1
|
Odeniran PO, Paul-Odeniran KF, Odeyemi AO, Ademola IO. Big Six: Vertebrate host interactions as significant transmission drivers of bovine trypanosomosis in Nigeria - A systematic review and meta-analysis. Acta Trop 2025; 263:107547. [PMID: 39923869 DOI: 10.1016/j.actatropica.2025.107547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Bovine trypanosomosis remains a significant challenge in Nigeria due to the widespread presence of tsetse and biting flies. Despite numerous control interventions, livestock owners continue to face the burden of high treatment costs year-round. Holistic management has been elusive, largely due to the interconnected roles of the "Big-Six" animal hosts in sustaining transmission dynamics. This study conducted a systematic review of publications from Web of Science, Ovid MEDLINE, PubMed, Google Scholar, and AJOL Online databases, following PRISMA guidelines between 2000 and 2024. Eligible studies reported trypanosomosis prevalence in cattle, small ruminants, dogs, pigs, camels, and wildlife. Subgroup analyses by breed, sex, and diagnostic techniques were performed, with point estimates evaluated at a 95 % confidence interval (CI). A total of 80 studies involving 25,171 animals were included, revealing average prevalence of 38.2 % (95 % CI: 31.4-45.3) in wildlife, pooled prevalence of 12.0 % (95 % CI: 3.0-25.1) in cattle, with 11.7 % specifically observed in trypanotolerant cattle breeds, 4.6 % (2.3-7.6) in small ruminants, 9.6 % (95 % CI: 1.9-21.5) in dogs, 10.4 % (95 % CI: 5.6-16.3) in pigs, and 28.0 % (95 % CI: 18.5-38.6) in camels. Wildlife exhibited distinct ecological patterns, while ovine and caprine data clustered closely. These findings explain the critical role of vertebrate hosts, along with bovine herd management practices, in perpetuating disease transmission within susceptible cattle populations. Effective control requires treating vertebrate hosts harbouring trypanosomes within or surrounding bovine herds and the use of insecticide-impregnated nets, alongside fencing cattle herds from forest edges. This integrated approach is essential to achieving the elimination of African animal trypanosomosis (AAT) in Nigeria and across Africa.
Collapse
|
2
|
Mewamba EM, Magang EMK, Tiofack AAZ, Woguia GF, Bouaka CUT, Kamga RMN, Farikou O, Fogue PS, Tume C, Ravel S, Simo G. Trypanosome infections in animals from tsetse infected areas of Cameroon and their sensitivity and resistance molecular profiles for diminazene aceturate and isometamidium chloride. Vet Parasitol Reg Stud Reports 2023; 41:100868. [PMID: 37208078 DOI: 10.1016/j.vprsr.2023.100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023]
Abstract
Monitoring and assessment of control strategies for African trypanosomoses' elimination require not only updating data on trypanosome infections, but also to have an overview on the molecular profiles of trypanocides resistance in different epidemiological settings. This study was designed to determine, in animals from six tsetse-infested areas of Cameroon, the prevalence of trypanosome infections as well as the diminazene aceturate (DA) and isometamidium chloride (ISM) sensitivity/resistance molecular profiles of these trypanosomes. From 2016 to 2019, blood was collected in pigs, dogs, sheep, goats and cattle from six tsetse infested areas of Cameroon. DNA was extracted from blood and trypanosome species were identified by PCR. The sensitivity/resistance molecular profiles of trypanosomes to DA and ISM were investigated using PCR-RFLP. From 1343 blood samples collected, Trypanosoma vivax, Trypanosoma congolense forest and savannah, Trypanosoma theileri and trypanosomes of the sub-genus Trypanozoon were identified. The overall prevalence of trypanosome infections was 18.7%. These prevalence vary between trypanosome species, animal taxa, within and between sampling sites. Trypanosoma theileri was the predominant species with an infection rate of 12.1%. Trypanosomes showing resistant molecular profiles for ISM and DA were identified in animals from Tibati (2.7% for ISM and 65.6% for DA) and Kontcha (0.3% for ISM and 6.2% for DA). No trypanosome carrying resistant molecular profile for any of the two trypanocides was detected in animals from Fontem, Campo, Bipindi and Touboro. Mixed molecular profiles of sensitive/resistant trypanosomes were detected in animals from Tibati and Kontcha. Results of this study highlighted the presence of various trypanosome species as well as parasites carrying sensitive/resistant molecular profiles for DA and ISM in animals of tsetse infested areas of Cameroon. They indicate that the control strategies must be adapted according to epidemiological settings. The diversity of trypanosomes indicates that AAT remains a serious threat for animal breeding and animal health in these tsetse infested areas.
