine O. Bayman
- Clinical Trials and Data Management Center, Department of Biostatistics, University of Iowa, Iowa City, IA
| | - Giovanni Berardi
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Chad M. Brummett
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI
| | - John Burns
- Division of Behavioral Sciences, Rush Medical College, Chicago, IL
| | | | - Brian Caffo
- Department of Biostatistics, Johns Hopkins Bloomberg Schools of Public Health, Baltimore, MD
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, and Emory University, Atlanta, GA
| | - Daniel Clauw
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI
| | - Andrew Chang
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - Christopher S. Coffey
- Clinical Trials and Data Management Center, Department of Biostatistics, University of Iowa, Iowa City, IA
| | - Dana L. Dailey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Dixie Ecklund
- Clinical Trials and Data Management Center, Department of Biostatistics, University of Iowa, Iowa City, IA
| | - Oliver Fiehn
- University of California, Davis, Davis, CA, United States
| | - Kathleen M. Fisch
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, San Diego, CA, United States
- Center for Computational Biology and Bioinformatics, University of California San Diego, San Diego, CA, United States
| | - Laura A. Frey Law
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Richard E. Harris
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI
| | - Steven E. Harte
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI
| | - Timothy D. Howard
- Department of Biochemistry, Center for Precision Medicine, Wake Forest School of Medicine, Winstom-Salem, NC
- Center for Precision Medicine, Wake Forest School of Medicine, Winstom-Salem, NC
| | - Joshua Jacobs
- Department of Orthopedic Surgery, Rush Medical College, CHicago, IL
| | - Jon M. Jacobs
- Environmental and Molecular Sciences Laboratory, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | | | | | - Carl D. Langefeld
- Center for Precision Medicine, Wake Forest School of Medicine, Winstom-Salem, NC
- Department of Biostatistics and Data Science, Center for Precision Medicine, Wake Forest School of Medicine, Winstom-Salem, NC
| | - Louise C. Laurent
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, San Diego, CA, United States
| | - Rebecca Lenzi
- Office of Strategic Coordination, Division of Program Coordination, Planning and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, MD
| | - Martin A. Lindquist
- Department of Biostatistics, Johns Hopkins Bloomberg Schools of Public Health, Baltimore, MD
| | | | - Ari Kahn
- Texas Advanced Computing Center, University of Texas, AUstin, TX
| | | | - Michael Olivier
- Center for Precision Medicine, Wake Forest School of Medicine, Winstom-Salem, NC
- Department of Internal Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winstom-Salem, NC
| | - Linda Porter
- National Institute of Neurological Disorders and Stroke, Bethesda, MD
- Office of Pain Policy and Planning National Institutes of Health, Bethesda, MD
| | - Wei-Jun Qian
- Environmental and Molecular Sciences Laboratory, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Cheryse A. Sankar
- National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | | | - Adam C. Swensen
- Environmental and Molecular Sciences Laboratory, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Carol G.T. Vance
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Jennifer Waljee
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - Laura D. Wandner
- National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - David A. Williams
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI
| | | | - Xiaohong Joe Zhou
- Center for MR Research and Departments of Radiology, Neurosurgery, and Bioengineering, University of Illinois College of Medicine at Chicago, Chicago, IL, United States
| |
Collapse
|
6
|
Association of KCNJ6 rs2070995 and methadone response for pain management in advanced cancer at end-of-life. Sci Rep 2022; 12:17422. [PMID: 36261449 PMCID: PMC9582209 DOI: 10.1038/s41598-022-21180-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/23/2022] [Indexed: 01/12/2023] Open
Abstract
Opioids are the therapeutic agents of choice to manage moderate to severe pain in patients with advanced cancer, however the unpredictable inter-individual response to opioid therapy remains a challenge for clinicians. While studies are few, the KCNJ6 gene is a promising target for investigating genetic factors that contribute to pain and analgesia response. This is the first association study on polymorphisms in KCNJ6 and response to methadone for pain management in advanced cancer. Fifty-four adult patients with advanced cancer were recruited across two study sites in a prospective, open label, dose individualisation study. Significant associations have been previously shown for rs2070995 and opioid response in opioid substitution therapy for heroin addiction and studies in chronic pain, with mixed results seen in postoperative pain. In this study, no associations were shown for rs2070995 and methadone dose or pain score, consistent with other studies conducted in patients receiving opioids for pain in advanced cancer. There are many challenges in conducting studies in advanced cancer with significant attrition and small sample sizes, however it is hoped that the results of our study will contribute to the evidence base and allow for continued development of gene-drug dosing guidelines for clinicians.
Collapse
|
7
|
Cuñat T, Martínez-Pastor JC, Dürsteler C, Hernández C, Sala-Blanch X. Perioperative medicine role in painful knee prosthesis prevention. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2022; 69:411-420. [PMID: 35869007 DOI: 10.1016/j.redare.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 03/25/2021] [Indexed: 06/15/2023]
Abstract
Total knee arthroplasty is one of the most frequently performed orthopaedic surgeries. However, up to 20% of patients develop persistent postoperative pain. Persistent postoperative pain may be an extension of acute postoperative pain, but can also occur after more than 3 months without symptoms. Risk factors associated with persistent postoperative pain after arthroplasty have now been characterised within the patient's perioperative context (preoperative, intraoperative and postoperative), and can be grouped under genetic, demographic, clinical, surgical, analgesic, inflammatory and psychological factors. Identification and prevention of persistent postoperative pain through a multimodal and biopsychosocial approach is essential in the context of perioperative medicine, and has been shown to prevent or ameliorate postoperative pain.
