1
|
Kafle A, Suttiprapa S. Current State of Knowledge on Blood and Tissue-Based Biomarkers for Opisthorchis viverrini-induced Cholangiocarcinoma: A Review of Prognostic, Predictive, and Diagnostic Markers. Asian Pac J Cancer Prev 2024; 25:25-41. [PMID: 38285765 PMCID: PMC10911713 DOI: 10.31557/apjcp.2024.25.1.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/19/2024] [Indexed: 01/31/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a prevalent cancer in Southeast Asia, with Opisthorchis viverrini (O.viverrini) infection being the primary risk factor. Most CCA cases in this region are diagnosed at advanced stages, leading to unfavorable prognoses. The development of stage-specific biomarkers for Opisthorchis viverrini-induced cholangiocarcinoma (Ov-CCA) holds crucial significance, as it facilitates early detection and timely administration of curative interventions, effectively mitigating the high morbidity and mortality rates associated with this disease in the Great Mekong region. Biomarkers are a promising approach for early detection, prognosis, and targeted treatment of CCA. Disease-specific biomarkers facilitate early detection and enable monitoring of therapy effectiveness, allowing for any necessary corrections. This review provides an overview of the potential O. viverrini-specific molecular biomarkers and important markers for diagnosing and monitoring Ov-CCA, discussing their prognostic, predictive, and diagnostic value. Despite the limited research in this domain, several potential biomarkers have been identified, encompassing both worm-induced and host-induced factors. This review offers a thorough examination of historical and contemporary progress in identifying biomarkers through multiomics techniques, along with their potential implications for early detection and treatment.
Collapse
Affiliation(s)
- Alok Kafle
- Tropical Medicine Graduate Program, Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Sutas Suttiprapa
- Tropical Medicine Graduate Program, Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
- Tropical Disease Research Center, WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
2
|
Cadamuro M, Strazzabosco M. Inflammatory pathways and cholangiocarcinoma risk mechanisms and prevention. Adv Cancer Res 2022; 156:39-73. [PMID: 35961707 PMCID: PMC10916841 DOI: 10.1016/bs.acr.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cholangiocarcinoma (CCA), a neoplasm burdened by a poor prognosis and currently lacking adequate therapeutic treatments, can originate at different levels of the biliary tree, in the intrahepatic, hilar, or extrahepatic area. The main risk factors for the development of CCA are the presence of chronic cholangiopathies of various etiology. To date, the most studied prodromal diseases of CCA are primary sclerosing cholangitis, Caroli's disease and fluke infestations, but other conditions, such as metabolic syndrome, nonalcoholic fatty liver disease and obesity, are emerging as associated with an increased risk of CCA development. In this review, we focused on the analysis of the pro-inflammatory mechanisms that induce the development of CCA and on the role of cells of the immune response in cholangiocarcinogenesis. In very recent times, these cellular mechanisms have been the subject of emerging studies aimed at verifying how the modulation of the inflammatory and immunological responses can have a therapeutic significance and how these can be used as therapeutic targets.
