1
|
Jakobs N, Andreotti S, Ramünke S, von Samson-Himmelstjerna G, Krücken J. Differences in constitutive gene expression of cytochrome P450 enzymes and ATP-binding cassette transporter gene expression between a susceptible and a highly macrocyclic lactone-resistant Haemonchus contortus isolate in the absence of drug-inducible expression. Parasit Vectors 2024; 17:505. [PMID: 39668355 PMCID: PMC11636055 DOI: 10.1186/s13071-024-06568-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/04/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Anthelmintic resistance in ruminants is a widespread problem that has a severe impact on productivity and animal welfare. The helminth Haemonchus contortus is generally considered the most important parasite in small ruminants due to its high pathogenicity and the widespread occurrence of anthelmintic resistance in it. Although the molecular mechanisms associated with resistance against the anthelmintics benzimidazoles (BZs) and levamisole are relatively well understood, the resistance mechanisms against the widely used anthelmintic macrocyclic lactones (MLs) ivermectin (IVM) and moxidectin (MOX) remain poorly understood. Detoxifying enzymes and xenobiotic transporters have been frequently proposed to play a role in ML resistance in multiple organisms, including nematodes. METHODS The reference genome of H. contortus was screened for cytochrome P450 genes (cyp genes) by using the Basic Local Alignment Search Tool, and maximum-likelihood phylogenetic analysis was used to assign the sequences to gene families. Fourth-stage larvae of the susceptible (McMaster) and the ML-resistant (Berlin-selected) H. contortus isolates were generated in vitro and compared regarding basal expression levels of cyp genes and ATP-binding cassette (ABC) transporters by using RNA sequencing. The resistant isolate was further incubated with 100 nM IVM or MOX for 3, 6 and 12 h, and the effects of incubation time and drugs were evaluated. RESULTS Twenty-five cyp genes were identified in the H. contortus genome and assigned to 13 different families. The ML-resistant isolate showed significantly higher and lower constitutive expression of 13 and four cyp genes, respectively. Out of the 50 ABC transporter genes, only six showed significantly higher expression in the ML-resistant isolate, while 12 showed lower expression. The fold changes were in general low (range 0.44-5.16). Only pgp-13 showed significant downregulation in response to IVM (0.77 fold change at 6 h, 0.96 fold change at 12 h) and MOX (0.84 fold change at 12 h). In contrast, mrp-5 was significantly, albeit minimally, upregulated in the presence of IVM, but not MOX, after 12 h (1.02 fold change). CONCLUSIONS Despite little observable ML-inducible gene expression in the isolate examined here, some of the changes in the baseline expression levels might well contribute to ML resistance in the context of additional changes in a multigenic resistance model. However, neither cyp genes nor the ABC transporters appear to be the main drivers that can explain the high levels of resistance observed in the resistant isolate examined here.
Collapse
Affiliation(s)
- Natalie Jakobs
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Sandro Andreotti
- Institute of Computer Science, Bioinformatics Solution Center, Freie Universität Berlin, Berlin, Germany
| | - Sabrina Ramünke
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Georg von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Chen J, Wang D, Liu W, Zhou Y, Yang Q. Potential pesticide substrates of an insect ABCC transporter. INSECT SCIENCE 2024. [PMID: 39614641 DOI: 10.1111/1744-7917.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 12/01/2024]
Abstract
The use of synthetic pesticides carries a significant risk of pests developing resistance, leading to decreased pesticide effectiveness. ATP-binding cassette (ABC) transporters, especially the ABCC subfamily members, have been suggested to act as efflux pumps for various pesticides, thereby contributing to pesticide resistance. So far, the identification of potential pesticide substrates of insect ABC transporters is most often based on the quantification of transcript in arthropods. Here, we screened and identified the potential pesticide substrates of ABCC-9C from Tribolium castaneum based on an in vitro ATPase activity assay. Together with affinity evaluation-, cytotoxicity analysis-, and RNA interference-based bioactivity tests, we revealed that the insecticides, carbofuran, and buprofezin, are potential substrates of TcABCC-9C. Additionally, we identified an amphipathic translocation channel in the transmembrane domain of TcABCC-9C formed by 8 transmembrane helices. Molecular docking suggested that both carbofuran and buprofezin bind at the same site within the translocation channel via hydrophobic interactions. These findings indicate that TcABCC-9C might play a critical role in multi-pesticide resistance, providing a potential target for managing pesticide resistance and laying the groundwork for future pest control strategies. Given the conservations among ABCC subfamily members, the experimental model we developed in this study can be also applied to identify the potential substrates of other ABCC transporters, as well as to predict insecticide resistance mediated by ABCC transporters.
Collapse
Affiliation(s)
- Jinli Chen
- School of Bioengineering, Dalian University of Technology, Dalian, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dong Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Liu
- School of Bioengineering, Dalian University of Technology, Dalian, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanyuan Zhou
- School of Bioengineering, Dalian University of Technology, Dalian, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Stryiński R, Polak I, Gawryluk A, Rosa P, Łopieńska-Biernat E. The response of Anisakis simplex (s. s.) to anthelmintics - Specific changes in xenobiotic metabolic processes. Exp Parasitol 2024; 261:108751. [PMID: 38604302 DOI: 10.1016/j.exppara.2024.108751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Anisakiasis is a parasitic disease transmitted through the consumption of raw or undercooked fish and cephalopods that are infected with larvae of Anisakis simplex (sensu stricto) or Anisakis pegreffii. The purpose of this study was to investigate how A. simplex (s. s.) responds to the influence of anthelmintics such as ivermectin (IVM) and pyrantel (PYR). In vitro experiments were conducted using larvae at two developmental stages of A. simplex (s. s.) (L3 and L4) obtained from Baltic herring (Clupea harengus membras). Larvae were cultured with different concentrations of IVM or PYR (1.56, 3.125, and 6.25 μg/mL) for various durations (3, 6, 9, and 12 h) under anaerobic conditions (37 °C, 5% CO2). The gene expression of actin, ABC transporter, antioxidant enzymes, γ-aminobutyric acid receptors, and nicotinic acetylcholine receptors, as well as the oxidative status were analyzed. The results showed that A. simplex (s. s.) L3 stage had lower mobility when cultured with PYR compared to IVM. The analysis of relative gene expression revealed significant differences in the mRNA level of ABC transporters after treatment with IVM and PYR, compared to the control group. Similar patterns were observed in the gene expression of antioxidant enzymes in response to both drugs. Furthermore, the total antioxidant capacity (TAC) and glutathione S-transferase (GST) activity were higher in the treatment groups than in the control group. These findings suggest a relationship between the expression of the studied genes, including those related to oxidative metabolism, and the effectiveness of the tested drugs.
Collapse
Affiliation(s)
- Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A Str., 10-719, Olsztyn, Poland.
| | - Iwona Polak
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A Str., 10-719, Olsztyn, Poland.
| | - Anna Gawryluk
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A Str., 10-719, Olsztyn, Poland.
| | - Paweł Rosa
- National Marine Fisheries Research Institute, Research Station in Świnoujście, Plac Słowiański 11 Str., 72-600, Świnoujście, Poland.
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A Str., 10-719, Olsztyn, Poland.
| |
Collapse
|
4
|
Reyes-Guerrero DE, Higuera-Piedrahita RI, Maza-Lopez J, Mendoza-de-Gives P, Camas-Pereyra R, López-Arellano ME. Analysis of P-gp genes relative expression associated to ivermectin resistance in Haemonchus contortus larval stages from in vitro cultures (L 3 and xL 3) and from gerbils ( Meriones unguiculatus) (L 4) as models of study. J Helminthol 2024; 98:e19. [PMID: 38356358 DOI: 10.1017/s0022149x24000087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The aim of the study was to compare the relative gene expression of Haemonchus contortus P-glycoprotein genes (Hco-pgp) between fourth (L4), infective (L3), and transitory infective (xL3) larval stages as laboratory models to study ivermectin (IVM) resistance. The H. contortus resistant to IVM (IVMr) and susceptible to IVM (IVMs) strains were used to develop xL3in vitro culture and to infect Meriones unguiculatus (gerbils) to collect L4 stages. Morphometric differences were evaluated from 25 individuals of H. contortus from each strain. Relative gene expression from xL3 and L4 was determined between comparison of IVMr stages and from IVMr vs IVMs stages. Seven Hco-pgp genes (1, 2, 3, 4, 9, 10, and 16) were analysed by RT-qPCR using L3 stage as control group, per strain, and GAPDH and β-tubulin as constitutive genes. Morphological changes were confirmed between xL3 and L4 developing oral shape, oesophagus, and intestinal tube. In addition, the body length and width showed statistical differences (p < 0.05). The Hco-pgp1, 2, 3, and 4 genes (p < 0.05) were upregulated from 7.1- to 463.82-fold changes between IVMr stages, and Hco-pgp9 (13.12-fold) and Hco-pgp10 (13.56-fold) genes showed differences between L4 and xL3, respectively. The comparative study between IVMr vs IVMs strains associated to xL3 and L4 displayed significant upregulation for most of the Hco-pgp genes among 4.89-188.71 fold-change. In conclusion, these results suggest the use of H. contortus xL3 and L4 as suitable laboratory models to study IVMr associated with Hco-pgp genes to contribute to the understanding of anthelmintic resistance.
