1
|
Liang Y, Liu Y, Chen Z, Sun J, Zhang X, Wang Y. Balamuthia amoebic encephalitis directly causing intracranial infection: A case report. Radiol Case Rep 2025; 20:2820-2824. [PMID: 40176979 PMCID: PMC11964735 DOI: 10.1016/j.radcr.2025.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 04/05/2025] Open
Abstract
Balamuthia amoebic encephalitis (BAE) is a rare and often fatal central nervous system (CNS) infection caused by Balamuthia mandrillaris, a free-living amoeba typically found in soil and water. This organism can invade the brain directly, bypassing other organs, making early diagnosis particularly challenging. Symptoms often do not appear as distinctive early warning signs, and many patients do not experience noticeable skin lesions or systemic symptoms before neurological manifestations emerge. Balamuthia can enter the body through various routes, including the respiratory tract, skin, or gastrointestinal tract, eventually crossing the blood-brain barrier and causing aggressive encephalitis. The early symptoms of BAE are nonspecific, and the disease has an extremely high mortality rate. This report presents a 35-year-old male patient who died from Balamuthia amoebic encephalitis. The patient had a history of prolonged exposure to underground mines and consumed raw beef a week before the onset of symptoms. The infection is believed to have entered through the respiratory tract or gastrointestinal route. Diagnosis was primarily based on pathological findings, and the patient did not receive effective treatment due to delayed diagnosis, ultimately passing away approximately 2 months after the onset of symptoms. This case emphasizes the rarity and fatal nature of BAE, particularly when neurological symptoms are the first sign of infection without preceding systemic or dermatological manifestations. The report highlights the importance of considering Balamuthia mandrillaris infection in patients presenting with unexplained encephalitis and brain abscess, especially with a potential history of exposure to amoeba-contaminated environments.
Collapse
Affiliation(s)
- Yuhan Liang
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing China
| | - Yanhong Liu
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing China
| | - Zelong Chen
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing China
| | - Jiayi Sun
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing China
| | - Xuemeng Zhang
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing China
| | - Yulin Wang
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing China
| |
Collapse
|
2
|
Ashtari F, Mahami-Oskouei M, Spotin A, Ahmadpour E, Aali H, Mahmoodpour H, Kohansal MH. Effect of aqueous extract of Eucalyptus Microtheca on Acanthamoeba genotype T5, an in vitro study. BMC Complement Med Ther 2025; 25:127. [PMID: 40200342 PMCID: PMC11980311 DOI: 10.1186/s12906-025-04869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Acanthamoeba is a resilient protozoan that causes serious diseases such as Acanthamoeba Keratitis (AK). Due to the ineffectiveness of many drugs against this parasite, plant extracts provide a promising alternative in the treatment process. This study aimed to assess the effectiveness of the aqueous extract of Eucalyptus microtheca against Acanthamoeba trophozoites and cysts in vitro. METHODS In the current experimental study, Acanthamoeba isolate was cultured in a non-nutritive agar (NNA) medium. Aqueous extracts of Eucalyptus microtheca were prepared at concentrations of 10, 20, 40, and 80 mg/ mL, with exposure times of 30, 60, 90, and 120 min for trophozoites and 24, 48, and 72 h for cysts. Chlorhexidine (0.02%) and PBS served as positive and negative controls, respectively. Viability was assessed using 1% eosin dye. RESULTS Our study revealed that the aqueous extract of Eucalyptus microtheca significantly reduced the number of both trophozoites and cysts. At 80 mg/ mL, the extract completely eliminated cysts (100%) after 24 h and reduced trophozoites by 99.33% within 120 min. CONCLUSION This study indicates that Eucalyptus microtheca aqueous extract possesses significant anti-Acanthamoeba properties, with effects strongly associated with concentration and exposure time (p < 0.001).
Collapse
Affiliation(s)
- Frough Ashtari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Adel Spotin
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ahmadpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Aali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Mahmoodpour
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hasan Kohansal
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran.
| |
Collapse
|
3
|
Javanmard E, Kazemirad E, Rahimi HM, Mohebali M, Rezaeian M, Alimohammadi M, Mirjalali H. Prevalence of free-living amoebae in five rivers associated with high human activity in Tehran province, Iran. JOURNAL OF WATER AND HEALTH 2025; 23:493-506. [PMID: 40298268 DOI: 10.2166/wh.2025.350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/05/2025] [Indexed: 04/30/2025]
Abstract
Free-living amoebae (FLA) are ubiquitous protozoa capable of enduring harsh environmental conditions. These microorganisms are commonly found in water, soil, and air and can be transmitted to humans in areas with high human activity. This study aimed to investigate the prevalence of FLA and their associated genotypes/species in five rivers in Tehran province, Iran. A total of 60 water samples were collected from the Jajrud, Kan, Farhzad, Darakeh, and Shadchay rivers. Samples were subjected to filtration and cultivation onto non-nutrient agar. The genera/species of FLA were characterized based on the amplification and sequencing of the specific genetic fragments. Microscopic analysis suggested the presence of trophozoites and cysts of FLA in 18/60 (30%) of samples, of which Acanthamoeba spp., Vermamoeba sp., and Vahlkampfiidae were identified. Sequence analysis showed the presence of the genotypes T11, T4, T3, and T5 in five, five, four, and one isolates, respectively. The molecular analysis of the T4 genotype showed gene flow between the current isolates with previously described sequences. The findings suggest a clear association between environmental and clinical isolates of Acanthamoeba spp. Therefore, scheduled monitoring of environmental waters, particularly in regions with high human activities, is highly recommended.
Collapse
Affiliation(s)
- Ehsan Javanmard
- Department of Medical Parasitology & Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Kazemirad
- Department of Medical Parasitology & Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohebali
- Department of Medical Parasitology & Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaeian
- Department of Medical Parasitology & Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alimohammadi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran E-mail: ;
| |
Collapse
|
4
|
Pastrana C, Huete-Toral F, Privado-Aroco A, Carracedo G. Efficacy of different disinfecting methods for contact lenses against Acanthamoeba castellanii. Cont Lens Anterior Eye 2025; 48:102326. [PMID: 39523151 DOI: 10.1016/j.clae.2024.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE To analyze the efficacy of different disinfecting methods for contact lenses (CL) against Acanthamoeba castellanii (AC) using quantitative PCR (qPCR) based on RNA detection. METHODS Three CL materials: rigid gas permeable (RGP), hydrogel (Hy), and silicone hydrogel (SiHy), were contaminated with 1x105 amoebae/ml and incubated for 24 h at 30 °C. After contamination, pre-cleaning steps were performed before using four maintenance solutions based on hydrogen peroxide (HP), sodium hypochlorite (SH), povidone-iodine (PI), and a multipurpose solution (MS). The pre-cleaning steps involved using a cleaner (20 % isopropyl alcohol) and rinsing the CL. Disinfection systems 1 and 2 involved no cleaner and rinsed the CL with tap water or saline solution, respectively. Systems 3 and 4 included a cleaner and rinsed with tap water or saline, respectively. After cleaning, A. castellanii was extracted and stored for qPCR analysis, using Hsp70 and TPBF genes to detect RNA A. castellanii. Results were presented as the percentage of positives or negatives (presence or absence of amoebae), with a p-value < 0.05 considered statistically significant. RESULTS Disinfection system 1 with MS resulted in 56 % positives for RGP lenses and 100 % positives for both hydrogel materials. When MS was combined with a cleaner, 12.5 % positives were found for SiHy and 100 % negatives for Hy and RGP lenses (p < 0.05). PI solution alone yielded 38 % and 12 % positives for hydrogel and silicone hydrogel lenses, respectively, but was 100 % effective when combined with a cleaner. HP and SH, whether combined with a cleaner or not, were effective against AC for all CL materials, except HP without a cleaner for Hy lenses. CONCLUSION All disinfection methods showed some efficacy against Acanthamoeba on any CL material. The most effective solutions were those based on hydrogen peroxide and sodium hypochlorite. Using a cleaner enhanced the final disinfecting efficacy, especially with the multipurpose solution.