Collapse
Affiliation(s)
- Estelle Mezajou Mewamba
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Eugenie Melaine Kemta Magang
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Arnol Auvaker Zebaze Tiofack
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Gilles-Fils Woguia
- Department of Public Health, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Calmes Ursain Tsakeng Bouaka
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon; Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Rolin Mitterran Ndeffo Kamga
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Oumarou Farikou
- Special Mission for Eradication of Tsetse flies, Regional tsetse Division of Adamawa, MINEPIA, Ngaoundere, Cameroon; Department of Biological Sciences, Faculty of Science, University of Bamenda, Bamenda, Cameroon
| | - Pythagore Sobgwi Fogue
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Christopher Tume
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon; Department of Biochemistry, Faculty of Science, University of Bamenda, Bamenda, Cameroon
| | - Sophie Ravel
- IRD INTERTRYP, CIRAD, University of Montpellier, Montpellier, France
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| |
Collapse
|
3
|
Hounyèmè RE, Kaboré J, Gimonneau G, Somda MB, Salou E, Missihoun AA, Bengaly Z, Jamonneau V, Boulangé A. Molecular epidemiology of Animal African Trypanosomosis in southwest Burkina Faso. PLoS Negl Trop Dis 2022; 16:e0010106. [PMID: 35994491 PMCID: PMC9436040 DOI: 10.1371/journal.pntd.0010106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 09/01/2022] [Accepted: 08/07/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Animal African Trypanosomosis (AAT) is a parasitic disease of livestock that has a major socio-economic impact in the affected areas. It is caused by several species of uniflagellate extracellular protists of the genus Trypanosoma mainly transmitted by tsetse flies: T. congolense, T. vivax and T. brucei brucei. In Burkina Faso, AAT hampers the proper economic development of the southwestern part of the country, which is yet the best watered area particularly conducive to agriculture and animal production. It was therefore important to investigate the extent of the infection in order to better control the disease. The objective of the present study was to assess the prevalence of trypanosome infections and collect data on the presence of tsetse flies. METHODS Buffy coat, Trypanosoma species-specific PCR, Indirect ELISA Trypanosoma sp and trypanolysis techniques were used on 1898 samples collected. An entomological survey was also carried out. RESULTS The parasitological prevalence of AAT was 1.1%, and all observed parasites were T. vivax. In contrast, the molecular prevalence was 23%, of which T. vivax was predominant (89%) followed by T. congolense (12.3%) and T. brucei s.l. (7.3%) with a sizable proportion as mixed infections (9.1%). T. brucei gambiense, responsible of sleeping sickness in humans, was not detected. The serological prevalence reached 49.7%. Once again T. vivax predominated (77.2%), but followed by T. brucei (14.7%) and T. congolense (8.1%). Seven samples, from six cattle and one pig, were found positive by trypanolysis. The density per trap of Glossina tachinoides and G. palpalis gambiensis was 1.2 flies. CONCLUSIONS/SIGNIFICANCE Overall, our study showed a high prevalence of trypanosome infection in the area, pointing out an ongoing inadequacy of control measures.
Collapse
Affiliation(s)
- Robert Eustache Hounyèmè
- Unité de recherche sur les maladies à vecteurs et biodiversité, Centre International of Recherche-Développement sur l’Élevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
- Département de Génétique et des Biotechnologies, Faculté des Sciences et Techniques (FAST), Université d’Abomey-Calavi, Cotonou, Bénin
| | - Jacques Kaboré
- Unité de recherche sur les maladies à vecteurs et biodiversité, Centre International of Recherche-Développement sur l’Élevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
- Unité de Formation et de Recherche Sciences et Techniques (UFR/ST), Université Nazi Boni, Bobo-Dioulasso, Burkina-Faso
| | - Geoffrey Gimonneau
- Unité de recherche sur les maladies à vecteurs et biodiversité, Centre International of Recherche-Développement sur l’Élevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
- INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France
| | - Martin Bienvenu Somda
- Unité de recherche sur les maladies à vecteurs et biodiversité, Centre International of Recherche-Développement sur l’Élevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