Collapse
Affiliation(s)
- T Cuñat
- Servicio de Anestesiología, Reanimación y Tratamiento del dolor, Hospital Clínic de Barcelona, Barcelona, Spain.
| | - J C Martínez-Pastor
- Servicio de Traumatología y Cirugía Ortopédica, Hospital Clinic de Barcelona, Barcelona, Spain
| | - C Dürsteler
- Servicio de Anestesiología, Reanimación y Tratamiento del dolor, Hospital Clínic de Barcelona, Barcelona, Spain
| | - C Hernández
- Servicio de Anestesiología y Reanimación, Hospital Sant Joan de Déu de Barcelona, Esplugues de Llobregat, Barcelona, Spain
| | - X Sala-Blanch
- Servicio de Anestesiología, Reanimación y Tratamiento del dolor, Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Luo H, Marron Fernandez de Velasco E, Wickman K. Neuronal G protein-gated K + channels. Am J Physiol Cell Physiol 2022; 323:C439-C460. [PMID: 35704701 PMCID: PMC9362898 DOI: 10.1152/ajpcell.00102.2022] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels exert a critical inhibitory influence on neurons. Neuronal GIRK channels mediate the G protein-dependent, direct/postsynaptic inhibitory effect of many neurotransmitters including γ-aminobutyric acid (GABA), serotonin, dopamine, adenosine, somatostatin, and enkephalin. In addition to their complex regulation by G proteins, neuronal GIRK channel activity is sensitive to PIP2, phosphorylation, regulator of G protein signaling (RGS) proteins, intracellular Na+ and Ca2+, and cholesterol. The application of genetic and viral manipulations in rodent models, together with recent progress in the development of GIRK channel modulators, has increased our understanding of the physiological and behavioral impact of neuronal GIRK channels. Work in rodent models has also revealed that neuronal GIRK channel activity is modified, transiently or persistently, by various stimuli including exposure drugs of abuse, changes in neuronal activity patterns, and aversive experience. A growing body of preclinical and clinical evidence suggests that dysregulation of GIRK channel activity contributes to neurological diseases and disorders. The primary goals of this review are to highlight fundamental principles of neuronal GIRK channel biology, mechanisms of GIRK channel regulation and plasticity, the nascent landscape of GIRK channel pharmacology, and the potential relevance of GIRK channels to the pathophysiology and treatment of neurological diseases and disorders.
Collapse
Affiliation(s)
- Haichang Luo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
9
|
Monroy-Jaramillo N, Martínez-Magaña JJ, Pérez-Aldana BE, Ortega-Vázquez A, Montalvo-Ortiz J, López-López M. The role of alcohol intake in the pharmacogenetics of treatment with clozapine. Pharmacogenomics 2022; 23:371-392. [PMID: 35311547 DOI: 10.2217/pgs-2022-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Clozapine (CLZ) is an atypical antipsychotic reserved for patients with refractory psychosis, but it is associated with a significant risk of severe adverse reactions (ADRs) that are potentiated with the concomitant use of alcohol. Additionally, pharmacogenetic studies have explored the influence of several genetic variants in CYP450, receptors and transporters involved in the interindividual response to CLZ. Herein, we systematically review the current multiomics knowledge behind the interaction between CLZ and alcohol intake, and how its concomitant use might modulate the pharmacogenetics. CYP1A2*1F, *1C and other alleles not yet discovered could support a precision medicine approach for better therapeutic effects and fewer CLZ ADRs. CLZ monitoring systems should be amended and include alcohol intake to protect patients from severe CLZ ADRs.
Collapse
Affiliation(s)
- Nancy Monroy-Jaramillo
- Department of Genetics, National Institute of Neurology & Neurosurgery, Manuel Velasco Suárez, La Fama, Tlalpan, Mexico City, 14269, Mexico
| | - José Jaime Martínez-Magaña
- Department of Psychiatry, Division of Human Genetics, Yale University School of Medicine, Orange, West Haven, CT 06477, USA
| | - Blanca Estela Pérez-Aldana
- Doctorado en Ciencias Biológicas y de la Salud, Metropolitan Autonomous University, Campus Xochimilco, Villa Quietud, Coyoacán, Mexico City, 04960, Mexico
| | - Alberto Ortega-Vázquez
- Metropolitan Autonomous University, Campus Xochimilco, Villa Quietud, Coyoacán, Mexico City, 04960, Mexico
| | - Janitza Montalvo-Ortiz
- Department of Psychiatry, Division of Human Genetics, Yale University School of Medicine, Orange, West Haven, CT 06477, USA
| | - Marisol López-López
- Metropolitan Autonomous University, Campus Xochimilco, Villa Quietud, Coyoacán, Mexico City, 04960, Mexico
| |
Collapse
|
10
|
Sharma S, Lesiak L, Aretz CD, Du Y, Kumar S, Gautam N, Alnouti Y, Dhuria NV, Chhonker YS, Weaver CD, Hopkins CR. Discovery, synthesis and biological characterization of a series of N-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1 H-pyrazol-5-yl)acetamide ethers as novel GIRK1/2 potassium channel activators. RSC Med Chem 2021; 12:1366-1373. [PMID: 34458739 PMCID: PMC8372201 DOI: 10.1039/d1md00129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023] Open
Abstract
The present study describes the discovery and characterization of a series of N-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1H-pyrazol-5-yl)acetamide ethers as G protein-gated inwardly-rectifying potassium (GIRK) channel activators. From our previous lead optimization efforts, we have identified a new ether-based scaffold and paired this with a novel sulfone-based head group to identify a potent and selective GIRK1/2 activator. In addition, we evaluated the compounds in tier 1 DMPK assays and have identified compounds that display nanomolar potency as GIRK1/2 activators with improved metabolic stability over the prototypical urea-based compounds.
Collapse
Affiliation(s)
- Swagat Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Lauren Lesiak
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Christopher D Aretz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Yu Du
- Department of Pharmacology, Vanderbilt University School of Medicine Nashville TN 37232 USA
| | - Sushil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Nikilesh V Dhuria
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - C David Weaver
- Department of Pharmacology, Vanderbilt University School of Medicine Nashville TN 37232 USA
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| |
Collapse
|
11
|
Kir Channel Molecular Physiology, Pharmacology, and Therapeutic Implications. Handb Exp Pharmacol 2021; 267:277-356. [PMID: 34345939 DOI: 10.1007/164_2021_501] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
For the past two decades several scholarly reviews have appeared on the inwardly rectifying potassium (Kir) channels. We would like to highlight two efforts in particular, which have provided comprehensive reviews of the literature up to 2010 (Hibino et al., Physiol Rev 90(1):291-366, 2010; Stanfield et al., Rev Physiol Biochem Pharmacol 145:47-179, 2002). In the past decade, great insights into the 3-D atomic resolution structures of Kir channels have begun to provide the molecular basis for their functional properties. More recently, computational studies are beginning to close the time domain gap between in silico dynamic and patch-clamp functional studies. The pharmacology of these channels has also been expanding and the dynamic structural studies provide hope that we are heading toward successful structure-based drug design for this family of K+ channels. In the present review we focus on placing the physiology and pharmacology of this K+ channel family in the context of atomic resolution structures and in providing a glimpse of the promising future of therapeutic opportunities.
