1
|
Collier SL, Farrell SN, Goodman CD, McFadden GI. Modes and mechanisms for the inheritance of mitochondria and plastids in pathogenic protists. PLoS Pathog 2025; 21:e1012835. [PMID: 39847585 PMCID: PMC11756805 DOI: 10.1371/journal.ppat.1012835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025] Open
Abstract
Pathogenic protists are responsible for many diseases that significantly impact human and animal health across the globe. Almost all protists possess mitochondria or mitochondrion-related organelles, and many contain plastids. These endosymbiotic organelles are crucial to survival and provide well-validated and widely utilised drug targets in parasitic protists such as Plasmodium and Toxoplasma. However, mutations within the organellar genomes of mitochondria and plastids can lead to drug resistance. Such mutations ultimately challenge our ability to control and eradicate the diseases caused by these pathogenic protists. Therefore, it is important to understand how organellar genomes, and the resistance mutations encoded within them, are inherited during protist sexual reproduction and how this may impact the spread of drug resistance and future therapeutic approaches to target these organelles. In this review, we detail what is known about mitochondrial and plastid inheritance during sexual reproduction across different pathogenic protists, often turning to their better studied, nonpathogenic relatives for insight.
Collapse
Affiliation(s)
- Sophie L. Collier
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah N. Farrell
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Geoffrey I. McFadden
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Springer AL, Agrawal S, Chang EP. Malate dehydrogenase in parasitic protozoans: roles in metabolism and potential therapeutic applications. Essays Biochem 2024; 68:235-251. [PMID: 38938216 PMCID: PMC11461325 DOI: 10.1042/ebc20230075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
The role of malate dehydrogenase (MDH) in the metabolism of various medically significant protozoan parasites is reviewed. MDH is an NADH-dependent oxidoreductase that catalyzes interconversion between oxaloacetate and malate, provides metabolic intermediates for both catabolic and anabolic pathways, and can contribute to NAD+/NADH balance in multiple cellular compartments. MDH is present in nearly all organisms; isoforms of MDH from apicomplexans (Plasmodium falciparum, Toxoplasma gondii, Cryptosporidium spp.), trypanosomatids (Trypanosoma brucei, T. cruzi) and anaerobic protozoans (Trichomonas vaginalis, Giardia duodenalis) are presented here. Many parasitic species have complex life cycles and depend on the environment of their hosts for carbon sources and other nutrients. Metabolic plasticity is crucial to parasite transition between host environments; thus, the regulation of metabolic processes is an important area to explore for therapeutic intervention. Common themes in protozoan parasite metabolism include emphasis on glycolytic catabolism, substrate-level phosphorylation, non-traditional uses of common pathways like tricarboxylic acid cycle and adapted or reduced mitochondria-like organelles. We describe the roles of MDH isoforms in these pathways, discuss unusual structural or functional features of these isoforms relevant to activity or drug targeting, and review current studies exploring the therapeutic potential of MDH and related genes. These studies show that MDH activity has important roles in many metabolic pathways, and thus in the metabolic transitions of protozoan parasites needed for success as pathogens.
Collapse
Affiliation(s)
- Amy L Springer
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, U.S.A
| | - Swati Agrawal
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, VA, U.S.A
| | - Eric P Chang
- Department of Chemistry and Physical Sciences, Pace University, New York, NY, U.S.A
| |
Collapse
|
3
|
Deng S, Sibley LD. Function of the alternative electron transport chain in the Cryptosporidium parvum mitosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.01.616074. [PMID: 39605695 PMCID: PMC11601642 DOI: 10.1101/2024.10.01.616074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cryptosporidium parvum and C. hominis possess a remanent mitochondrion called the mitosome, which lacks DNA, the tricarboxylic acid cycle, a conventional electron transport chain, and ATP synthesis. The mitosome retains ubiquinone and iron sulfur cluster biosynthesis pathways, both of which require protein import that relies on the membrane potential. It was previously proposed that the membrane potential is generated by electrons transferred through an alternative respiratory pathway coupled to a transhydrogenase (TH) that pumps hydrogens out of the mitosome. This pathway relies on an alternative oxidase (AOX) and type II NADH dehydrogenase (NDH2), which also exists in plants, some fungi, and several protozoan parasites. To examine this model, we determined the location and function of AOX and NDH2 in C. parvum. Surprisingly, we observed that NDH2 was localized to parasite surface membranes instead of the mitosome. Furthermore, a Δndh2 knockout (KO) strain was readily obtained, indicating that this protein is not essential for parasite growth. Although, AOX exhibited a mitosome-like staining pattern, we readily obtained an Δaox knockout strain, indicating that AOX is also dispensable for parasite growth. The growth of the Δaox strain was inhibited by the AOX inhibitors SHAM and 8-HQ to the same extent as wild type, indicating that AOX is not the target of these inhibitors in C. parvum. Collectively, our studies indicate that NDH2 and AOX are non-essential genes in C. parvum, necessitating an alternative mechanism for maintaining the mitosome membrane potential. Importance Cryptosporidiosis is the leading cause of diarrhea in young children and immunocompromised individuals, particularly AIDS/HIV patients. The only FDA approved drug against cryptosporidiosis, nitazoxanide, has limited effectivity in immunocompromised patients and is not approved for usage in children under 1 year old. Genomic analysis and previous studies proposed an alternative respiration pathway involving alternative oxidase (AOX) and type II NAD(P)H dehydrogenase (NDH2), which are thought to generate the mitosome membrane potential in C. parvum. Additionally, AOX and NDH2 were nominated as potential drug targets, based on their absence in mammalian hosts and sensitivity of parasite growth to known inhibitors of AOX. However, our study demonstrated that NDH2 is not localized in mitosome, AOX non-essential for parasite growth, and knockout lines lacking this enzyme are equally sensitive to AOX inhibitors. These findings indicate that AOX and NDH2 are not ideal candidates for future drug development against cryptosporidiosis and force a re-evaluation for models of how the mitosome generate its membrane potential.
Collapse
Affiliation(s)
- Silu Deng
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Ito T, Tojo Y, Fujii M, Nishino K, Kosako H, Shinohara Y. Insights into the Mechanism of Catalytic Activity of Plasmodium Parasite Malate-Quinone Oxidoreductase. ACS OMEGA 2024; 9:21647-21657. [PMID: 38764661 PMCID: PMC11097338 DOI: 10.1021/acsomega.4c02614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024]
Abstract
Plasmodium malate-quinone oxidoreductase (MQO) is a membrane flavoprotein catalyzing the oxidation of malate to oxaloacetate and the reduction of quinone to quinol. Recently, using a yeast expression system, we demonstrated that MQO, expressed in place of mitochondrial malate dehydrogenase (MDH), contributes to the TCA cycle and the electron transport chain in mitochondria, making MQO attractive as a promising drug target in Plasmodium malaria parasites, which lack mitochondrial MDH. However, there is little information on the structure of MQO and its catalytic mechanism, information that will be required to develop novel drugs. Here, we investigated the catalytic site of P. falciparum MQO (PfMQO) using our yeast expression system. We generated a model structure for PfMQO with the AI tool AlphaFold and used protein footprinting by acetylation with acetic anhydride to analyze the surface topology of the model, confirming the computational prediction to be reasonably accurate. Moreover, a putative catalytic site, which includes a possible flavin-binding site, was identified by this combination of protein footprinting and structural prediction model. This active site was analyzed by site-directed mutagenesis. By measuring enzyme activity and protein expression levels in the PfMQO mutants, we showed that several residues at the active site are essential for enzyme function. In addition, a single substitution mutation near the catalytic site resulted in enhanced sensitivity to ferulenol, an inhibitor of PfMQO that competes with malate for binding to the enzyme. This strongly supports the notion that the substrate binds to the proposed catalytic site. Then, the location of the catalytic site was demonstrated by structural comparison with a homologous enzyme. Finally, we used our results to propose a mechanism for the catalytic activity of MQO by reference to the mechanism of action of structurally or functionally homologous enzymes.
Collapse
Affiliation(s)
- Takeshi Ito
- Institute
of Advanced Medical Sciences, Tokushima
University, 3-18 Kuramoto, Tokushima 770-8503, Japan
- Graduate
School of Pharmaceutical Sciences, Tokushima
University, 3-18 Kuramoto, Tokushima 770-8503, Japan
| | - Yuma Tojo
- Institute
of Advanced Medical Sciences, Tokushima
University, 3-18 Kuramoto, Tokushima 770-8503, Japan
- Faculty
of Pharmaceutical Sciences, Tokushima University, 3-18 Kuramoto, Tokushima 770-8503, Japan
| | - Minori Fujii
- Institute
of Advanced Medical Sciences, Tokushima
University, 3-18 Kuramoto, Tokushima 770-8503, Japan
- Faculty
of Pharmaceutical Sciences, Tokushima University, 3-18 Kuramoto, Tokushima 770-8503, Japan
| | - Kohei Nishino
- Institute
of Advanced Medical Sciences, Tokushima
University, 3-18 Kuramoto, Tokushima 770-8503, Japan
| | - Hidetaka Kosako
- Institute
of Advanced Medical Sciences, Tokushima
University, 3-18 Kuramoto, Tokushima 770-8503, Japan
| | - Yasuo Shinohara
- Institute
of Advanced Medical Sciences, Tokushima
University, 3-18 Kuramoto, Tokushima 770-8503, Japan
- Graduate
School of Pharmaceutical Sciences, Tokushima
University, 3-18 Kuramoto, Tokushima 770-8503, Japan
| |
Collapse
|
5
|
Zhao H, Dong H, Zhao Q, Zhu S, Jia L, Zhang S, Feng Q, Yu Y, Wang J, Huang B, Han H. Integrated application of transcriptomics and metabolomics provides insight into the mechanism of Eimeria tenella resistance to maduramycin. Int J Parasitol Drugs Drug Resist 2024; 24:100526. [PMID: 38382267 PMCID: PMC10885789 DOI: 10.1016/j.ijpddr.2024.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/11/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Avian coccidiosis, caused by Eimeria parasites, continues to devastate the poultry industry and results in significant economic losses. Ionophore coccidiostats, such as maduramycin and monensin, are widely used for prophylaxis of coccidiosis in poultry. Nevertheless, their efficacy has been challenged by widespread drug resistance. However, the underlying mechanisms have not been revealed. Understanding the targets and resistance mechanisms to anticoccidials is critical to combat this major parasitic disease. In the present study, maduramycin-resistant (MRR) and drug-sensitive (DS) sporozoites of Eimeria tenella were purified for transcriptomic and metabolomic analysis. The transcriptome analysis revealed 5016 differentially expressed genes (DEGs) in MRR compared to DS, and KEGG pathway enrichment analysis indicated that DEGs were involved in spliceosome, carbon metabolism, glycolysis, and biosynthesis of amino acids. In the untargeted metabolomics assay, 297 differentially expressed metabolites (DEMs) were identified in MRR compared to DS, and KEGG pathway enrichment analysis indicated that these DEMs were involved in 10 pathways, including fructose and mannose metabolism, cysteine and methionine metabolism, arginine and proline metabolism, and glutathione metabolism. Targeted metabolomic analysis revealed 14 DEMs in MRR compared to DS, and KEGG pathway analysis indicated that these DEMs were involved in 20 pathways, including fructose and mannose metabolism, glycolysis/gluconeogenesis, and carbon metabolism. Compared to DS, energy homeostasis and amino acid metabolism were differentially regulated in MRR. Our results provide gene and metabolite expression landscapes of E. tenella following maduramycin induction. This study is the first work involving integrated transcriptomic and metabolomic analyses to identify the key pathways to understand the molecular and metabolic mechanisms underlying drug resistance to polyether ionophores in coccidia.