- Unité de Formation et de Recherche Sciences et Techniques (UFR/ST), Université Nazi Boni, Bobo-Dioulasso, Burkina-Faso
| | - Ernest Salou
- Unité de recherche sur les maladies à vecteurs et biodiversité, Centre International of Recherche-Développement sur l’Élevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
- Institut du Développement Rural (IDR), Université Nazi Boni, Bobo-Dioulasso, Burkina-Faso
| | - Antoine Abel Missihoun
- Département de Génétique et des Biotechnologies, Faculté des Sciences et Techniques (FAST), Université d’Abomey-Calavi, Cotonou, Bénin
| | - Zakaria Bengaly
- Unité de recherche sur les maladies à vecteurs et biodiversité, Centre International of Recherche-Développement sur l’Élevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
| | | | - Alain Boulangé
- Unité de recherche sur les maladies à vecteurs et biodiversité, Centre International of Recherche-Développement sur l’Élevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
- INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France
| |
Collapse
|
4
|
Ofori JA, Bakari SM, Bah S, Kolugu MK, Aning GK, Awandare GA, Carrington M, Gwira TM. A longitudinal two-year survey of the prevalence of trypanosomes in domestic cattle in Ghana by massively parallel sequencing of barcoded amplicons. PLoS Negl Trop Dis 2022; 16:e0010300. [PMID: 35442960 PMCID: PMC9060370 DOI: 10.1371/journal.pntd.0010300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 05/02/2022] [Accepted: 03/03/2022] [Indexed: 12/01/2022] Open
Abstract
Background Animal African Trypanosomiasis (AAT) is one of the most economically important diseases affecting livestock productivity in sub-Saharan Africa. The disease is caused by a broad range of Trypanosoma spp., infecting both wild and domesticated animals through cyclical and mechanical transmission. This study aimed to characterize trypanosomes present in cattle at regular intervals over two years in an AAT endemic and a non-endemic region of Ghana. Methodology/Principal findings Groups of cattle at Accra and Adidome were selected based on their geographical location, tsetse fly density, prevalence of trypanosomiasis and the breed of cattle available. Blood for DNA extraction was collected at approximately four to five-week intervals over a two-year period. Trypanosome DNA were detected by a sensitive nested PCR targeting the tubulin gene array and massively parallel sequencing of barcoded amplicons. Analysis of the data was a semi-quantitative estimation of infection levels using read counts obtained from the sequencing as a proxy for infection levels. Majority of the cattle were infected with multiple species most of the time [190/259 (73%) at Adidome and 191/324 (59%) at Accra], with T. vivax being the most abundant. The level of infection and in particular T. vivax, was higher in Adidome, the location with a high density of tsetse flies. The infection level varied over the time course, the timings of this variation were not consistent and in Adidome it appeared to be independent of prophylactic treatment for trypanosome infection. Effect of gender or breed on infection levels was insignificant. Conclusions/Significance Most cattle were infected with low levels of several trypanosome species at both study sites, with T. vivax being the most abundant. The measurements of infection over time provided insight to the importance of the approach in identifying cattle that could suppress trypanosome infection over an extended time and may serve as reservoir. Cattle are of economic importance in sub-Saharan Africa as they fulfil multiple roles, ranging from draught power, to providing manure, milk, and meat. However, Animal African Trypanosomiasis (AAT) diseases in cattle affect productivity and food security in most African countries. In Ghana, bovine trypanosomiasis has been detected in few cross-sectional studies by molecular methods. To get a better understanding of the disease, a longitudinal study showing natural trypanosome infection over the life of cattle will be applicable. To explore this issue, the study determined the nature of trypanosome infection in cattle in farm settings in Ghana over two years, a period similar to that used in beef production, by massively parallel amplicon sequencing. The study provided a description of the prevalence over two years and showed that the cattle were infected with multiply species most of the time and the level of infection varied but was low most of the time. The longitudinal study allowed the identification of one individual able to supress infection far more effectively than other members of the herd and this is crucial in implementing control measures in the infected area.