Collapse
|
12
|
Cuñat T, Martínez-Pastor JC, Dürsteler C, Hernández C, Sala-Blanch X. Perioperative medicine role in painful knee prosthesis prevention. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2021; 69:S0034-9356(21)00142-0. [PMID: 34325900 DOI: 10.1016/j.redar.2021.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 01/07/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022]
Abstract
Total knee arthroplasty is one of the most frequently performed orthopaedic surgeries. However, up to 20% of patients develop persistent postoperative pain. Persistent postoperative pain may be an extension of acute postoperative pain, but can also occur after more than 3 months without symptoms. Risk factors associated with persistent postoperative pain after arthroplasty have now been characterised within the patient's perioperative context (preoperative, intraoperative and postoperative), and can be grouped under genetic, demographic, clinical, surgical, analgesic, inflammatory and psychological factors. Identification and prevention of persistent postoperative pain through a multimodal and biopsychosocial approach is essential in the context of perioperative medicine, and has been shown to prevent or ameliorate postoperative pain.
Collapse
Affiliation(s)
- T Cuñat
- Servicio de Anestesiología, Reanimación y Tratamiento del dolor, Hospital Clínic de Barcelona, Barcelona, España.
| | - J C Martínez-Pastor
- Servicio de Traumatología y Cirugía Ortopédica, Hospital Clínic de Barcelona, Barcelona, España
| | - C Dürsteler
- Servicio de Anestesiología, Reanimación y Tratamiento del dolor, Hospital Clínic de Barcelona, Barcelona, España
| | - C Hernández
- Servicio de Anestesiología y Reanimación, Hospital Sant Joan de Déu de Barcelona, Esplugues de Llobregat, Barcelona, España
| | - X Sala-Blanch
- Servicio de Anestesiología, Reanimación y Tratamiento del dolor, Hospital Clínic de Barcelona, Barcelona, España
| |
Collapse
|
13
|
Therapeutic potential of targeting G protein-gated inwardly rectifying potassium (GIRK) channels in the central nervous system. Pharmacol Ther 2021; 223:107808. [PMID: 33476640 DOI: 10.1016/j.pharmthera.2021.107808] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
G protein-gated inwardly rectifying potassium channels (Kir3/GirK) are important for maintaining resting membrane potential, cell excitability and inhibitory neurotransmission. Coupled to numerous G protein-coupled receptors (GPCRs), they mediate the effects of many neurotransmitters, neuromodulators and hormones contributing to the general homeostasis and particular synaptic plasticity processes, learning, memory and pain signaling. A growing number of behavioral and genetic studies suggest a critical role for the appropriate functioning of the central nervous system, as well as their involvement in many neurologic and psychiatric conditions, such as neurodegenerative diseases, mood disorders, attention deficit hyperactivity disorder, schizophrenia, epilepsy, alcoholism and drug addiction. Hence, GirK channels emerge as a very promising tool to be targeted in the current scenario where these conditions already are or will become a global public health problem. This review examines recent findings on the physiology, function, dysfunction, and pharmacology of GirK channels in the central nervous system and highlights the relevance of GirK channels as a worthful potential target to improve therapies for related diseases.
Collapse
|
14
|
Walega D, Mccormick Z, Avram M. Pre-TKR genicular nerve ablation. Reg Anesth Pain Med 2019; 45:rapm-2019-100939. [PMID: 31527157 DOI: 10.1136/rapm-2019-100939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 11/04/2022]
Affiliation(s)
- David Walega
- Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Zachary Mccormick
- Physical Medicine and Rehabilitation, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Michael Avram
- Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
15
|
Ciotu CI, Tsantoulas C, Meents J, Lampert A, McMahon SB, Ludwig A, Fischer MJM. Noncanonical Ion Channel Behaviour in Pain. Int J Mol Sci 2019; 20:E4572. [PMID: 31540178 PMCID: PMC6770626 DOI: 10.3390/ijms20184572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022] Open
Abstract
Ion channels contribute fundamental properties to cell membranes. Although highly diverse in conductivity, structure, location, and function, many of them can be regulated by common mechanisms, such as voltage or (de-)phosphorylation. Primarily considering ion channels involved in the nociceptive system, this review covers more novel and less known features. Accordingly, we outline noncanonical operation of voltage-gated sodium, potassium, transient receptor potential (TRP), and hyperpolarization-activated cyclic nucleotide (HCN)-gated channels. Noncanonical features discussed include properties as a memory for prior voltage and chemical exposure, alternative ion conduction pathways, cluster formation, and silent subunits. Complementary to this main focus, the intention is also to transfer knowledge between fields, which become inevitably more separate due to their size.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Jannis Meents
- Institute of Physiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Angelika Lampert
- Institute of Physiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Stephen B McMahon
- Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UR, UK
| | - Andreas Ludwig
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Michael J M Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
16
|
Zhang Z, Li H, Zhao Z, Gao B, Meng L, Feng X. miR-146b level and variants is associated with endometriosis related macrophages phenotype and plays a pivotal role in the endometriotic pain symptom. Taiwan J Obstet Gynecol 2019; 58:401-408. [DOI: 10.1016/j.tjog.2018.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2018] [Indexed: 12/13/2022] Open
|
17
|
Abney KK, Bubser M, Du Y, Kozek KA, Bridges TM, Lindsley CW, Daniels JS, Morrison RD, Wickman K, Hopkins CR, Jones CK, Weaver CD. Analgesic Effects of the GIRK Activator, VU0466551, Alone and in Combination with Morphine in Acute and Persistent Pain Models. ACS Chem Neurosci 2019; 10:1294-1299. [PMID: 30474955 DOI: 10.1021/acschemneuro.8b00370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G protein-gated inwardly rectifying potassium (GIRK) channels are potassium-selective ion channels. As their name suggests, GIRK channels are effectors of Gi/o G protein-couple receptors whereby activation of these GPCRs leads to increased GIRK channel activity resulting in decreased cellular excitability. In this way, GIRK channels play diverse roles in physiology as effectors of Gi/o-coupled GPCRs: peacemaking in the heart rate, modulation of hormone secretion in endocrine tissues, as well as numerous CNS functions including learning, memory, and addiction/reward. Notably, GIRK channels are widely expressed along the spinothalamic tract and are positioned to play roles in both ascending and descending pain pathways. More notably, GIRK channel knockout and knock-down studies have found that GIRK channels play a major role in the action of opioid analgesics which act predominantly through Gi/o-coupled, opioid-activated GPCRs (e.g., μ-opioid receptors). Recent advances in GIRK channel pharmacology have led to the development of small molecules that directly and selectively activate GIRK channels. Based on research implicating the involvement of GIRK channels in pain pathways and as effectors of opioid analgesics, we conducted a study to determine whether direct pharmacological activation of GIRK channels could produce analgesic efficacy and/or augment the analgesic efficacy morphine, an opioid receptor agonist capable of activating μ-opioid receptors as well as other opioid receptor subtypes. In the present study, we demonstrate that the small-molecule GIRK activator, VU0466551, has analgesic effects when dosed alone or in combination with submaximally effective doses of morphine.