Collapse
Affiliation(s)
| | - Mario Strazzabosco
- Liver Center, Department of Internal Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
3
|
Kim JW, Yi J, Park J, Jeong JH, Kim J, Won J, Chung S, Kim TS, Pak JH. Transcriptomic profiling of three-dimensional cholangiocyte spheroids long term exposed to repetitive Clonorchis sinensis excretory-secretory products. Parasit Vectors 2021; 14:213. [PMID: 33879231 PMCID: PMC8056535 DOI: 10.1186/s13071-021-04717-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/01/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Biliary tract infection with the carcinogenic human liver fluke, Clonorchis sinensis, provokes chronic inflammation, epithelial hyperplasia, periductal fibrosis, and even cholangiocarcinoma. Complications are proportional to the intensity and duration of the infection. In addition to mechanical irritation of the biliary epithelia from worms, their excretory-secretory products (ESPs) cause chemical irritation, which leads to inflammation, proliferation, and free radical generation. METHODS A three-dimensional in vitro cholangiocyte spheroid culture model was established, followed by ESP treatment. This allowed us to examine the intrinsic pathological mechanisms of clonorchiasis via the imitation of prolonged and repetitive in vivo infection. RESULTS Microarray and RNA-Seq analysis revealed that ESP-treated cholangiocyte H69 spheroids displayed global changes in gene expression compared to untreated spheroids. In ESP-treated H69 spheroids, 185 and 63 probes were found to be significantly upregulated and downregulated, respectively, corresponding to 209 genes (p < 0.01, fold change > 2). RNA-Seq was performed for the validation of the microarray results, and the gene expression patterns in both transcriptome platforms were well matched for 209 significant genes. Gene ontology analysis demonstrated that differentially expressed genes were mainly classified into immune system processes, the extracellular region, and the extracellular matrix. Among the upregulated genes, four genes (XAF1, TRIM22, CXCL10, and BST2) were selected for confirmation using quantitative RT-PCR, resulting in 100% similar expression patterns in microarray and RNA-Seq. CONCLUSIONS These findings broaden our understanding of the pathological pathways of liver fluke-associated hepatobiliary disorders and suggest a novel therapeutic strategy for this infectious cancer.
Collapse
Affiliation(s)
- Jung-Woong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Junyeong Yi
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505 Republic of Korea
| | - Jinhong Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Ji Hoon Jeong
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505 Republic of Korea
| | - Jinho Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Jihee Won
- School of Mechanical Engineering, Korea University, Seoul, 02841 Republic of Korea
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul, 02841 Republic of Korea
| | - Tong-Soo Kim
- Department of Tropical Medicine and Parasitology, Inha University School of Medicine, Incheon, 22212 Republic of Korea
| | - Jhang Ho Pak
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505 Republic of Korea
| |
Collapse
|
4
|
Prum S, Plumworasawat S, Chaiyadet S, Saichua P, Thanan R, Laha T, Laohaviroj M, Sripa B, Suttiprapa S. Characterization and in vitro functional analysis of thioredoxin glutathione reductase from the liver fluke Opisthorchis viverrini. Acta Trop 2020; 210:105621. [PMID: 32659283 DOI: 10.1016/j.actatropica.2020.105621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 12/20/2022]
Abstract
The carcinogenic liver fluke Opisthorchis viverrini causes several hepatobiliary diseases including a bile duct cancer-cholangiocarcinoma (CCA), which is a major public health problem in many countries in the Greater Mekong Sub-region. Praziquantel is the main drug against this parasite, however, reduced drug efficacy has been observed in some endemic areas. Therefore, alternative drugs are needed to prepare for praziquantel resistance in the future. The selenoprotein thioredoxin glutathione reductase (TGR) enzyme, which plays a crucial role in cellular redox balance of parasitic flatworms, has been shown as a potential drug target against these parasites. Hence, this study aimed to investigate the TGR of O. viverrini and assess its potential as a drug target. An open reading frame (ORF) that encodes O. viverrini TGR (Ov-TGR) was cloned from an O. viverrini cDNA library and the nucleotide were sequenced. The 1,812 nucleotides of the Ov-TGR full ORF encoded a polypeptide of 603 amino acid residues with a predicted molecular mass of 66 kDa. The putative amino acid sequence shared 55-96.8% similarities with TGRs from other helminths and mammals. Phylogenetic analysis revealed a close relationship of Ov-TGR with that of other trematodes. The ORF of Ov-TGR was inserted into pABC2 plasmid and transformed into Escherichia coli strain C321.ΔA to facilitate selenocysteine incorporation. The recombinant Ov-TGR (rOv-TGR-SEC) was expressed as a soluble protein and detected as a dimer form in the non-reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Its thioredoxin reductase (TrxR) and glutathione reductase (GR) activities were detected using DTNB, Trx and GSSG substrates with the Michaelis constant (Km) of 292.6 ± 52.3 µM, 8.09 ± 1.91 µM and 13.74 ± 1.2 µM, respectively. The TGR enzyme activities were effectively inhibited by a well-known inhibitor, auranofin in a dose-dependent manner. Moreover, auranofin expressed a lethal toxic effect on both newly excysted juveniles (NEJs) and adult worms of O. viverrini in vitro. Taken together, these results indicated that Ov-TGR is crucial for O. viverrini survival and maybe a potential target for the development of novel agents against opisthorschiasis.