Collapse
Affiliation(s)
- Cristina Pastrana
- Department of Optometry and Vision, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain; Ocupharm Group Research, Faculty of Optics and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Fernando Huete-Toral
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain; Ocupharm Group Research, Faculty of Optics and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Ana Privado-Aroco
- Ocupharm Group Research, Faculty of Optics and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Gonzalo Carracedo
- Department of Optometry and Vision, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain; Ocupharm Group Research, Faculty of Optics and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain.
| |
Collapse
|
5
|
Leal Dos Santos D, Mussengue Chaúque BJ, Berté FK, de Miranda Ribeiro L, Matiazo FF, Rott MB, Schrekker HS, Sekine L. Imidazolium salt as potent Amoebicide for rapid inactivation of Acanthamoeba spp. trophozoites and cysts. Exp Parasitol 2025; 271:108921. [PMID: 40032182 DOI: 10.1016/j.exppara.2025.108921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/07/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Acanthamoeba spp. are amphizoic protozoa capable of causing several severe diseases in humans and other animals, including granulomatous amoebic encephalitis and Acanthamoeba keratitis (AK). The high resistance of Acanthamoeba genus, especially in its cystic form, to most conventional disinfectants poses a challenge for its management through aseptic practices based on chemical disinfectants. The imidazolium salt (IS) (C16MImCl) demonstrated significant acanthamoebicidal potency against both trophozoites and cysts. However, its biocidal efficacy over a short exposure time, which will shed light on its potential use as a disinfectant, still needs to be studied. Therefore, the acanthamoebicidal effect of IS against trophozoites and cysts of Acanthamoeba polyphaga and Acanthamoeba spp. exposed for 5 and 20 min to concentrations of 250, 125, 62.5, 31.25, 15.62, and 7.81 μg/mL was evaluated in the present study. Exposure of trophozoites of both strains to IS for 20 min significantly reduced trophozoite viability at concentrations ≥62.5 μg/mL. All trophozoites of both strains were inactived 20 min after cessation of IS exposure at concentrations of ≥125 μg/mL for 5 min or ≥15 μg/mL for 20 min. Cyst viability of all strains was significantly reduced after 20 min of exposure to IS at 62.5 and 125 μg/mL, based on the viability exclusion assay with trypan blue dye. However, all cysts exposed to IS at ≥ 125 μg/mL for 20 or 5 min were unable to excyst when incubated for 10 days on non-nutrient agar with Escherichia coli. The acanthamoebicidal efficacy of IS, upon short exposure to concentrations below the cytotoxic value for human keratinocyte cells (IC50 = 171.50 μg/mL), combined with its previously reported bactericidal and fungicidal effects, suggests that IS has the potential to be used in the formulation of multipurpose disinfectants.
Collapse
Affiliation(s)
- Denise Leal Dos Santos
- Master's Program in Clinical Research at Hospital de Clínicas de Porto Alegre (MPPC/HCPA), Rio Grande do Sul, Brazil.
| | - Beni Jequicene Mussengue Chaúque
- Master's Program in Clinical Research at Hospital de Clínicas de Porto Alegre (MPPC/HCPA), Rio Grande do Sul, Brazil; Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Rio Grande do Sul, Brazil; Center of Studies in Science and Technology (NECET), Biology Course, Universidade Rovuma, Niassa Branch, Lichinga, Mozambique.
| | - Francisco Kercher Berté
- Protozoology Laboratory, Microbiology Immunology and Parasitology Department, Basic Health Sciences Institute, Federal University of Rio Grande do Sul, Ramiro Barcelos Street, N 2600, Porto Alegre, Rio Grande do Sul, 90035-002, Brazil.
| | - Larissa de Miranda Ribeiro
- Protozoology Laboratory, Microbiology Immunology and Parasitology Department, Basic Health Sciences Institute, Federal University of Rio Grande do Sul, Ramiro Barcelos Street, N 2600, Porto Alegre, Rio Grande do Sul, 90035-002, Brazil.
| | - Fernanda Fraga Matiazo
- Protozoology Laboratory, Microbiology Immunology and Parasitology Department, Basic Health Sciences Institute, Federal University of Rio Grande do Sul, Ramiro Barcelos Street, N 2600, Porto Alegre, Rio Grande do Sul, 90035-002, Brazil.
| | - Marilise Brittes Rott
- Protozoology Laboratory, Microbiology Immunology and Parasitology Department, Basic Health Sciences Institute, Federal University of Rio Grande do Sul, Ramiro Barcelos Street, N 2600, Porto Alegre, Rio Grande do Sul, 90035-002, Brazil.
| | - Henri Stephan Schrekker
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do RS, Av. Bento Gonçalves 9500, Porto Alegre, RS, 91501-970, Brazil.
| | - Leo Sekine
- FAMED/UFRGS, Hemotherapy/HCPA, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Hu Y, Jiang K, Xia S, Zhang W, Guo J, Wang H. Amoeba community dynamics and assembly mechanisms in full-scale drinking water distribution networks under various disinfectant regimens. WATER RESEARCH 2025; 271:122861. [PMID: 39615115 DOI: 10.1016/j.watres.2024.122861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/14/2025]
Abstract
Free-living amoebae (FLA) are prevalent in drinking water distribution networks (DWDNs), yet our understanding of FLA community dynamics and assembly mechanisms in DWDNs remains limited. This study characterized the occurrence patterns of amoeba communities and identified key factors influencing their assembly across four full-scale DWDNs in three Chinese cities, each utilizing different disinfectants (chlorine, chloramine, and chlorine dioxide). High-throughput sequencing of full-length 18S rRNA genes revealed highly diverse FLA communities and an array of rare FLA species in DWDNs. Unique FLA community structures and higher gene copy numbers of three amoeba taxa of concern (Vermamoeba vermiformis, Acanthamoeba, and Naegleria fowleri) were observed in the chloraminated DWDN, highlighting the distinct impact of chloramine on shaping the amoeba community. The FLA communities in DWDNs were primarily driven by deterministic processes, with disinfectant and nitrogen compounds (nitrate, nitrite, and ammonia) identified as the main influencing factors. Machine learning models revealed high SHapley Additive exPlanations (SHAP) values of dominant amoeba genera (e.g., Vannella and Vermamoeba), indicating their critical ecological roles in shaping broader bacterial and eukaryotic communities. Correlation analyses between amoeba genera and bacterial taxa revealed that 82 % of the bacterial taxa exhibiting a negative correlation with amoebae were gram-negative, suggesting the preferred predation of amoebae toward gram-negative bacteria. Network analysis revealed the presence of only one to two amoebae in distinct modules, suggesting that individual amoebae might be selective in grazing. These findings provide insight into the amoeba community dynamics, assembly mechanisms and ecological roles of amoebae in drinking water, which can aid in risk assessments and mitigation strategies within DWDNs.