Collapse
Affiliation(s)
- Kristopher K. Abney
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee 37208, United States
| | - Michael Bubser
- Vanderbilt Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, Tennessee 37232, United States
| | - Yu Du
- Vanderbilt Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Krystian A. Kozek
- Vanderbilt Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Thomas M. Bridges
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Vanderbilt Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, Tennessee 37232, United States
| | | | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Corey R. Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Carrie K. Jones
- Vanderbilt Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, Tennessee 37232, United States
| | - C. David Weaver
- Vanderbilt Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Nashville, Tennessee 37232, United States
| |
Collapse
|
18
|
Sharma S, Kozek KA, Abney KK, Kumar S, Gautam N, Alnouti Y, David Weaver C, Hopkins CR. Discovery, synthesis and characterization of a series of (1-alkyl-3-methyl-1H-pyrazol-5-yl)-2-(5-aryl-2H-tetrazol-2-yl)acetamides as novel GIRK1/2 potassium channel activators. Bioorg Med Chem Lett 2019; 29:791-796. [PMID: 30718161 PMCID: PMC6398930 DOI: 10.1016/j.bmcl.2019.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022]
Abstract
The present study describes the discovery and characterization of a series of 5-aryl-2H-tetrazol-3-ylacetamides as G protein-gated inwardly-rectifying potassium (GIRK) channels activators. Working from an initial hit discovered during a high-throughput screening campaign, we identified a tetrazole scaffold that shifts away from the previously reported urea-based scaffolds while remaining effective GIRK1/2 channel activators. In addition, we evaluated the compounds in Tier 1 DMPK assays and have identified a (3-methyl-1H-pyrazol-1-yl)tetrahydrothiophene-1,1-dioxide head group that imparts interesting and unexpected microsomal stability compared to previously-reported pyrazole head groups.
Collapse
Affiliation(s)
- Swagat Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Krystian A Kozek
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kristopher K Abney
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
| | - Sushil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - C David Weaver
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA.
| |
Collapse
|
19
|
Buvanendran A, Della Valle CJ, Kroin JS, Shah M, Moric M, Tuman KJ, McCarthy RJ. Acute postoperative pain is an independent predictor of chronic postsurgical pain following total knee arthroplasty at 6 months: a prospective cohort study. Reg Anesth Pain Med 2019; 44:rapm-2018-100036. [DOI: 10.1136/rapm-2018-100036] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2018] [Indexed: 12/27/2022]
Abstract
BackgroundApproximately 15% of patients report persistent knee pain despite surgical success following total knee arthroplasty (TKA). The purpose of this study was to determine the association of acute-postsurgical pain (APSP) with chronic postsurgical pain (CPSP) 6 months after TKA controlling for patient, surgical and psychological confounding factors.MethodsAdult patients with osteoarthritis undergoing primary elective tricompartmental TKA, with the operated knee the primary source of preoperative pain, were studied between March 2011 and February 2017. Patients received standard operative management and a perioperative multimodal analgesia regimen. The primary outcome was CPSP at 6 months. The primary variable of interest was the APSP (weighted mean pain score) for 72 hours postoperatively. Patient, surgical and psychological confounders were assessed using binary logistic regression.Results245 cases were analyzed. The incidence of CPSP was 14% (95% CI 10% to 19%). Median APSP values were 4.2 (2.2–5.0) in the CPSP group and 2.8 (1.8–3.7) without CPSP, difference 1.4 (95% CI 0.1 to 1.8, p=0.005). The unadjusted odds for CPSP with an increase of 1 in APSP was 1.46 (95% CI 1.14 to 1.87, p=0.002)). After multivariable risk adjustment, the OR for CPSP for an increase of 1 in the APSP was 1.53 (95% CI 1.12 to 2.09, p=0.008).ConclusionsAPSP is a risk factor for CPSP following TKA even after adjusting for confounding variables such as pain catastrophizing, anxiety, depression and functional status. Studies are needed to determine if APSP is a modifiable risk factor for the development of CPSP.
Collapse
|
20
|
Candidate gene analyses for acute pain and morphine analgesia after pediatric day surgery: African American versus European Caucasian ancestry and dose prediction limits. THE PHARMACOGENOMICS JOURNAL 2019; 19:570-581. [PMID: 30760877 PMCID: PMC6693985 DOI: 10.1038/s41397-019-0074-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/30/2018] [Accepted: 12/21/2018] [Indexed: 12/17/2022]
Abstract
Acute pain and opioid analgesia demonstrate inter-individual variability and polygenic influence. In 241 children of African American and 277 of European Caucasian ancestry, we sought to replicate select candidate gene associations with morphine dose and postoperative pain and then to estimate dose prediction limits. Twenty-seven single-nucleotide polymorphisms (SNPs) from nine genes (ABCB1, ARRB2, COMT, DRD2, KCNJ6, MC1R, OPRD1, OPRM1, and UGT2B7) met selection criteria and were analyzed along with TAOK3. Few associations replicated: morphine dose (mcg/kg) in African American children and ABCB1 rs1045642 (A allele, β = -9.30, 95% CI: -17.25 to -1.35, p = 0.02) and OPRM1 rs1799971 (G allele, β = 23.19, 95% CI: 3.27-43.11, p = 0.02); KCNJ6 rs2211843 and high pain in African American subjects (T allele, OR 2.08, 95% CI: 1.17-3.71, p = 0.01) and in congruent European Caucasian pain phenotypes; and COMT rs740603 for high pain in European Caucasian subjects (A allele, OR: 0.69, 95% CI: 0.48-0.99, p = 0.046). With age, body mass index, and physical status as covariates, simple top SNP candidate gene models could explain theoretical maximums of 24.2% (European Caucasian) and 14.6% (African American) of morphine dose variances.