Collapse
Affiliation(s)
- D E Reyes-Guerrero
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla 8534, C.P. 62574 Jiutepec, Mor., México
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
| | - R I Higuera-Piedrahita
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán-Teoloyucan Km 2.5, Col. San Sebastián Xhala. Cuautitlán, Estado de México, México
| | - J Maza-Lopez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla 8534, C.P. 62574 Jiutepec, Mor., México
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
| | - P Mendoza-de-Gives
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla 8534, C.P. 62574 Jiutepec, Mor., México
| | - R Camas-Pereyra
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla 8534, C.P. 62574 Jiutepec, Mor., México
| | - M E López-Arellano
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla 8534, C.P. 62574 Jiutepec, Mor., México
| |
Collapse
|
5
|
Mukherjee A, Kar I, Patra AK. Understanding anthelmintic resistance in livestock using "omics" approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125439-125463. [PMID: 38015400 DOI: 10.1007/s11356-023-31045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Widespread and improper use of various anthelmintics, genetic, and epidemiological factors has resulted in anthelmintic-resistant (AR) helminth populations in livestock. This is currently quite common globally in different livestock animals including sheep, goats, and cattle to gastrointestinal nematode (GIN) infections. Therefore, the mechanisms underlying AR in parasitic worm species have been the subject of ample research to tackle this challenge. Current and emerging technologies in the disciplines of genomics, transcriptomics, metabolomics, and proteomics in livestock species have advanced the understanding of the intricate molecular AR mechanisms in many major parasites. The technologies have improved the identification of possible biomarkers of resistant parasites, the ability to find actual causative genes, regulatory networks, and pathways of parasites governing the AR development including the dynamics of helminth infection and host-parasite infections. In this review, various "omics"-driven technologies including genome scan, candidate gene, quantitative trait loci, transcriptomic, proteomic, and metabolomic approaches have been described to understand AR of parasites of veterinary importance. Also, challenges and future prospects of these "omics" approaches are also discussed.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Animal Biotechnology, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Indrajit Kar
- Department of Avian Sciences, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Amlan Kumar Patra
- American Institute for Goat Research, Langston University, Oklahoma, 73050, USA.
| |
Collapse
|
6
|
Raza A, Williams AR, Abeer MM. Importance of ABC Transporters in the Survival of Parasitic Nematodes and the Prospect for the Development of Novel Control Strategies. Pathogens 2023; 12:755. [PMID: 37375445 DOI: 10.3390/pathogens12060755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
ABC transporters, a family of ATP-dependent transmembrane proteins, are responsible for the active transport of a wide range of molecules across cell membranes, including drugs, toxins, and nutrients. Nematodes possess a great diversity of ABC transporters; however, only P-glycoproteins have been well-characterized compared to other classes. The ABC transport proteins have been implicated in developing resistance to various classes of anthelmintic drugs in parasitic nematodes; their role in plant and human parasitic nematodes still needs further investigation. Therefore, ABC transport proteins offer a potential opportunity to develop nematode control strategies. Multidrug resistance inhibitors are becoming more attractive for controlling nematodes due to their potential to increase drug efficacy in two ways: (i) by limiting drug efflux from nematodes, thereby increasing the amount of drug that reaches its target site, and (ii) by reducing drug excretion by host animals, thereby enhancing drug bioavailability. This article reviews the role of ABC transporters in the survival of parasitic nematodes, including the genes involved, their regulation and physiological roles, as well as recent developments in their characterization. It also discusses the association of ABC transporters with anthelmintic resistance and the possibility of targeting them with next-generation inhibitors or nutraceuticals (e.g., polyphenols) to control parasitic infections.
Collapse
Affiliation(s)
- Ali Raza
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD 4067, Australia
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Frederiksberg, Denmark
| | | |
Collapse
|
7
|
Reyes-Guerrero DE, Jiménez-Jacinto V, Alonso-Morales RA, Alonso-Díaz MÁ, Maza-Lopez J, Camas-Pereyra R, Olmedo-Juárez A, Higuera-Piedrahita RI, López-Arellano ME. Assembly and Analysis of Haemonchus contortus Transcriptome as a Tool for the Knowledge of Ivermectin Resistance Mechanisms. Pathogens 2023; 12:pathogens12030499. [PMID: 36986421 PMCID: PMC10059914 DOI: 10.3390/pathogens12030499] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Haemonchus contortus (Hc) is an important parasitic nematode of small ruminants. In this study we assembled the transcriptome of Hc as a model to contribute to the knowledge about the profile of the differential gene expression between two Mexican Hc strains under different anthelmintic resistance statuses, one susceptible and the other resistant to ivermectin (IVMs and IVMr, respectively), in order to improve and/or to have new strategies of control and diagnosis. The transcript sequence reads were assembled and annotated. Overall, ~127 Mbp were assembled and distributed into 77,422 transcript sequences, and 4394 transcripts of the de novo transcriptome were matched base on at least one of the following criteria: (1) Phylum Nemathelminthes and Platyhelminthes, important for animal health care, and (2) ≥55% of sequence identity with other organisms. The gene ontology (GO) enrichment analysis (GOEA) was performed to study the level of gene regulation to IVMr and IVMs strains using Log Fold Change (LFC) filtering values ≥ 1 and ≥ 2. The upregulated-displayed genes obtained via GOEA were: 1993 (for LFC ≥ 1) and 1241 (for LFC ≥ 2) in IVMr and 1929 (for LFC ≥ 1) and 835 (for LFC ≥ 2) in IVMs. The enriched GO terms upregulated per category identified the intracellular structure, intracellular membrane-bounded organelle and integral component of the cell membrane as some principal cellular components. Meanwhile, efflux transmembrane transporter activity, ABC-type xenobiotic transporter activity and ATPase-coupled transmembrane transporter activity were associated with molecular function. Responses to nematicide activity, pharyngeal pumping and positive regulation of synaptic assembly were classified as biological processes that might be involved in events related to the anthelmintic resistance (AR) and nematode biology. The filtering analysis of both LFC values showed similar genes related to AR. This study deepens our knowledge about the mechanisms behind the processes of H. contortus in order to help in tool production and to facilitate the reduction of AR and promote the development of other control strategies, such as anthelmintic drug targets and vaccines.
Collapse
Affiliation(s)
- David Emanuel Reyes-Guerrero
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla 8534, Jiutepec C.P. 62574, Morelos, Mexico
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Ciudad de México, Mexico
| | - Verónica Jiménez-Jacinto
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, Cuernavaca C.P. 62210, Morelos, Mexico
| | - Rogelio Alejandro Alonso-Morales
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Ciudad de México, Mexico
| | - Miguel Ángel Alonso-Díaz
- Centro de Enseñanza, Investigación y Extensión en Ganadería Tropical, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Km. 5. Carr. Fed. Tlapacoyan-Martínez de la Torre, Martínez de la Torre C.P. 93600, Veracruz, Mexico
| | - Jocelyn Maza-Lopez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla 8534, Jiutepec C.P. 62574, Morelos, Mexico
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Ciudad de México, Mexico
| | - René Camas-Pereyra
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla 8534, Jiutepec C.P. 62574, Morelos, Mexico
| | - Agustín Olmedo-Juárez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla 8534, Jiutepec C.P. 62574, Morelos, Mexico
| | - Rosa Isabel Higuera-Piedrahita
- Facultad de Estudios Superiores Cuautitlán, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Cuautitlán-Teoloyucan Km 2.5, Col. San Sebastián Xhala. Cuautitlán, C.P. 54714, Estado de México, Mexico
| | - María Eugenia López-Arellano
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla 8534, Jiutepec C.P. 62574, Morelos, Mexico
| |
Collapse
|
8
|
Beesley NJ, Cwiklinski K, Allen K, Hoyle RC, Spithill TW, La Course EJ, Williams DJL, Paterson S, Hodgkinson JE. A major locus confers triclabendazole resistance in Fasciola hepatica and shows dominant inheritance. PLoS Pathog 2023; 19:e1011081. [PMID: 36701396 PMCID: PMC9904461 DOI: 10.1371/journal.ppat.1011081] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/07/2023] [Accepted: 12/22/2022] [Indexed: 01/27/2023] Open
Abstract
Fasciola hepatica infection is responsible for substantial economic losses in livestock worldwide and poses a threat to human health in endemic areas. The mainstay of control in livestock and the only drug licenced for use in humans is triclabendazole (TCBZ). TCBZ resistance has been reported on every continent and threatens effective control of fasciolosis in many parts of the world. To date, understanding the genetic mechanisms underlying TCBZ resistance has been limited to studies of candidate genes, based on assumptions of their role in drug action. Taking an alternative approach, we combined a genetic cross with whole-genome sequencing to localise a ~3.2Mbp locus within the 1.2Gbp F. hepatica genome that confers TCBZ resistance. We validated this locus independently using bulk segregant analysis of F. hepatica populations and showed that it is the target of drug selection in the field. We genotyped individual parasites and tracked segregation and reassortment of SNPs to show that TCBZ resistance exhibits Mendelian inheritance and is conferred by a dominant allele. We defined gene content within this locus to pinpoint genes involved in membrane transport, (e.g. ATP-binding cassette family B, ABCB1), transmembrane signalling and signal transduction (e.g. GTP-Ras-adenylyl cyclase and EGF-like protein), DNA/RNA binding and transcriptional regulation (e.g. SANT/Myb-like DNA-binding domain protein) and drug storage and sequestration (e.g. fatty acid binding protein, FABP) as prime candidates for conferring TCBZ resistance. This study constitutes the first experimental cross and genome-wide approach for any heritable trait in F. hepatica and is key to understanding the evolution of drug resistance in Fasciola spp. to inform deployment of efficacious anthelmintic treatments in the field.
Collapse
Affiliation(s)
- Nicola J Beesley
- Veterinary Parasitology, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Krystyna Cwiklinski
- Veterinary Parasitology, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Katherine Allen
- Veterinary Parasitology, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Rebecca C Hoyle
- Veterinary Parasitology, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Terry W Spithill
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Australia
| | | | - Diana J L Williams
- Veterinary Parasitology, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Steve Paterson
- Centre for Genomic Research, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jane E Hodgkinson
- Veterinary Parasitology, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
9
|
Langeland A, Jetter H, O'Halloran DM. The diversity of ABC transporter genes across the Phylum Nematoda. Parasitol Int 2021; 83:102357. [PMID: 33901678 DOI: 10.1016/j.parint.2021.102357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/25/2022]
Abstract
It is estimated that one billion people globally are infected by parasitic nematodes, with children, pregnant women, and the elderly particularly susceptible to morbidity from infection. Control methods are limited to de-worming, which is hampered by rapid re-infection and the inevitable development of anthelmintic resistance. One family of proteins that has been implicated in nematode anthelmintic resistance are the ATP binding cassette (ABC) transporters. ABC transporters are characterized by a highly conserved ATP-binding domain and variable transmembrane regions. A growing number of studies have associated ABC transporters in anthelmintic resistance through a protective mechanism of drug efflux. Genetic deletion of P glycoprotein type ABC transporters in Caenorhabditis elegans demonstrated increased sensitivity to anthelmintics, while in the livestock parasite, Haemonchus contortus, anthelmintic use has been shown to increase the expression of ATP transporter genes. These studies as well as others, provide evidence for a potential role of ABC transporters in drug resistance in nematodes. In order to understand more about the family of ABC transporters, we used hidden Markov models to predict ABC transporter proteins from 108 species across the phylum Nematoda and use these data to analyze patterns of diversification and loss in diverse nematode species. We also examined temporal patterns of expression for the ABC transporter family within the filarial nematode Brugia malayi and identify cases of differential expression across diverse life-cycle stages. Taken together, our data provide a comprehensive overview of ABC transporters in diverse nematode species and identify examples of gene loss and diversification in nematodes based on lifestyle and taxonomy.