Collapse
Affiliation(s)
- Yuxing Hu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kaiyang Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Weixian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
7
|
Liang Y, Wang W. A Balamuthia amoebic encephalitis survivor in China, and literature review. Diagn Microbiol Infect Dis 2025; 111:116698. [PMID: 39847964 DOI: 10.1016/j.diagmicrobio.2025.116698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Balamuthia amoebic encephalitis (BAE) is a rare, fatal parasitic infection of the central nervous system, with a current mortality rate above 95%. The high fatality rate is largely attributed to atypical clinicopathological features, delayed diagnosis, and the absence of effective treatment methods, so quick recognition of this disease is vital. In this paper, we present a survivor of BAE, who was confirmed through histologic examination and metagenomic next-generation sequencing (mNGS) of brain lesions. This case, unlike most previous reports, was a successful survival case. It highlights the critical need for differential diagnosis in patients with central nervous system infectious diseases, particularly those with a history of skin lesions and patients presenting multifocal brain lesions. Moreover, mNGS could serve as a useful tool in rapid identification of causative rare pathogens. The application of decompressive craniectomy may offer treatment opportunities and improve the survival rate of BAE. The case description was followed by a review of the literatures, in order to improve clinicians' understanding of this disease.
Collapse
Affiliation(s)
- Yuemian Liang
- Department of pathology, Afficiated Hospital of Hebei University, Hebei, Baoding, 071000, China..
| | - Weina Wang
- Department of pathology, Afficiated Hospital of Hebei University, Hebei, Baoding, 071000, China..
| |
Collapse
|
8
|
Pessoa PSP, Barcelos R, Pinto LF, de Freitas D, Campos M. Effects of electroporation on Acanthamoeba Polyphaga. PLoS One 2025; 20:e0317409. [PMID: 39999041 DOI: 10.1371/journal.pone.0317409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 12/28/2024] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Species of the genus Acanthamoeba spp. are ubiquitous and can cause Acanthamoeba keratitis (AK), a serious corneal infection. Due to the toxicity and ineffectiveness of currently available prolonged therapies, we investigated electroceutical treatment aimed at facilitating the permeation of molecules through the membrane of cysts and trophozoites, which allows for faster elimination of the parasite. METHODS Cysts and trophozoites of Acanthamoeba polyphaga (ATCC® 30461TM) were exposed in vitro to an electric field with intensities of 2,000 volts and 2,500 volts. Viability after electroporation was assessed by the exclusion method with 0.4% trypan blue dye, while permeabilization was assessed by fluorescence microscopy using propidium iodide (PI), since both are impermeable to the membrane of viable and intact cells. The images were acquired on a Nikon Eclipse TI-U microscope and analyzed using ImageJ software. RESULTS With regard to viability, 40% of the trophozoites electroporated at 2,000 V and 42% of those electroporated at 2,500 V were lost, while for cysts the loss was 13% and 16% respectively. Considering permeabilization, 55% of trophozoites and cysts were permeabilized at 2,000 V (p ≤ 0.05); and 59% at 2,500 V for both (p ≤ 0.05). Values of p < 0.05 were considered statistically significant. CONCLUSION The voltages tested were effective for both cysts and trophozoites, since the percentages of permeabilization were close, with no statistical significance between them, only with the control groups. These results suggest the possibility that an electroceutical treatment could be applied as a complement to the standard treatment for AK.
Collapse
Affiliation(s)
- Palloma Santiago Prates Pessoa
- Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, São Paulo Hospital, Federal University of São Paulo, São Paulo, São Paulo, Brazil - UNIFESP
| | - Raphael Barcelos
- Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, São Paulo Hospital, Federal University of São Paulo, São Paulo, São Paulo, Brazil - UNIFESP
| | - Larissa Fagundes Pinto
- Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, São Paulo Hospital, Federal University of São Paulo, São Paulo, São Paulo, Brazil - UNIFESP
| | - Denise de Freitas
- Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, São Paulo Hospital, Federal University of São Paulo, São Paulo, São Paulo, Brazil - UNIFESP
| | - Mauro Campos
- Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, São Paulo Hospital, Federal University of São Paulo, São Paulo, São Paulo, Brazil - UNIFESP
| |
Collapse
|
9
|
Barrantes Murillo DF, Berrocal A, Ali IKM, Uzal FA. Systemic Acanthamoeba T17 infection in a free-ranging two-toed sloth: case report and literature review of infections by free-living amebas in mammals. J Vet Diagn Invest 2025; 37:164-172. [PMID: 39473116 PMCID: PMC11559879 DOI: 10.1177/10406387241292346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
A free-ranging, adult female two-toed sloth (Choloepus hoffmanni) was brought to a wildlife rescue center in Costa Rica with ocular and auricular myiasis and numerous skin lesions. After one month of unsuccessful systemic and topical antimicrobial treatment, the patient died. A postmortem examination was performed, and tissues were examined histologically, confirming disseminated amebic infection with intralesional trophozoites and cysts in the lungs, liver, eye, heart, spleen, and stomach. Immunohistochemistry identified the ameba as Acanthamoeba sp. A multiplex real-time PCR assay, 18S ribosomal DNA PCR, and sequencing performed on formalin-fixed, paraffin-embedded lung tissue confirmed the Acanthamoeba T17 genotype. The Acanthamoeba genus is in the group of free-living amebas that cause infection in humans and animals, and it is ubiquitous in the environment. Acanthamoeba T17 has been isolated from water and soil, but to our knowledge, this genotype has not been implicated in infections of animals previously and has not been reported from Costa Rica. Systemic Acanthamoeba infection has not been described in sloths previously. We provide a comprehensive literature review describing infections by free-living amebas of the genus Acanthamoeba spp., Balamuthia spp., and Naegleria spp. in domestic, zoo, and wild mammals.
Collapse
Affiliation(s)
| | | | - Ibne Karim M. Ali
- Free-Living and Intestinal Amebas (FLIA) Laboratory, Waterborne Disease Prevention Branch, Division of Foodborne Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Francisco A. Uzal
- California Animal Health and Food Safety Laboratory System, University of California–Davis, San Bernardino, CA, USA
| |
Collapse
|
10
|
Rojo JU, Rajendran R, Nyangau EM, Castellanos-Gonzalez A, Salazar JH. Seroprevalence of Naegleria fowleri in the Houston-Galveston Texas Population. Parasitol Res 2024; 123:421. [PMID: 39729228 DOI: 10.1007/s00436-024-08443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Naegleria fowleri is a free-living amoeba and the causative agent of Primary Amebic Meningoencephalitis (PAM), a rare yet almost always fatal disease that primarily affects children. While only 431 PAM cases have been reported worldwide, the southern states of the United States, including Texas, report the highest number of cases. Despite the high mortality of the disease, studies have identified antibodies to N. fowleri in healthy individuals suggesting that exposure to this pathogen is common, but disease is rare. Here, we investigated the seroprevalence of N. fowleri in the general population of individuals residing in an area of Texas to identify population characteristics or water-based activity levels that may be associated with seropositivity. For this, healthy human participants were surveyed, and blood samples were collected to test their sera against N. fowleri lysate by indirect ELISA. A seropositivity rate of 89% was observed with 40% of participants demonstrating a titer of up to 1:500. Demographic and water-activity level differences among subjects did not correlate with antibody titers. The high seropositivity suggests environmental exposure and the development of humoral immunity against this pathogen.