Collapse
|
21
|
Gendron L, Nagi K, Zeghal M, Giguère PM, Pineyro G. Molecular aspects of delta opioid receptors. OPIOID HORMONES 2019; 111:49-90. [DOI: 10.1016/bs.vh.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Patanwala AE, Norwood C, Steiner H, Morrison D, Li M, Walsh K, Martinez M, Baker SE, Snyder EM, Karnes JH. Psychological and Genetic Predictors of Pain Tolerance. Clin Transl Sci 2018; 12:189-195. [PMID: 30468309 PMCID: PMC6440569 DOI: 10.1111/cts.12605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022] Open
Abstract
Previous studies have shown associations between genetic polymorphisms and pain tolerance, but psychological evaluations are seldom measured. The objective of this study was to determine the independent effects of demographic, psychological, and genetic predictors of cold noxious pain tolerance. Healthy subjects (n = 89) completed the Pain Catastrophizing Scale (PCS) and Fear of Pain Questionnaire (FPQ‐III), underwent genotyping for candidate single nucleotide polymorphisms (SNPs), and completed a cold‐pressor test in a 1–2°C water bath for a maximum of 3 minutes. The primary outcome measure was pain tolerance, defined as the maximum duration of time subjects left their nondominant hand in the cold‐water bath. Cox proportional hazards regression indicated that female sex, Asian race, and increasing PCS and FPQ‐III scores were associated with lower pain tolerance. No candidate SNP was significantly associated with pain tolerance. Future genetic studies should include demographic and psychological variables as confounders in experimental pain models.
Collapse
Affiliation(s)
- Asad E Patanwala
- Sydney School of Pharmacy, University of Sydney, Sydney, Australia
| | - Charles Norwood
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, Arizona, USA
| | - Heidi Steiner
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, Arizona, USA
| | - Daniel Morrison
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, Arizona, USA
| | - May Li
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, Arizona, USA
| | - Keith Walsh
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, Arizona, USA
| | - Marina Martinez
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, Arizona, USA.,Department of Neurology, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Sarah E Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric M Snyder
- Department of Kinesiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jason H Karnes
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, Arizona, USA
| |
Collapse
|
23
|
Predictive Factors for Developing Chronic Pain After Total Knee Arthroplasty. J Arthroplasty 2018; 33:3372-3378. [PMID: 30143334 DOI: 10.1016/j.arth.2018.07.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 07/28/2018] [Indexed: 02/01/2023] Open
Abstract
Total knee arthroplasty offers substantial improvements for patients as measured by functional status and quality of life; however, 8% to 34% of patients experience chronic postsurgical pain following surgery (CPSP). In addition to disruption in daily activities of life caused by the pain itself, CPSP has been associated with an overall reduction in quality of life following surgery. Risk factors for CPSP can be broadly defined as potentially modifiable or unlikely modifiable. Unlikely modifiable risks include gender, age, medical comorbidities, and socioeconomic status. Potentially modifiable risks include perioperative pain, physical function, psychological state, surgical factors, and possibly genomics. Understanding risks and the magnitude of their effect on outcomes such as CPSP is desirable because interventions designed to affect these factors may be able to dramatically improve outcomes.
Collapse
|
24
|
Kringel D, Lippmann C, Parnham MJ, Kalso E, Ultsch A, Lötsch J. A machine-learned analysis of human gene polymorphisms modulating persisting pain points to major roles of neuroimmune processes. Eur J Pain 2018; 22:1735-1756. [PMID: 29923268 PMCID: PMC6220816 DOI: 10.1002/ejp.1270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2018] [Indexed: 12/21/2022]
Abstract
Background Human genetic research has implicated functional variants of more than one hundred genes in the modulation of persisting pain. Artificial intelligence and machine‐learning techniques may combine this knowledge with results of genetic research gathered in any context, which permits the identification of the key biological processes involved in chronic sensitization to pain. Methods Based on published evidence, a set of 110 genes carrying variants reported to be associated with modulation of the clinical phenotype of persisting pain in eight different clinical settings was submitted to unsupervised machine‐learning aimed at functional clustering. Subsequently, a mathematically supported subset of genes, comprising those most consistently involved in persisting pain, was analysed by means of computational functional genomics in the Gene Ontology knowledgebase. Results Clustering of genes with evidence for a modulation of persisting pain elucidated a functionally heterogeneous set. The situation cleared when the focus was narrowed to a genetic modulation consistently observed throughout several clinical settings. On this basis, two groups of biological processes, the immune system and nitric oxide signalling, emerged as major players in sensitization to persisting pain, which is biologically highly plausible and in agreement with other lines of pain research. Conclusions The present computational functional genomics‐based approach provided a computational systems‐biology perspective on chronic sensitization to pain. Human genetic control of persisting pain points to the immune system as a source of potential future targets for drugs directed against persisting pain. Contemporary machine‐learned methods provide innovative approaches to knowledge discovery from previous evidence. Significance We show that knowledge discovery in genetic databases and contemporary machine‐learned techniques can identify relevant biological processes involved in Persitent pain.
Collapse
Affiliation(s)
- D Kringel
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| | - C Lippmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Frankfurt
| | - M J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Frankfurt
| | - E Kalso
- Institute of Clinical Medicine, University of Helsinki, Pain Clinic, Helsinki University Central Hospital, Helsinki, Finland.,Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | - A Ultsch
- DataBionics Research Group, University of Marburg, Germany
| | - J Lötsch
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Frankfurt
| |
Collapse
|
25
|
Kummer KK, Kalpachidou T, Mitrić M, Langeslag M, Kress M. Altered Gene Expression in Prefrontal Cortex of a Fabry Disease Mouse Model. Front Mol Neurosci 2018; 11:201. [PMID: 30013462 PMCID: PMC6036252 DOI: 10.3389/fnmol.2018.00201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/18/2018] [Indexed: 11/13/2022] Open
Abstract
Fabry disease is an X-chromosome linked hereditary disease that is caused by loss of function mutations in the α-galactosidase A (α-Gal A) gene, resulting in defective glycolipid degradation and subsequent accumulation of globotriaosylceramide (Gb3) in different tissues, including vascular endothelial cells and neurons in the peripheral and central nervous system. We recently reported a differential gene expression profile of α-Gal A(−/0) mouse dorsal root ganglia, an established animal model of Fabry disease, thereby providing new gene targets that might underlie the neuropathic pain related symptoms. To investigate the cognitive symptoms experienced by Fabry patients, we performed one-color based hybridization microarray expression profiling of prefrontal cortex samples from adult α-Gal A(−/0) mice and age-matched wildtype controls, followed by protein-protein interaction and pathway analyses for the differentially regulated mRNAs. We found that from a total of 381 differentially expressed genes, 135 genes were significantly upregulated, whereas 246 genes were significantly downregulated between α-Gal A(−/0) mice and wildtype controls. Enrichment analysis for downregulated genes revealed mainly immune related pathways, including immune/defense responses, regulation of cytokine production, as well as signaling and transport regulation pathways. Further analysis of the regulated genes revealed a large number of genes involved in neurodegeneration. The current analysis for the first time presents a differential gene expression profile of central nervous system tissue from α-Gal A(−/0) mice, thereby providing novel knowledge on the deregulation and a possible contribution of gene expression to Fabry disease related brain pathologies.