Collapse
Affiliation(s)
- Jennifer Afua Ofori
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Soale Majeed Bakari
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Saikou Bah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Michael Kojo Kolugu
- Department of Computer Science, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - George Kwame Aning
- School of Veterinary Medicine, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Gordon Akanzuwine Awandare
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Theresa Manful Gwira
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- * E-mail:
| |
Collapse
|
5
|
Cattle identification with muzzle pattern using computer vision technology: a critical review and prospective. Soft comput 2022. [DOI: 10.1007/s00500-022-06935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Obi CF, Ezeh IO, Okpala MI, Agina O, Umeakuana PU, Essuman GAA, Gwira TM, Ezeokonkwo RC. Prevalence and Molecular Identification of Trypanosomes in Dogs in Enugu North Senatorial Zone, South East Nigeria. Acta Parasitol 2022; 67:391-402. [PMID: 34625859 DOI: 10.1007/s11686-021-00475-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Dogs are of immense social, psychological and economic importance in Nigeria and are severely affected by African trypanosomosis. However, the prevalence of canine African trypanosomosis (CAT) in Nigeria is underreported and the identification of the parasites relies mostly on basic morphological characteristics under the microscope, which could be misleading. The present study was carried out to determine the prevalence and characterize trypanosomes isolated from dogs in South east Nigeria. METHODS A cross-sectional survey was carried out to determine the prevalence and molecular identification of trypanosomes in dogs in Enugu North Senatorial Zone (ENSZ), South east Nigeria. Dogs (n = 450) were randomly sampled, their blood collected and some characteristics such as sex, breed, sampling location, season and age duly noted. The blood samples were screened for trypanosomosis using standard trypanosome detection techniques. Trypanosome-positive blood samples were spotted on FTA® cards for molecular identification using nested Tubulin-PCR, ITS-PCR, TgsGP-PCR, and DNA sequencing. Some hematological parameters of the dogs such as packed cell volume (PCV), total leucocyte count (TLC), red blood cell count (RBC) were also determined. RESULTS Of the 450 dogs sampled, 51 dogs were positive for trypanosomes with a prevalence rate of 11.3% (95% CI = 0.087-0.146). Trypanosoma brucei was the predominant trypanosome species infecting dogs in the study area. T. congolense, T. evansi, and T. vivax were also identified. The prevalence of canine trypanosomosis was significantly associated with season (χ2 = 13.821, df = 1, P = 0.0001) and the sampling location (χ2 = 6.900, df = 2, P = 0.032) while sex, breed, and age were not. The PCV and RBC of the infected dogs were significantly lower (p < 0.0001) than those of the uninfected dogs. CONCLUSIONS CAT due to T. brucei is very prevalent in Enugu North Senatorial Zone, South east Nigeria and is associated with hematological changes. Our study also detected T. vivax in dogs in South east Nigeria which appears to be the first report of T. vivax in a dog in Nigeria.
Collapse
|
7
|
Ibrahim MAM, Weber JS, Ngomtcho SCH, Signaboubo D, Berger P, Hassane HM, Kelm S. Diversity of trypanosomes in humans and cattle in the HAT foci Mandoul and Maro, Southern Chad-A matter of concern for zoonotic potential? PLoS Negl Trop Dis 2021; 15:e0009323. [PMID: 34106914 PMCID: PMC8224965 DOI: 10.1371/journal.pntd.0009323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 06/24/2021] [Accepted: 03/23/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND African trypanosomes are parasites mainly transmitted by tsetse flies. They cause trypanosomiasis in humans (HAT) and animals (AAT). In Chad, HAT/AAT are endemic. This study investigates the diversity and distribution of trypanosomes in Mandoul, an isolated area where a tsetse control campaign is ongoing, and Maro, an area bordering the Central African Republic (CAR) where the control had not started. METHODS 717 human and 540 cattle blood samples were collected, and 177 tsetse flies were caught. Trypanosomal DNA was detected using PCR targeting internal transcribed spacer 1 (ITS1) and glycosomal glyceraldehyde-3 phosphate dehydrogenase (gGAPDH), followed by amplicon sequencing. RESULTS Trypanosomal DNA was identified in 14 human samples, 227 cattle samples, and in tsetse. Besides T. b. gambiense, T. congolense was detected in human in Maro. In Mandoul, DNA from an unknown Trypanosoma sp.-129-H was detected in a human with a history of a cured HAT infection and persisting symptoms. In cattle and tsetse samples from Maro, T. godfreyi and T. grayi were detected besides the known animal pathogens, in addition to T. theileri (in cattle) and T. simiae (in tsetse). Furthermore, in Maro, evidence for additional unknown trypanosomes was obtained in tsetse. In contrast, in the Mandoul area, only T. theileri, T. simiae, and T. vivax DNA was identified in cattle. Genetic diversity was most prominent in T. vivax and T. theileri. CONCLUSION Tsetse control activities in Mandoul reduced the tsetse population and thus the pathogenic parasites. Nevertheless, T. theileri, T. vivax, and T. simiae are frequent in cattle suggesting transmission by other insect vectors. In contrast, in Maro, transhumance to/from Central African Republic and no tsetse control may have led to the high diversity and frequency of trypanosomes observed including HAT/AAT pathogenic species. Active HAT infections stress the need to enforce monitoring and control campaigns. Additionally, the diverse trypanosome species in humans and cattle indicate the necessity to investigate the infectivity of the unknown trypanosomes regarding their zoonotic potential. Finally, this study should be widened to other trypanosome hosts to capture the whole diversity of circulating trypanosomes.