Collapse
Affiliation(s)
- Juan U Rojo
- Department of Clinical Laboratory Sciences, School of Health Professions, Medical Branch, University of Texas, 301 University Blvd, Galveston, TX, 77555-0128, USA.
| | - Rajkumar Rajendran
- Department of Clinical Laboratory Sciences, School of Health Professions, Medical Branch, University of Texas, 301 University Blvd, Galveston, TX, 77555-0128, USA
| | - Emmanuel M Nyangau
- Department of Clinical Laboratory Sciences, School of Health Professions, Medical Branch, University of Texas, 301 University Blvd, Galveston, TX, 77555-0128, USA
| | - Alejandro Castellanos-Gonzalez
- Division of Infectious Diseases, Department of Internal Medicine, Medical Branch, University of Texas, 301 University Blvd, Galveston, TX, 77555-0128, USA
| | - Jose H Salazar
- Department of Clinical Laboratory Sciences, School of Health Professions, Medical Branch, University of Texas, 301 University Blvd, Galveston, TX, 77555-0128, USA
| |
Collapse
|
11
|
Hamid MWA, Bin Abd Majid R, Victor Ernest VFK, Mohamed Shakrin NNS, Mohamad Hamzah F, Haque M. A Narrative Review of Acanthamoeba Isolates in Malaysia: Challenges in Infection Management and Natural Therapeutic Advancements. Cureus 2024; 16:e72851. [PMID: 39493340 PMCID: PMC11530292 DOI: 10.7759/cureus.72851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
Acanthamoeba, a free-living amoeba (FLA) found in diverse ecosystems, poses significant health risks globally, particularly in Malaysia. It causes severe infectious diseases, e.g., Acanthamoeba keratitis (AK), primarily affecting individuals who wear contact lenses, along with granulomatous amoebic encephalitis (GAE), a rare but often life-threatening condition among immunocompromised individuals. AK has become increasingly prevalent in Malaysia and is linked to widespread environmental contamination and improper contact lens hygiene. Recent studies highlight Acanthamoeba's capacity to serve as a "Trojan horse" for amoeba-resistant bacteria (ARBs), contributing to hospital-associated infections (HAIs). These symbiotic relationships and the resilience of Acanthamoeba cysts make treatment challenging. Current diagnostic methods in Malaysia rely on microscopy and culture, though molecular procedures like polymerase chain reaction (PCR) are employed for more precise detection. Treatment options remain limited due to the amoeba's cyst resistance to conventional therapies. However, recent advancements in natural therapeutics, including using plant extracts such as betulinic acid from Pericampylus glaucus and chlorogenic acid from Lonicera japonica, have shown promising in vitro results. Additionally, nanotechnology applications, mainly using gold and silver nanoparticles to enhance drug efficacy, are emerging as potential solutions. Further, in vivo studies and clinical trials must validate these findings. This review highlights the requirement for continuous research, public health strategies, and interdisciplinary collaboration to address the growing threat of Acanthamoeba infections in Malaysia while exploring the country's rich biodiversity for innovative therapeutic solutions.
Collapse
Affiliation(s)
| | - Roslaini Bin Abd Majid
- Medical Parasitology and Entomology, National Defence University of Malaysia, Kuala Lumpur, MYS
| | | | | | - Firdaus Mohamad Hamzah
- Centre for Defence Foundation Studies, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Mainul Haque
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
12
|
Hendiger-Rizo EB, Chmielewska-Jeznach M, Poreda K, Rizo Liendo A, Koryszewska-Bagińska A, Olędzka G, Padzik M. Potentially Pathogenic Free-Living Amoebae Isolated from Soil Samples from Warsaw Parks and Squares. Pathogens 2024; 13:895. [PMID: 39452766 PMCID: PMC11510524 DOI: 10.3390/pathogens13100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Free-living amoebae (FLA) are prevalent in diverse environments, representing various genera and species with different pathogenicity. FLA-induced infections, such as the highly fatal amoebic encephalitis, with a mortality rate of 99%, primarily affect immunocompromised individuals while others such as Acanthamoeba keratitis (AK) and cutaneous amebiasis may affect immunocompetent individuals. Despite the prevalence of FLA, there is a lack of standardized guidelines for their detection near human habitats. To date, no studies on the isolation and identification of FLA in environmental soil samples in Warsaw have been published. The aim of this study was to determine the presence of amoebae in soil samples collected from Warsaw parks and squares frequented by humans. The isolated protozoa were genotyped. Additionally, their pathogenic potential was determined through thermophilicity tests. A total of 23 soil samples were seeded on non-nutrient agar plates (NNA) at 26 °C and monitored daily for FLA presence. From the total of 23 samples, 18 were positive for FLA growth in NNA and PCR (78.2%). Acanthamoeba spp. was the most frequently isolated genus, with a total of 13 positive samples (13/18; 72.2%), and the T4 genotype being the most common. Moreover, Platyamoeba placida (3/18; 16.7%), Stenamoeba berchidia (1/18; 5.6%) and Allovahlkampfia sp. (1/18; 5.6%), also potentially pathogenic amoebae, were isolated. To our knowledge, this is the first report of FLA presence and characterization in the Warsaw area.
Collapse
Affiliation(s)
| | | | | | | | | | - Gabriela Olędzka
- Parasitology Laboratory, Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (E.B.H.-R.); (M.C.-J.); (K.P.); (A.R.L.); (A.K.-B.); (M.P.)
| | | |
Collapse
|
13
|
Aykur M, Selver OB, Dagci H, Palamar M. Vermamoeba vermiformis as the etiological agent in a patient with suspected non-Acanthamoeba keratitis. Parasitol Res 2024; 123:323. [PMID: 39254717 DOI: 10.1007/s00436-024-08347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Vermamoeba vermiformis (V. vermiformis) is one of the most common free-living amoeba (FLA) and is frequently found in environments such as natural freshwater areas, surface waters, soil, and biofilms. V. vermiformis has been reported as a pathogen with pathogenic potential for humans and animals. The aim is to report a case of non-Acanthamoeba keratitis in which V. vermiformis was the etiological agent, identified by culture and molecular techniques. Our case was a 48-year-old male patient with a history of trauma to his eye 10 days ago. The patient complained of eye redness and purulent discharge. A slit-lamp examination of the eye revealed a central corneal ulcer with peripheral infiltration extending into the deep stroma. The corneal scraping sample taken from the patient was cultured on a non-nutritious agar plate (NNA). Amoebae were evaluated according to morphological evaluation criteria. It was investigated by PCR method and confirmed by DNA sequence analysis. Although no bacterial or fungal growth was detected in the routine microbiological evaluation of the corneal scraping sample that was cultured, amoeba growth was detected positively in the NNA culture. Meanwhile, Acanthamoeba was detected negative by real-time PCR. However, V. vermiformis was detected positive with the specific PCR assay. It was confirmed by DNA sequence analysis to be considered an etiological pathogenic agent. Thus, topical administration of chlorhexidine gluconate %0.02 (8 × 1) was initiated. Clinical regression was observed 72 h after chlorhexidine initiation, and complete resolution of keratitis with residual scarring was noticed in 5 weeks. In conclusion, corneal infections due to free-living amoebae can occur, especially in poor hygiene. Although Acanthamoeba is the most common keratitis due to amoeba, V. vermiformis is also assumed to associate keratitis in humans. Clinicians should also be aware of other amoebic agents, such as V. vermiformis, in keratitis patients.
Collapse
Affiliation(s)
- Mehmet Aykur
- Department of Parasitology, Tokat Gaziosmanpaşa University Medical School, Central, PO Box 60030, Tokat, 60100, Turkey.