Collapse
Affiliation(s)
- Satya Prum
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sirikanya Plumworasawat
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sujittra Chaiyadet
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Prasert Saichua
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Banchob Sripa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Pathology Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sutas Suttiprapa
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
5
|
Salao K, Spofford EM, Price C, Mairiang E, Suttiprapa S, Wright HL, Sripa B, Edwards SW. Enhanced neutrophil functions during Opisthorchis viverrini infections and correlation with advanced periductal fibrosis. Int J Parasitol 2020; 50:145-152. [PMID: 32006550 DOI: 10.1016/j.ijpara.2019.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/21/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022]
Abstract
Millions of people are infected with the liver fluke, Opisthorchis viverrini (OV), but only ~25% of those infected develop liver disease and even fewer develop cholangiocarcinoma. The reasons for these differential outcomes following infection are unknown but it has been proposed that differential immune responses to the parasite may play a role. We therefore measured granulocyte (neutrophil) function in OV-infected individuals, with and without advanced periductal fibrosis, to determine if these cells have a "pro-inflammatory" phenotype that may contribute to liver disease post-infection. A case-controlled study (n = 54 in each cohort) from endemic OV-infected areas of northeastern Thailand measured neutrophil functions in whole blood from non-infected (healthy controls) and OV-infected individuals with and without APF. We measured reactive oxygen species production, phagocytosis, receptor expression and apoptosis. Secreted products from OV cultures (obtained after in vitro culture of parasites) stimulated reactive oxygen species production in non-infected healthy controls, but levels were two-fold greater after OV infection (P < 0.0001); neutrophil reactive oxygen species production in individuals with APF was double that observed in those without APF (P < 0.0001). OV-infected neutrophils had elevated CD11b expression and greater phagocytic capacity, which was even three-fold higher in those with advanced periductal fibrosis (P < 0.0001). This "activated" phenotype of circulating neutrophils was further confirmed by the observation that isolated neutrophils had delayed apoptosis ex vivo. We believe this is the first study to show that circulating blood neutrophil function is enhanced following OV infection and is more activated in those with advanced periductal fibrosis. We propose that this activated phenotype could contribute to the pathology of liver disease. These data support the hypothesis of an activated innate inflammatory phenotype following OV infection and provide the first evidence for involvement of neutrophils in disease pathology.
Collapse
Affiliation(s)
- Kanin Salao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Edward M Spofford
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Charlotte Price
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Eimorn Mairiang
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sutas Suttiprapa
- Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Helen L Wright
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 7ZB, UK
| | - Banchob Sripa
- Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Steven W Edwards
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
6
|
Ta BTT, Nguyen DL, Jala I, Dontumprai R, Plumworasawat S, Aighewi O, Ong E, Shawley A, Potriquet J, Saichua P, van Diepen A, Sripa B, Hokke CH, Suttiprapa S. Identification, recombinant protein production, and functional analysis of a M60-like metallopeptidase, secreted by the liver fluke Opisthorchis viverrini. Parasitol Int 2019; 75:102050. [PMID: 31901435 DOI: 10.1016/j.parint.2019.102050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023]
Abstract
The carcinogenic liver fluke Opisthorchis viverrini (O. viverrini) is endemic in Thailand and neighboring countries including Laos PDR, Vietnam and Cambodia. Infections with O. viverrini lead to hepatobiliary abnormalities including bile duct cancer-cholangiocarcinoma (CCA). Despite decades of extensive studies, the underlying mechanisms of how this parasite survives in the bile duct and causes disease are still unclear. Therefore, this study aims to identify and characterize the most abundant protein secreted by the parasite. Proteomics and bioinformatics analysis revealed that the most abundant secretory protein is a metallopeptidase, named Ov-M60-like-1. This protein contains an N-terminal carbohydrate-binding domain and a C-terminal M60-like domain with a zinc metallopeptidase HEXXH motif. Further analysis by mass spectrometry revealed that Ov-M60-like-1 is N-glycosylated. Recombinant Ov-M60-like-1 (rOv-M60-like-1) expressed in Escherichia coli (E. coli) was able to digest bovine submaxillary mucin (BSM). The mucinase activity was inhibited by the ion chelating agent EDTA, confirming its metallopeptidase identity. The enzyme was active at temperatures ranging 25-37 °C in a broad pH range (pH 2-10). The identification of Ov-M60-like-1 mucinase as the major secretory protein of O. viverrini worms warrants further research into the role of this glycoprotein in the pathology induced by this carcinogenic worm.