Collapse
Affiliation(s)
- Andrea Langeland
- Department of Biological Sciences, The George Washington University, Bell Hall 307, 2029 G Street NW, Washington, DC 20052, USA
| | - Haley Jetter
- Department of Biological Sciences, The George Washington University, Bell Hall 307, 2029 G Street NW, Washington, DC 20052, USA
| | - Damien M O'Halloran
- Department of Biological Sciences, The George Washington University, Bell Hall 307, 2029 G Street NW, Washington, DC 20052, USA.
| |
Collapse
|
10
|
Hartman JH, Widmayer SJ, Bergemann CM, King DE, Morton KS, Romersi RF, Jameson LE, Leung MCK, Andersen EC, Taubert S, Meyer JN. Xenobiotic metabolism and transport in Caenorhabditis elegans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:51-94. [PMID: 33616007 PMCID: PMC7958427 DOI: 10.1080/10937404.2021.1884921] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Caenorhabditis elegans has emerged as a major model in biomedical and environmental toxicology. Numerous papers on toxicology and pharmacology in C. elegans have been published, and this species has now been adopted by investigators in academic toxicology, pharmacology, and drug discovery labs. C. elegans has also attracted the interest of governmental regulatory agencies charged with evaluating the safety of chemicals. However, a major, fundamental aspect of toxicological science remains underdeveloped in C. elegans: xenobiotic metabolism and transport processes that are critical to understanding toxicokinetics and toxicodynamics, and extrapolation to other species. The aim of this review was to initially briefly describe the history and trajectory of the use of C. elegans in toxicological and pharmacological studies. Subsequently, physical barriers to chemical uptake and the role of the worm microbiome in xenobiotic transformation were described. Then a review of what is and is not known regarding the classic Phase I, Phase II, and Phase III processes was performed. In addition, the following were discussed (1) regulation of xenobiotic metabolism; (2) review of published toxicokinetics for specific chemicals; and (3) genetic diversity of these processes in C. elegans. Finally, worm xenobiotic transport and metabolism was placed in an evolutionary context; key areas for future research highlighted; and implications for extrapolating C. elegans toxicity results to other species discussed.
Collapse
Affiliation(s)
- Jessica H Hartman
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Samuel J Widmayer
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | | | - Dillon E King
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Katherine S Morton
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Riccardo F Romersi
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Laura E Jameson
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Maxwell C K Leung
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | - Stefan Taubert
- Dept. Of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, the University of British Colombia, Vancouver, BC, Canada
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| |
Collapse
|
11
|
Nuryady MM, Nurcahyo RW, Hindun I, Fatmawati D. Multidrug resistance protein structure of Trypanosoma evansi isolated from buffaloes in Ngawi District, Indonesia: A bioinformatics analysis. Vet World 2021; 14:33-39. [PMID: 33642783 PMCID: PMC7896887 DOI: 10.14202/vetworld.2021.33-39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/03/2020] [Indexed: 12/05/2022] Open
Abstract
Background and Aim: Trypanosomiasis, also known as surra, is an infectious disease with a wide host spectrum. In Indonesia, this disease is caused by Trypanosoma evansi. Various trypanocidal drugs have been used to treat this pathogen and subsequent disease. Yet, the long-term trypanocidal administration generates drug-resistant T. evansi. Some have identified genetic alterations in T. evansi transporter protein-coding genes that may be responsible for drug resistance. The Multidrug Resistance Protein E (MRPE) gene is a likely candidate gene responsible for the individual resistance. To date, no research has focused on T. evansi MRPE (TevMRPE) in this context. Hence, this research aimed at analyzing and characterizing the TevMRPE gene and protein using a bioinformatics approach. Materials and Methods: T. evansi was isolated from buffalo suffering from surra in Ngawi Regency, Indonesia. Isolated T. evansi was inoculated and cultured in male mice. The T. evansi genome was isolated from mouse blood with a parasitemia degree as high as 105. A polymerase chain reaction procedure was conducted to amplify the putative MRPE coding gene. The amplicon was sequenced and analyzed using MEGA X, BLAST, and I-tasser softwares. Results: The putative TevMRPE coding gene showed sequence similarity as high as 99.79% against the MRPE gene from Trypanosoma brucei gambiense. The protein profile and characteristics depicted that the putative TevMRPE protein was related to a family of Adenosine Triphosphate-Binding Cassette (ABC) transporter proteins. This family of transporter proteins plays a crucial role in the resistance toward several medicines. Conclusion: The obtained gene sequence in this research was identified as the TevMRPE. This gene is homologous to the T. brucei gambiense MRPE gene and possesses ligand active sites for Adenylyl Imidodiphosphate. In addition, MRPE contains enzyme active sites similar to the cystic fibrosis transmembrane conductance regulator. These data suggest that ABC transport proteins, like MRPE, may be necessary to confer trypanocidal drug resistance in T. evansi.
Collapse
Affiliation(s)
- Moh Mirza Nuryady
- Department of Biology Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah Malang, Malang, Indonesia.,Master Program of Veterinary Science, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Raden Wisnu Nurcahyo
- Master Program of Veterinary Science, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia.,Department of Parasitology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Iin Hindun
- Department of Biology Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah Malang, Malang, Indonesia
| | - Diani Fatmawati
- Department of Biology Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah Malang, Malang, Indonesia
| |
Collapse
|
12
|
Kooliyottil R, Rao Gadhachanda K, Solo N, Dandurand LM. ATP-Binding Cassette (ABC) Transporter Genes in Plant-Parasitic Nematodes: An Opinion for Development of Novel Control Strategy. FRONTIERS IN PLANT SCIENCE 2020; 11:582424. [PMID: 33329645 PMCID: PMC7715011 DOI: 10.3389/fpls.2020.582424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/05/2020] [Indexed: 05/18/2023]
Affiliation(s)
- Rinu Kooliyottil
- Citrus Budwood Registration Program, Division of Plant Industry, Florida Department of Agriculture and Consumer Services, La Crosse, FL, United States
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | | | - Nejra Solo
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Louise-Marie Dandurand
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| |
Collapse
|
13
|
Identification of candidate ATP-binding cassette transporter gene family members in Diaphorina citri (Hemiptera: Psyllidae) via adult tissues transcriptome analysis. Sci Rep 2019; 9:15842. [PMID: 31676883 PMCID: PMC6825165 DOI: 10.1038/s41598-019-52402-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
The ATP-binding cassette (ABC) transporters exist in all living organisms and play major roles in various biological functions by transporting a wide variety of substrates across membranes. The functions of ABC transporters in drug resistance have been extensively studied in vertebrates; however, they are rarely characterized in agricultural pests. The Asian citrus psyllid, Diaphorina citri, is one of the most damaging pests of the Citrus genus because of its transmission of Huanglongbing, also known as Yellow Dragon disease. In this study, the next-generation sequencing technique was applied to research the ABC transporters of D. citri. Fifty-three ABC transporter genes were found in the RNA-Seq data, and among these ABC transporters, 4, 4, 5, 2, 1, 4, 18 and 15 ABC proteins belonged to the ABCA-ABCH subfamilies, respectively. Different expression profiles of 52 genes between imidacloprid-resistant and imidacloprid-susceptible strains were studied by qRT-PCR; 5 ABCGs and 4 ABCHs were significantly upregulated in the imidacloprid-resistant strain. In addition, five of the nine upregulated genes were widely expressed in adult tissues in spatial expression analysis. The results suggest that these genes may play key roles in this phenotype. In general, this study contributed to our current understanding of D. citri resistance to insecticides.
Collapse
|
14
|
Kellerová P, Matoušková P, Lamka J, Vokřál I, Szotáková B, Zajíčková M, Pasák M, Skálová L. Ivermectin-induced changes in the expression of cytochromes P450 and efflux transporters in Haemonchus contortus female and male adults. Vet Parasitol 2019; 273:24-31. [DOI: 10.1016/j.vetpar.2019.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/12/2019] [Accepted: 07/20/2019] [Indexed: 12/12/2022]
|
15
|
Lucchetti C, Genchi M, Venco L, Menozzi A, Serventi P, Bertini S, Bazzocchi C, Kramer LH, Vismarra A. Differential ABC transporter gene expression in adult Dirofilaria immitis males and females following in vitro treatment with ivermectin, doxycycline or a combination of both. Parasit Vectors 2019; 12:401. [PMID: 31409391 PMCID: PMC6693208 DOI: 10.1186/s13071-019-3645-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/25/2019] [Indexed: 12/29/2022] Open
Abstract
Background Combination doxycycline/macrocyclic lactone (ML) protocols have been shown to provide a more rapid adulticidal and microfilaricidal effect than either MLs or doxycycline alone, although female worms were reported to have a higher tolerance to treatments compared to male worms. The present study aimed to evaluate how ABC transporters may be involved in the synergic effect of the combination treatment. Adult worms of D. immitis were treated in vitro for 24 hours with doxycycline (DOXY), ivermectin (IVM) and a combination of both, and changes in the modulation of ABC transporter genes were measured. Levels of doxycycline inside different treatment media, post-treatment, were determined through HPLC analysis. Results Quantitative RT-PCR analysis showed the presence of changes in the modulation of ABC transporter genes evaluated in this study. In particular, in female worms, the combination treatment induced a substantial increase in gene expressions, especially of Dim-pgp-10 and Dim-haf-4; whereas in male worms, the greatest increase in gene expression was observed for Dim-pgp-10 and Dim-pgp-11 when treated with DMSO + IVM and DMSO + DOXY/IVM. HPLC analysis of the DOXY concentrations in the media after in vitro treatments of male worms showed a slight difference between the DMSO + DOXY samples and the combination (DMSO + DOXY + IVM), while no difference was observed among females. Conclusions Further studies are required to explain whether the modulation of cellular efflux plays a role, even partially, in the adulticide effect of doxycycline/macrocyclic lactone combinations in heartworm-infected dogs. To the authors’ knowledge, this is the first study to evaluate P-gp expression in adult D. immitis.