- Department of Parasitology, Ege University Medical School, İzmir, Turkey.
| | - Ozlem Barut Selver
- Department of Ophthalmology, Ege University Medical School, İzmir, Turkey
| | - Hande Dagci
- Department of Parasitology, Ege University Medical School, İzmir, Turkey
| | - Melis Palamar
- Department of Ophthalmology, Ege University Medical School, İzmir, Turkey
| |
Collapse
|
14
|
Vingataramin Y, Quétel I, Pons MA, Talarmin A, Marcelino I. Spatiotemporal distribution of thermophilic free-living amoebae in recreational waters: A 5-year survey in Guadeloupe (French West Indies). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173318. [PMID: 38777057 DOI: 10.1016/j.scitotenv.2024.173318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Free-living amoebae (FLA) such as Acanthamoeba, Balamuthia mandrillaris, Naegleria fowleri and Sappinia pedata are naturally widespread in freshwater, causing rare but fatal and debilitating infections in humans. Although recent studies have shown an increase in infection rates, there is a paucity of epidemiological studies regarding the presence of these emerging pathogens in water. Herein, we studied the diversity and relative abundance of thermophilic FLA in different recreational baths in a tropical climate for 5 years. From 2018 to 2022, a total of 96 water samples were collected from 7 recreational baths (natural, tiled, regularly cleaned or not, and with temperatures ranging from 27 to 40 °C). DNA was extracted from FLA cultivated at 37 °C to detect thermophilic culturable FLA. Metabarcoding studies were conducted through FLA 18S rRNA gene amplicons sequencing; amplicon sequence variants (ASV) were extracted from each sample and taxonomy assigned against PR2 database using dada2 and phyloseq tools. We also searched for Naegleria sp. and N. fowleri using PCR targeting ITS and NFITS genes (respectively) and we quantified them using an optimized most probable number (MPN) method for FLA. Our results showed that differences in FLA diversity and abundance were observed amongst the 7 baths, but without a clear seasonal distribution. Naegleria, Vermamoeba and Stenamoeba were the most represented genera, while the genera Acanthamoeba and Vahlkampfia were mainly found in 2 baths. The MPN values for Naegleria sp. (NT/l) increased between 2018 and 2022, but the MPN values for N. fowleri (NF/l) seemed to decrease. Globally, our results showed that since we cannot establish a seasonal distribution of FLA, the regular presence of FLA (namely Naegleria and Acanthamoeba) in recreational waters can pose a potential threat in terms of neuroinfections as well as Acanthamoeba keratitis. It is thus imperious to perform the regular control of these baths as a preventive health measure.
Collapse
Affiliation(s)
| | - Isaure Quétel
- Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France
| | - Marie-Anne Pons
- Agence Régionale de Santé (ARS) Guadeloupe, Les Abymes, France
| | - Antoine Talarmin
- Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France
| | - Isabel Marcelino
- Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France.
| |
Collapse
|
15
|
Qin S, Lu X, Li L, Huang D. Nursing Care in Intensive Care Unit of a Patient Infected With Balamuthia Mandrillaris After Renal Transplantation: A Case Report. Transplant Proc 2024; 56:1183-1187. [PMID: 38806312 DOI: 10.1016/j.transproceed.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 02/15/2024] [Indexed: 05/30/2024]
Abstract
An uncommon and dangerous disease with a fatality rate of more than 95% is caused by the amoeba known as Balamuthia mandrillaris. Here, we discuss the treatment of a patient who underwent a renal transplant and contracted the amoeba B. mandrillaris. The patient had a sudden onset of high fever on the 13th day after renal transplantation; on the morning of the 16th postoperative day, the patient's condition worsened and he was transferred to the ICU for treatment; on the 17th postoperative day, the patient was given mechanical ventilation; and on the 20th postoperative day, he underwent a lumbar large-pool puncture, combined with intrathecal injection of the administered medication. In order to prevent further deterioration of the patient's condition, the main aspects of care for this patient included close monitoring of changes in the patient's condition and early detection of risk factors; prompt emergency care for the patient's seizures; close monitoring of the efficacy and side effects of the patient's medication; and precise medication administration; improved hemodynamic monitoring while administering CRRT to the patient, as well as performing exercises on the patient's limb and respiratory functions. On the 32nd postoperative day, a tracheotomy is performed following thorough monitoring and care. The ventilator was turned off on postoperative day 34, and a venturi mask was installed for tracheotomy-cannula-based oxygen administration. On surgical day 40, the intrathecal injections halted and the lumbar pool drainage tube was removed. On postoperative day 46, the patient was stabilized and transferred from the intensive care unit to the organ transplant unit for extra care. This study strictly complied with the Helsinki Congress and the Istanbul Declaration regarding donor source.
Collapse
Affiliation(s)
- Shuangwen Qin
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiuhong Lu
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ling Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Debin Huang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
16
|
Ali M, Rice CA, Byrne AW, Paré PE, Beauvais W. Modelling dynamics between free-living amoebae and bacteria. Environ Microbiol 2024; 26:e16623. [PMID: 38715450 DOI: 10.1111/1462-2920.16623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/04/2024] [Indexed: 05/23/2024]
Abstract
Free-living amoebae (FLA) serve as hosts for a variety of endosymbionts, which are microorganisms that reside and multiply within the FLA. Some of these endosymbionts pose a pathogenic threat to humans, animals, or both. The symbiotic relationship with FLA not only offers these microorganisms protection but also enhances their survival outside their hosts and assists in their dispersal across diverse habitats, thereby escalating disease transmission. This review is intended to offer an exhaustive overview of the existing mathematical models that have been applied to understand the dynamics of FLA, especially concerning their interactions with bacteria. An extensive literature review was conducted across Google Scholar, PubMed, and Scopus databases to identify mathematical models that describe the dynamics of interactions between FLA and bacteria, as published in peer-reviewed scientific journals. The literature search revealed several FLA-bacteria model systems, including Pseudomonas aeruginosa, Pasteurella multocida, and Legionella spp. Although the published mathematical models account for significant system dynamics such as predator-prey relationships and non-linear growth rates, they generally overlook spatial and temporal heterogeneity in environmental conditions, such as temperature, and population diversity. Future mathematical models will need to incorporate these factors to enhance our understanding of FLA-bacteria dynamics and to provide valuable insights for future risk assessment and disease control measures.
Collapse
Affiliation(s)
- Marwa Ali
- Comparative Pathobiology Department, Purdue Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Christopher A Rice
- Comparative Pathobiology Department, Purdue Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Drug Discovery (PIDD), Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease (PI4D), Purdue University, West Lafayette, Indiana, USA
- Regenstrief Center for Healthcare Engineering (RHCE), Purdue University, West Lafayette, Indiana, USA
| | - Andrew W Byrne
- One Health Scientific Support Unit, National Disease Control Centre, Agriculture House, Dublin, Ireland
| | - Philip E Paré
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Wendy Beauvais
- Comparative Pathobiology Department, Purdue Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease (PI4D), Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
17
|
Gad M, Marouf MA, Abogabal A, Hu A, Nabet N. Commercial reverse osmosis point-of-use systems in Egypt failed to purify tap water. JOURNAL OF WATER AND HEALTH 2024; 22:905-922. [PMID: 38822469 DOI: 10.2166/wh.2024.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/10/2024] [Indexed: 06/03/2024]
Abstract
This study addresses the heightened global reliance on point-of-use (PoU) systems driven by water quality concerns, ageing infrastructure, and urbanization. While widely used in Egypt, there is a lack of comprehensive evaluation of these systems. We assessed 10 reverse osmosis point-of-use systems, examining physicochemical, bacteriological, and protozoological aspects of tap water (inlets) and filtered water (outlets), adhering to standard methods for the examination of water and wastewater. Results showed significant reductions in total dissolved solids across most systems, with a decrease from 210 ± 23.6 mg/L in tap water to 21 ± 2.8 mg/L in filtered water for PoU-10. Ammonia nitrogen levels in tap water decreased from 0.05 ± 0.04 to 2.28 ± 1.47 mg/L to 0.02 ± 0.04 to 0.69 ± 0.64 mg/L in filtered water. Despite this, bacterial indicators showed no significant changes, with some systems even increasing coliform levels. Protozoological analysis identified prevalent Acanthamoeba (42.5%), less frequent Naegleria (2.5%), Vermamoeba vermiformis (5%), and potentially pathogenic Acanthamoeba genotypes. Elevated bacterial indicators in filtered water of point-of-use systems, combined with essential mineral removal, indicate non-compliance with water quality standards, posing a public health concern. Further research on the long-term health implications of these filtration systems is essential.