Collapse
Affiliation(s)
- Mahamat Alhadj Moussa Ibrahim
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
- Department of Biology, Faculty of Exacts and Applied sciences, University of N’Djamena, N’Djamena, Chad
- * E-mail: (MAMI); (SK)
| | - Judith Sophie Weber
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
- Centre for Marine Environmental Sciences MARUM, University of Bremen, Bremen, Germany
| | - Sen Claudine Henriette Ngomtcho
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
- Department of Microbiology, Haematology and Immunology, Faculty of medicine and pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
| | - Djoukzoumka Signaboubo
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Petra Berger
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | | | - Sørge Kelm
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
- * E-mail: (MAMI); (SK)
| |
Collapse
|
8
|
Odeniran PO, Macleod ET, Ademola IO, Ohiolei JA, Majekodunmi AO, Welburn SC. Morphological, Molecular Identification and Distribution of Trypanosome-Transmitting Dipterans from Cattle Settlements in Southwest Nigeria. Acta Parasitol 2021; 66:116-128. [PMID: 32780296 DOI: 10.1007/s11686-020-00260-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/28/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Glossina spp. (Glossinidae), Tabanus spp. (Tabanidae), Ancala spp. (Tabanidae), Atylotus spp. (Tabanidae) and Stomoxys spp. (Muscidae) are important transmitting vectors of African animal trypanosomosis in sub-Saharan Africa. There is paucity of information on the distribution and identification of these flies in cattle settlements in southwest Nigeria. METHODS The distribution patterns, genetic variations and diversities of dipteran flies in southwest Nigeria were described and identified using morphological and molecular analysis of the 28S rDNA gene. RESULTS Of the 13,895 flies examined morphologically between April 2016 and March 2017, tabanids were identified [Tabanus (0.34%), Ancala (0.03%), Atylotus (0.01%), Haematopota (0.014%) and Chrysops (0.11%)]. Two stomoxyine species were identified; Stomoxys niger niger Macquart (45.30%) and Stomoxys calcitrans Linnaeus (17.29%) and two Glossina spp. namely; Glossina p. gambiense Vanderplank, 1911 (0.46%) and Glossina tachinoides Westwood (0.51%) were identified. The identities were further confirmed in a BLAST search using their nucleotide sequences. The median-joining network of the 28S rDNA gene sequences indicated that fly species examined were genetically distinct. The apparent density of all the trapped flies was highest at a mean temperature of 26-28 ℃, humidity > 80% and rainfall of 150-220 mm/month. The distribution of flies was observed to increase as vegetation increased in density and decreased in areas with relatively high human population density (> 100/km2). CONCLUSIONS The population indices of the 28S rDNA gene of the flies suggest that analysis of nuclear DNA fragments may provide more information on the molecular ecology of these flies. Characterising fly species and assessing their impact are essential in distribution and monitoring AAT spread.
Collapse
|
9
|
Financial losses estimation of African animal trypanosomosis in Nigeria: field reality-based model. Trop Anim Health Prod 2021; 53:159. [PMID: 33569637 DOI: 10.1007/s11250-021-02603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Theoretical and modelling approaches were undertaken on Nigerian livestock industry to estimate financial losses due to African animal trypanosomosis. METHODS Surveys were conducted between March 2018 and February 2019 to include focus group interactions, in-depth household engagements concerning livestock practices in relation to AAT. Financial losses estimation on livestock were targeted to provide ways to regain cost and maximize household livelihoods. Mathematical equation was developed to project the effects of intervention strategies. Important variables such as mean AAT prevalence, incidence rate, birth rate, morbidity and mortality were estimated and inserted in the model. RESULTS Mean total income per capita was US$ 1.31 / person / day among livestock producers in Nigeria. A total of US$ 518. 9 million were estimated from direct losses, while US$ 58.8 million as indirect losses. Annual estimated losses to AAT from cattle, sheep, goat and pigs in Nigeria is US$ 577.7 million. This is equivalent to 207.98 billion Nigerian naira and represents 6.93% of annual livestock GDP in the country. This could increase to 85% in the next 50 years if there are no proper control interventions. Control efforts could reduce the losses to US$ 16.7 million at the rate of 0.2% during the same period. DISCUSSIONS AAT has severe socioeconomic impact on producer's livelihood and urgent improved control intervention strategies should be instituted to reduce the losses attributed to the disease.