Collapse
Affiliation(s)
- Chiara Lucchetti
- Dept. of Veterinary Sciences, University of Parma, Parasitology Unit, 43126, Parma, Italy
| | - Marco Genchi
- Dept. of Veterinary Sciences, University of Parma, Parasitology Unit, 43126, Parma, Italy
| | - Luigi Venco
- Clinica Veterinaria Lago Maggiore, 28041, Arona, Italy
| | - Alessandro Menozzi
- Dept. of Veterinary Sciences, University of Parma, Pharmacology Unit, 43126, Parma, Italy
| | - Paolo Serventi
- Dept. of Veterinary Sciences, University of Parma, Pharmacology Unit, 43126, Parma, Italy
| | - Simone Bertini
- Dept. of Veterinary Sciences, University of Parma, Pharmacology Unit, 43126, Parma, Italy
| | - Chiara Bazzocchi
- Dept. of Veterinary Science, University of Milan, 20133, Milan, Italy
| | - Laura Helen Kramer
- Dept. of Veterinary Sciences, University of Parma, Parasitology Unit, 43126, Parma, Italy.
| | - Alice Vismarra
- Dept. of Veterinary Sciences, University of Parma, Parasitology Unit, 43126, Parma, Italy
| |
Collapse
|
16
|
Kitchen S, Ratnappan R, Han S, Leasure C, Grill E, Iqbal Z, Granger O, O'Halloran DM, Hawdon JM. Isolation and characterization of a naturally occurring multidrug-resistant strain of the canine hookworm, Ancylostoma caninum. Int J Parasitol 2019; 49:397-406. [PMID: 30771359 DOI: 10.1016/j.ijpara.2018.12.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
Abstract
Soil-transmitted nematodes infect over a billion people and place several billion more at risk of infection. Hookworm disease is the most significant of these soil-transmitted nematodes, with over 500 million people infected. Hookworm infection can result in debilitating and sometimes fatal iron-deficiency anemia, which is particularly devastating in children and pregnant women. Currently, hookworms and other soil-transmitted nematodes are controlled by administration of a single dose of a benzimidazole to targeted populations in endemic areas. While effective, people are quickly re-infected, necessitating frequent treatment. Widespread exposure to anthelmintic drugs can place significant selective pressure on parasitic nematodes to generate resistance, which has severely compromised benzimidazole anthelmintics for control of livestock nematodes in many areas of the world. Here we report, to our knowledge, the first naturally occurring multidrug-resistant strain of the canine hookworm Ancylostoma caninum. We reveal that this isolate is resistant to fenbendazole at the clinical dosage of 50 mg/kg for 3 days. Our data shows that this strain harbors a fixed, single base pair mutation at amino acid 167 of the β-tubulin isotype 1 gene, and by using CRISPR/Cas9 we demonstrate that introduction of this mutation into the corresponding amino acid in the orthologous β-tubulin gene of Caenorhabditis elegans confers a similar level of resistance to thiabendazole. We also show that the isolate is resistant to the macrocyclic lactone anthelmintic ivermectin. Understanding the mechanism of anthelmintic resistance is important for rational design of control strategies to maintain the usefulness of current drugs, and to monitor the emergence of resistance. The isolate we describe represents the first multidrug-resistant strain of A. caninum reported, and our data reveal a resistance marker that can emerge naturally in response to heavy anthelminthic treatment.
Collapse
Affiliation(s)
- Shannon Kitchen
- Department of Microbiology, Immunology, and Tropical Medicine, Ross Hall, 2300 I St. NW, The George Washington University, Washington, DC 20052, USA
| | - Ramesh Ratnappan
- Department of Microbiology, Immunology, and Tropical Medicine, Ross Hall, 2300 I St. NW, The George Washington University, Washington, DC 20052, USA
| | - Suhao Han
- Department of Microbiology, Immunology, and Tropical Medicine, Ross Hall, 2300 I St. NW, The George Washington University, Washington, DC 20052, USA
| | - Caitlyn Leasure
- Department of Microbiology, Immunology, and Tropical Medicine, Ross Hall, 2300 I St. NW, The George Washington University, Washington, DC 20052, USA
| | - Emilia Grill
- Department of Microbiology, Immunology, and Tropical Medicine, Ross Hall, 2300 I St. NW, The George Washington University, Washington, DC 20052, USA
| | - Zahra Iqbal
- Department of Microbiology, Immunology, and Tropical Medicine, Ross Hall, 2300 I St. NW, The George Washington University, Washington, DC 20052, USA
| | - Olivia Granger
- Department of Microbiology, Immunology, and Tropical Medicine, Ross Hall, 2300 I St. NW, The George Washington University, Washington, DC 20052, USA
| | - Damien M O'Halloran
- Department of Biological Sciences, The George Washington University, SEH 6000, 800 22nd St NW, Washington, DC 20052, USA
| | - John M Hawdon
- Department of Microbiology, Immunology, and Tropical Medicine, Ross Hall, 2300 I St. NW, The George Washington University, Washington, DC 20052, USA.
| |
Collapse
|
17
|
Luo YL, Ma GX, Luo YF, Kuang CY, Jiang AY, Li GQ, Zhou RQ. Tissue expression pattern of ABCG transporter indicates functional roles in reproduction of Toxocara canis. Parasitol Res 2018; 117:775-782. [PMID: 29423531 DOI: 10.1007/s00436-018-5751-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/05/2018] [Indexed: 01/16/2023]
Abstract
Toxocara canis is a zoonotic parasite with worldwide distribution. ATP-binding cassette (ABC) transporters are integral membrane proteins which involve in a range of biological processes in various organisms. In present study, the full-length coding sequence of abcg-5 gene of T. canis (Tc-abcg-5) was cloned and characterized. A 633 aa polypeptide containing two conserved Walker A and Walker B motifs was predicted from a continuous 1902 nt open reading frame. Quantitative real-time PCR was employed to determine the transcriptional levels of Tc-abcg-5 gene in adult male and female worms, which indicated high mRNA level of Tc-abcg-5 in the reproductive tract of adult female T. canis. Tc-abcg-5 was expressed to produce rabbit polyclonal antiserum against recombinant TcABCG5. Indirect-fluorescence immunohistochemical assays were carried out to detect the tissue distribution of TcABCG5, which showed predominant distribution of TcABCG5 in the uterus (especially in the germ cells) of adult female T. canis. Tissue transcription and expression pattern of Tc-abcg-5 indicated that Tc-abcg-5 might play essential roles in the reproduction of this parasitic nematode.
Collapse
Affiliation(s)
- Yong-Li Luo
- College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China
| | - Guang-Xu Ma
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yong-Fang Luo
- College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China
| | - Ce-Yan Kuang
- College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China
| | - Ai-Yun Jiang
- College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China
| | - Guo-Qing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Rong-Qiong Zhou
- College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China.
| |
Collapse
|
18
|
Peachey LE, Pinchbeck GL, Matthews JB, Burden FA, Lespine A, von Samson-Himmelstjerna G, Krücken J, Hodgkinson JE. P-glycoproteins play a role in ivermectin resistance in cyathostomins. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:388-398. [PMID: 29121562 PMCID: PMC5681340 DOI: 10.1016/j.ijpddr.2017.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023]
Abstract
Anthelmintic resistance is a global problem that threatens sustainable control of the equine gastrointestinal cyathostomins (Phylum Nematoda; Superfamily Strongyloidea). Of the three novel anthelmintic classes that have reached the veterinary market in the last decade, none are currently licenced in horses, hence current control regimens focus on prolonging the useful lifespan of licenced anthelmintics. This approach would be facilitated by knowledge of the resistance mechanisms to the most widely used anthelmintics, the macrocyclic lactones (ML). There are no data regarding resistance mechanisms to MLs in cyathostomins, although in other parasitic nematodes, the ABC transporters, P-glycoproteins (P-gps), have been implicated in playing an important role. Here, we tested the hypothesis that P-gps are, at least in part, responsible for reduced sensitivity to the ML ivermectin (IVM) in cyathostomins; first, by measuring transcript levels of pgp-9 in IVM resistant versus IVM sensitive third stage larvae (L3) pre-and post-IVM exposure in vitro. We then tested the effect of a range of P-gp inhibitors on the effect of IVM against the same populations of L3 using the in vitro larval development test (LDT) and larval migration inhibition test (LMIT). We demonstrated that, not only was pgp-9 transcription significantly increased in IVM resistant compared to IVM sensitive L3 after anthelmintic exposure (p < 0.001), but inhibition of P-gp activity significantly increased sensitivity of the larvae to IVM in vitro, an effect only observed in the IVM resistant larvae in the LMIT. These data strongly implicate a role for P-gps in IVM resistance in cyathostomins. Importantly, this raises the possibility that P-gp inhibitor-IVM combination treatments might be used in vivo to increase the effectiveness of IVM against cyathostomins in Equidae. Pgp-9 transcript levels were higher in ivermectin resistant versus susceptible cyathostomin populations. P-gp inhibitors increased ivermectin effect against cyathostomins in vitro. P-gp activity may play a role in ivermectin resistance in cyathostomins.