Collapse
Affiliation(s)
- Mahmoud Gad
- Environmental Parasitology Laboratory, Water Pollution Research Department, National Research Centre, Giza 12622, Egypt E-mail:
| | - Mohamed A Marouf
- Environmental Parasitology Laboratory, Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| | - Amr Abogabal
- Reference Laboratory, Holding Company for Water and Wastewater, Cairo 12766, Egypt
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Noura Nabet
- Zoology Department, Faculty of Science, Menoufia University, Menofia, Egypt
| |
Collapse
|
18
|
Edelbroek B, Kjellin J, Biryukova I, Liao Z, Lundberg T, Noegel A, Eichinger L, Friedländer M, Söderbom F. Evolution of microRNAs in Amoebozoa and implications for the origin of multicellularity. Nucleic Acids Res 2024; 52:3121-3136. [PMID: 38375870 PMCID: PMC11014262 DOI: 10.1093/nar/gkae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression in both plants and animals. They are thought to have evolved convergently in these lineages and hypothesized to have played a role in the evolution of multicellularity. In line with this hypothesis, miRNAs have so far only been described in few unicellular eukaryotes. Here, we investigate the presence and evolution of miRNAs in Amoebozoa, focusing on species belonging to Acanthamoeba, Physarum and dictyostelid taxonomic groups, representing a range of unicellular and multicellular lifestyles. miRNAs that adhere to both the stringent plant and animal miRNA criteria were identified in all examined amoebae, expanding the total number of protists harbouring miRNAs from 7 to 15. We found conserved miRNAs between closely related species, but the majority of species feature only unique miRNAs. This shows rapid gain and/or loss of miRNAs in Amoebozoa, further illustrated by a detailed comparison between two evolutionary closely related dictyostelids. Additionally, loss of miRNAs in the Dictyostelium discoideum drnB mutant did not seem to affect multicellular development and, hence, demonstrates that the presence of miRNAs does not appear to be a strict requirement for the transition from uni- to multicellular life.
Collapse
Affiliation(s)
- Bart Edelbroek
- Department of Cell and Molecular Biology, Uppsala Biomedical Centre, Uppsala University, 75124 Uppsala, Sweden
| | - Jonas Kjellin
- Department of Cell and Molecular Biology, Uppsala Biomedical Centre, Uppsala University, 75124 Uppsala, Sweden
| | - Inna Biryukova
- Science for Life Laboratory, The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Zhen Liao
- Department of Cell and Molecular Biology, Uppsala Biomedical Centre, Uppsala University, 75124 Uppsala, Sweden
| | - Torgny Lundberg
- Department of Cell and Molecular Biology, Uppsala Biomedical Centre, Uppsala University, 75124 Uppsala, Sweden
| | - Angelika A Noegel
- Centre for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Ludwig Eichinger
- Centre for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Marc R Friedländer
- Science for Life Laboratory, The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Fredrik Söderbom
- Department of Cell and Molecular Biology, Uppsala Biomedical Centre, Uppsala University, 75124 Uppsala, Sweden
| |
Collapse
|
19
|
Özcan Aykol ŞM, Zeybek Z. Interaction between Acanthamoeba and Staphylococcus. J Basic Microbiol 2024; 64:e2300551. [PMID: 38416601 DOI: 10.1002/jobm.202300551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024]
Abstract
Free-living amoebae of the genus Acanthamoeba are infected by various bacteria in nature, and thus bacteria can protect themselves from adverse environmental conditions. Contrary to this ameba-bacteria relationship whether Acanthamoeba has antibacterial effects on bacteria is the different aspect of the relationship between these microorganisms. In this study, we investigate various Acanthamoeba strains have antibacterial effects on various Staphylococcus strains. Three environmental Acanthamoeba strains, isolated from various aquatic environments in Turkey, and Acanthamoeba castellanii ATCC 50373 standard strains were used in the study. The antistaphylococcal effect of cell-free supernatant (CFS) obtained from these amoebae against 12 different Staphylococcus bacteria was investigated by colony counting method. In addition, the pathogenicity of the tested Acanthamoeba strains was determined using osmotolerance and thermotolerance tests. CFSs obtained from Acanthamoeba were found to have varying degrees of antistaphylococcal effects on various Staphylococcus strains (0%-100%). It was determined that the CFS of the standard Acanthamoeba strain showed 100% inhibitory effect against one clinical methicillin-resistant Staphylococcus aureus strain (M2). Also, CFS of Ugöl strain showed 99.97% inhibitory effect against one clinical methicillin-sensitive Staphylococcus epidermidis strain (L3). It was determined that all Acanthamoeba isolates had no pathogenic potential. According to the results, it has been observed that Acanthamoeba produces antibacterial substance(s) against Staphylococcus bacteria and that the ameba-bacteria relationship may also result in the detriment of the bacteria. Furthermore, the current study indicates that new and natural antimicrobial agents from Acanthamoeba can be used as an alternative to infections caused by Staphylococcus.
Collapse
Affiliation(s)
- Şevval M Özcan Aykol
- Department of Pharmaceutical Microbiology, Biruni University Faculty of Pharmacy, İstanbul, Turkey
| | - Zuhal Zeybek
- Department of Biology, İstanbul University Faculty of Science, İstanbul, Turkey
| |
Collapse
|
20
|
Shaukat A, Khaliq N, Riaz R, Munsab R, Ashraf T, Raufi N, Shah H. Noninvasive diagnostic biomarkers, genomic profiling, and advanced microscopic imaging in the early detection and characterization of Naegleria fowleri infections leading to primary amebic meningoencephalitis (PAM). Ann Med Surg (Lond) 2024; 86:2032-2048. [PMID: 38576920 PMCID: PMC10990330 DOI: 10.1097/ms9.0000000000001843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/08/2024] [Indexed: 04/06/2024] Open
Abstract
This review delves into the strategies for early detection and characterization of Naegleria fowleri infections leading to primary amoebic meningoencephalitis (PAM). The study provides an in-depth analysis of current diagnostic approaches, including cerebrospinal fluid analysis, brain tissue examination, immunostaining techniques, and culture methods, elucidating their strengths and limitations. It explores the geographical distribution of N. fowleri, with a focus on regions near the equator, and environmental factors contributing to its prevalence. The review emphasizes the crucial role of early detection in PAM management, discussing the benefits of timely identification in treatment, personalized care, and prevention strategies. Genomic profiling techniques, such as conventional PCR, nested PCR, multiplex PCR, and real-time PCR, are thoroughly examined as essential tools for accurate and prompt diagnosis. Additionally, the study explores advanced microscopic imaging techniques to characterize N. fowleri's morphology and behavior at different infection stages, enhancing our understanding of its life cycle and pathogenic mechanisms. In conclusion, this review underscores the potential of these strategies to improve our ability to detect, understand, and combat N. fowleri infections, ultimately leading to better patient outcomes and enhanced public health protection.