Collapse
Affiliation(s)
- Huanzhi Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Liushu Jia
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Sishi Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Qian Feng
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Yu Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Jinwen Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Bing Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| |
Collapse
|
6
|
Xu R, Beatty WL, Greigert V, Witola WH, Sibley LD. Multiple pathways for glucose phosphate transport and utilization support growth of Cryptosporidium parvum. Nat Commun 2024; 15:380. [PMID: 38191884 PMCID: PMC10774378 DOI: 10.1038/s41467-024-44696-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
Cryptosporidium parvum is an obligate intracellular parasite with a highly reduced mitochondrion that lacks the tricarboxylic acid cycle and the ability to generate ATP, making the parasite reliant on glycolysis. Genetic ablation experiments demonstrated that neither of the two putative glucose transporters CpGT1 and CpGT2 were essential for growth. Surprisingly, hexokinase was also dispensable for parasite growth while the downstream enzyme aldolase was required, suggesting the parasite has an alternative way of obtaining phosphorylated hexose. Complementation studies in E. coli support a role for direct transport of glucose-6-phosphate from the host cell by the parasite transporters CpGT1 and CpGT2, thus bypassing a requirement for hexokinase. Additionally, the parasite obtains phosphorylated glucose from amylopectin stores that are released by the action of the essential enzyme glycogen phosphorylase. Collectively, these findings reveal that C. parvum relies on multiple pathways to obtain phosphorylated glucose both for glycolysis and to restore carbohydrate reserves.
Collapse
Affiliation(s)
- Rui Xu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63130, USA
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Wandy L Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - Valentin Greigert
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - William H Witola
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63130, USA.
| |
Collapse
|
7
|
Kumar R, Sharma P, Chauhan A, Singh N, Prajapati VM, Singh SK. Malate:quinone oxidoreductase knockout makes Mycobacterium tuberculosis susceptible to stress and affects its in vivo survival. Microbes Infect 2024; 26:105215. [PMID: 37689346 DOI: 10.1016/j.micinf.2023.105215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Mycobacterium tuberculosis H37Ra (Mtb-Ra) ORF MRA_2875, annotated as malate:quinone oxidoreductase (mqo), is thought to have a role in TCA cycle in converting malate to oxaloacetate. To study its physiological relevance, we developed mqo knockout (KO) in Mtb-Ra. A KO complemented (KOC) strain was also developed by complementing the KO with mqo over-expressing construct. Under normal in vitro conditions, KO does not show any growth defect but showed reduced CFU burden in macrophages and in mice lungs. In vitro studies with KO showed reduced fitness under oxidative and low pH stress, and also increased susceptibility to levofloxacin and D-cycloserine. Transcript analysis of mqo showed increased expression levels under oxidative and low pH stress. This is the first study to show physiological relevance of mqo encoded by MRA_2875 in Mtb-Ra under oxidative and low pH stress. In summary, the present study shows that MRA_2875 encoded malate:quinone oxidoreductase is a functional enzyme which contributes to oxidative stress and low pH tolerance, and survival in macrophages and in mice.
Collapse
Affiliation(s)
- Ram Kumar
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Princi Sharma
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anu Chauhan
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nirbhay Singh
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - V M Prajapati
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sudheer Kumar Singh
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Grechnikova M, Füssy Z, Sutak R. Copper in parasitic protists - a hitherto neglected virulence factor. Trends Parasitol 2024; 40:5-9. [PMID: 37993308 DOI: 10.1016/j.pt.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
Copper plays a fundamental role in aerobic metabolism, but its role is double-edged, given its toxicity. Our understanding of copper metabolism in parasites remains rudimentary, despite its significance in virulence. Here we discuss how parasitic protists control copper homeostasis and show the potential key players identified by our bioinformatic analysis.
Collapse
Affiliation(s)
- Maria Grechnikova
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Zoltán Füssy
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| |
Collapse
|
9
|
Jiménez-Meléndez A, Shakya R, Markussen T, Robertson LJ, Myrmel M, Makvandi-Nejad S. Gene expression profile of HCT-8 cells following single or co-infections with Cryptosporidium parvum and bovine coronavirus. Sci Rep 2023; 13:22106. [PMID: 38092824 PMCID: PMC10719361 DOI: 10.1038/s41598-023-49488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Among the causative agents of neonatal diarrhoea in calves, two of the most prevalent are bovine coronavirus (BCoV) and the intracellular parasite Cryptosporidium parvum. Although several studies indicate that co-infections are associated with greater symptom severity, the host-pathogen interplay remains unresolved. Here, our main objective was to investigate the modulation of the transcriptome of HCT-8 cells during single and co-infections with BCoV and C. parvum. For this, HCT-8 cells were inoculated with (1) BCoV alone, (2) C. parvum alone, (3) BCoV and C. parvum simultaneously. After 24 and 72 h, cells were harvested and analyzed using high-throughput RNA sequencing. Following differential expression analysis, over 6000 differentially expressed genes (DEGs) were identified in virus-infected and co-exposed cells at 72 hpi, whereas only 52 DEGs were found in C. parvum-infected cells at the same time point. Pathway (KEGG) and gene ontology (GO) analysis showed that DEGs in the virus-infected and co-exposed cells were mostly associated with immune pathways (such as NF-κB, TNF-α or, IL-17), apoptosis and regulation of transcription, with a more limited effect exerted by C. parvum. Although the modulation observed in the co-infection was apparently dominated by the virus, over 800 DEGs were uniquely expressed in co-exposed cells at 72 hpi. Our findings provide insights on possible biomarkers associated with co-infection, which could be further explored using in vivo models.
Collapse
Affiliation(s)
- Alejandro Jiménez-Meléndez
- Department of Paraclinical Sciences (PARAFAG), Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Ruchika Shakya
- Department of Paraclinical Sciences (PARAFAG), Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Turhan Markussen
- Department of Paraclinical Sciences (PARAFAG), Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Lucy J Robertson
- Department of Paraclinical Sciences (PARAFAG), Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Mette Myrmel
- Department of Paraclinical Sciences (PARAFAG), Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Shokouh Makvandi-Nejad
- Research Group Animal Health, Vaccinology, Norwegian Veterinary Institute, Ås, Norway
- Nykode Therapeutics ASA, Oslo Science Park, Oslo, Norway
| |
Collapse
|
10
|
Xu R, Beatty WL, Greigert V, Witola WH, Sibley LD. Multiple pathways for glucose phosphate transport and utilization support growth of Cryptosporidium parvum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546703. [PMID: 37425855 PMCID: PMC10327089 DOI: 10.1101/2023.06.27.546703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cryptosporidium parvum is an obligate intracellular parasite with a highly reduced mitochondrion that lacks the TCA cycle and the ability to generate ATP, making the parasite reliant on glycolysis. Genetic ablation experiments demonstrated that neither of the two putative glucose transporters CpGT1 and CpGT2 were essential for growth. Surprisingly, hexokinase was also dispensable for parasite growth while the downstream enzyme aldolase was required, suggesting the parasite has an alternative way of obtaining phosphorylated hexose. Complementation studies in E. coli support a role for direct transport of glucose-6-phosphate from the host cell by the parasite transporters CpGT1 and CpGT2, thus bypassing a requirement for hexokinase. Additionally, the parasite obtains phosphorylated glucose from amylopectin stores that are released by the action of the essential enzyme glycogen phosphorylase. Collectively, these findings reveal that C. parvum relies on multiple pathways to obtain phosphorylated glucose both for glycolysis and to restore carbohydrate reserves.
Collapse
Affiliation(s)
- Rui Xu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Valentin Greigert
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - William H. Witola
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| |
Collapse
|
11
|
Ito T, Kajita S, Fujii M, Shinohara Y. Plasmodium Parasite Malate-Quinone Oxidoreductase Functionally Complements a Yeast Deletion Mutant of Mitochondrial Malate Dehydrogenase. Microbiol Spectr 2023; 11:e0016823. [PMID: 37036365 PMCID: PMC10269487 DOI: 10.1128/spectrum.00168-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/20/2023] [Indexed: 04/11/2023] Open
Abstract
The emergence of drug-resistant variants of malaria-causing Plasmodium parasites is a life-threatening problem worldwide. Investigation of the physiological function of individual parasite proteins is a prerequisite for a deeper understanding of the metabolic pathways required for parasite survival and therefore a requirement for the development of novel antimalarials. A Plasmodium membrane protein, malate-quinone oxidoreductase (MQO), is thought to contribute to the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC) and is an antimalarial drug target. However, there is little information on its expression and function. Here, we investigated the function of Plasmodium falciparum MQO (PfMQO) in mitochondria using a yeast heterologous expression system. Using a yeast deletion mutant of mitochondrial malate dehydrogenase (MDH1), which is expected to be functionally similar to MQO, as a background strain, we successfully constructed PfMQO-expressing yeast. We confirmed that expression of PfMQO complemented the growth defect of the MDH1 deletion, indicating that PfMQO can adopt the metabolic role of MDH1 in energy transduction for growth in the recombinant yeast. Analysis of cell fractions confirmed that PfMQO was expressed and enriched in yeast mitochondria. By measuring MQO activity, we also confirmed that PfMQO expressed in yeast mitochondria was active. Measurement of oxygen consumption rates showed that mitochondrial respiration was driven by the TCA cycle through PfMQO. In addition, we found that MQO activity was enhanced when intact mitochondria were sonicated, indicating that the malate binding site of PfMQO is located facing the mitochondrial matrix. IMPORTANCE We constructed a model organism to study the physiological role and function of P. falciparum malate-quinone oxidoreductase (PfMQO) in a yeast expression system. PfMQO is actively expressed in yeast mitochondria and functions in place of yeast mitochondrial malate dehydrogenase, which catalyzes the oxidation of malate to oxaloacetate in the TCA cycle. The catalytic site for the oxidation of malate in PfMQO, which is a membrane-bound protein, faces into the mitochondrial matrix, not the mitochondrial inner membrane space. Our findings clearly show that PfMQO is a TCA cycle enzyme and is coupled with the ETC via ubiquinone reduction.