Collapse
Affiliation(s)
- L E Peachey
- Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park IC2, Brownlow Hill, Liverpool, United Kingdom.
| | - G L Pinchbeck
- Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park IC2, Brownlow Hill, Liverpool, United Kingdom
| | - J B Matthews
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, Scotland, United Kingdom
| | - F A Burden
- The Donkey Sanctuary, Sidmouth, Devon, United Kingdom
| | - A Lespine
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | - J Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - J E Hodgkinson
- Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park IC2, Brownlow Hill, Liverpool, United Kingdom
| |
Collapse
|
19
|
Choi YJ, Bisset SA, Doyle SR, Hallsworth-Pepin K, Martin J, Grant WN, Mitreva M. Genomic introgression mapping of field-derived multiple-anthelmintic resistance in Teladorsagia circumcincta. PLoS Genet 2017. [PMID: 28644839 PMCID: PMC5507320 DOI: 10.1371/journal.pgen.1006857] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Preventive chemotherapy has long been practiced against nematode parasites of livestock, leading to widespread drug resistance, and is increasingly being adopted for eradication of human parasitic nematodes even though it is similarly likely to lead to drug resistance. Given that the genetic architecture of resistance is poorly understood for any nematode, we have analyzed multidrug resistant Teladorsagia circumcincta, a major parasite of sheep, as a model for analysis of resistance selection. We introgressed a field-derived multiresistant genotype into a partially inbred susceptible genetic background (through repeated backcrossing and drug selection) and performed genome-wide scans in the backcross progeny and drug-selected F2 populations to identify the major genes responsible for the multidrug resistance. We identified variation linking candidate resistance genes to each drug class. Putative mechanisms included target site polymorphism, changes in likely regulatory regions and copy number variation in efflux transporters. This work elucidates the genetic architecture of multiple anthelmintic resistance in a parasitic nematode for the first time and establishes a framework for future studies of anthelmintic resistance in nematode parasites of humans. Teladorsagia circumcincta is an economically significant nematode (roundworm) pathogen affecting sheep and goats in temperate regions of the world. The widespread use of prophylactic treatment has resulted in rapid selection for anthelmintic (anti-worm drug) resistance in this and other species of livestock parasites. The mechanism of resistance is not well understood because most studies have focused on the role of candidate genes using simplistic models of single gene selection, despite evidence that the evolution of resistance is more complex. Here, we report on a comprehensive whole-genome analysis that elucidated resistance-associated genes, which was facilitated by developing a pair of T. circumcincta strains sharing a largely common genetic background but differing markedly in their susceptibility to anthelmintic drugs. The results show that multiple genetic factors contribute to anthelmintic resistance in a variety of ways, including possible reduction/modulation in target site sensitivity, reduced target site expression, and increased drug efflux, to name a few. This suggests that drug resistance in these parasites is a multifactorial quantitative trait rather than a simple discrete Mendelian character. With this study, we established a genomics-based experimental paradigm for investigating anthelmintic resistance, at a time when its medical importance is rapidly increasing.
Collapse
Affiliation(s)
- Young-Jun Choi
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Stewart A Bisset
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Stephen R Doyle
- Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Kymberlie Hallsworth-Pepin
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - John Martin
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Warwick N Grant
- Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Makedonka Mitreva
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, Missouri, United States of America.,Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| |
Collapse
|
20
|
Polymorphism in ABC transporter genes of Dirofilaria immitis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:227-235. [PMID: 28494332 PMCID: PMC5421822 DOI: 10.1016/j.ijpddr.2017.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 11/22/2022]
Abstract
Dirofilaria immitis, a filarial nematode, causes dirofilariasis in dogs, cats and occasionally in humans. Prevention of the disease has been mainly by monthly use of the macrocyclic lactone (ML) endectocides during the mosquito transmission season. Recently, ML resistance has been confirmed in D. immitis and therefore, there is a need to find new classes of anthelmintics. One of the mechanisms associated with ML resistance in nematodes has been the possible role of ATP binding cassette (ABC) transporters in reducing drug concentrations at receptor sites. ABC transporters, mainly from sub-families B, C and G, may contribute to multidrug resistance (MDR) by active efflux of drugs out of the cell. Gene products of ABC transporters may thus serve as the targets for agents that may modulate susceptibility to drugs, by inhibiting drug transport. ABC transporters are believed to be involved in a variety of physiological functions critical to the parasite, such as sterol transport, and therefore may also serve as the target for drugs that can act as anthelmintics on their own. Knowledge of polymorphism in these ABC transporter genes in nematode parasites could provide useful information for the process of drug design. We have identified 15 ABC transporter genes from sub-families A, B, C and G, in D. immitis, by comparative genomic approaches and analyzed them for polymorphism. Whole genome sequencing data from four ML susceptible (SUS) and four loss of efficacy (LOE) pooled populations were used for single nucleotide polymorphism (SNP) genotyping. Out of 231 SNPs identified in those 15 ABC transporter genes, 89 and 75 of them were specific to the SUS or LOE populations, respectively. A few of the SNPs identified may affect gene expression, protein function, substrate specificity or resistance development and may be useful for transporter inhibitor/anthelmintic drug design, or in order to anticipate resistance development. In the D. immitis genome, all ABC-A, -B, -C and -G transporter genes were identified. Within 15 ABC transporter genes identified in D. immitis, 231 SNP loci were found. Four exonic SNPs caused changes in predicted secondary structure of ABC proteins. D. immitis populations have low genetic variability among ABC transporter genes.
Collapse
|
21
|
El-Awady R, Saleh E, Hashim A, Soliman N, Dallah A, Elrasheed A, Elakraa G. The Role of Eukaryotic and Prokaryotic ABC Transporter Family in Failure of Chemotherapy. Front Pharmacol 2017; 7:535. [PMID: 28119610 PMCID: PMC5223437 DOI: 10.3389/fphar.2016.00535] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/23/2016] [Indexed: 12/13/2022] Open
Abstract
Over the years chemotherapy failure has been a vital research topic as researchers have been striving to discover reasons behind it. The extensive studies carried out on chemotherapeutic agents confirm that resistance to chemotherapy is a major reason for treatment failure. “Resistance to chemotherapy,” however, is a comprehensive phrase that refers to a variety of different mechanisms in which ATP-binding cassette (ABC) mediated efflux dominates. The ABC is one of the largest gene superfamily of transporters among both eukaryotes and prokaryotes; it represents a variety of genes that code for proteins, which perform countless functions, including drug efflux – a natural process that protects cells from foreign chemicals. Up to date, chemotherapy failure due to ABC drug efflux is an active research topic that continuously provides further evidence on multiple drug resistance (MDR), aiding scientists in tackling and overcoming this issue. This review focuses on drug resistance by ABC efflux transporters in human, viral, parasitic, fungal and bacterial cells and highlights the importance of the MDR permeability glycoprotein being the mutual ABC transporter among all studied organisms. Current developments and future directions to overcome this problem are also discussed.
Collapse
Affiliation(s)
- Raafat El-Awady
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Ekram Saleh
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of SharjahSharjah, United Arab Emirates; National Cancer Institute - Cancer Biology Department, Cairo UniversityCairo, Egypt
| | - Amna Hashim
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Nehal Soliman
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Alaa Dallah
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Azza Elrasheed
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Ghada Elakraa
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| |
Collapse
|
22
|
Cotton JA, Bennuru S, Grote A, Harsha B, Tracey A, Beech R, Doyle SR, Dunn M, Dunning Hotopp JC, Holroyd N, Kikuchi T, Lambert O, Mhashilkar A, Mutowo P, Nursimulu N, Ribeiro JMC, Rogers MB, Stanley E, Swapna LS, Tsai IJ, Unnasch TR, Voronin D, Parkinson J, Nutman TB, Ghedin E, Berriman M, Lustigman S. The genome of Onchocerca volvulus, agent of river blindness. Nat Microbiol 2016; 2:16216. [PMID: 27869790 PMCID: PMC5310847 DOI: 10.1038/nmicrobiol.2016.216] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/26/2016] [Indexed: 01/08/2023]
Abstract
Human onchocerciasis is a serious neglected tropical disease caused by the filarial nematode Onchocerca volvulus that can lead to blindness and chronic disability. Control of the disease relies largely on mass administration of a single drug, and the development of new drugs and vaccines depends on a better knowledge of parasite biology. Here, we describe the chromosomes of O. volvulus and its Wolbachia endosymbiont. We provide the highest-quality sequence assembly for any parasitic nematode to date, giving a glimpse into the evolution of filarial parasite chromosomes and proteomes. This resource was used to investigate gene families with key functions that could be potentially exploited as targets for future drugs. Using metabolic reconstruction of the nematode and its endosymbiont, we identified enzymes that are likely to be essential for O. volvulus viability. In addition, we have generated a list of proteins that could be targeted by Federal-Drug-Agency-approved but repurposed drugs, providing starting points for anti-onchocerciasis drug development.
Collapse
Affiliation(s)
- James A. Cotton
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892, USA
| | - Alexandra Grote
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003, USA
| | - Bhavana Harsha
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Alan Tracey
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Robin Beech
- Institute of Parasitology, McGill University, Montreal, Quebec H9X 3V9, Canada
| | - Stephen R. Doyle
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Matthew Dunn
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Nancy Holroyd
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Taisei Kikuchi
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Olivia Lambert
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Amruta Mhashilkar
- Global Health Infectious Disease Research Program, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida 33612, USA
| | - Prudence Mutowo
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Nirvana Nursimulu
- Department of Computer Science, University of Toronto, Toronto M5S 3G4, Canada
- Division of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Jose M. C. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892, USA
| | - Matthew B. Rogers
- Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, USA
| | - Eleanor Stanley
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Lakshmipuram S. Swapna
- Division of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Isheng J. Tsai
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Thomas R. Unnasch
- Global Health Infectious Disease Research Program, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida 33612, USA
| | - Denis Voronin
- New York Blood Center, New York, New York 10065, USA
| | - John Parkinson
- Department of Computer Science, University of Toronto, Toronto M5S 3G4, Canada
- Division of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Departments of Biochemistry and Molecular Genetics, University of Toronto, M5S 1A8, Canada
| | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892, USA
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003, USA
- College of Global Public Health, New York University, New York, New York 10003, USA
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | | |
Collapse
|
23
|
RNA-Seq Analysis Reveals Candidate Targets for Curcumin against Tetranychus cinnabarinus. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2796260. [PMID: 27672652 PMCID: PMC5031819 DOI: 10.1155/2016/2796260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 07/21/2016] [Accepted: 07/27/2016] [Indexed: 01/11/2023]
Abstract
Tetranychus cinnabarinus is an important agricultural pest with a broad host range. We previously identified curcumin as a promising acaricidal compound against T. cinnabarinus. However, the acaricidal mechanism of curcumin remains unknown. In this study, RNA-seq was employed to analyze the transcriptome changes in T. cinnabarinus treated with curcumin or the solvent. A total of 105,706,297 clean sequence reads were generated by sequencing, with more than 90% of the reads successfully mapped to the reference sequence. The RNA-seq identified 111 and 96 differentially expressed genes between curcumin- and solvent-treated mites at 24 and 48 h after treatment, respectively. GO enrichment analysis of differentially expressed genes showed that the cellular process was the dominant group at both time points. Finally, we screened 23 differentially expressed genes that were functionally identical or similar to the targets of common insecticide/acaricides or genes that were associated with mite detoxification and metabolism. Calmodulin, phospholipase A2, and phospholipase C were activated upon curcumin treatment suggesting that the calcium channel related genes might play important roles in mite's response to curcumin. Overall our results revealed the global transcriptional changes in T. cinnabarinus after curcumin treatment to enable further identification of the targets of curcumin in mites.