Collapse
|
10
|
Fetene E, Leta S, Regassa F, Büscher P. Global distribution, host range and prevalence of Trypanosoma vivax: a systematic review and meta-analysis. Parasit Vectors 2021; 14:80. [PMID: 33494807 PMCID: PMC7830052 DOI: 10.1186/s13071-021-04584-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/06/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Trypanosomosis caused by Trypanosoma vivax is one of the diseases threatening the health and productivity of livestock in Africa and Latin America. Trypanosoma vivax is mainly transmitted by tsetse flies; however, the parasite has also acquired the ability to be transmitted mechanically by hematophagous dipterans. Understanding its distribution, host range and prevalence is a key step in local and global efforts to control the disease. METHODS The study was conducted according to the methodological recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. A systematic literature search was conducted on three search engines, namely PubMed, Scopus and CAB Direct, to identify all publications reporting natural infection of T. vivax across the world. All the three search engines were screened using the search term Trypanosoma vivax without time and language restrictions. Publications on T. vivax that met our inclusion criteria were considered for systematic review and meta-analysis. RESULT The study provides a global database of T. vivax, consisting of 899 records from 245 peer-reviewed articles in 41 countries. A total of 232, 6277 tests were performed on 97 different mammalian hosts, including a wide range of wild animals. Natural infections of T. vivax were recorded in 39 different African and Latin American countries and 47 mammalian host species. All the 245 articles were included into the qualitative analysis, while information from 186 cross-sectional studies was used in the quantitative analysis mainly to estimate the pooled prevalence. Pooled prevalence estimates of T. vivax in domestic buffalo, cattle, dog, dromedary camel, equine, pig, small ruminant and wild animals were 30.6%, 6.4%, 2.6%, 8.4%, 3.7%, 5.5%, 3.8% and 12.9%, respectively. Stratified according to the diagnostic method, the highest pooled prevalences were found with serological techniques in domesticated buffalo (57.6%) followed by equine (50.0%) and wild animals (49.3%). CONCLUSION The study provides a comprehensive dataset on the geographical distribution and host range of T. vivax and demonstrates the potential of this parasite to invade other countries out of Africa and Latin America.
Collapse
Affiliation(s)
- Eyerusalem Fetene
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Samson Leta
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia.
| | - Fikru Regassa
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia.,FDRE Ministry of Agriculture, P.O.Box 62347/3735, Addia Ababa, Ethiopia
| | - Philippe Büscher
- Institute of Tropical Medicine, Department of Biomedical Sciences, Nationalestraat 155, 2000, Antwerp, Belgium
| |
Collapse
|
11
|
Odeniran PO, Onifade AA, MacLeod ET, Ademola IO, Alderton S, Welburn SC. Mathematical modelling and control of African animal trypanosomosis with interacting populations in West Africa-Could biting flies be important in main taining the disease endemicity? PLoS One 2020; 15:e0242435. [PMID: 33216770 PMCID: PMC7679153 DOI: 10.1371/journal.pone.0242435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/02/2020] [Indexed: 12/03/2022] Open
Abstract
African animal trypanosomosis (AAT) is transmitted cyclically by tsetse flies and mechanically by biting flies (tabanids and stomoxyines) in West Africa. AAT caused by Trypanosoma congolense, T. vivax and T. brucei brucei is a major threat to the cattle industry. A mathematical model involving three vertebrate hosts (cattle, small ruminants and wildlife) and three vector flies (Tsetse flies, tabanids and stomoxyines) was described to identify elimination strategies. The basic reproduction number (R0) was obtained with respect to the growth rate of infected wildlife (reservoir hosts) present around the susceptible population using a next generation matrix technique. With the aid of suitable Lyapunov functions, stability analyses of disease-free and endemic equilibria were established. Simulation of the predictive model was presented by solving the system of ordinary differential equations to explore the behaviour of the model. An operational area in southwest Nigeria was simulated using generated pertinent data. The R0 < 1 in the formulated model indicates the elimination of AAT. The comprehensive use of insecticide treated targets and insecticide treated cattle (ITT/ITC) affected the feeding tsetse and other biting flies resulting in R0 < 1. The insecticide type, application timing and method, expertise and environmental conditions could affect the model stability. In areas with abundant biting flies and no tsetse flies, T. vivax showed R0 > 1 when infected wildlife hosts were present. High tsetse populations revealed R0 <1 for T. vivax when ITT and ITC were administered, either individually or together. Elimination of the transmitting vectors of AAT could cost a total of US$ 1,056,990 in southwest Nigeria. Hence, AAT in West Africa can only be controlled by strategically applying insecticides targeting all transmitting vectors, appropriate use of trypanocides, and institutionalising an appropriate barrier between the domestic and sylvatic areas.