Collapse
Affiliation(s)
- Binh T T Ta
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - D Linh Nguyen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Isabelle Jala
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Rieofarng Dontumprai
- Department of Microbiology, Faculty of Science, Mahidol University - RAMA VI, Bangkok 10400, Thailand
| | - Sirikanya Plumworasawat
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Omorose Aighewi
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Emily Ong
- Occidental College, 1600 Campus Road, Los Angeles, CA 90041, USA
| | - Audrey Shawley
- Occidental College, 1600 Campus Road, Los Angeles, CA 90041, USA
| | - Jeremy Potriquet
- Australian Institute of Tropical Health & Medicine, James Cook University, Douglas, QLD 4814, Australia
| | - Prasert Saichua
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Banchob Sripa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Sutas Suttiprapa
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
7
|
Pak JH, Lee JY, Jeon BY, Dai F, Yoo WG, Hong SJ. Cytokine Production in Cholangiocarcinoma Cells in Response to Clonorchis sinensis Excretory-Secretory Products and Their Putative Protein Components. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:379-387. [PMID: 31533404 PMCID: PMC6753296 DOI: 10.3347/kjp.2019.57.4.379] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/01/2019] [Indexed: 01/23/2023]
Abstract
Clonorchis sinensis is a carcinogenic human liver fluke that promotes hepatic inflammatory environments via direct contact or through their excretory-secretory products (ESPs), subsequently leading to cholangitis, periductal fibrosis, liver cirrhosis, and even cholangiocarcinoma (CCA). This study was conducted to examine the host inflammatory responses to C. sinensis ESPs and their putative protein components selected from C. sinensis expressed sequenced tag (EST) pool databases, including TGF-β receptor interacting protein 1(CsTRIP1), legumain (CsLeg), and growth factor binding protein 2 (CsGrb2). Treatment of CCA cells (HuCCT1) with the ESPs or bacterial recombinant C. sinensis proteins differentially promoted the secretion of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) as well as anti-inflammatory cytokines (IL-10, TGF-β1, and TGF-β2) in a time-dependent manner. In particular, recombinant C. sinensis protein treatment resulted in increase (at maximum) of ~7-fold in TGF-β1, ~30-fold in TGF-β2, and ~3-fold in TNF-α compared with the increase produced by ESPs, indicating that CsTrip1, CsLeg, and CsGrb2 function as strong inducers for secretion of these cytokines in host cells. These results suggest that C. sinensis ESPs contribute to the immunopathological response in host cells, leading to clonorchiasis-associated hepatobiliary abnormalities of greater severity.