Collapse
|
24
|
Whittaker JH, Carlson SA, Jones DE, Brewer MT. Molecular mechanisms for anthelmintic resistance in strongyle nematode parasites of veterinary importance. J Vet Pharmacol Ther 2016; 40:105-115. [PMID: 27302747 DOI: 10.1111/jvp.12330] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 05/02/2016] [Indexed: 11/26/2022]
Abstract
Veterinarians rely on a relatively limited spectrum of anthelmintic agents to control nematode parasites in domestic animals. Unfortunately, anthelmintic resistance has been an emerging problem in veterinary medicine. In particular, resistance has emerged among the strongyles, a group of gastrointestinal nematodes that infect a variety of hosts that range from large herbivores to small companion animals. Over the last several decades, a great deal of research effort has been directed toward developing an understanding of the mechanisms conferring resistance against the three major groups of anthelmintics: macrocyclic lactones, benzimidazoles, and nicotinic agonists. Our understanding of anthelmintic resistance has been largely formed by determining the mechanism of action for each drug class and then evaluating drug-resistant nematode isolates for mutations or differences in expression of target genes. More recently, drug efflux pumps have been recognized for their potential contribution to anthelmintic resistance. In this mini-review, we summarize the evidence for mechanisms of resistance in strongyle nematodes.
Collapse
Affiliation(s)
- J H Whittaker
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| | - S A Carlson
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| | - D E Jones
- Department of Veterinary Pathology, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| | - M T Brewer
- Department of Veterinary Pathology, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| |
Collapse
|
25
|
Kang XL, Zhang M, Wang K, Qiao XF, Chen MH. MOLECULAR CLONING, EXPRESSION PATTERN OF MULTIDRUG RESISTANCE ASSOCIATED PROTEIN 1 (MRP1, ABCC1) GENE, AND THE SYNERGISTIC EFFECTS OF VERAPAMIL ON TOXICITY OF TWO INSECTICIDES IN THE BIRD CHERRY-OAT APHID. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 92:65-84. [PMID: 27110952 DOI: 10.1002/arch.21334] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
The ATP-binding cassette (ABC) transporters are important transmembrane proteins encoded by a supergene family. The majority of ABC proteins are primary active transporters that bind and hydrolyze ATP to mediate the efflux of a diverse range of substrates across lipid membranes. In this study, we cloned and characterized a putative multidrug resistance associated protein 1 (MRP1) from Rhopalosiphum padi encoded by ABCC1. Structural analysis showed that this protein has structural features typical of the ABC transporter family. Phylogenetic analysis indicated that the amino acid sequence was highly similar that of the corresponding protein from Acyrthosiphon pisum. Real-time quantitative polymerase chain reaction (PCR) analysis showed that ABCC1 was expressed throughout all R. padi developmental stages, with the highest level of expression in the fourth larval instar. We also examined ABCC1 expression in four different tissue types and found that it was most highly expressed in the midgut. Exposing R. padi to imidacloprid and chlorpyrifos increased ABCC1 expression. Furthermore, ABCC1 expression was higher in the imidacloprid-resistant (IR) and chlorpyrifos-resistant (CR) strains than in an insecticide-susceptible strain (SS) of R. padi. Exposing R. padi to verapamil in combination with insecticides significantly increased the toxicity of the insecticides. The respective synergy factor of CR and IR R. padi strain was 1.33 and 1.26, which was lower than that (2.72 and 1.64, respectively) of the SS. Our results clarify the biological function of ABCC1 in R. padi, particularly its role in insecticide resistance, and suggest novel strategies for pest management that use ABC transporter inhibitors to increase the effectiveness of insecticides.
Collapse
Affiliation(s)
- Xin-Le Kang
- Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Meng Zhang
- Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Kang Wang
- Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xian-Feng Qiao
- Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Mao-Hua Chen
- Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
26
|
Haemonchus contortus: Genome Structure, Organization and Comparative Genomics. ADVANCES IN PARASITOLOGY 2016; 93:569-98. [PMID: 27238013 DOI: 10.1016/bs.apar.2016.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One of the first genome sequencing projects for a parasitic nematode was that for Haemonchus contortus. The open access data from the Wellcome Trust Sanger Institute provided a valuable early resource for the research community, particularly for the identification of specific genes and genetic markers. Later, a second sequencing project was initiated by the University of Melbourne, and the two draft genome sequences for H. contortus were published back-to-back in 2013. There is a pressing need for long-range genomic information for genetic mapping, population genetics and functional genomic studies, so we are continuing to improve the Wellcome Trust Sanger Institute assembly to provide a finished reference genome for H. contortus. This review describes this process, compares the H. contortus genome assemblies with draft genomes from other members of the strongylid group and discusses future directions for parasite genomics using the H. contortus model.
Collapse
|
27
|
ABC-B transporter genes in Dirofilaria immitis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 6:116-24. [PMID: 27164440 PMCID: PMC4919315 DOI: 10.1016/j.ijpddr.2016.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 11/21/2022]
Abstract
Dirofilaria immitis is a filarial nematode causing infection and heartworm disease in dogs and other canids, cats, and occasionally in humans. Prevention with macrocyclic lactones (ML) is recommended during the mosquito transmission season. Recently, ML resistance has been reported. ABC-B transporter genes are thought to be involved in the mechanism of ML resistance in other nematodes. This study aimed to identify all the ABC-B transporter genes in D. immitis using as a reference the nDi.2.2 D. immitis whole genome, which is not completely annotated. Using bioinformatic tools and PCR amplification on pooled D. immitis genomic DNA and on pooled cDNA, nine ABC transporter genes including one pseudogene were characterized. Bioinformatic and phylogenetic analyses allowed identification of three P-glycoproteins (Pgps) (Dim-pgp-3 Dim-pgp-10, Dim-pgp-11), of two ABC-B half transporter genes (one ortholog of Cel-haf-4 and Cel-haf-9; and one ortholog of Cel-haf-1 and Cel-haf-3), of one ABC half transporter gene (ortholog of Cel-haf-5) that contained an ABC-C motif, and of one additional half transporter that would require functional study for characterization. The number of ABC-B transporter genes identified was lower than in Caenorhabditis elegans and Haemonchuscontortus. Further studies are needed to understand their possible role in ML resistance in D. immitis. These ABC transporters constitute a base for ML resistance investigation in D. immitis and advance our understanding of the molecular biology of this parasite. Identification of ABC-B full and half transporter genes in Dirofilaria immitis. Phylogenetic analysis of the D. immitis ABC-B transporter genes. Lower number of ABC-B transporter genes in D. immitis compared with Clade V nematodes.
Collapse
|
28
|
Use of a combined effect model approach for discriminating between ABCB1- and ABCC1-type efflux activities in native bivalve gill tissue. Toxicol Appl Pharmacol 2016; 297:56-67. [DOI: 10.1016/j.taap.2016.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/06/2016] [Accepted: 02/23/2016] [Indexed: 11/22/2022]
|
29
|
The Role of Xenobiotic-Metabolizing Enzymes in Anthelmintic Deactivation and Resistance in Helminths. Trends Parasitol 2016; 32:481-491. [PMID: 26968642 DOI: 10.1016/j.pt.2016.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/03/2016] [Accepted: 02/10/2016] [Indexed: 12/24/2022]
Abstract
Xenobiotic-metabolizing enzymes (XMEs) modulate the biological activity and behavior of many drugs, including anthelmintics. The effects of anthelmintics can often be abolished by XMEs when the drugs are metabolized to an inefficient compound. XMEs therefore play a significant role in anthelmintic efficacy. Moreover, differences in XMEs between helminths are reflected by differences in anthelmintic metabolism between target species. Taking advantage of the newly sequenced genomes of many helminth species, progress in this field has been remarkable. The present review collects up to date information regarding the most important XMEs (phase I and phase II biotransformation enzymes; efflux transporters) in helminths. The participation of these XMEs in anthelmintic metabolism and their possible roles in drug resistance are evaluated.
Collapse
|
30
|
Godoy P, Che H, Beech RN, Prichard RK. Characterisation of P-glycoprotein-9.1 in Haemonchus contortus. Parasit Vectors 2016; 9:52. [PMID: 26822677 PMCID: PMC4730751 DOI: 10.1186/s13071-016-1317-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/16/2016] [Indexed: 11/10/2022] Open
Abstract
Background The existence nematodes of veterinary importance such as Haemonchus contortus resistant to anthelmintic drugs, including the macrocyclic lactones, has become a major concern in animal health. Macrocyclic lactone resistance in H. contortus seems to be multigenic including the active efflux of these drugs by P-glycoproteins, members of the ABC transporter family, present in this parasite. The goals of the present work were to determine the activity of H. contortus P-glycoprotein 9.1 (Hco-PGP-9.1) and its interaction with the avermectins, ivermectin, abamectin, and also the milbemycin, moxidectin. Additionally, the localisation of Hco-PGP-9.1 was sought in adult worms. Methods Hco-Pgp-9.1 was cloned and expressed in mammalian cells and its expression profile was determined at the transcriptional and protein level by qRT-PCR and Western-blot, respectively. The nematode transport activity was assessed using the tracer dye Rhodamine 123. A ligand competition assay between different macrocyclic lactones and Rhodamine 123 was used to establish whether or not there was interaction between Hco-PGP-9.1 and the avermectins (abamectin and ivermectin) or moxidectin. In addition, immunostaining was carried out to localise Hco-PGP-9.1 expression in the transgenic cells and in adult female parasites. Results Hco-PGP-9.1 was expressed in the cell membrane of the transfected host cells and was able to extrude Rhodamine 123. Ivermectin and abamectin, but not moxidectin, had a pronounced inhibitory effect on the ability of Hco-PGP-9.1 to transport Rhodamine 123. Antibodies raised against Hco-PGP-9.1 epitopes localised to the uterus of adult female H. contortus. Conclusions These results suggest a strong interaction of the avermectins with Hco-PGP-9.1. However, possibly due to its physico-chemical properties, moxidectin had markedly less effect on Hco-PGP-9.1. Because of the greater interaction of the avermectins than moxidectin with this transporter, it is more likely to contribute to avermectin resistance than to moxidectin resistance in H. contortus. Possible over expression of Hco-PGP-9.1 in the female reproductive system in resistant worms could reduce paralysis of the uterus by macrocyclic lactones, allowing continued egg release in drug challenged resistant worms. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1317-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pablo Godoy
- Institute of Parasitology, Macdonald campus, McGill University, 21,111 Lakeshore Road, Sainte Anne-de-Bellevue, H9X3V9, QC, Canada.