Collapse
Affiliation(s)
- Paul Olalekan Odeniran
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
- Infection Medicine, Biomedical Sciences, University of Edinburgh, Scotland, United Kingdom
- * E-mail:
| | | | - Ewan Thomas MacLeod
- Infection Medicine, Biomedical Sciences, University of Edinburgh, Scotland, United Kingdom
| | - Isaiah Oluwafemi Ademola
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Simon Alderton
- Centre for Health Informatics, Computing and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - Susan Christina Welburn
- Infection Medicine, Biomedical Sciences, University of Edinburgh, Scotland, United Kingdom
- Zhejiang University - University of Edinburgh Joint Institute, Zhejiang University, Haining, China
| |
Collapse
|
12
|
Blood of African Hedgehog Atelerix albiventris Contains 115-kDa Trypanolytic Protein that Kills Trypanosoma congolense. Acta Parasitol 2020; 65:733-742. [PMID: 32385812 DOI: 10.2478/s11686-020-00211-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/01/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Protozoan parasites of the Order Trypanosomatida infect a wide range of multicellular plants and animals, causing devastating and potentially fatal diseases. Trypanosomes are the most relevant members of the order in sub-Saharan Africa because of mortalities and morbidities caused to humans and livestock. PURPOSE There are growing concerns that trypanosomes are expanding their reservoirs among wild animals, which habours the parasites, withstand the infection, and from which tsetse flies transmit the parasites back to humans and livestock. This study was designed to investigate the potentials of the African hedgehog serving as reservoir for African animal trypanosomes. METHODS Five adult hedgehogs alongside five laboratory mice were intraperitoneally inoculated with 106 and 104 of Trypanosoma congolense cells, respectively, and monitored for parasitemia and survival. Serum from twenty hedgehogs was subjected to trypanocidal activity-guided fractionation by successive ion-exchange and gel-filtration chromatographies, followed by characterization with Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE). RESULTS Hedgehogs were resistant to the infection as no parasite was detected and none died even after 60 days, while all the mice died within 12 days. Both the serum and plasma prepared from hedgehogs demonstrated trypanocidal activity- rapidly killed trypanosomes even when diluted 1000 times. The trypanolytic factor was identified to be proteinaceous with an estimated molecular weight of 115-kDa. CONCLUSION For the first time, it is here demonstrated that hedgehog blood has significant trypanolytic activity against T. congolense. The potential application of the hedgehog protein for the breeding of trypanosomosis-resistant livestock in tsetse fly belt is discussed.
Collapse
|
13
|
Weber JS, Ngomtcho SCH, Shaida SS, Chechet GD, Gbem TT, Nok JA, Mamman M, Achukwi DM, Kelm S. Genetic diversity of trypanosome species in tsetse flies (Glossina spp.) in Nigeria. Parasit Vectors 2019; 12:481. [PMID: 31610794 PMCID: PMC6792248 DOI: 10.1186/s13071-019-3718-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/14/2019] [Indexed: 12/29/2022] Open
Abstract
Background Trypanosomes cause disease in humans and livestock in sub-Saharan Africa and rely on tsetse flies as their main insect vector. Nigeria is the most populous country in Africa; however, only limited information about the occurrence and diversity of trypanosomes circulating in the country is available. Methods Tsetse flies were collected from five different locations in or adjacent to protected areas, i.e. national parks and game reserves, in Nigeria. Proboscis and gut samples were analysed for trypanosome DNA by molecular amplification of the internal transcribed spacer 1 (ITS1) region and part of the trypanosome specific glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) gene. Results The most abundant Trypanosoma species found in the tsetse gut was T. grayi, a trypanosome infecting crocodiles. It was ubiquitously distributed throughout the country, accounting for over 90% of all cases involving trypanosomes. Trypanosoma congolense was detected in gut samples from all locations except Cross River National Park, but not in the proboscis, while T. brucei (sensu lato) was not detected at all. In proboscis samples, T. vivax was the most prominent. The sequence diversity of gGAPDH suggests that T. vivax and T. grayi represent genetically diverse species clusters. This implies that they are highly dynamic populations. Conclusions The prevalence of animal pathogenic trypanosomes throughout Nigeria emphasises the role of protected areas as reservoirs for livestock trypanosomes. The genetic diversity observed within T. vivax and T. grayi populations might be an indication for changing pathogenicity or host range and the origin and consequences of this diversity has to be further investigated.![]()
Collapse
Affiliation(s)
- Judith Sophie Weber
- Centre for Biomolecular Interactions, Department of Biology and Chemistry, University of Bremen, Bremen, Germany.
| | - Sen Claudine Henriette Ngomtcho
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon.,Ministry of Public Health, Yaoundé, Cameroon
| | | | - Gloria Dada Chechet
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.,Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | - Thaddeus Terlumun Gbem
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria.,Department of Biology, Ahmadu Bello University, Zaria, Nigeria
| | - Jonathan Andrew Nok
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.,Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | - Mohammed Mamman
- Nigerian Institute for Trypanosomiasis Research, Kaduna, Nigeria.,Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | | | - Sørge Kelm
- Centre for Biomolecular Interactions, Department of Biology and Chemistry, University of Bremen, Bremen, Germany. .,Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria.