Collapse
Affiliation(s)
- Jhang Ho Pak
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Ji-Yun Lee
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul 06987, Korea
| | - Bo Young Jeon
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Fuhong Dai
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul 06987, Korea.,Department of Parasitology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, 199 Ren-ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P.R. China
| | - Won Gi Yoo
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul 06987, Korea
| | - Sung-Jong Hong
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul 06987, Korea
| |
Collapse
|
8
|
Prueksapanich P, Piyachaturawat P, Aumpansub P, Ridtitid W, Chaiteerakij R, Rerknimitr R. Liver Fluke-Associated Biliary Tract Cancer. Gut Liver 2018; 12:236-245. [PMID: 28783896 PMCID: PMC5945254 DOI: 10.5009/gnl17102] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/29/2017] [Accepted: 05/06/2017] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive cancer arising from epithelial cells of the bile duct. Most patients with CCA have an unresectable tumor at the time of diagnosis. In Western countries, the risk of CCA increases in patients with primary sclerosing cholangitis, whereas liver fluke infection appears to be the major risk factor for CCA in Asian countries. A diagnosis of liver fluke infection often relies on stool samples, including microscopic examination, polymerase chain reaction-based assays, and fluke antigen detection. Tests of serum, saliva and urine samples are also potentially diagnostic. The presence of liver fluke along with exogenous carcinogens magnifies the risk of CCA in people living in endemic areas. The “liver fluke-cholangiocarcinoma” carcinogenesis pathways consist of mechanical damage to the bile duct epithelium, immunopathologic and cellular reactions to the liver fluke’s antigens and excretory/secretory products, liver fluke-induced changes in the biliary tract microbiome and the effects of repeated treatment for liver fluke. A vaccine and novel biomarkers are needed for the primary and secondary prevention of CCA in endemic areas. Importantly, climate change exerts an effect on vector-borne parasitic diseases, and awareness of liver fluke should be enhanced in potentially migrated habitat areas.
Collapse
Affiliation(s)
- Piyapan Prueksapanich
- Division of Gastroenterology, Department of Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
| | - Panida Piyachaturawat
- Division of Gastroenterology, Department of Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
| | - Prapimphan Aumpansub
- Division of Gastroenterology, Department of Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
| | - Wiriyaporn Ridtitid
- Division of Gastroenterology, Department of Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
| | - Roongruedee Chaiteerakij
- Division of Gastroenterology, Department of Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Department of Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
| |
Collapse
|
9
|
Tiwananthagorn S, Srivorakul S, Khochakul V, Pringproa K. Biliary cystadenoma associated with Opisthorchis viverrini infection in a domestic cat (Felis catus). Vet Parasitol 2018; 258:138-141. [PMID: 29779756 DOI: 10.1016/j.vetpar.2018.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 04/06/2018] [Accepted: 05/03/2018] [Indexed: 12/27/2022]
Abstract
A 12-year-old, female, domestic cat (Felis catus) presented with dehydration, emaciation, anorexia, and lethargy. The cat was unresponsive to medical treatment and euthanized; the carcass was submitted for pathological diagnosis. Necropsy revealed icteric mucous membranes. The liver was enlarged, with multinodular, cystic, white masses, 0.5-4.0 cm in diameter, scattered throughout. Microscopically, the biliary epithelium presented with a proliferation of multifocal cystic masses, occasionally with periodic acid-Schiff-positive fluid within the cysts. Simple cuboidal epithelial cells showed small, round to oval, vesicular nuclei and rare mitotic figures. There were also multifocal trematode-like parasites situated within the biliary tracts. Immunohistochemistry of the cystic masses was positive for pan-cytokeratin and proliferating cell nuclear antigen, while negative for vimentin. Molecular analysis and gene sequencing of the parasite indicated that it was Opisthorchis viverrini. Based on the pathological findings and molecular analysis, the cat was diagnosed with biliary cystadenoma related to O. viverrini infection. This report described an unusual case of O. viverrini infection associated with biliary tumor in a cat, and raises the possibility of domestic cats as a reservoir host of the human liver fluke.
Collapse
Affiliation(s)
- Saruda Tiwananthagorn
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand; Center of Excellence in Veterinary Bioscience, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Saralee Srivorakul
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Varangpicha Khochakul
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand; Center of Excellence in Veterinary Bioscience, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
10
|
Edwards SW, Spofford EM, Price C, Wright HL, Salao K, Suttiprapa S, Sripa B. Opisthorchiasis-Induced Cholangiocarcinoma: How Innate Immunity May Cause Cancer. ADVANCES IN PARASITOLOGY 2018; 101:149-176. [PMID: 29907253 DOI: 10.1016/bs.apar.2018.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Innate, inflammatory responses towards persistent Opisthorchis viverrini (OV) infection are likely to contribute to the development of cholangiocarcinoma (CCA), a liver cancer that is rare in the West but prevalent in Greater Mekong Subregion countries in Southeast Asia. Infection results in the infiltration of innate immune cells into the bile ducts and subsequent activation of inflammatory immune responses that fail to clear OV but instead may damage local tissues within the bile ducts. Not all patients infected with OV develop CCA, and so tumourigenesis may be dependent on multiple factors including the magnitude of the inflammatory response that is activated in infected individuals. The purpose of this review is to summarize how innate immune responses may promote tumourigenesis following OV infection and if such responses can be used to predict CCA onset in OV-infected individuals. It also hypothesizes on the role that Helicobacterspp., which are associated with liver fluke infections, may play in activation of the innate the immune system to promote tissue damage and persistent inflammation leading to CCA.