| | - Hua Che
- Institute of Parasitology, Macdonald campus, McGill University, 21,111 Lakeshore Road, Sainte Anne-de-Bellevue, H9X3V9, QC, Canada.
| | - Robin N Beech
- Institute of Parasitology, Macdonald campus, McGill University, 21,111 Lakeshore Road, Sainte Anne-de-Bellevue, H9X3V9, QC, Canada.
| | - Roger K Prichard
- Institute of Parasitology, Macdonald campus, McGill University, 21,111 Lakeshore Road, Sainte Anne-de-Bellevue, H9X3V9, QC, Canada.
| |
Collapse
|
31
|
Godoy P, Che H, Beech RN, Prichard RK. Characterization of Haemonchus contortus P-glycoprotein-16 and its interaction with the macrocyclic lactone anthelmintics. Mol Biochem Parasitol 2015; 204:11-5. [PMID: 26657092 DOI: 10.1016/j.molbiopara.2015.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
Abstract
Anthelmintic resistance in veterinary nematodes, including Haemonchus contortus, has become a limitation to maintaining high standards of animal health. Resistance in this parasite, to all drug families including the macrocyclic lactones (MLs) is a serious issue worldwide. Mechanisms of resistance to the MLs appear to be complex and to include the elimination of these compounds by ABC transporter-like proteins present in nematodes. In order to investigate the potential involvement of ABC transporters in ML resistance in H. contortus, we have characterized the functionality of the ABC transporter H. contortus P-glycoprotein-16 (Hco-PGP-16) expressed in mammalian cells. This has included a study of its interaction with different MLs, including the avermectins, abamectin (ABA) and ivermectin (IVM), and the milbemycin, moxidectin (MOX). Hco-PGP-16 transport activity was studied using the fluorophore Rhodamine 123 (Rho 123). Transfected cells expressing Hco-PGP-16 accumulated less than 50% of Rho 123 than control cells, suggesting an active transport of this tracer dye by Hco-PGP-16. The influence of the MLs on the Rho123 transport by Hco-PGP-16 was then investigated. A marked inhibition of Rho123 transport by ABA and IVM was observed. In contrast, MOX showed less effect on inhibition of Rho123 transport by Hco-PGP-16, and the inhibition was not saturable. The difference in the interaction of the avermectins and MOX with Hco-PGP-16 may help explain the slower rate of development of resistance to MOX compared with the avermectins in H. contortus.
Collapse
Affiliation(s)
- P Godoy
- Institute of Parasitology, Macdonald Campus, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, H9 X3V9 QC, Canada
| | - H Che
- Institute of Parasitology, Macdonald Campus, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, H9 X3V9 QC, Canada
| | - R N Beech
- Institute of Parasitology, Macdonald Campus, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, H9 X3V9 QC, Canada
| | - R K Prichard
- Institute of Parasitology, Macdonald Campus, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, H9 X3V9 QC, Canada.
| |
Collapse
|
32
|
Binnebose AM, Haughney SL, Martin R, Imerman PM, Narasimhan B, Bellaire BH. Polyanhydride Nanoparticle Delivery Platform Dramatically Enhances Killing of Filarial Worms. PLoS Negl Trop Dis 2015; 9:e0004173. [PMID: 26496201 PMCID: PMC4619673 DOI: 10.1371/journal.pntd.0004173] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022] Open
Abstract
Filarial diseases represent a significant social and economic burden to over 120 million people worldwide and are caused by endoparasites that require the presence of symbiotic bacteria of the genus Wolbachia for fertility and viability of the host parasite. Targeting Wolbachia for elimination is a therapeutic approach that shows promise in the treatment of onchocerciasis and lymphatic filariasis. Here we demonstrate the use of a biodegradable polyanhydride nanoparticle-based platform for the co-delivery of the antibiotic doxycycline with the antiparasitic drug, ivermectin, to reduce microfilarial burden and rapidly kill adult worms. When doxycycline and ivermectin were co-delivered within polyanhydride nanoparticles, effective killing of adult female Brugia malayi filarial worms was achieved with approximately 4,000-fold reduction in the amount of drug used. Additionally the time to death of the macrofilaria was also significantly reduced (five-fold) when the anti-filarial drug cocktail was delivered within polyanhydride nanoparticles. We hypothesize that the mechanism behind this dramatically enhanced killing of the macrofilaria is the ability of the polyanhydride nanoparticles to behave as a Trojan horse and penetrate the cuticle, bypassing excretory pumps of B. malayi, and effectively deliver drug directly to both the worm and Wolbachia at high enough microenvironmental concentrations to cause death. These provocative findings may have significant consequences for the reduction in the amount of drug and the length of treatment required for filarial infections in terms of patient compliance and reduced cost of treatment. Infection with the filarial endoparasites Brugia malayi and its symbiotic bacteria Wolbachia represent a significant burden to both humans and animals. Current treatment protocols include use of multiple drugs over a course of months to years, resulting in high costs, undesirable side effects, and poor patient compliance. By encapsulating two of these drugs, ivermectin and doxycycline, into biodegradable polyanhydride nanoparticles, we report the ability to effectively kill adult B. malayi with up to a 4,000-fold reduction in the amount of drug used. These results demonstrate a promising role for the use of nanoscale drug carriers to reduce both the course of treatment and the amount of drug needed to increase affordability of lymphatic filariasis treatment and enhance patient compliance.
Collapse
Affiliation(s)
- Andrea M. Binnebose
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Shannon L. Haughney
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States of America
| | - Richard Martin
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Paula M. Imerman
- Veterinary Diagnostic Laboratory, Iowa State University, Ames, Iowa, United States of America
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (BN); (BHB)
| | - Bryan H. Bellaire
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (BN); (BHB)
| |
Collapse
|
33
|
Kurth D, Brack W, Luckenbach T. Is chemosensitisation by environmental pollutants ecotoxicologically relevant? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 167:134-42. [PMID: 26281775 DOI: 10.1016/j.aquatox.2015.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 07/28/2015] [Accepted: 07/28/2015] [Indexed: 05/11/2023]
Abstract
The active cellular efflux of toxicants is an efficient biological defense mode present in all organisms. By blocking this so-called multixenobiotic resistance transport-a process also referred to as chemosensitisation-, cellular bioaccumulation and the sensitivity of organisms towards environmental pollutants can increase. So far, a wide range of compounds, including pesticides, pharmaceuticals, fragrances, and surfactants, have been identified as chemosensitisers. Although, significant on a cellular level, the environmental impact of chemosensitisation on the organism level is not yet understood. Critically evaluating existing data, this paper identifies research needs to support our tentative conclusion that chemosensitisation may well enhance the risks of chemical exposure to aquatic organisms. Our conclusion is based on studies investigating the impact of individual chemicals and complex environmental mixtures on aquatic wildlife and a chemosensitiser mixture toxicity model which, however, is subject to great uncertainty due to substantial knowledge gaps. Those uncertainties include the inconsistent reporting of effect data, the lack of representative environmental contaminants tested for chemosensitisation, and the publishing of highly unreliable nominal exposure concentrations. In order to confirm the tentative conclusion of this paper, we require the significant and systematic investigation of a broader set of chemicals and environmental samples with a harmonised set of bioassays and rigorously controlled freely dissolved effect concentrations.
Collapse
Affiliation(s)
- Denise Kurth
- UFZ-Helmholtz Centre for Environmental Research, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany; RWTH Aachen University, Department of Ecosystem Analyses, Institute for Environmental Research, Worringerweg 1, 52074, Aachen, Germany
| | - Werner Brack
- UFZ-Helmholtz Centre for Environmental Research, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany; RWTH Aachen University, Department of Ecosystem Analyses, Institute for Environmental Research, Worringerweg 1, 52074, Aachen, Germany.
| | - Till Luckenbach
- UFZ-Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
34
|
Raza A, Kopp SR, Jabbar A, Kotze AC. Effects of third generation P-glycoprotein inhibitors on the sensitivity of drug-resistant and -susceptible isolates of Haemonchus contortus to anthelmintics in vitro. Vet Parasitol 2015; 211:80-8. [DOI: 10.1016/j.vetpar.2015.04.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 11/25/2022]
|
35
|
Law W, Wuescher LM, Ortega A, Hapiak VM, Komuniecki PR, Komuniecki R. Heterologous Expression in Remodeled C. elegans: A Platform for Monoaminergic Agonist Identification and Anthelmintic Screening. PLoS Pathog 2015; 11:e1004794. [PMID: 25928899 PMCID: PMC4415803 DOI: 10.1371/journal.ppat.1004794] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/09/2015] [Indexed: 11/30/2022] Open
Abstract
Monoamines, such as 5-HT and tyramine (TA), paralyze both free-living and parasitic nematodes when applied exogenously and serotonergic agonists have been used to clear Haemonchus contortus infections in vivo. Since nematode cell lines are not available and animal screening options are limited, we have developed a screening platform to identify monoamine receptor agonists. Key receptors were expressed heterologously in chimeric, genetically-engineered Caenorhabditis elegans, at sites likely to yield robust phenotypes upon agonist stimulation. This approach potentially preserves the unique pharmacologies of the receptors, while including nematode-specific accessory proteins and the nematode cuticle. Importantly, the sensitivity of monoamine-dependent paralysis could be increased dramatically by hypotonic incubation or the use of bus mutants with increased cuticular permeabilities. We have demonstrated that the monoamine-dependent inhibition of key interneurons, cholinergic motor neurons or body wall muscle inhibited locomotion and caused paralysis. Specifically, 5-HT paralyzed C. elegans 5-HT receptor null animals expressing either nematode, insect or human orthologues of a key Gαo-coupled 5-HT1-like receptor in the cholinergic motor neurons. Importantly, 8-OH-DPAT and PAPP, 5-HT receptor agonists, differentially paralyzed the transgenic animals, with 8-OH-DPAT paralyzing mutant animals expressing the human receptor at concentrations well below those affecting its C. elegans or insect orthologues. Similarly, 5-HT and TA paralyzed C. elegans 5-HT or TA receptor null animals, respectively, expressing either C. elegans or H. contortus 5-HT or TA-gated Cl- channels in either C. elegans cholinergic motor neurons or body wall muscles. Together, these data suggest that this heterologous, ectopic expression screening approach will be useful for the identification of agonists for key monoamine receptors from parasites and could have broad application for the identification of ligands for a host of potential anthelmintic targets.