Collapse
Affiliation(s)
- Kai K Kummer
- Division of Physiology, Department of Physiology and Medical Physics Medical, University of Innsbruck, Innsbruck, Austria
| | - Theodora Kalpachidou
- Division of Physiology, Department of Physiology and Medical Physics Medical, University of Innsbruck, Innsbruck, Austria
| | - Miodrag Mitrić
- Division of Physiology, Department of Physiology and Medical Physics Medical, University of Innsbruck, Innsbruck, Austria
| | - Michiel Langeslag
- Division of Physiology, Department of Physiology and Medical Physics Medical, University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Division of Physiology, Department of Physiology and Medical Physics Medical, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
26
|
Matic M, de Wildt SN, Tibboel D, van Schaik RHN. Analgesia and Opioids: A Pharmacogenetics Shortlist for Implementation in Clinical Practice. Clin Chem 2017. [DOI: 10.1373/clinchem.2016.264986] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
BACKGROUND
The use of opioids to alleviate pain is complicated by the risk of severe adverse events and the large variability in dose requirements. Pharmacogenetics (PGx) could possibly be used to tailor pain medication based on an individual's genetic background. Many potential genetic markers have been described, and the importance of genetic predisposition in opioid efficacy and toxicity has been demonstrated in knockout mouse models and human twin studies. Such predictors are especially of value for neonates and young children, in whom the assessment of efficacy or side effects is complicated by the inability of the patient to communicate this properly. The current problem is determining which of the many potential candidates to focus on for clinical implementation.
CONTENT
We systematically searched publications on PGx for opioids in 5 databases, aiming to identify PGx markers with sufficient robust data and high enough occurrence for potential clinical application. The initial search yielded 4257 unique citations, eventually resulting in 852 relevant articles covering 24 genes. From these genes, we evaluated the evidence and selected the most promising 10 markers: cytochrome P450 family 2 subfamily D member 6 (CYP2D6), cytochrome P450 family 3 subfamily A member 4 (CYP3A4), cytochrome P450 family 3 subfamily A member 5 (CYP3A5), UDP glucuronosyltransferase family 2 member B7 (UGT2B7), ATP binding cassette subfamily B member 1 (ABCB1), ATP binding cassette subfamily C member 3 (ABCC3), solute carrier family 22 member 1 (SLC22A1), opioid receptor kappa 1 (OPRM1), catechol-O-methyltransferase (COMT), and potassium voltage-gated channel subfamily J member 6 (KCNJ6). Treatment guidelines based on genotype are already available only for CYP2D6.
SUMMARY
The application of PGx in the management of pain with opioids has the potential to improve therapy. We provide a shortlist of 10 genes that are the most promising markers for clinical use in this context.
Collapse
Affiliation(s)
- Maja Matic
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, the Netherlands
- Intensive Care and Department of Pediatric Surgery, Erasmus University Medical Center–Sophia Children Hospital, Rotterdam, the Netherlands
| | - Saskia N de Wildt
- Intensive Care and Department of Pediatric Surgery, Erasmus University Medical Center–Sophia Children Hospital, Rotterdam, the Netherlands
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus University Medical Center–Sophia Children Hospital, Rotterdam, the Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
27
|
Gendron L, Cahill CM, von Zastrow M, Schiller PW, Pineyro G. Molecular Pharmacology of δ-Opioid Receptors. Pharmacol Rev 2016; 68:631-700. [PMID: 27343248 PMCID: PMC4931872 DOI: 10.1124/pr.114.008979] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Opioids are among the most effective analgesics available and are the first choice in the treatment of acute severe pain. However, partial efficacy, a tendency to produce tolerance, and a host of ill-tolerated side effects make clinically available opioids less effective in the management of chronic pain syndromes. Given that most therapeutic opioids produce their actions via µ-opioid receptors (MOPrs), other targets are constantly being explored, among which δ-opioid receptors (DOPrs) are being increasingly considered as promising alternatives. This review addresses DOPrs from the perspective of cellular and molecular determinants of their pharmacological diversity. Thus, DOPr ligands are examined in terms of structural and functional variety, DOPrs' capacity to engage a multiplicity of canonical and noncanonical G protein-dependent responses is surveyed, and evidence supporting ligand-specific signaling and regulation is analyzed. Pharmacological DOPr subtypes are examined in light of the ability of DOPr to organize into multimeric arrays and to adopt multiple active conformations as well as differences in ligand kinetics. Current knowledge on DOPr targeting to the membrane is examined as a means of understanding how these receptors are especially active in chronic pain management. Insight into cellular and molecular mechanisms of pharmacological diversity should guide the rational design of more effective, longer-lasting, and better-tolerated opioid analgesics for chronic pain management.