Collapse
Affiliation(s)
- Takeshi Ito
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Sayaka Kajita
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Faculty of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Minori Fujii
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Faculty of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Yasuo Shinohara
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
12
|
Maclean AE, Hayward JA, Huet D, van Dooren GG, Sheiner L. The mystery of massive mitochondrial complexes: the apicomplexan respiratory chain. Trends Parasitol 2022; 38:1041-1052. [PMID: 36302692 PMCID: PMC10434753 DOI: 10.1016/j.pt.2022.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
The mitochondrial respiratory chain is an essential pathway in most studied eukaryotes due to its roles in respiration and other pathways that depend on mitochondrial membrane potential. Apicomplexans are unicellular eukaryotes whose members have an impact on global health. The respiratory chain is a drug target for some members of this group, notably the malaria-causing Plasmodium spp. This has motivated studies of the respiratory chain in apicomplexan parasites, primarily Toxoplasma gondii and Plasmodium spp. for which experimental tools are most advanced. Studies of the respiratory complexes in these organisms revealed numerous novel features, including expansion of complex size. The divergence of apicomplexan mitochondria from commonly studied models highlights the diversity of mitochondrial form and function across eukaryotic life.
Collapse
Affiliation(s)
- Andrew E Maclean
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Jenni A Hayward
- Research School of Biology, Australian National University, Canberra, Australia
| | - Diego Huet
- Center for Tropical & Emerging Diseases, University of Georgia, Athens, GA, USA; Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, Australia
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK.
| |
Collapse
|
13
|
Dhal AK, Panda C, Yun SIL, Mahapatra RK. An update on Cryptosporidium biology and therapeutic avenues. J Parasit Dis 2022; 46:923-939. [PMID: 35755159 PMCID: PMC9215156 DOI: 10.1007/s12639-022-01510-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Cryptosporidium species has been identified as an important pediatric diarrheal pathogen in resource-limited countries, particularly in very young children (0–24 months). However, the only available drug (nitazoxanide) has limited efficacy and can only be prescribed in a medical setting to children older than one year. Many drug development projects have started to investigate new therapeutic avenues. Cryptosporidium’s unique biology is challenging for the traditional drug discovery pipeline and requires novel drug screening approaches. Notably, in recent years, new methods of oocyst generation, in vitro processing, and continuous three-dimensional cultivation capacities have been developed. This has enabled more physiologically pertinent research assays for inhibitor discovery. In a short time, many great strides have been made in the development of anti-Cryptosporidium drugs. These are expected to eventually turn into clinical candidates for cryptosporidiosis treatment in the future. This review describes the latest development in Cryptosporidium biology, genomics, transcriptomics of the parasite, assay development, and new drug discovery.
Collapse
Affiliation(s)
- Ajit Kumar Dhal
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Chinmaya Panda
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Soon-IL Yun
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | | |
Collapse
|
14
|
Rajaram K, Tewari SG, Wallqvist A, Prigge ST. Metabolic changes accompanying the loss of fumarate hydratase and malate-quinone oxidoreductase in the asexual blood stage of Plasmodium falciparum. J Biol Chem 2022; 298:101897. [PMID: 35398098 PMCID: PMC9118666 DOI: 10.1016/j.jbc.2022.101897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/03/2022] Open
Abstract
In the glucose-rich milieu of red blood cells, asexually replicating malarial parasites mainly rely on glycolysis for ATP production, with limited carbon flux through the mitochondrial tricarboxylic acid (TCA) cycle. By contrast, gametocytes and mosquito-stage parasites exhibit an increased dependence on the TCA cycle and oxidative phosphorylation for more economical energy generation. Prior genetic studies supported these stage-specific metabolic preferences by revealing that six of eight TCA cycle enzymes are completely dispensable during the asexual blood stages of Plasmodium falciparum, with only fumarate hydratase (FH) and malate-quinone oxidoreductase (MQO) being refractory to deletion. Several hypotheses have been put forth to explain the possible essentiality of FH and MQO, including their participation in a malate shuttle between the mitochondrial matrix and the cytosol. However, using newer genetic techniques like CRISPR and dimerizable Cre, we were able to generate deletion strains of FH and MQO in P. falciparum. We employed metabolomic analyses to characterize a double knockout mutant of FH and MQO (ΔFM) and identified changes in purine salvage and urea cycle metabolism that may help to limit fumarate accumulation. Correspondingly, we found that the ΔFM mutant was more sensitive to exogenous fumarate, which is known to cause toxicity by modifying and inactivating proteins and metabolites. Overall, our data indicate that P. falciparum is able to adequately compensate for the loss of FH and MQO, rendering them unsuitable targets for drug development.
Collapse
Affiliation(s)
- Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shivendra G Tewari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Ft. Detrick, Maryland, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Ft. Detrick, Maryland, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
15
|
Salomaki ED, Terpis KX, Rueckert S, Kotyk M, Varadínová ZK, Čepička I, Lane CE, Kolisko M. Gregarine single-cell transcriptomics reveals differential mitochondrial remodeling and adaptation in apicomplexans. BMC Biol 2021; 19:77. [PMID: 33863338 PMCID: PMC8051059 DOI: 10.1186/s12915-021-01007-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/19/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Apicomplexa is a diverse phylum comprising unicellular endobiotic animal parasites and contains some of the most well-studied microbial eukaryotes including the devastating human pathogens Plasmodium falciparum and Cryptosporidium hominis. In contrast, data on the invertebrate-infecting gregarines remains sparse and their evolutionary relationship to other apicomplexans remains obscure. Most apicomplexans retain a highly modified plastid, while their mitochondria remain metabolically conserved. Cryptosporidium spp. inhabit an anaerobic host-gut environment and represent the known exception, having completely lost their plastid while retaining an extremely reduced mitochondrion that has lost its genome. Recent advances in single-cell sequencing have enabled the first broad genome-scale explorations of gregarines, providing evidence of differential plastid retention throughout the group. However, little is known about the retention and metabolic capacity of gregarine mitochondria. RESULTS Here, we sequenced transcriptomes from five species of gregarines isolated from cockroaches. We combined these data with those from other apicomplexans, performed detailed phylogenomic analyses, and characterized their mitochondrial metabolism. Our results support the placement of Cryptosporidium as the earliest diverging lineage of apicomplexans, which impacts our interpretation of evolutionary events within the phylum. By mapping in silico predictions of core mitochondrial pathways onto our phylogeny, we identified convergently reduced mitochondria. These data show that the electron transport chain has been independently lost three times across the phylum, twice within gregarines. CONCLUSIONS Apicomplexan lineages show variable functional restructuring of mitochondrial metabolism that appears to have been driven by adaptations to parasitism and anaerobiosis. Our findings indicate that apicomplexans are rife with convergent adaptations, with shared features including morphology, energy metabolism, and intracellularity.
Collapse
Affiliation(s)
- Eric D Salomaki
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Kristina X Terpis
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Sonja Rueckert
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, Scotland, UK
| | - Michael Kotyk
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | | | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Christopher E Lane
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA.
| | - Martin Kolisko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
- Department of Molecular Biology and Genetics, University of South Bohemia, České Budějovice, Czech Republic.
| |
Collapse
|
16
|
Sato D, Hartuti ED, Inaoka DK, Sakura T, Amalia E, Nagahama M, Yoshioka Y, Tsuji N, Nozaki T, Kita K, Harada S, Matsubayashi M, Shiba T. Structural and Biochemical Features of Eimeria tenella Dihydroorotate Dehydrogenase, a Potential Drug Target. Genes (Basel) 2020; 11:genes11121468. [PMID: 33297567 PMCID: PMC7762340 DOI: 10.3390/genes11121468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/23/2022] Open
Abstract
Dihydroorotate dehydrogenase (DHODH) is a mitochondrial monotopic membrane protein that plays an essential role in the pyrimidine de novo biosynthesis and electron transport chain pathways. In Eimeria tenella, an intracellular apicomplexan parasite that causes the most severe form of chicken coccidiosis, the activity of pyrimidine salvage pathway at the intracellular stage is negligible and it relies on the pyrimidine de novo biosynthesis pathway. Therefore, the enzymes of the de novo pathway are considered potential drug target candidates for the design of compounds with activity against this parasite. Although, DHODHs from E. tenella (EtDHODH), Plasmodium falciparum (PfDHODH), and human (HsDHODH) show distinct sensitivities to classical DHODH inhibitors, in this paper, we identify ferulenol as a potent inhibitor of both EtDHODH and HsDHODH. Additionally, we report the crystal structures of EtDHODH and HsDHODH in the absence and presence of ferulenol. Comparison of these enzymes showed that despite similar overall structures, the EtDHODH has a long insertion in the N-terminal helix region that assumes a disordered configuration. In addition, the crystal structures revealed that the ferulenol binding pocket of EtDHODH is larger than that of HsDHODH. These differences can be explored to accelerate structure-based design of inhibitors specifically targeting EtDHODH.
Collapse
Affiliation(s)
- Dan Sato
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (D.S.); (M.N.); (Y.Y.); (S.H.)
| | - Endah Dwi Hartuti
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (E.A.); (T.N.)