Collapse
Affiliation(s)
- Wenjing Law
- Department of Biological Sciences, The University of Toledo, Toledo, Ohio, United States of America
| | - Leah M. Wuescher
- Department of Biological Sciences, The University of Toledo, Toledo, Ohio, United States of America
| | - Amanda Ortega
- Department of Biological Sciences, The University of Toledo, Toledo, Ohio, United States of America
| | - Vera M. Hapiak
- Department of Biological Sciences, The University of Toledo, Toledo, Ohio, United States of America
| | - Patricia R. Komuniecki
- Department of Biological Sciences, The University of Toledo, Toledo, Ohio, United States of America
| | - Richard Komuniecki
- Department of Biological Sciences, The University of Toledo, Toledo, Ohio, United States of America
| |
Collapse
|
36
|
Tydén E, Skarin M, Höglund J. Gene expression of ABC transporters in Cooperia oncophora after field and laboratory selection with macrocyclic lactones. Mol Biochem Parasitol 2014; 198:66-70. [DOI: 10.1016/j.molbiopara.2015.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 11/24/2022]
|
37
|
Greenberg RM. Ion channels and drug transporters as targets for anthelmintics. CURRENT CLINICAL MICROBIOLOGY REPORTS 2014; 1:51-60. [PMID: 25554739 PMCID: PMC4278637 DOI: 10.1007/s40588-014-0007-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infections with parasitic helminths such as schistosomes and soil-transmitted nematodes are hugely prevalent and responsible for a major portion of the global health and economic burdens associated with neglected tropical diseases. In addition, many of these parasites infect livestock and plants used in agriculture, resulting in further impoverishment. Treatment and control of these pathogens rely on anthelmintic drugs, which are few in number, and against which drug resistance can develop rapidly. The neuromuscular system of the parasite, and in particular, the ion channels and associated receptors underlying excitation and signaling, have proven to be outstanding targets for anthelmintics. This review will survey the different ion channels found in helminths, focusing on their unique characteristics and pharmacological sensitivities. It will also briefly review the literature on helminth multidrug efflux that may modulate parasite susceptibility to anthelmintics and may prove useful targets for new or repurposed agents that can enhance parasite drug susceptibility and perhaps overcome drug resistance.
Collapse
Affiliation(s)
- Robert M Greenberg
- Department of Pathobiology School of Veterinary Medicine University of Pennsylvania 3800 Spruce Street Philadelphia PA 19104 Tel: 215-898-5678
| |
Collapse
|
38
|
Inhibition or knockdown of ABC transporters enhances susceptibility of adult and juvenile schistosomes to Praziquantel. PLoS Negl Trop Dis 2014; 8:e3265. [PMID: 25330312 PMCID: PMC4199547 DOI: 10.1371/journal.pntd.0003265] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/10/2014] [Indexed: 12/01/2022] Open
Abstract
Parasitic flatworms of the genus Schistosoma cause schistosomiasis, a neglected tropical disease that affects hundreds of millions. Treatment of schistosomiasis depends almost entirely on the drug praziquantel (PZQ). Though essential to treating and controlling schistosomiasis, a major limitation of PZQ is that it is not active against immature mammalian-stage schistosomes. Furthermore, there are reports of field isolates with heritable reductions in PZQ susceptibility, and researchers have selected for PZQ-resistant schistosomes in the laboratory. P-glycoprotein (Pgp; ABCB1) and other ATP binding cassette (ABC) transporters remove a wide variety of toxins and xenobiotics from cells, and have been implicated in multidrug resistance (MDR). Changes in ABC transporter structure or expression levels are also associated with reduced drug susceptibility in parasitic helminths, including schistosomes. Here, we show that the activity of PZQ against schistosome adults and juveniles ex vivo is potentiated by co-administration of either the highly potent Pgp inhibitor tariquidar or combinations of inhibitors targeting multiple ABC multidrug transporters. Adult worms exposed to sublethal PZQ concentrations remain active, but co-administration of ABC transporter inhibitors results in complete loss of motility and disruption of the tegument. Notably, juvenile schistosomes (3–4 weeks post infection), normally refractory to 2 µM PZQ, become paralyzed when transporter inhibitors are added in combination with the PZQ. Experiments using the fluorescent PZQ derivative (R)-PZQ-BODIPY are consistent with the transporter inhibitors increasing effective intraworm concentrations of PZQ. Adult worms in which expression of ABC transporters has been suppressed by RNA interference show increased responsiveness to PZQ and increased retention of (R)-PZQ-BODIPY consistent with an important role for these proteins in setting levels of PZQ susceptibility. These results indicate that parasite ABC multidrug transporters might serve as important targets for enhancing the action of PZQ. They also suggest a potentially novel and readily-available strategy for overcoming reduced PZQ susceptibility of schistosomes. Schistosomes are parasitic flatworms that cause schistosomiasis, a tropical disease affecting hundreds of millions worldwide. Praziquantel (PZQ) is the current drug of choice against schistosomiasis, and, indeed, is the only approved antischistosomal treatment available in most parts of the world. Though effective overall, PZQ has limitations, including its lack of activity against immature schistosomes. Furthermore, reported cure rates in the field are often below optimal levels, and there is increasing evidence that schistosomes can become resistant to the drug. ABC transporters such as P-glycoprotein are efflux transporters that mediate detoxification of cells via removal of toxins and xenobiotics, including drugs. They underlie multidrug resistance in mammalian cells, and are also associated with drug resistance in parasitic worms, including schistosomes. Here, we show that compounds that inhibit these efflux transporters potentiate the activity of PZQ against schistosomes, including normally PZQ-insensitive juvenile worms. Similarly, suppressing expression of these transporters also increases adult worm responsiveness to PZQ. Our experiments may provide insights into the role of these drug transporters in PZQ action, and could also translate into new therapeutic strategies for augmenting treatment of schistosome infections and overcoming drug resistance.
Collapse
|
39
|
Heckler R, Almeida G, Santos L, Borges D, Neves J, Onizuka M, Borges F. P-gp modulating drugs greatly potentiate the in vitro effect of ivermectin against resistant larvae of Haemonchus placei. Vet Parasitol 2014; 205:638-45. [DOI: 10.1016/j.vetpar.2014.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 07/30/2014] [Accepted: 08/02/2014] [Indexed: 10/24/2022]
|
40
|
Greenberg RM. Schistosome ABC multidrug transporters: From pharmacology to physiology. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 4:301-9. [PMID: 25516841 PMCID: PMC4266782 DOI: 10.1016/j.ijpddr.2014.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The genuine and hypothesized roles of schistosome ABC transporters are reviewed. Evidence suggesting a role for transporters in schistosome drug susceptibility is discussed. Potential roles of ABC transporters in normal schistosome biology are outlined.
Praziquantel (PZQ) is essentially the only drug currently available for treatment and control of schistosomiasis, a disease affecting hundreds of millions worldwide. Though highly effective overall, PZQ has limitations, most notably its significant lack of activity against immature schistosomes. Furthermore, the availability of only a single drug for a disease of this magnitude makes reports of PZQ-resistant isolates particularly troubling. ATP-binding cassette (ABC) multidrug transporters such as P-glycoprotein (Pgp; ABCB1) are efflux transporters that underlie multidrug resistance (MDR); changes in their expression or structure are also associated with drug resistance in parasites, including helminths. This review will discuss the role these transporters might play in modulating schistosome susceptibility to PZQ, and the implications for developing new or repurposed treatments that enhance the efficacy of PZQ. However, in addition to influencing drug susceptibility, ABC transporters play important roles in several critical physiological functions such as excretion and maintenance of permeability barriers. They also transport signaling molecules with high affinity, and several lines of evidence implicate mammalian transporters in a diverse array of physiological functions, including regulation of immune responses. Like their mammalian counterparts, schistosome ABC transporters appear to be involved in functions critical to the parasite, including excretory activity and reproduction, and we hypothesize that they underlie at least some aspects of parasite–host interactions. Thus, in addition to their potential as targets for enhancers of PZQ susceptibility, these transporters might also serve as candidate targets for agents that disrupt the parasite life cycle and act as antischistosomals on their own.
Collapse
Affiliation(s)
- Robert M Greenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, PA 19104, USA
| |
Collapse
|
41
|
Dermauw W, Van Leeuwen T. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 45:89-110. [PMID: 24291285 DOI: 10.1016/j.ibmb.2013.11.001] [Citation(s) in RCA: 403] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 05/26/2023]
Abstract
About a 100 years ago, the Drosophila white mutant marked the birth of Drosophila genetics. The white gene turned out to encode the first well studied ABC transporter in arthropods. The ABC gene family is now recognized as one of the largest transporter families in all kingdoms of life. The majority of ABC proteins function as primary-active transporters that bind and hydrolyze ATP while transporting a large diversity of substrates across lipid membranes. Although extremely well studied in vertebrates for their role in drug resistance, less is known about the role of this family in the transport of endogenous and exogenous substances in arthropods. The ABC families of five insect species, a crustacean and a chelicerate have been annotated in some detail. We conducted a thorough phylogenetic analysis of the seven arthropod and human ABC protein subfamilies, to infer orthologous relationships that might suggest conserved function. Most orthologous relationships were found in the ABCB half transporter, ABCD, ABCE and ABCF subfamilies, but specific expansions within species and lineages are frequently observed and discussed. We next surveyed the role of ABC transporters in the transport of xenobiotics/plant allelochemicals and their involvement in insecticide resistance. The involvement of ABC transporters in xenobiotic resistance in arthropods is historically not well documented, but an increasing number of studies using unbiased differential gene expression analysis now points to their importance. We give an overview of methods that can be used to link ABC transporters to resistance. ABC proteins have also recently been implicated in the mode of action and resistance to Bt toxins in Lepidoptera. Given the enormous interest in Bt toxicology in transgenic crops, such findings will provide an impetus to further reveal the role of ABC transporters in arthropods.
Collapse
Affiliation(s)
- Wannes Dermauw
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
42
|
Genetic association of the P-glycoprotein gene ABCB1 polymorphisms with the risk for steroid-induced osteonecrosis of the femoral head in Chinese population. Mol Biol Rep 2014; 41:3135-46. [DOI: 10.1007/s11033-014-3173-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 01/16/2014] [Indexed: 01/14/2023]
|