Collapse
Affiliation(s)
- Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Catherine M Cahill
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Mark von Zastrow
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Peter W Schiller
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Graciela Pineyro
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| |
Collapse
|
28
|
Christoffersen DJ, Damkier P, Feddersen S, Möller S, Thomsen JL, Brasch-Andersen C, Brøsen K. TheABCB1, rs9282564,AGandTTGenotypes and theCOMT,rs4680,AAGenotype are Less Frequent in Deceased Patients with Opioid Addiction than in Living Patients with Opioid Addiction. Basic Clin Pharmacol Toxicol 2016; 119:381-8. [DOI: 10.1111/bcpt.12602] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/05/2016] [Indexed: 01/16/2023]
Affiliation(s)
| | - Per Damkier
- Department of Public Health; Clinical Pharmacology; University of Southern Denmark; Odense Denmark
- Department of Clinical Chemistry & Pharmacology; Odense University Hospital; Odense C Denmark
| | - Søren Feddersen
- Department of Clinical Chemistry & Pharmacology; Odense University Hospital; Odense C Denmark
| | - Sören Möller
- OPEN - Odense Patient data Explorative Network; Odense University Hospital and Department of Clinical Research; University of Southern Denmark; Odense C Denmark
| | - Jørgen L. Thomsen
- Institute of Forensic Medicine; University of Southern Denmark; Odense C Denmark
| | | | - Kim Brøsen
- Department of Public Health; Clinical Pharmacology; University of Southern Denmark; Odense Denmark
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Poor management of chronic pain remains a significant cause of misery with huge socioeconomic costs. Accumulating research in potassium (K+) channel physiology has uncovered several promising leads for the development of novel analgesics. RECENT FINDINGS We now recognize that certain K+ channel subunits are directly gated to pain-relevant stimuli (Kv1.1, K2P) whereas others are specifically modulated by inflammatory processes (Kv7, BKCA, K2P). Genetic analyses illustrate that K+ channel gene variation can predict pain sensitivity (KCNS1, GIRKs), risk for persistent pain (KCNS1, GIRKs, TRESK) and analgesic effectiveness (GIRK2). Importantly, preclinical studies confirm that K+ channel dysfunction can be a pain trigger in traumatic neuropathies (Kv9.1/Kv2.1, Kv7, Kv1.2) and migraine (TRESK). Finally, emerging data suggest that even pain in diabetes, bone cancer and autoimmune neuropathies may have K+ channel dysfunction constituents. SUMMARY There is a long-sought need for superior pharmacotherapy of pain syndromes. Although universal enhancement of K+ channel function in the periphery can decrease nociceptive excitability irrespective of the underlying cause, a more refined targeting of subunits with dominant nociceptive roles could yield highly efficacious treatments with fewer side-effects. The ongoing characterization of molecular interactions linking K+ channel dysfunction to pain is instrumental for identifying candidates with the most therapeutic potential.
Collapse
|
30
|
Variations in potassium channel genes are associated with distinct trajectories of persistent breast pain after breast cancer surgery. Pain 2015; 156:371-380. [PMID: 25599232 DOI: 10.1097/01.j.pain.0000460319.87643.11] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Persistent pain after breast cancer surgery is a common clinical problem. Given the role of potassium channels in modulating neuronal excitability, coupled with recently published genetic associations with preoperative breast pain, we hypothesized that variations in potassium channel genes will be associated with persistent postsurgical breast pain. In this study, associations between 10 potassium channel genes and persistent breast pain were evaluated. Using growth mixture modeling (GMM), 4 distinct latent classes of patients, who were assessed before and monthly for 6 months after breast cancer surgery, were identified previously (ie, No Pain, Mild Pain, Moderate Pain, Severe Pain). Genotyping was done using a custom array. Using logistic regression analyses, significant differences in a number of genotype or haplotype frequencies were found between: Mild Pain vs No Pain and Severe Pain vs No Pain classes. Seven single-nucleotide polymorphisms (SNPs) across 5 genes (ie, potassium voltage-gated channel, subfamily A, member 1 [KCNA1], potassium voltage-gated channel, subfamily D, member 2 [KCND2], potassium inwardly rectifying channel, subfamily J, members 3 and 6 (KCNJ3 and KCNJ6), potassium channel, subfamily K, member 9 [KCNK9]) were associated with membership in the Mild Pain class. In addition, 3 SNPs and 1 haplotype across 4 genes (ie, KCND2, KCNJ3, KCNJ6, KCNK9) were associated with membership in the Severe Pain class. These findings suggest that variations in potassium channel genes are associated with both mild and severe persistent breast pain after breast cancer surgery. Although findings from this study warrant replication, they provide intriguing preliminary information on potential therapeutic targets.
Collapse
|
31
|
Samartzis D, Borthakur A, Belfer I, Bow C, Lotz JC, Wang HQ, Cheung KMC, Carragee E, Karppinen J. Novel diagnostic and prognostic methods for disc degeneration and low back pain. Spine J 2015; 15:1919-32. [PMID: 26303178 PMCID: PMC5473425 DOI: 10.1016/j.spinee.2014.09.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Dino Samartzis
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Professorial Block, 5th Floor, 102 Pokfulam Road, Pokfulam, Hong Kong, SAR, China; The Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong, SAR, China.
| | - Ari Borthakur
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, 3535 Market Street, Mezzanine, Philadelphia, PA, 19104, USA
| | - Inna Belfer
- Department of Anesthesiology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, USA
| | - Cora Bow
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Professorial Block, 5th Floor, 102 Pokfulam Road, Pokfulam, Hong Kong, SAR, China
| | - Jeffrey C Lotz
- Department of Orthopaedic Surgery, University of California at San Francisco, 500 Parnassus Ave, San Francisco, CA 94143, USA
| | - Hai-Qiang Wang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, No. 169, Changle West Road, Xi'an, Shaanxi, 710032, P.R. China
| | - Kenneth M C Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Professorial Block, 5th Floor, 102 Pokfulam Road, Pokfulam, Hong Kong, SAR, China
| | - Eugene Carragee
- Department of Orthopaedic Surgery, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
| | - Jaro Karppinen
- Medical Research Center Oulu, University of Oulu, Oulu University Hospital, Kajaanintie 50, 90220 Oulu, Finland
| |
Collapse
|
32
|
Mayfield J, Blednov YA, Harris RA. Behavioral and Genetic Evidence for GIRK Channels in the CNS: Role in Physiology, Pathophysiology, and Drug Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:279-313. [PMID: 26422988 DOI: 10.1016/bs.irn.2015.05.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
G protein-coupled inwardly rectifying potassium (GIRK) channels are widely expressed throughout the brain and mediate the inhibitory effects of many neurotransmitters. As a result, these channels are important for normal CNS function and have also been implicated in Down syndrome, Parkinson's disease, psychiatric disorders, epilepsy, and drug addiction. Knockout mouse models have provided extensive insight into the significance of GIRK channels under these conditions. This review examines the behavioral and genetic evidence from animal models and genetic association studies in humans linking GIRK channels with CNS disorders. We further explore the possibility that subunit-selective modulators and other advanced research tools will be instrumental in establishing the role of individual GIRK subunits in drug addiction and other relevant CNS diseases and in potentially advancing treatment options for these disorders.