- Correspondence: (D.K.I.); (T.S.); Tel.: +81-95-819-7230 (D.K.I.); Tel./Fax: +81-75-724-7541 (T.S.)
| | - Takaya Sakura
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
| | - Eri Amalia
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (E.A.); (T.N.)
| | - Madoka Nagahama
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (D.S.); (M.N.); (Y.Y.); (S.H.)
| | - Yukina Yoshioka
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (D.S.); (M.N.); (Y.Y.); (S.H.)
| | - Naotoshi Tsuji
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan;
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (E.A.); (T.N.)
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (E.A.); (T.N.)
- Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (D.S.); (M.N.); (Y.Y.); (S.H.)
| | - Makoto Matsubayashi
- Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Orai Kita, Izumisano, Osaka 598-8531, Japan;
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (D.S.); (M.N.); (Y.Y.); (S.H.)
- Correspondence: (D.K.I.); (T.S.); Tel.: +81-95-819-7230 (D.K.I.); Tel./Fax: +81-75-724-7541 (T.S.)
| |
Collapse
|
17
|
Kong T, Ren X, Lin S, Li S, Gong Y. Elucidation of metabolic responses in mud crab Scylla paramamosain challenged to WSSV infection by integration of metabolomics and transcriptomics. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 113:103799. [PMID: 32738334 DOI: 10.1016/j.dci.2020.103799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
White spot syndrome virus (WSSV) is a severe pathogen of mud crab Scylla paramamosain (S. paramamosain). Hemolymph, containing three types of hemocytes, is the key immunoregulatory tool of mud crab in response to pathogens. Herein, the metabonomics and transcriptomics analysis of hemocytes were adopted to investigate the immune response of S. paramamosain challenged to WSSV. We established the metabolic and transcriptional profiles of mud crab hemocytes with different treatments, including the control group (WT), WSSV early infected group (WSSV-6 h) and WSSV later infected group (WSSV-72 h). The results showed that 68 metabolites were dysregulated both in WSSV-infected mud crab of early stage and later stage, while 4452 genes were up-regulated and 9746 genes were down-regulated in WSSV-6 h, and 2016 genes were up-regulated and 6229 genes were down-regulated compared in WSSV-72 h. We found that several pathways were dysregulated at both metabolic and transcriptional levels, including ABC transporters, purine metabolism, taurine and hypotaurine metabolism in the WSSV early infected group, cysteine metabolism, methionine metabolism and biosynthesis of unsaturated fatty acids in the WSSV later infected group. In this context, through the integration of metabolomics and transcriptomics, our study provided a more comprehensive understanding of the biological process in mud crab against viral invasion.
Collapse
Affiliation(s)
- Tongtong Kong
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Xin Ren
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shanmeng Lin
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yi Gong
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
18
|
King MS, Tavoulari S, Mavridou V, King AC, Mifsud J, Kunji ERS. A Single Cysteine Residue in the Translocation Pathway of the Mitosomal ADP/ATP Carrier from Cryptosporidium parvum Confers a Broad Nucleotide Specificity. Int J Mol Sci 2020; 21:E8971. [PMID: 33255957 PMCID: PMC7730227 DOI: 10.3390/ijms21238971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Cryptosporidiumparvum is a clinically important eukaryotic parasite that causes the disease cryptosporidiosis, which manifests with gastroenteritis-like symptoms. The protist has mitosomes, which are organelles of mitochondrial origin that have only been partially characterized. The genome encodes a highly reduced set of transport proteins of the SLC25 mitochondrial carrier family of unknown function. Here, we have studied the transport properties of one member of the C. parvum carrier family, demonstrating that it resembles the mitochondrial ADP/ATP carrier of eukaryotes. However, this carrier has a broader substrate specificity for nucleotides, transporting adenosine, thymidine, and uridine di- and triphosphates in contrast to its mitochondrial orthologues, which have a strict substrate specificity for ADP and ATP. Inspection of the putative translocation pathway highlights a cysteine residue, which is a serine in mitochondrial ADP/ATP carriers. When the serine residue is replaced by cysteine or larger hydrophobic residues in the yeast mitochondrial ADP/ATP carrier, the substrate specificity becomes broad, showing that this residue is important for nucleotide base selectivity in ADP/ATP carriers.
Collapse
Affiliation(s)
| | | | | | | | | | - Edmund R. S. Kunji
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; (M.S.K.); (S.T.); (V.M.); (A.C.K.); (J.M.)
| |
Collapse
|
19
|
Rojas-Pirela M, Andrade-Alviárez D, Rojas V, Kemmerling U, Cáceres AJ, Michels PA, Concepción JL, Quiñones W. Phosphoglycerate kinase: structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biol 2020; 10:200302. [PMID: 33234025 PMCID: PMC7729029 DOI: 10.1098/rsob.200302] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phosphoglycerate kinase (PGK) is a glycolytic enzyme that is well conserved among the three domains of life. PGK is usually a monomeric enzyme of about 45 kDa that catalyses one of the two ATP-producing reactions in the glycolytic pathway, through the conversion of 1,3-bisphosphoglycerate (1,3BPGA) to 3-phosphoglycerate (3PGA). It also participates in gluconeogenesis, catalysing the opposite reaction to produce 1,3BPGA and ADP. Like most other glycolytic enzymes, PGK has also been catalogued as a moonlighting protein, due to its involvement in different functions not associated with energy metabolism, which include pathogenesis, interaction with nucleic acids, tumorigenesis progression, cell death and viral replication. In this review, we have highlighted the overall aspects of this enzyme, such as its structure, reaction kinetics, activity regulation and possible moonlighting functions in different protistan organisms, especially both free-living and parasitic Kinetoplastea. Our analysis of the genomes of different kinetoplastids revealed the presence of open-reading frames (ORFs) for multiple PGK isoforms in several species. Some of these ORFs code for unusually large PGKs. The products appear to contain additional structural domains fused to the PGK domain. A striking aspect is that some of these PGK isoforms are predicted to be catalytically inactive enzymes or ‘dead’ enzymes. The roles of PGKs in kinetoplastid parasites are analysed, and the apparent significance of the PGK gene duplication that gave rise to the different isoforms and their expression in Trypanosoma cruzi is discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Verónica Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Universidad de Chile, Facultad de Medicina, Santiago de Chile 8380453, Santigo de Chile
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Paul A Michels
- Centre for Immunity, Infection and Evolution, The King's Buildings, Edinburgh EH9 3FL, UK.,Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, UK
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| |
Collapse
|
20
|
Piper P, Begres B, Snider M, Fraga D. Two cryptosporidia species encode active creatine kinases that are not seen in other apicomplexa species. Comp Biochem Physiol B Biochem Mol Biol 2020; 246-247:110459. [DOI: 10.1016/j.cbpb.2020.110459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/18/2022]
|
21
|
Abstract
Cryptosporidium has historically been a difficult organism to work with, and molecular genomic data for this important pathogen have typically lagged behind other prominent protist pathogens. CryptoDB ( http://cryptodb.org/ ) was launched in 2004 following the appearance of draft genome sequences for both C. parvum and C. hominis. CryptoDB merged with the EuPathDB Bioinformatics Resource Center family of databases ( https://eupathdb.org ) and has been maintained and updated regularly since its establishment. These resources are freely available, are web-based, and permit users to analyze their own sequence data in the context of reference genome sequences in our user workspaces. Advances in technology have greatly facilitated Cryptosporidium research in the last several years greatly enhancing and extending the data and types of data available for this genus. Currently, 13 genome sequences are available for 9 species of Cryptosporidium as well as the distantly related Gregarina niphandrodes and two free-living alveolate outgroups of the Apicomplexa, Chromera velia and Vitrella brassicaformis. Recent years have seen several new genome sequences for both existing and new Cryptosporidium species as well as transcriptomics, proteomics, SNP, and isolate population surveys. This chapter introduces the extensive data mining and visualization capabilities of the EuPathDB software platform and introduces the data types and tools that are currently available for Cryptosporidium. Key features are demonstrated with Cryptosporidium-relevant examples and explanations.
Collapse
Affiliation(s)
- Susanne Warrenfeltz
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Jessica C Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA.
- Department of Genetics, University of Georgia, Athens, GA, USA.
| |
Collapse
|
22
|
Fan Y, Feng Y, Xiao L. Comparative genomics: how has it advanced our knowledge of cryptosporidiosis epidemiology? Parasitol Res 2019; 118:3195-3204. [DOI: 10.1007/s00436-019-06537-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/30/2019] [Indexed: 11/30/2022]
|
23
|
Same same, but different: Uncovering unique features of the mitochondrial respiratory chain of apicomplexans. Mol Biochem Parasitol 2019; 232:111204. [DOI: 10.1016/j.molbiopara.2019.111204] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 01/08/2023]
|
24
|
Wang X, Miyazaki Y, Inaoka DK, Hartuti ED, Watanabe YI, Shiba T, Harada S, Saimoto H, Burrows JN, Benito FJG, Nozaki T, Kita K. Identification of Plasmodium falciparum Mitochondrial Malate: Quinone Oxidoreductase Inhibitors from the Pathogen Box. Genes (Basel) 2019; 10:genes10060471. [PMID: 31234346 PMCID: PMC6627850 DOI: 10.3390/genes10060471] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022] Open
Abstract
Malaria is one of the three major global health threats. Drug development for malaria, especially for its most dangerous form caused by Plasmodium falciparum, remains an urgent task due to the emerging drug-resistant parasites. Exploration of novel antimalarial drug targets identified a trifunctional enzyme, malate quinone oxidoreductase (MQO), located in the mitochondrial inner membrane of P. falciparum (PfMQO). PfMQO is involved in the pathways of mitochondrial electron transport chain, tricarboxylic acid cycle, and fumarate cycle. Recent studies have shown that MQO is essential for P. falciparum survival in asexual stage and for the development of experiment cerebral malaria in the murine parasite P. berghei, providing genetic validation of MQO as a drug target. However, chemical validation of MQO, as a target, remains unexplored. In this study, we used active recombinant protein rPfMQO overexpressed in bacterial membrane fractions to screen a total of 400 compounds from the Pathogen Box, released by Medicines for Malaria Venture. The screening identified seven hit compounds targeting rPfMQO with an IC50 of under 5 μM. We tested the activity of hit compounds against the growth of 3D7 wildtype strain of P. falciparum, among which four compounds showed an IC50 from low to sub-micromolar concentrations, suggesting that PfMQO is indeed a potential antimalarial drug target.