Collapse
Affiliation(s)
| | - Nawal Khaliq
- Dow University of Health Sciences, Karachi, Pakistan
| | - Rumaisa Riaz
- Dow University of Health Sciences, Karachi, Pakistan
| | - Rabbia Munsab
- Dow University of Health Sciences, Karachi, Pakistan
| | | | - Nahid Raufi
- Department of Medicine, Kabul Medical University, Kabul, Afghanistan
| | - Hafsa Shah
- Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
21
|
Rajendran K, Ahmed U, Meunier AC, Shaikh MF, Siddiqui R, Anwar A. Nanoparticle-Terpene Fusion: A Game-Changer in Combating Primary Amoebic Meningoencephalitis Caused by Naegleria fowleri. ACS OMEGA 2024; 9:11597-11607. [PMID: 38497026 PMCID: PMC10938409 DOI: 10.1021/acsomega.3c08844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 03/19/2024]
Abstract
Pathogenic Naegleria fowleri (N. fowleri) are opportunistic free-living amoebae and are the causative agents of a very rare but severe brain infection called primary amoebic meningoencephalitis (PAM). The fatality rate of PAM in reported cases is more than 95%. Most of the drugs used againstN. fowleri infections are repurposed drugs. Therefore, a large number of compounds have been tested againstN. fowleri in vitro, but most of the tested compounds showed high toxicity and an inability to cross the blood-brain barrier. Andrographolide, forskolin, and borneol are important natural compounds that have shown various valuable biological properties. In the present study, the nanoconjugates (AND-AgNPs, BOR-AgNPs, and FOR-AgNPs) of these compounds were synthesized and assessed against both stages (trophozoite and cyst) ofN. fowleri for their antiamoebic and cysticidal potential in vitro. In addition, cytotoxicity and host cell pathogenicity were also evaluated in vitro. FOR-AgNPs were the most potent nanoconjugate and showed potent antiamoebic activity againstN. fowleriwith an IC50 of 26.35 μM. Nanoconjugates FOR-AgNPs, BOR-AgNPs, and AND-AgNPs also significantly inhibit the viability of N. fowleri cysts. Cytotoxicity assessment showed that these nanoconjugates caused minimum damage to human keratinocyte cells (HaCaT cells) at 100 μg/mL, while also effectively reducing the cytopathogenicity of N. fowleri trophozoites to the HaCaT cells. The outcomes of our experiments have unveiled substantial potential for AND-AgNPs, BOR-AgNPs, and FOR-AgNPs in the realm of developing innovative alternative therapeutic agents to combat infections caused by N. fowleri. This study represents a significant step forward in the pursuit of advanced strategies for managing such amoebic infections, laying the foundation for the development of novel and more effective therapeutic modalities in the fight against free-living amoebae.
Collapse
Affiliation(s)
- Kavitha Rajendran
- School
of American Education, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| | - Usman Ahmed
- Department
of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| | - Alexia Chloe Meunier
- Department
of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology
Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- School
of Dentistry and Medical Sciences, Charles
Sturt University, Orange 2800, New South Wales, Australia
| | - Ruqaiyyah Siddiqui
- Department
of Microbiota Research Centre, Istinye University, Istanbul 34010, Turkey
| | - Ayaz Anwar
- Department
of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
22
|
Khairul WM, Hashim F, Rahamathullah R, Mohammed M, Aisyah Razali S, Ahmad Tajudin Tuan Johari S, Azizan S. Exploring ethynyl-based chalcones as green semiconductor materials for optical limiting interests. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123776. [PMID: 38134650 DOI: 10.1016/j.saa.2023.123776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
The fabrication of molecular electronics from non-toxic functional materials which eventually would potentially able to degrade or being breaking down into safe by-products have attracted much interests in recent years. Hence, in this study, the introduction of mixed highly functional substructures of chalcone (-CO-CH=CH-) and ethynylated (C≡C) as building blocks has shown ideal performance as solution-processed thin film candidatures. Two types of derivatives, (MM-3a) and (MM-3b) repectively, showed a substantial Stokes shifts at 75 nm and 116 nm, in which such emission exhibits an intramolecular charge transfer (ICT) state and fluoresce characteristics. The density functional theory (DFT) simulation shows that MM-3a and MM-3b exhibit low energy gaps of 3.70 eV and 2.81 eV, respectively. TD-DFT computations for molecular electrostatic potential (MEP) and frontier molecular orbitals (FMO) were also used to emphasise the structure-property relationship. A solution-processed thin film with a single layer of ITO/PEDOT:PSS/MM-3a-MM-3b/Au exhibited electroluminescence behaviour with orange and purple emissions when supplied with direct current (DC) voltages. To promote the safer application of the derivatives formed, ethynylated chalcone materials underwent toxicity studies toward Acanthamoeba sp. to determine their suitability as non-toxic molecules prior to the determination as safer materials in optical limiting interests. From the preliminary test, no IC50 value was obtained for both compounds via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay analysis and molecular docking analysis between MM-3a and MM-3b, with profilin protein exhibited weak bond interactions and attaining huge interaction distances.
Collapse
Affiliation(s)
- Wan M Khairul
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Fatimah Hashim
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Biological Security and Sustainability Research Interest Group (BIOSES), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Rafizah Rahamathullah
- Faculty of Chemical Engineering & Technology, University Malaysia Perlis, Level 1, Block S2, UniCITI Alam Campus, Sungai Chuchuh, Padang Besar, 02100 Perlis, Malaysia
| | - Mas Mohammed
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Siti Aisyah Razali
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Biological Security and Sustainability Research Interest Group (BIOSES), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Syed Ahmad Tajudin Tuan Johari
- Centre for Research in Infectious Diseases and Biotechnology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Medical Campus. 20400 kuala Terengganu, Terengganu, Malaysia
| | - Suha Azizan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Ferreira MDS, Gonçalves DDS, Mendoza SR, de Oliveira GA, Pontes B, la Noval CRD, Honorato L, Ramos LFC, Nogueira FCS, Domont GB, Casadevall A, Nimrichter L, Peralta JM, Guimaraes AJ. β-1,3-Glucan recognition by Acanthamoeba castellanii as a putative mechanism of amoeba-fungal interactions. Appl Environ Microbiol 2024; 90:e0173623. [PMID: 38259076 PMCID: PMC10880599 DOI: 10.1128/aem.01736-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
In this study, we conducted an in-depth analysis to characterize potential Acanthamoeba castellanii (Ac) proteins capable of recognizing fungal β-1,3-glucans. Ac specifically anchors curdlan or laminarin, indicating the presence of surface β-1,3-glucan-binding molecules. Using optical tweezers, strong adhesion of laminarin- or curdlan-coated beads to Ac was observed, highlighting their adhesive properties compared to controls (characteristic time τ of 46.9 and 43.9 s, respectively). Furthermore, Histoplasma capsulatum (Hc) G217B, possessing a β-1,3-glucan outer layer, showed significant adhesion to Ac compared to a Hc G186 strain with an α-1,3-glucan outer layer (τ of 5.3 s vs τ 83.6 s). The addition of soluble β-1,3-glucan substantially inhibited this adhesion, indicating the involvement of β-1,3-glucan recognition. Biotinylated β-1,3-glucan-binding proteins from Ac exhibited higher binding to Hc G217B, suggesting distinct recognition mechanisms for laminarin and curdlan, akin to macrophages. These observations hinted at the β-1,3-glucan recognition pathway's role in fungal entrance and survival within phagocytes, supported by decreased fungal viability upon laminarin or curdlan addition in both phagocytes. Proteomic analysis identified several Ac proteins capable of binding β-1,3-glucans, including those with lectin/glucanase superfamily domains, carbohydrate-binding domains, and glycosyl transferase and glycosyl hydrolase domains. Notably, some identified proteins were overexpressed upon curdlan/laminarin challenge and also demonstrated high affinity to β-1,3-glucans. These findings underscore the complexity of binding via β-1,3-glucan and suggest the existence of alternative fungal recognition pathways in Ac.IMPORTANCEAcanthamoeba castellanii (Ac) and macrophages both exhibit the remarkable ability to phagocytose various extracellular microorganisms in their respective environments. While substantial knowledge exists on this phenomenon for macrophages, the understanding of Ac's phagocytic mechanisms remains elusive. Recently, our group identified mannose-binding receptors on the surface of Ac that exhibit the capacity to bind/recognize fungi. However, the process was not entirely inhibited by soluble mannose, suggesting the possibility of other interactions. Herein, we describe the mechanism of β-1,3-glucan binding by A. castellanii and its role in fungal phagocytosis and survival within trophozoites, also using macrophages as a model for comparison, as they possess a well-established mechanism involving the Dectin-1 receptor for β-1,3-glucan recognition. These shed light on a potential parallel evolution of pathways involved in the recognition of fungal surface polysaccharides.