Collapse
Affiliation(s)
- Jody Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, USA.
| | - Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
33
|
|
34
|
Chiang MC, Tseng MT, Pan CL, Chao CC, Hsieh ST. Progress in the treatment of small fiber peripheral neuropathy. Expert Rev Neurother 2015; 15:305-13. [PMID: 25664678 DOI: 10.1586/14737175.2015.1013097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Small fiber neuropathy is a syndrome of diverse disease etiology because of multiple pathophysiologic mechanisms with major presentations of neuropathic pain and autonomic symptoms. Over the past decade, there has been substantial progress in the treatments for neuropathic pain, dysautonomia and disease-modifying strategy. In particular, anticonvulsants and antidepressants alleviate neuropathic pain based on randomized clinical trials.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
35
|
Nishizawa D, Fukuda KI, Kasai S, Ogai Y, Hasegawa J, Sato N, Yamada H, Tanioka F, Sugimura H, Hayashida M, Ikeda K. Association between KCNJ6 (GIRK2) gene polymorphism rs2835859 and post-operative analgesia, pain sensitivity, and nicotine dependence. J Pharmacol Sci 2014; 126:253-263. [PMID: 25346042 DOI: 10.1254/jphs.14189fp] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
G-protein-activated inwardly rectifying potassium (GIRK) channels are expressed in many tissues and activated by several Gi/o protein-coupled receptors, such as opioid and dopamine receptors, and thus are known to be involved in the modulation of opioid-induced analgesia, pain, and reward. We focused on a GIRK-channel subunit that plays a pivotal role in the brain, GIRK2, and investigated the contribution of genetic variations of the GIRK2 (KCNJ6) gene to individual differences in the sensitivity to opioid analgesia. In our initial linkage disequilibrium analysis, a total of 27 single-nucleotide polymorphisms (SNPs) were selected within and around the regions of the KCNJ6 gene. Among them, the rs2835859 SNP, for which associations with analgesia and pain have not been previously reported, was selected in the exploratory study as a potent candidate SNP associated with opioid analgesic sensitivity. The results were corroborated in further confirmatory study. Interestingly, this SNP was also found to be associated with sensitivity to both cold and mechanical pain, susceptibility to nicotine dependence, and successful smoking cessation. The results indicate that this SNP could serve as a marker that predicts sensitivity to analgesic and pain and susceptibility to nicotine dependence.
Collapse
Affiliation(s)
- Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nagi K, Pineyro G. Kir3 channel signaling complexes: focus on opioid receptor signaling. Front Cell Neurosci 2014; 8:186. [PMID: 25071446 PMCID: PMC4085882 DOI: 10.3389/fncel.2014.00186] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 06/18/2014] [Indexed: 12/03/2022] Open
Abstract
Opioids are among the most effective drugs to treat severe pain. They produce their analgesic actions by specifically activating opioid receptors located along the pain perception pathway where they inhibit the flow of nociceptive information. This inhibition is partly accomplished by activation of hyperpolarizing G protein-coupled inwardly-rectifying potassium (GIRK or Kir3) channels. Kir3 channels control cellular excitability in the central nervous system and in the heart and, because of their ubiquitous distribution, they mediate the effects of a large range of hormones and neurotransmitters which, upon activation of corresponding G protein-coupled receptors (GPCRs) lead to channel opening. Here we analyze GPCR signaling via these effectors in reference to precoupling and collision models. Existing knowledge on signaling bias is discussed in relation to these models as a means of developing strategies to produce novel opioid analgesics with an improved side effects profile.
Collapse
Affiliation(s)
- Karim Nagi
- Département de Pharmacologie, Faculté de Médecine, Université de Montréal Montreal, QC, Canada ; Centre de Recherche du CHU Sainte-Justine Montréal, QC, Canada
| | - Graciela Pineyro
- Département de Pharmacologie, Faculté de Médecine, Université de Montréal Montreal, QC, Canada ; Centre de Recherche du CHU Sainte-Justine Montréal, QC, Canada ; Département de Psychiatrie, Faculté de Médecine, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
37
|
Secondary use of clinical data: the Vanderbilt approach. J Biomed Inform 2014; 52:28-35. [PMID: 24534443 DOI: 10.1016/j.jbi.2014.02.003] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 12/21/2013] [Accepted: 02/04/2014] [Indexed: 01/04/2023]
Abstract
The last decade has seen an exponential growth in the quantity of clinical data collected nationwide, triggering an increase in opportunities to reuse the data for biomedical research. The Vanderbilt research data warehouse framework consists of identified and de-identified clinical data repositories, fee-for-service custom services, and tools built atop the data layer to assist researchers across the enterprise. Providing resources dedicated to research initiatives benefits not only the research community, but also clinicians, patients and institutional leadership. This work provides a summary of our approach in the secondary use of clinical data for research domain, including a description of key components and a list of lessons learned, designed to assist others assembling similar services and infrastructure.
Collapse
|
38
|
Opening paths to novel analgesics: the role of potassium channels in chronic pain. Trends Neurosci 2014; 37:146-58. [PMID: 24461875 PMCID: PMC3945816 DOI: 10.1016/j.tins.2013.12.002] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 01/02/2023]
Abstract
Potassium (K+) channels are crucial determinants of neuronal excitability. Nerve injury or inflammation alters K+ channel activity in neurons of the pain pathway. These changes can render neurons hyperexcitable and cause chronic pain. Therapies targeting K+ channels may provide improved pain relief in these states.
Chronic pain is associated with abnormal excitability of the somatosensory system and remains poorly treated in the clinic. Potassium (K+) channels are crucial determinants of neuronal activity throughout the nervous system. Opening of these channels facilitates a hyperpolarizing K+ efflux across the plasma membrane that counteracts inward ion conductance and therefore limits neuronal excitability. Accumulating research has highlighted a prominent involvement of K+ channels in nociceptive processing, particularly in determining peripheral hyperexcitability. We review salient findings from expression, pharmacological, and genetic studies that have untangled a hitherto undervalued contribution of K+ channels in maladaptive pain signaling. These emerging data provide a framework to explain enigmatic pain syndromes and to design novel pharmacological treatments for these debilitating states.
Collapse
|