Collapse
Affiliation(s)
- Xinying Wang
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
| | - Yukiko Miyazaki
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
| | - Endah Dwi Hartuti
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
| | - Yoh-Ichi Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Matsugasaki, Hashikamicho, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Matsugasaki, Hashikamicho, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Hiroyuki Saimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8550, Japan.
| | | | | | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
- Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
| |
Collapse
|
25
|
Novel Characteristics of Mitochondrial Electron Transport Chain from Eimeria tenella. Genes (Basel) 2019; 10:genes10010029. [PMID: 30626105 PMCID: PMC6356742 DOI: 10.3390/genes10010029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 12/26/2022] Open
Abstract
Eimeria tenella is an intracellular apicomplexan parasite, which infects cecal epithelial cells from chickens and causes hemorrhagic diarrhea and eventual death. We have previously reported the comparative RNA sequence analysis of the E. tenella sporozoite stage between virulent and precocious strains and showed that the expression of several genes involved in mitochondrial electron transport chain (ETC), such as type II NADH dehydrogenase (NDH-2), complex II (succinate:quinone oxidoreductase), malate:quinone oxidoreductase (MQO), and glycerol-3-phosphate dehydrogenase (G3PDH), were upregulated in virulent strain. To study E. tenella mitochondrial ETC in detail, we developed a reproducible method for preparation of mitochondria-rich fraction from sporozoites, which maintained high specific activities of dehydrogenases, such as NDH-2 followed by G3PDH, MQO, complex II, and dihydroorotate dehydrogenase (DHODH). Of particular importance, we showed that E. tenella sporozoite mitochondria possess an intrinsic ability to perform fumarate respiration (via complex II) in addition to the classical oxygen respiration (via complexes III and IV). Further analysis by high-resolution clear native electrophoresis, activity staining, and nano-liquid chromatography tandem-mass spectrometry (nano-LC-MS/MS) provided evidence of a mitochondrial complex II-III-IV supercomplex. Our analysis suggests that complex II from E. tenella has biochemical features distinct to known orthologues and is a potential target for the development of new anticoccidian drugs.
Collapse
|
26
|
Guo J, Miao X, He P, Li M, Wang S, Cui J, Huang C, He L, Zhao J. Babesia gibsoni endemic to Wuhan, China: mitochondrial genome sequencing, annotation, and comparison with apicomplexan parasites. Parasitol Res 2018; 118:235-243. [PMID: 30474737 DOI: 10.1007/s00436-018-6158-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
Babesia gibsoni (B. gibsoni), an intracellular apicomplexan protozoan, poses great threat to canine health. Currently, little information is available about the B. gibsoni (WH58) endemic to Wuhan, China. Here, the mitochondrial (mt) genome of B. gibsoni (WH58) was amplified by five pairs of primers and sequenced and annotated by alignment with the reported mt genome sequences of Babesia canis (B. canis, KC207822), Babesia orientalis (KF218819), Babesia bovis (AB499088), and Theileria equi (AB499091). The evolutionary relationships were analyzed with the amino acid sequences of cytochrome c oxidase I (cox1) and cytochrome b (cob) genes in apicomplexan parasite species. Additionally, the mt genomes of Babesia, Theileria, and Plasmodium spp. were compared in size, host infection, form, distribution, and direction of the protein-coding genes. The full size of the mt genome of B. gibsoni (WH58) was 5865 bp with a linear form, containing terminal-inverted repeats on both ends, six large subunit ribosomal RNA fragments, and three protein-coding genes: cox1, cob, and cytochrome c oxidase III (cox3). Babesia, Theileria, and Plasmodium spp. had a similar mt genome size of about 6000 bp. The mt genomes of parasites that cause canine babesiosis showed a slightly smaller size than the other species. Moreover, Babesia microti (R1 strain) was about 11,100 bp in size, which was twice larger than that of the other species. The mt form was linear for Babesia and Theileria spp. but circular for Plasmodium falciparum and Plasmodium knowlesi. Additionally, all the species contained the three protein-coding genes of cox1, cox3, and cob except Toxoplasma gondii (RH strain) which only contained the cox1 and cob genes. The phylogenetic analysis indicated that B. gibsoni (WH58) was more identical to B. gibsoni (AB499087), B. canis (KC207822), and Babesia rossi (KC207823) and most divergent from Babesia conradae in Babesia spp. Despite the highest similarity to B. gibsoni (AB499087) reported in Japan, B. gibsoni (WH58) showed notable differences in the sequence of nucleotides and amino acids and the property in virulence to host and in vitro cultivation. This study compared the mt genomes of the two B. gibsoni isolates and other parasites in the phylum Apicomplexa and provided new insights into their differences and evolutionary relationships.
Collapse
Affiliation(s)
- Jiaying Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Xiaoyan Miao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Pei He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Muxiao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Sen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Jie Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Cuiqin Huang
- College of Life Science, Longyan University, Longyan, Fujian, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, 364012, Fujian, China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China.,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China. .,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
27
|
Antos-Krzeminska N, Jarmuszkiewicz W. Alternative Type II NAD(P)H Dehydrogenases in the Mitochondria of Protists and Fungi. Protist 2018; 170:21-37. [PMID: 30553126 DOI: 10.1016/j.protis.2018.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/12/2018] [Accepted: 11/04/2018] [Indexed: 01/11/2023]
Abstract
Plants, fungi, and some protists possess a more branched electron transport chain in their mitochondria compared to canonical one. In these organisms, the electron transport chain contains several rotenone-insensitive NAD(P)H dehydrogenases. Some are located on the outer surface, and others are located on the inner surface of the inner mitochondrial membrane. The putative role of these enzymes still remains elusive, but they may prevent the overreduction of the electron transport chain components and decrease the production of reaction oxygen species as a consequence. The last two decades resulted in the discovery of alternative rotenone-insensitive NAD(P)H dehydrogenases present in representatives of fungi and protozoa. The aim of this review is to gather and focus on current information concerning molecular and functional properties, regulation, and the physiological role of fungal and protozoan alternative NAD(P)H dehydrogenases.
Collapse
Affiliation(s)
- Nina Antos-Krzeminska
- Department of Bioenergetics, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland.
| | - Wieslawa Jarmuszkiewicz
- Department of Bioenergetics, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| |
Collapse
|
28
|
Seidi A, Muellner-Wong LS, Rajendran E, Tjhin ET, Dagley LF, Aw VYT, Faou P, Webb AI, Tonkin CJ, van Dooren GG. Elucidating the mitochondrial proteome of Toxoplasma gondii reveals the presence of a divergent cytochrome c oxidase. eLife 2018; 7:e38131. [PMID: 30204084 PMCID: PMC6156079 DOI: 10.7554/elife.38131] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 09/09/2018] [Indexed: 12/17/2022] Open
Abstract
The mitochondrion of apicomplexan parasites is critical for parasite survival, although the full complement of proteins that localize to this organelle has not been defined. Here we undertake two independent approaches to elucidate the mitochondrial proteome of the apicomplexan Toxoplasma gondii. We identify approximately 400 mitochondrial proteins, many of which lack homologs in the animals that these parasites infect, and most of which are important for parasite growth. We demonstrate that one such protein, termed TgApiCox25, is an important component of the parasite cytochrome c oxidase (COX) complex. We identify numerous other apicomplexan-specific components of COX, and conclude that apicomplexan COX, and apicomplexan mitochondria more generally, differ substantially in their protein composition from the hosts they infect. Our study highlights the diversity that exists in mitochondrial proteomes across the eukaryotic domain of life, and provides a foundation for defining unique aspects of mitochondrial biology in an important phylum of parasites.
Collapse
Affiliation(s)
- Azadeh Seidi
- Research School of BiologyAustralian National UniversityCanberraAustralia
| | | | - Esther Rajendran
- Research School of BiologyAustralian National UniversityCanberraAustralia
| | - Edwin T Tjhin
- Research School of BiologyAustralian National UniversityCanberraAustralia
| | - Laura F Dagley
- The Walter and Eliza Hall Institute of Medical ResearchVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneVictoriaAustralia
| | - Vincent YT Aw
- Research School of BiologyAustralian National UniversityCanberraAustralia
| | - Pierre Faou
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityVictoriaAustralia
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical ResearchVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneVictoriaAustralia
| | - Christopher J Tonkin
- The Walter and Eliza Hall Institute of Medical ResearchVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneVictoriaAustralia
| | - Giel G van Dooren
- Research School of BiologyAustralian National UniversityCanberraAustralia
| |
Collapse
|
29
|
Santos HJ, Makiuchi T, Nozaki T. Reinventing an Organelle: The Reduced Mitochondrion in Parasitic Protists. Trends Parasitol 2018; 34:1038-1055. [PMID: 30201278 DOI: 10.1016/j.pt.2018.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria originated from the endosymbiotic event commencing from the engulfment of an ancestral α-proteobacterium by the first eukaryotic ancestor. Establishment of niches has led to various adaptations among eukaryotes. In anaerobic parasitic protists, the mitochondria have undergone modifications by combining features shared from the aerobic mitochondria with lineage-specific components and mechanisms; a diversified class of organelles emerged and are generally called mitochondrion-related organelles (MROs). In this review we summarize and discuss the recent advances in the knowledge of MROs from parasitic protists, particularly the themes such as metabolic functions, contribution to parasitism, dynamics, protein targeting, and novel lineage- specific proteins, with emphasis on the diversity among these organelles.
Collapse
Affiliation(s)
- Herbert J Santos
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
30
|
Miller CN, Jossé L, Tsaousis AD. Localization of Fe-S Biosynthesis Machinery in Cryptosporidium parvum Mitosome. J Eukaryot Microbiol 2018; 65:913-922. [PMID: 29932290 PMCID: PMC6282951 DOI: 10.1111/jeu.12663] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/11/2018] [Accepted: 06/17/2018] [Indexed: 12/17/2022]
Abstract
Cryptosporidium is a protozoan, apicomplexan, parasite that poses significant risk to humans and animals, as a common cause of potentially fatal diarrhea in immunodeficient hosts. The parasites have evolved a number of unique biological features that allow them to thrive in a highly specialized parasitic lifestyle. For example, the genome of Cryptosporidium parvum is highly reduced, encoding only 3,805 proteins, which is also reflected in its reduced cellular and organellar content and functions. As such, its remnant mitochondrion, dubbed a mitosome, is one of the smallest mitochondria yet found. While numerous studies have attempted to discover the function(s) of the C. parvum mitosome, most of them have been focused on in silico predictions. Here, we have localized components of a biochemical pathway in the C. parvum mitosome, in our investigations into the functions of this peculiar mitochondrial organelle. We have shown that three proteins involved in the mitochondrial iron-sulfur cluster biosynthetic pathway are localized in the organelle, and one of them can functionally replace its yeast homolog. Thus, it seems that the C. parvum mitosome is involved in iron-sulfur cluster biosynthesis, supporting the organellar and cytosolic apoproteins. These results spearhead further research on elucidating the functions of the mitosome and broaden our understanding in the minimalistic adaptations of these organelles.