Collapse
Affiliation(s)
- Steven W Edwards
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Edward M Spofford
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Charlotte Price
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Helen L Wright
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Kanin Salao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sutas Suttiprapa
- Tropical Medicine Graduate Program, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Banchob Sripa
- Tropical Medicine Graduate Program, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
11
|
Suttiprapa S, Sotillo J, Smout M, Suyapoh W, Chaiyadet S, Tripathi T, Laha T, Loukas A. Opisthorchis viverrini Proteome and Host-Parasite Interactions. ADVANCES IN PARASITOLOGY 2018; 102:45-72. [PMID: 30442310 DOI: 10.1016/bs.apar.2018.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The omics technologies have improved our understanding of the molecular events that underpin host-parasite interactions and the pathogenesis of parasitic diseases. In the last decade, proteomics and genomics in particular have been used to characterize the surface and secreted products of the carcinogenic liver fluke Opisthorchis viverrini and revealed important roles for proteins at the host-parasite interface to ensure that the flukes can migrate, feed and reproduce in a hostile environment. This review summarizes the advances made in this area, primarily focusing on discoveries enabled by the publication of the fluke secreted proteomes over the last decade. Protein families that will be covered include proteases, antioxidants, oncogenic proteins and the secretion of exosome-like extracellular vesicles. Roles of these proteins in host-parasite interactions and pathogenesis of fluke-induced hepatobiliary diseases, including cholangiocarcinogenesis, are discussed. Future directions for the application of this knowledge to control infection and disease will also be discussed.
Collapse
|
12
|
Tripathi T, Suttiprapa S, Sripa B. Unusual thiol-based redox metabolism of parasitic flukes. Parasitol Int 2017; 66:390-395. [DOI: 10.1016/j.parint.2016.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 11/27/2022]
|
13
|
Shukla R, Shukla H, Kalita P, Sonkar A, Pandey T, Singh DB, Kumar A, Tripathi T. Identification of potential inhibitors of Fasciola gigantica thioredoxin1: computational screening, molecular dynamics simulation, and binding free energy studies. J Biomol Struct Dyn 2017. [DOI: 10.1080/07391102.2017.1344141] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rohit Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Harish Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Parismita Kalita
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Amit Sonkar
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Tripti Pandey
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Dev Bukhsh Singh
- Department of Biotechnology, Institute of Biosciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
14
|
Pak JH, Shin J, Song IS, Shim S, Jang SW. Clonorchis sinensis excretory–secretory products regulate migration and invasion in cholangiocarcinoma cells via extracellular signal-regulated kinase 1/2/nuclear factor-κB-dependent matrix metalloproteinase-9 expression. Int J Parasitol 2017; 47:51-59. [DOI: 10.1016/j.ijpara.2016.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 01/09/2023]
|
15
|
Angelucci F, Miele AE, Ardini M, Boumis G, Saccoccia F, Bellelli A. Typical 2-Cys peroxiredoxins in human parasites: Several physiological roles for a potential chemotherapy target. Mol Biochem Parasitol 2016; 206:2-12. [PMID: 27002228 DOI: 10.1016/j.molbiopara.2016.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 01/07/2023]
Abstract
Peroxiredoxins (Prxs) are ubiquitary proteins able to play multiple physiological roles, that include thiol-dependent peroxidase, chaperone holdase, sensor of H2O2, regulator of H2O2-dependent signal cascades, and modulator of the immune response. Prxs have been found in a great number of human pathogens, both eukaryotes and prokaryotes. Gene knock-out studies demonstrated that Prxs are essential for the survival and virulence of at least some of the pathogens tested, making these proteins potential drug targets. However, the multiplicity of roles played by Prxs constitutes an unexpected obstacle to drug development. Indeed, selective inhibitors of some of the functions of Prxs are known (namely of the peroxidase and holdase functions) and are here reported. However, it is often unclear which function is the most relevant in each pathogen, hence which one is most desirable to inhibit. Indeed there are evidences that the main physiological role of Prxs may not be the same in different parasites. We here review which functions of Prxs have been demonstrated to be relevant in different human parasites, finding that the peroxidase and chaperone activities figure prominently, whereas other known functions of Prxs have rarely, if ever, been observed in parasites, or have largely escaped detection thus far.