| |
Collapse
|
14
|
Odeniran PO, Macleod ET, Ademola IO, Welburn SC. Molecular identification of bloodmeal sources and trypanosomes in Glossina spp., Tabanus spp. and Stomoxys spp. trapped on cattle farm settlements in southwest Nigeria. MEDICAL AND VETERINARY ENTOMOLOGY 2019; 33:269-281. [PMID: 30730048 DOI: 10.1111/mve.12358] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/03/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
The interactions of host, vector and parasite in bovine trypanosomiasis transmission cycles in southwest Nigeria are not yet well understood. Trypanosoma (Trypanosomatida: Trypanosomatidae) species infection prevalences and bloodmeal sources were determined in transmitting vectors of the genera Glossina (Diptera: Glossinidae), Tabanus (Diptera: Tabanidae) and Stomoxys (Diptera: Muscidae) collected using Nzi traps in cattle settlements in southwest Nigeria. Sequenced cytochrome B mitochondrial DNA segments obtained from vector digestive tracts identified bloodmeal sources from eight host species, namely human, cattle, hippopotamus, giraffe, gazelle, spotted hyena, long-tailed rat and one unidentified species. Overall, 71.1% [95% confidence interval (CI) 63.0-78.1], 33.3% (95% CI 21.9-47.0) and 22.2% (95% CI 16.2-29.9), respectively, of Glossina, Tabanus and Stomoxys flies were positive for trypanosomes. The observed trypanosome species were Trypanosoma vivax, Trypanosoma congolense, Trypanosoma brucei, Trypanosoma evansi, Trypanosoma simiae and Trypanosoma godfreyi. Trypanosome DNA was more prevalent in tsetse (34.8% Tr. vivax, 51.1% Tr. b. brucei, 5.2% Tr. congolense, 4.4% Tr. simiae and 24.4% mixed infections) than in other flies and the main determinants in all flies were seasonal factors and host availability. To the best of the present group's knowledge, this is the first report of Trypanosoma species in Tabanus and Stomoxys flies in Nigeria. It indicates that vector control programmes should always consider biting flies along with tsetse flies in the control of human and animal trypanosomiasis.
Collapse
Affiliation(s)
- P O Odeniran
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, U.K
| | - E T Macleod
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, U.K
| | - I O Ademola
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - S C Welburn
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, U.K
- Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University, Haining, China
| |
Collapse
|
15
|
Odeniran PO, Macleod ET, Ademola IO, Welburn SC. Endosymbionts interaction with trypanosomes in Palpalis group of Glossina captured in southwest Nigeria. Parasitol Int 2019; 70:64-69. [DOI: 10.1016/j.parint.2019.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
|
16
|
Odeniran PO, Macleod ET, Ademola IO, Welburn SC. Suspected resistance of Trypanosoma species to diminazene aceturate on a cattle farm in Nigeria. Trop Anim Health Prod 2019; 51:2091-2094. [PMID: 30997632 DOI: 10.1007/s11250-019-01902-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/11/2019] [Indexed: 10/27/2022]
Abstract
African animal trypanosomiasis is a major cause of mortality and economic losses for the livestock industry in Nigeria. Chemotherapy has been the most reliable option for cattle herders, and the most commonly found drug on the market is diminazene aceturate. To ascertain the long-term efficacy of this compound, we sampled a cattle herd in Ogun State, Nigeria, 2 months after they were treated with diminazene aceturate. The ITS-PCR results revealed 19 positives for trypanosome DNA out of the 79 samples tested (24.1%, 95% CI 16.0-34.5). Seventeen out of the total 19 positives were Trypanosoma congolense (21.5%, 95% CI 13.9-31.8). Mixed infections were also observed. Therefore, the persistence of bovine trypanosomiasis at this Nigerian cattle farm despite treatment could be due to diminazene aceturate resistant trypanosomes being present in the herd.
Collapse
Affiliation(s)
- Paul Olalekan Odeniran
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria, Ibadan, Nigeria. .,Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, EH8 9YL, UK.
| | - Ewan Thomas Macleod
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, EH8 9YL, UK
| | - Isaiah Oluwafemi Ademola
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria, Ibadan, Nigeria
| | - Susan Christina Welburn
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, EH8 9YL, UK.,Zhejiang University - University of Edinburgh Joint Institute, Zhejiang University, International Campus, 718 East Haizhou Road, Haining, 314400, China
| |
Collapse
|