Collapse
Affiliation(s)
- Christopher N Miller
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK
| | - Lyne Jossé
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK
| | - Anastasios D Tsaousis
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK
| |
Collapse
|
31
|
Salunke R, Mourier T, Banerjee M, Pain A, Shanmugam D. Highly diverged novel subunit composition of apicomplexan F-type ATP synthase identified from Toxoplasma gondii. PLoS Biol 2018; 16:e2006128. [PMID: 30005062 PMCID: PMC6059495 DOI: 10.1371/journal.pbio.2006128] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/25/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022] Open
Abstract
The mitochondrial F-type ATP synthase, a multisubunit nanomotor, is critical for maintaining cellular ATP levels. In T. gondii and other apicomplexan parasites, many subunit components necessary for proper assembly and functioning of this enzyme appear to be missing. Here, we report the identification of 20 novel subunits of T. gondii F-type ATP synthase from mass spectrometry analysis of partially purified monomeric (approximately 600 kDa) and dimeric (>1 MDa) forms of the enzyme. Despite extreme sequence diversification, key FO subunits a, b, and d can be identified from conserved structural features. Orthologs for these proteins are restricted to apicomplexan, chromerid, and dinoflagellate species. Interestingly, their absence in ciliates indicates a major diversion, with respect to subunit composition of this enzyme, within the alveolate clade. Discovery of these highly diversified novel components of the apicomplexan F-type ATP synthase complex could facilitate the development of novel antiparasitic agents. Structural and functional characterization of this unusual enzyme complex will advance our fundamental understanding of energy metabolism in apicomplexan species.
Collapse
Affiliation(s)
- Rahul Salunke
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Tobias Mourier
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, India
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Dhanasekaran Shanmugam
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| |
Collapse
|
32
|
Selection of Plasmodium falciparum cytochrome B mutants by putative PfNDH2 inhibitors. Proc Natl Acad Sci U S A 2018; 115:6285-6290. [PMID: 29844160 DOI: 10.1073/pnas.1804492115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malaria control is threatened by a limited pipeline of effective pharmaceuticals against drug-resistant strains of Plasmodium falciparum Components of the mitochondrial electron transport chain (ETC) are attractive targets for drug development, owing to exploitable differences between the parasite and human ETC. Disruption of ETC function interferes with metabolic processes including de novo pyrimidine synthesis, essential for nucleic acid replication. We investigated the effects of ETC inhibitor selection on two distinct P. falciparum clones, Dd2 and 106/1. Compounds CK-2-68 and RYL-552, substituted quinolones reported to block P. falciparum NADH dehydrogenase 2 (PfNDH2; a type II NADH:quinone oxidoreductase), unexpectedly selected mutations at the quinol oxidation (Qo) pocket of P. falciparum cytochrome B (PfCytB). Selection experiments with atovaquone (ATQ) on 106/1 parasites yielded highly resistant PfCytB Y268S mutants seen in clinical infections that fail ATQ-proguanil treatment. In contrast, ATQ pressure on Dd2 yielded moderately resistant parasites carrying a PfCytB M133I or K272R mutation. Strikingly, all ATQ-selected mutants demonstrated little change or slight increase of sensitivity to CK-2-68 or RYL-552. Molecular docking studies demonstrated binding of all three ETC inhibitors to the Qo pocket of PfCytB, where Y268 forms strong van der Waals interactions with the hydroxynaphthoquinone ring of ATQ but not the quinolone ring of CK-2-68 or RYL-552. Our results suggest that combinations of suitable ETC inhibitors may be able to subvert or delay the development of P. falciparum drug resistance.
Collapse
|
33
|
Chao AT, Lee BH, Wan KF, Selva J, Zou B, Gedeck P, Beer DJ, Diagana TT, Bonamy GMC, Manjunatha UH. Development of a Cytopathic Effect-Based Phenotypic Screening Assay against Cryptosporidium. ACS Infect Dis 2018; 4:635-645. [PMID: 29341586 DOI: 10.1021/acsinfecdis.7b00247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cryptosporidiosis is a diarrheal disease predominantly caused by Cryptosporidium parvum ( Cp) and Cryptosporidium hominis ( Ch), apicomplexan parasites which infect the intestinal epithelial cells of their human hosts. The only approved drug for cryptosporidiosis is nitazoxanide, which shows limited efficacy in immunocompromised children, the most vulnerable patient population. Thus, new therapeutics and in vitro infection models are urgently needed to address the current unmet medical need. Toward this aim, we have developed novel cytopathic effect (CPE)-based Cp and Ch assays in human colonic tumor (HCT-8) cells and compared them to traditional imaging formats. Further model validation was achieved through screening a collection of FDA-approved drugs and confirming many previously known anti- Cryptosporidium hits as well as identifying a few novel candidates. Collectively, our data reveals this model to be a simple, functional, and homogeneous gain of signal format amenable to high throughput screening, opening new avenues for the discovery of novel anticryptosporidials.
Collapse
Affiliation(s)
- Alexander T. Chao
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Boon Heng Lee
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - Kah Fei Wan
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - Jeremy Selva
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - Bin Zou
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - Peter Gedeck
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - David John Beer
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - Thierry T. Diagana
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Ghislain M. C. Bonamy
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Ujjini H. Manjunatha
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, California 94608, United States
| |
Collapse
|
34
|
Hartuti ED, Inaoka DK, Komatsuya K, Miyazaki Y, Miller RJ, Xinying W, Sadikin M, Prabandari EE, Waluyo D, Kuroda M, Amalia E, Matsuo Y, Nugroho NB, Saimoto H, Pramisandi A, Watanabe YI, Mori M, Shiomi K, Balogun EO, Shiba T, Harada S, Nozaki T, Kita K. Biochemical studies of membrane bound Plasmodium falciparum mitochondrial L-malate:quinone oxidoreductase, a potential drug target. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1859:191-200. [PMID: 29269266 DOI: 10.1016/j.bbabio.2017.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 11/30/2022]
Abstract
Plasmodium falciparum is an apicomplexan parasite that causes the most severe malaria in humans. Due to a lack of effective vaccines and emerging of drug resistance parasites, development of drugs with novel mechanisms of action and few side effects are imperative. To this end, ideal drug targets are those essential to parasite viability as well as absent in their mammalian hosts. The mitochondrial electron transport chain (ETC) of P. falciparum is one source of such potential targets because enzymes, such as L-malate:quinone oxidoreductase (PfMQO), in this pathway are absent humans. PfMQO catalyzes the oxidation of L-malate to oxaloacetate and the simultaneous reduction of ubiquinone to ubiquinol. It is a membrane protein, involved in three pathways (ETC, the tricarboxylic acid cycle and the fumarate cycle) and has been shown to be essential for parasite survival, at least, in the intra-erythrocytic asexual stage. These findings indicate that PfMQO would be a valuable drug target for development of antimalarial with novel mechanism of action. Up to this point in time, difficulty in producing active recombinant mitochondrial MQO has hampered biochemical characterization and targeted drug discovery with MQO. Here we report for the first time recombinant PfMQO overexpressed in bacterial membrane and the first biochemical study. Furthermore, about 113 compounds, consisting of ubiquinone binding site inhibitors and antiparasitic agents, were screened resulting in the discovery of ferulenol as a potent PfMQO inhibitor. Finally, ferulenol was shown to inhibit parasite growth and showed strong synergism in combination with atovaquone, a well-described anti-malarial and bc1 complex inhibitor.
Collapse
Affiliation(s)
- Endah Dwi Hartuti
- Master program of Biomedical Science, Faculty of Medicine, University of Indonesia, Indonesia; Biotech Center, Agency for the Assessment and Application of Technology, Jakarta, Indonesia
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.