Collapse
Affiliation(s)
- Francesco Angelucci
- Department of Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Adriana Erica Miele
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Matteo Ardini
- Department of Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanna Boumis
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Fulvio Saccoccia
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Andrea Bellelli
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
16
|
Gasser RB, Tan P, Teh BT, Wongkham S, Young ND. Genomics of worms, with an emphasis on Opisthorchis viverrini - opportunities for fundamental discovery and biomedical outcomes. Parasitol Int 2016; 66:341-345. [PMID: 26792076 DOI: 10.1016/j.parint.2016.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 12/24/2022]
Abstract
Neglected tropical diseases cause substantial morbidity and mortality in animals and people globally. Opisthorchiasis is one such disease, caused by the carcinogenic, Asian liver fluke, Opisthorchis viverrini. This hepatobiliary disease is known to be associated with malignant cancer (cholangiocarcinoma, CCA) and affects millions of people in Asia, including Thailand, Lao People's Democratic Republic (PDR) and Cambodia. No vaccine is available, and only one drug (praziquantel) is routinely employed against the parasite. Relatively little is known about the molecular biology of the fluke itself and the disease complex that it causes in humans. With the advent of high-throughput nucleic acid sequencing and bioinformatic technologies, it has now become possible to gain global insights into the molecular biology of parasites. The purpose of this minireview is (i) to discuss recent progress on the genomics of parasitic worms, with an emphasis on the draft genome and transcriptome of O. viverrini; (ii) to use results from an integrated, global analysis of the genomic and transcriptomic data, to explain how we believe that this carcinogenic fluke establishes in the biliary system, how it feeds, survives and protects itself in such a hostile, microaerobic environment within the liver, and to propose how this parasite evades or modulates host attack; and (iii) to indicate some of the challenges, and, more importantly, the exciting opportunities that the 'omic resources for O. viverrini now provide for a plethora of fundamental and applied research areas. Looking ahead, we hope that this genomic resource stimulates vibrant and productive collaborations within a consortium context, focused on the effective control of opisthorchiasis.
Collapse
Affiliation(s)
- Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Patrick Tan
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Republic of Singapore; Division of Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 138672, Republic of Singapore
| | - Bin Tean Teh
- Division of Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 138672, Republic of Singapore
| | - Sopit Wongkham
- Faculty of Medicine, Department of Biochemistry, Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
17
|
Gupta A, Pandey T, Kumar B, Tripathi T. Preferential regeneration of thioredoxin from parasitic flatworm Fasciola gigantica using glutathione system. Int J Biol Macromol 2015; 81:983-90. [DOI: 10.1016/j.ijbiomac.2015.09.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/03/2015] [Accepted: 09/21/2015] [Indexed: 01/09/2023]
|
18
|
Matchimakul P, Rinaldi G, Suttiprapa S, Mann VH, Popratiloff A, Laha T, Pimenta RN, Cochran CJ, Kaewkes S, Sripa B, Brindley PJ. Apoptosis of cholangiocytes modulated by thioredoxin of carcinogenic liver fluke. Int J Biochem Cell Biol 2015; 65:72-80. [PMID: 26007234 DOI: 10.1016/j.biocel.2015.05.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/27/2015] [Accepted: 05/14/2015] [Indexed: 02/07/2023]
Abstract