| | - Keisuke Komatsuya
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukiko Miyazaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Russell J Miller
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Wang Xinying
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Mohamad Sadikin
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | | | - Danang Waluyo
- Biotech Center, Agency for the Assessment and Application of Technology, Jakarta, Indonesia
| | - Marie Kuroda
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eri Amalia
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuichi Matsuo
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Nuki B Nugroho
- Biotech Center, Agency for the Assessment and Application of Technology, Jakarta, Indonesia
| | - Hiroyuki Saimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Amila Pramisandi
- Biotech Center, Agency for the Assessment and Application of Technology, Jakarta, Indonesia; Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Yoh-Ichi Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mihoko Mori
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Kazuro Shiomi
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Emmanuel Oluwadare Balogun
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
35
|
Niikura M, Komatsuya K, Inoue SI, Matsuda R, Asahi H, Inaoka DK, Kita K, Kobayashi F. Suppression of experimental cerebral malaria by disruption of malate:quinone oxidoreductase. Malar J 2017; 16:247. [PMID: 28606087 PMCID: PMC5469008 DOI: 10.1186/s12936-017-1898-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/06/2017] [Indexed: 01/03/2023] Open
Abstract
Background Aspartate, which is converted from oxaloacetate (OAA) by aspartate aminotransferase, is considered an important precursor for purine salvage and pyrimidine de novo biosynthesis, and is thus indispensable for the growth of Plasmodium parasites at the asexual blood stages. OAA can be produced in malaria parasites via two routes: (i) from phosphoenolpyruvate (PEP) by phosphoenolpyruvate carboxylase (PEPC) in the cytosol, or (ii) from fumarate by consecutive reactions catalyzed by fumarate hydratase (FH) and malate:quinone oxidoreductase (MQO) in the mitochondria of malaria parasites. Although PEPC-deficient Plasmodium falciparum and Plasmodium berghei (rodent malaria) parasites show a growth defect, the mutant P. berghei can still cause experimental cerebral malaria (ECM) with similar dynamics to wild-type parasites. In contrast, the importance of FH and MQO for parasite viability, growth and virulence is not fully understood because no FH- and MQO-deficient P. falciparum has been established. In this study, the role of FH and MQO in the pathogenicity of asexual-blood-stage Plasmodium parasites causing cerebral malaria was examined. Results First, FH- and MQO-deficient parasites were generated by inserting a luciferase-expressing cassette into the fh and mqo loci in the genome of P. berghei ANKA strain. Second, the viability of FH-deficient and MQO-deficient parasites that express luciferase was determined by measuring luciferase activity, and the effect of FH or MQO deficiency on the development of ECM was examined. While the viability of FH-deficient P. berghei was comparable to that of control parasites, MQO-deficient parasites exhibited considerably reduced viability. FH activity derived from erythrocytes was also detected. This result and the absence of phenotype in FH-deficient P. berghei parasites suggest that fumarate can be metabolized to malate by host or parasite FH in P. berghei-infected erythrocytes. Furthermore, although the growth of FH- and MQO-deficient parasites was impaired, the development of ECM was suppressed only in mice infected with MQO-deficient parasites. Conclusions These findings suggest that MQO-mediated mitochondrial functions are required for development of ECM of asexual-blood-stage Plasmodium parasites. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1898-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mamoru Niikura
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Keisuke Komatsuya
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan.,Department of Biomedical Chemistry, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Shin-Ichi Inoue
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Risa Matsuda
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Hiroko Asahi
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Daniel Ken Inaoka
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan.,Department of Biomedical Chemistry, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan.,Department of Biomedical Chemistry, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Fumie Kobayashi
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| |
Collapse
|
36
|
Abstract
The increasing prevalence of infections involving intracellular apicomplexan parasites such as Plasmodium, Toxoplasma, and Cryptosporidium (the causative agents of malaria, toxoplasmosis, and cryptosporidiosis, respectively) represent a significant global healthcare burden. Despite their significance, few treatments are available; a situation that is likely to deteriorate with the emergence of new resistant strains of parasites. To lay the foundation for programs of drug discovery and vaccine development, genome sequences for many of these organisms have been generated, together with large-scale expression and proteomic datasets. Comparative analyses of these datasets are beginning to identify the molecular innovations supporting both conserved processes mediating fundamental roles in parasite survival and persistence, as well as lineage-specific adaptations associated with divergent life-cycle strategies. The challenge is how best to exploit these data to derive insights into parasite virulence and identify those genes representing the most amenable targets. In this review, we outline genomic datasets currently available for apicomplexans and discuss biological insights that have emerged as a consequence of their analysis. Of particular interest are systems-based resources, focusing on areas of metabolism and host invasion that are opening up opportunities for discovering new therapeutic targets.
Collapse
Affiliation(s)
| | - John Parkinson
- a Program in Molecular Structure and Function , Hospital for Sick Children , Toronto , Ontario , Canada
- b Departments of Biochemistry, Molecular Genetics and Computer Science , University of Toronto , Toronto , Ontario , Canada
| |
Collapse
|
37
|
Klug D, Mair GR, Frischknecht F, Douglas RG. A small mitochondrial protein present in myzozoans is essential for malaria transmission. Open Biol 2016; 6:160034. [PMID: 27053680 PMCID: PMC4852462 DOI: 10.1098/rsob.160034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myzozoans (which include dinoflagellates, chromerids and apicomplexans) display notable divergence from their ciliate sister group, including a reduced mitochondrial genome and divergent metabolic processes. The factors contributing to these divergent processes are still poorly understood and could serve as potential drug targets in disease-causing protists. Here, we report the identification and characterization of a small mitochondrial protein from the rodent-infecting apicomplexan parasite Plasmodium berghei that is essential for development in its mosquito host. Parasites lacking the gene mitochondrial protein ookinete developmental defect (mpodd) showed malformed parasites that were unable to transmit to mosquitoes. Knockout parasites displayed reduced mitochondrial mass without affecting organelle integrity, indicating no role of the protein in mitochondrial biogenesis or morphology maintenance but a likely role in mitochondrial import or metabolism. Using genetic complementation experiments, we identified a previously unrecognized Plasmodium falciparum homologue that can rescue the mpodd(−) phenotype, thereby showing that the gene is functionally conserved. As far as can be detected, mpodd is found in myzozoans, has homologues in the phylum Apicomplexa and appears to have arisen in free-living dinoflagellates. This suggests that the MPODD protein has a conserved mitochondrial role that is important for myzozoans. While previous studies identified a number of essential proteins which are generally highly conserved evolutionarily, our study identifies, for the first time, a non-canonical protein fulfilling a crucial function in the mitochondrion during parasite transmission.
Collapse
Affiliation(s)
- Dennis Klug
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Gunnar R Mair
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Ross G Douglas
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
38
|
Liu S, Roellig DM, Guo Y, Li N, Frace MA, Tang K, Zhang L, Feng Y, Xiao L. Evolution of mitosome metabolism and invasion-related proteins in Cryptosporidium. BMC Genomics 2016; 17:1006. [PMID: 27931183 PMCID: PMC5146892 DOI: 10.1186/s12864-016-3343-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/25/2016] [Indexed: 11/10/2022] Open
Abstract
Background The switch from photosynthetic or predatory to parasitic life strategies by apicomplexans is accompanied with a reductive evolution of genomes and losses of metabolic capabilities. Cryptosporidium is an extreme example of reductive evolution among apicomplexans, with losses of both the mitosome genome and many metabolic pathways. Previous observations on reductive evolution were largely based on comparative studies of various groups of apicomplexans. In this study, we sequenced two divergent Cryptosporidium species and conducted a comparative genomic analysis to infer the reductive evolution of metabolic pathways and differential evolution of invasion-related proteins within the Cryptosporidium lineage. Results In energy metabolism, Cryptosporidium species differ from each other mostly in mitosome metabolic pathways. Compared with C. parvum and C. hominis, C. andersoni possesses more aerobic metabolism and a conventional electron transport chain, whereas C. ubiquitum has further reductions in ubiquinone and polyisprenoid biosynthesis and has lost both the conventional and alternative electron transport systems. For invasion-associated proteins, similar to C. hominis, a reduction in the number of genes encoding secreted MEDLE and insulinase-like proteins in the subtelomeric regions of chromosomes 5 and 6 was also observed in C. ubiquitum and C. andersoni, whereas mucin-type glycoproteins are highly divergent between the gastric C. andersoni and intestinal Cryptosporidium species. Conclusions Results of the study suggest that rapidly evolving mitosome metabolism and secreted invasion-related proteins could be involved in tissue tropism and host specificity in Cryptosporidium spp. The finding of progressive reduction in mitosome metabolism among Cryptosporidium species improves our knowledge of organelle evolution within apicomplexans. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3343-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiyou Liu
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Dawn M Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Yaqiong Guo
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Na Li
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Michael A Frace
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Kevin Tang
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lihua Xiao
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA.
| |
Collapse
|
39
|
Marreiros BC, Calisto F, Castro PJ, Duarte AM, Sena FV, Silva AF, Sousa FM, Teixeira M, Refojo PN, Pereira MM. Exploring membrane respiratory chains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1039-1067. [PMID: 27044012 DOI: 10.1016/j.bbabio.2016.03.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 01/20/2023]
Abstract
Acquisition of energy is central to life. In addition to the synthesis of ATP, organisms need energy for the establishment and maintenance of a transmembrane difference in electrochemical potential, in order to import and export metabolites or to their motility. The membrane potential is established by a variety of membrane bound respiratory complexes. In this work we explored the diversity of membrane respiratory chains and the presence of the different enzyme complexes in the several phyla of life. We performed taxonomic profiles of the several membrane bound respiratory proteins and complexes evaluating the presence of their respective coding genes in all species deposited in KEGG database. We evaluated 26 quinone reductases, 5 quinol:electron carriers oxidoreductases and 18 terminal electron acceptor reductases. We further included in the analyses enzymes performing redox or decarboxylation driven ion translocation, ATP synthase and transhydrogenase and we also investigated the electron carriers that perform functional connection between the membrane complexes, quinones or soluble proteins. Our results bring a novel, broad and integrated perspective of membrane bound respiratory complexes and thus of the several energetic metabolisms of living systems. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Bruno C Marreiros
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipa Calisto
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Paulo J Castro
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Afonso M Duarte
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Andreia F Silva
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Patrícia N Refojo
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal.
| |
Collapse
|
40
|
Leckenby A, Hall N. Genomic changes during evolution of animal parasitism in eukaryotes. Curr Opin Genet Dev 2015; 35:86-92. [PMID: 26637954 DOI: 10.1016/j.gde.2015.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/21/2022]
Abstract
Understanding how pathogens have evolved to survive in close association with their hosts is an important step in unraveling the biology of host-pathogen interactions. Comparative genomics is a powerful tool to approach this problem as an increasing number of genomes of multiple pathogen species and strains become available. The ever-growing catalog of genome sequences makes comparison of organisms easier, but it also allows us to reconstitute the evolutionary processes occurring at the genomic level that may have led to the acquisition of pathogenic or parasitic mechanisms.
Collapse
Affiliation(s)
- Amber Leckenby
- Department of Functional and Comparative Genomics, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Neil Hall
- Department of Functional and Comparative Genomics, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|
41
|
Jacot D, Waller RF, Soldati-Favre D, MacPherson DA, MacRae JI. Apicomplexan Energy Metabolism: Carbon Source Promiscuity and the Quiescence Hyperbole. Trends Parasitol 2015; 32:56-70. [PMID: 26472327 DOI: 10.1016/j.pt.2015.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/28/2015] [Accepted: 09/03/2015] [Indexed: 12/17/2022]
Abstract
The nature of energy metabolism in apicomplexan parasites has been closely investigated in the recent years. Studies in Plasmodium spp. and Toxoplasma gondii in particular have revealed that these parasites are able to employ enzymes in non-traditional ways, while utilizing multiple anaplerotic routes into a canonical tricarboxylic acid (TCA) cycle to satisfy their energy requirements. Importantly, some life stages of these parasites previously considered to be metabolically quiescent are, in fact, active and able to adapt their carbon source utilization to survive. We compare energy metabolism across the life cycle of malaria parasites and consider how this varies in other apicomplexans and related organisms, while discussing how this can be exploited for therapeutic intervention in these diseases.