Chronic infection with the food-borne liver fluke, Opisthorchis viverrini, frequently induces cancer of the bile ducts, cholangiocarcinoma. Opisthorchiasis is endemic in Thailand, Lao PDR, Cambodia and Vietnam, where eating undercooked freshwater fish carrying the juvenile stage of this pathogen leads to human infection. Because inhibition of apoptosis facilitates carcinogenesis, this study investigated modulation by thioredoxin from O. viverrini of apoptosis of bile duct epithelial cells, cholangiocytes. Cells of a cholangiocyte line were incubated with the parasite enzyme after which they were exposed hydrogen peroxide. Oxidative stress-induced apoptosis was monitored using flow cytometry, growth in real time and imaging of living cells using laser confocal microscopy. Immunolocalization revealed liver fluke thioredoxin within cholangiocytes. Cells exposed to thioredoxin downregulated apoptotic genes in the mitogen activated protein kinases pathway and upregulated anti-apoptosis-related genes including apoptosis signaling kinase 1, caspase 9, caspase 8, caspase 3, survivin and others. Western blots of immunoprecipitates of cell lysates revealed binding of thioredoxin to apoptosis signaling kinase 1. Together the findings indicated that thioredoxin from O. viverrini inhibited oxidative stress-induced apoptosis of bile duct epithelial cells, which supports a role for this liver fluke oxidoreductase in opisthorchiasis-induced cholangiocarcinogenesis.
Collapse
Affiliation(s)
- Pitchaya Matchimakul
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Gabriel Rinaldi
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA; Parasite Genomics, Wellcome Trust Sanger Institute, Genome Campus, Hinxton CB10 1SA, UK
| | - Sutas Suttiprapa
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA; Department of Microbiology, Faculty of Science, Mahidol University, Rachthewee, Bangkok 10400, Thailand
| | - Victoria H Mann
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Anastas Popratiloff
- Center for Microscopy & Image Analysis, and Department of Anatomy & Regenerative Biology, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Rafael N Pimenta
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Christina J Cochran
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Sasithorn Kaewkes
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Banchob Sripa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Paul J Brindley
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
19
|
Zhou C, Bian M, Liao H, Mao Q, Li R, Zhou J, Wang X, Li S, Liang C, Li X, Huang Y, Yu X. Identification and immunological characterization of thioredoxin transmembrane-related protein from Clonorchis sinensis. Parasitol Res 2013; 112:1729-36. [PMID: 23403994 DOI: 10.1007/s00436-013-3331-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/29/2013] [Indexed: 01/23/2023]
Abstract
Thioredoxin transmembrane related protein (TMX), a member of thioredoxin superfamily, is localized to the endoplasmic reticulum and possesses a thioredoxin-like domain that plays an important role as an oxidoreductase. The functions of TMX in Clonorchis sinensis remain to be elucidated. In this study, we cloned and characterized a novel TMX of C. sinensis (CsTMX). The CsTMX cDNA sequence contained a 414-nucleotide open-reading frame encoding a protein of 137 amino acids. A thioredoxin domain was found in the position of aa21-117 and contained the putative active-site motif Cys-Pro-Ala-Cys. BLASTx analysis showed that CsTMX shared 39-57% amino acid identities with TMX of other organisms. Quantitative RT-PCR analysis demonstrated that CsTMX was differentially transcribed, with the highest level of expression in the adult worm stage and the lowest expression in egg stage. In addition, immunofluorescence assay showed CsTMX was localized in the tegument, vitelline gland, intestine, and intrauterine eggs of adult worm. Besides, immunoblot assay revealed that the recombinant CsTMX (rCsTMX) could be recognized by the sera from rats infected with C. sinensis and the sera from rats immunized by excretory-secretory products. Furthermore, analysis of the antibody isotype profile revealed that rats subcutaneously immunized with rCsTMX developed rCsTMX-specific antibody, which is dominance of IgG2a in sera. Meanwhile, production of IFN-γ was elevated strongly in the supernatants of spleen cell. The results collectively indicated that CsTMX might play an important role in the host-parasite interaction, as well as CsTMX probably involved in immunoregulation of host by inducing Th1-type dominated immune response in rats.
Collapse
Affiliation(s)
- Chenhui Zhou
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|