Collapse
Affiliation(s)
- Damien Jacot
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - James I MacRae
- The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
42
|
Stairs CW, Leger MM, Roger AJ. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140326. [PMID: 26323757 PMCID: PMC4571565 DOI: 10.1098/rstb.2014.0326] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 12/27/2022] Open
Abstract
Across the diversity of life, organisms have evolved different strategies to thrive in hypoxic environments, and microbial eukaryotes (protists) are no exception. Protists that experience hypoxia often possess metabolically distinct mitochondria called mitochondrion-related organelles (MROs). While there are some common metabolic features shared between the MROs of distantly related protists, these organelles have evolved independently multiple times across the breadth of eukaryotic diversity. Until recently, much of our knowledge regarding the metabolic potential of different MROs was limited to studies in parasitic lineages. Over the past decade, deep-sequencing studies of free-living anaerobic protists have revealed novel configurations of metabolic pathways that have been co-opted for life in low oxygen environments. Here, we provide recent examples of anaerobic metabolism in the MROs of free-living protists and their parasitic relatives. Additionally, we outline evolutionary scenarios to explain the origins of these anaerobic pathways in eukaryotes.
Collapse
Affiliation(s)
- Courtney W Stairs
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| | - Michelle M Leger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| |
Collapse
|
43
|
|
44
|
Muñoz-Gómez SA, Slamovits CH, Dacks JB, Baier KA, Spencer KD, Wideman JG. Ancient homology of the mitochondrial contact site and cristae organizing system points to an endosymbiotic origin of mitochondrial cristae. Curr Biol 2015; 25:1489-95. [PMID: 26004762 DOI: 10.1016/j.cub.2015.04.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/23/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
Abstract
Mitochondria are eukaryotic organelles that originated from an endosymbiotic α-proteobacterium. As an adaptation to maximize ATP production through oxidative phosphorylation, mitochondria contain inner membrane invaginations called cristae. Recent work has characterized a multi-protein complex in yeast and animal mitochondria called MICOS (mitochondrial contact site and cristae organizing system), responsible for the determination and maintenance of cristae [1-4]. However, the origin and evolution of these characteristic mitochondrial features remain obscure. We therefore conducted a comprehensive search for MICOS components across the major groups that encompass eukaryotic diversity to determine the extent of conservation of this complex. We detected homologs for the majority of MICOS components among opisthokonts (the group containing animals and fungi), but only Mic60 and Mic10 were consistently identified outside this group. The conservation of Mic60 and Mic10 in eukaryotes is consistent with their central role in MICOS function [5-7], indicating that the basic mechanism for cristae determination arose early in evolution and has remained relatively unchanged. We found that eukaryotes with ultrastructurally simplified anaerobic mitochondria that lack cristae have also lost MICOS. We then searched for a prokaryotic MICOS and identified a homolog of Mic60 present only in α-proteobacteria, providing evidence for the endosymbiotic origin of mitochondrial cristae. Our study clarifies the origins of mitochondrial cristae and their subsequent evolutionary history, provides evidence for a general mechanism of cristae formation and maintenance in eukaryotes, and points to a new potential factor involved in membrane differentiation in prokaryotes.
Collapse
Affiliation(s)
- Sergio A Muñoz-Gómez
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Claudio H Slamovits
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Canadian Institute for Advanced Research, Halifax, NS B3H 4R2, Canada
| | - Joel B Dacks
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Kaitlyn A Baier
- Department of Science, Augustana Faculty, University of Alberta, Camrose, AB T4V 2R3, Canada
| | - Katelyn D Spencer
- Department of Science, Augustana Faculty, University of Alberta, Camrose, AB T4V 2R3, Canada
| | - Jeremy G Wideman
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Science, Augustana Faculty, University of Alberta, Camrose, AB T4V 2R3, Canada.
| |
Collapse
|
45
|
Ryan U, Hijjawi N. New developments in Cryptosporidium research. Int J Parasitol 2015; 45:367-73. [DOI: 10.1016/j.ijpara.2015.01.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/24/2022]
|
46
|
Antimalarial iron chelator FBS0701 blocks transmission by Plasmodium falciparum gametocyte activation inhibition. Antimicrob Agents Chemother 2014; 59:1418-26. [PMID: 25512427 DOI: 10.1128/aac.04642-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Reducing the transmission of the malarial parasite by Anopheles mosquitoes using drugs or vaccines remains a main focus in the efforts to control malaria. Iron chelators have been studied as potential antimalarial drugs due to their activities against different stages of the parasite. The iron chelator FBS0701 affects the development of Plasmodium falciparum early gametocytes and lowers blood-stage parasitemia. Here, we tested the effect of FBS0701 on stage V gametocyte infectivity for mosquitoes. The incubation of stage V gametocytes for up to 3 days with increasing concentrations of FBS0701 resulted in a significant dose-related reduction in mosquito infectivity, as measured by the numbers of oocysts per mosquito. The reduction in mosquito infectivity was due to the inhibition of male and female gametocyte activation. The preincubation of FBS0701 with ferric chloride restored gametocyte infectivity, showing that the inhibitory effect of FBS0701 was quenched by iron. Deferoxamine, another iron chelator, also reduced gametocyte infectivity but to a lesser extent. Finally, the simultaneous administration of drug and gametocytes to mosquitoes without previous incubation did not significantly reduce the numbers of oocysts. These results show the importance of gametocyte iron metabolism as a potential target for new transmission-blocking strategies.
Collapse
|
47
|
Abstract
Apicomplexan parasites include some of the most prevalent and deadly human pathogens. Novel antiparasitic drugs are urgently needed. Synthesis and metabolism of isoprenoids may present multiple targets for therapeutic intervention. The apicoplast-localized methylerythritol phosphate (MEP) pathway for isoprenoid precursor biosynthesis is distinct from the mevalonate (MVA) pathway used by the mammalian host, and this pathway is apparently essential in most Apicomplexa. In this review, we discuss the current field of research on production and metabolic fates of isoprenoids in apicomplexan parasites, including the acquisition of host isoprenoid precursors and downstream products. We describe recent work identifying the first MEP pathway regulator in apicomplexan parasites, and introduce several promising areas for ongoing research into this well-validated antiparasitic target.
Collapse
Affiliation(s)
- Leah Imlay
- Department of Molecular Microbiology Washington University School of Medicine St. Louis, MO 63110 USA
| | - Audrey R Odom
- Department of Pediatrics Washington University School of Medicine St. Louis, MO 63110 USA & Department of Molecular Microbiology Washington University School of Medicine St. Louis, MO 63110 USA
| |
Collapse
|
48
|
Abstract
Malaria parasites have had profound effects on human populations for millennia, but other terrestrial vertebrates are impacted by malaria as well. Entire species of birds have been driven to extinction, and many others are threatened by population declines. Recent studies have shown that host-switching is quite common among malaria parasite lineages, and these switches often involve a significant shift in the environment in which the parasites find themselves, including nucleated vs non-nucleated red blood cells and red vs white blood cells. Therefore, it is important to understand how parasites adapt to these different host environments. The mitochondrial cytochrome b (cyt b) gene shows evidence of adaptive molecular evolution among malaria parasite groups, putatively because of its critical role in the electron transport chain (ETC) in cellular metabolism. Two hypotheses were addressed here: (1) mitochondrial components of the ETC (cyt b and cytochrome oxidase 1 [COI]) should show evidence of adaptive evolution (i.e., selection) and (2) selection should be evident in host switches. Overall we found a signature of constraint (e.g., purifying selection) across the four genes included here, but we also found evidence of positive selection associated with host switches in cyt b and, surprisingly, in (apicoplast) caseinolytic protease C. These results suggest that evidence of selection should be widespread across these parasite genomes.
Collapse
|
49
|
Chappell CL, Okhuysen PC, Langer-Curry RC, Lupo PJ, Widmer G, Tzipori S. Cryptosporidium muris: infectivity and illness in healthy adult volunteers. Am J Trop Med Hyg 2014; 92:50-5. [PMID: 25311695 DOI: 10.4269/ajtmh.14-0525] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Although Cryptosporidium parvum and C. hominis cause the majority of human cryptosporidiosis cases, other Cryptosporidium species are also capable of infecting humans, particularly when individuals are immunocompromised. Ten C. muris cases have been reported, primarily in human immunodeficiency virus (HIV) -positive patients with diarrhea. However, asymptomatic cases were reported in two HIV-negative children, and in another case, age and immune status were not described. This study examines the infectivity of C. muris in six healthy adults. Volunteers were challenged with 10(5) C. muris oocysts and monitored for 6 weeks for infection and/or illness. All six patients became infected. Two patients experienced a self-limited diarrheal illness. Total oocysts shed during the study ranged from 6.7 × 10(6) to 4.1 × 10(8), and the number was slightly higher in volunteers with diarrhea (2.8 × 10(8)) than asymptomatic shedders (4.4 × 10(7)). C. muris-infected subjects shed oocysts longer than occurred with other species studied in healthy volunteers. Three volunteers shed oocysts for 7 months. Physical examinations were normal, with no reported recurrence of diarrhea or other gastrointestinal complaints. Two persistent shedders were treated with nitazoxanide, and the infection was resolved. Thus, healthy adults are susceptible to C. muris, which can cause mild diarrhea and result in persistent, asymptomatic infection.
Collapse
Affiliation(s)
- Cynthia L Chappell
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas; Division of Infectious Diseases, Medical School, University of Texas Health Science Center at Houston, Houston, Texas; Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - Pablo C Okhuysen
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas; Division of Infectious Diseases, Medical School, University of Texas Health Science Center at Houston, Houston, Texas; Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - Rebecca C Langer-Curry
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas; Division of Infectious Diseases, Medical School, University of Texas Health Science Center at Houston, Houston, Texas; Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - Philip J Lupo
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas; Division of Infectious Diseases, Medical School, University of Texas Health Science Center at Houston, Houston, Texas; Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - Giovanni Widmer
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas; Division of Infectious Diseases, Medical School, University of Texas Health Science Center at Houston, Houston, Texas; Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - Saul Tzipori
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas; Division of Infectious Diseases, Medical School, University of Texas Health Science Center at Houston, Houston, Texas; Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| |
Collapse
|
50
|
Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie 2014; 100:3-17. [DOI: 10.1016/j.biochi.2013.11.018] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 11/24/2013] [Indexed: 11/20/2022]
|