Collapse
Affiliation(s)
- Marina da Silva Ferreira
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Diego de Souza Gonçalves
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Susana Ruiz Mendoza
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Gabriel Afonso de Oliveira
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Bruno Pontes
- Instituto de Ciências Biomédicas e Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Claudia Rodríguez-de la Noval
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Leandro Honorato
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Luis Felipe Costa Ramos
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Fábio C. S. Nogueira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Gilberto B. Domont
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Leonardo Nimrichter
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
- Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Niterói, Rio de Janeiro, Brazil
| | - Jose Mauro Peralta
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Allan J. Guimaraes
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
- Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Niterói, Rio de Janeiro, Brazil
- Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Haapanen S, Barker H, Carta F, Supuran CT, Parkkila S. Novel Drug Screening Assay for Acanthamoeba castellanii and the Anti-Amoebic Effect of Carbonic Anhydrase Inhibitors. J Med Chem 2024; 67:152-164. [PMID: 38150360 PMCID: PMC10788897 DOI: 10.1021/acs.jmedchem.3c01020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
Acanthamoeba castellanii is an amoeba that inhabits soil and water in every part of the world. Acanthamoeba infection of the eye causes keratitis and can lead to a loss of vision. Current treatment options are only moderately effective, have multiple harmful side effects, and are tedious. In our study, we developed a novel drug screening method to define the inhibitory properties of potential new drugs against A. castellanii in vitro. We found that the clinically used carbonic anhydrase inhibitors, acetazolamide, ethoxzolamide, and dorzolamide, have promising antiamoebic properties.
Collapse
Affiliation(s)
- Susanna Haapanen
- Faculty
of Medicine and Health Technology, Tampere
University, FI-33520 Tampere, Finland
| | - Harlan Barker
- Faculty
of Medicine and Health Technology, Tampere
University, FI-33520 Tampere, Finland
- Fimlab
Ltd, Tampere University Hospital, FI-33520 Tampere, Finland
| | - Fabrizio Carta
- Neurofarba
Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff 6, Sesto Fiorentino, I-50019 Firenze, Italy
| | - Claudiu T. Supuran
- Neurofarba
Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff 6, Sesto Fiorentino, I-50019 Firenze, Italy
| | - Seppo Parkkila
- Faculty
of Medicine and Health Technology, Tampere
University, FI-33520 Tampere, Finland
- Fimlab
Ltd, Tampere University Hospital, FI-33520 Tampere, Finland
| |
Collapse
|
25
|
Mahdavi Poor B, Rashedi J, Asgharzadeh V, Mirmazhary A, Gheitarani N. Proteases of Acanthamoeba. Parasitol Res 2023; 123:19. [PMID: 38063887 DOI: 10.1007/s00436-023-08059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023]
Abstract
The members of genus Acanthamoeba are the etiological agent of uncommon but severe or even fatal opportunistic infections in human beings. The presence of different classes of intracellular and extracellular proteases including serine proteases, cysteine proteases, and metalloproteases has been well documented in environmental and clinical isolates of Acanthamoeba spp. However, the role of the proteolytic enzymes in physiological, biological, and pathological mechanisms of the amoeba remains partially investigated. Some attempts have been conducted using various methods to determine the profile of proteases (number, class, optimal conditions, and activity of the enzymes), and possible pathogenicity mechanism of the proteolytic enzymes (various protein substrate degradation, cytopathic effect on different cell lines). In some cases, it was attempted to correlate intracellular and extracellular protease profile with pathogenicity potential of strains. This review revealed that the protease profile of different strains of Acanthamoeba was extremely complex, therefore, further comprehensive studies with application of a combination of various methods may help to elucidate the role of the enzymes.
Collapse
Affiliation(s)
- Behroz Mahdavi Poor
- Department of Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Golgasht Ave, Azadi St, Tabriz, Iran.
| | - Jalil Rashedi
- Department of Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Golgasht Ave, Azadi St, Tabriz, Iran
| | - Vahid Asgharzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirali Mirmazhary
- Department of Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Golgasht Ave, Azadi St, Tabriz, Iran
| | | |
Collapse
|
26
|
Pourabbasi Ardekan A, Niyyati M, Saberi R, Zanjirani Farahani L, Fatemi M. Isolation and genotyping of Acanthamoeba species and Vahlkampfiidae in the harsh environmental conditions in the centre of Iran. JOURNAL OF WATER AND HEALTH 2023; 21:1572-1579. [PMID: 37902210 PMCID: wh_2023_203 DOI: 10.2166/wh.2023.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Different species of free-living amoeba (FLA) have been abundantly isolated in harsh environmental conditions such as hot springs and brackish water. The present study aimed to isolate, genotype, and evaluate the pathogenicity of FLAs in Qom Roud, a large river, in the centre of Iran. About 500 mL of water samples (n = 30) were collected from each sampling site and were investigated for the presence of FLAs using morphological and molecular characters. Genotype identification was performed using DNA sequencing and a phylogenetic tree was constructed with the MEGA X software. The pathogenic potential of all positive isolates was evaluated using the tolerance ability test. Morphological and molecular analysis indicated that 14 (46.66%) and two (6.66%) water samples were positive for Acanthamoeba species and Vahlkampfiidae, respectively. According to sequence analysis, Acanthamoeba isolates related to the T4 genotype and Vahlkampfiidae sequences were similar to Naegleria philippinensis. In the next step, thermo- and osmotolerance tests indicated four Acanthamoeba strains are extremely pathogenic. Our data showed the presence of potentially pathogenic Acanthamoeba T4 genotype and N. philippinensis in the super harsh Qom Roud. Contamination of water with virulent T4 genotype of Acanthamoeba may pose risk factors for contact lens users, children, and immunocompromised people.
Collapse
Affiliation(s)
- Azam Pourabbasi Ardekan
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran E-mail:
| | - Maryam Niyyati
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Saberi
- Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Leyli Zanjirani Farahani
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marziye Fatemi
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Borella da Silva TC, Dos Santos DL, Rott MB. First report of free-living amoebae in sewage treatment plants in Porto Alegre, southern Brazil. JOURNAL OF WATER AND HEALTH 2023; 21:1611-1624. [PMID: 37902214 PMCID: wh_2023_261 DOI: 10.2166/wh.2023.261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Free-living amoebae (FLA) are amphizoic protozoans with a cosmopolitan distribution. Some strains of species are associated with infections in humans. They feed on microorganisms by phagocytosis; however, some of these can become endocytobionts by resisting this process and taking shelter inside the amoeba. The whole world is experiencing increasing shortage of water, and sewage is being reused, so the study of this environment is important in public health context. The objective of this work was to identify FLA present in sewage treatment plants in Porto Alegre, Brazil. About 1 L samples were collected from eight stations (raw and treated sewage) in January, February, July, and August 2022. The samples were sown in monoxenic culture, and the isolated amoebae were subjected to morphological and molecular identification. Polymerase chain reaction results indicated the presence of the genus Acanthamoeba in 100% of the samples. Gene sequencing showed the presence of Acanthamoeba lenticulata and Acanthamoeba polyphaga - T5 and T4 genotypes - respectively, which are related to pathogenicity. The environment where the sewage is released can be used in recreational activities, exposing individuals to potential interactions with these amoebae and their potential endocytobionts, which may pose risks to public health.
Collapse
Affiliation(s)
- Thaisla Cristiane Borella da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil E-mail:
| | - Daniel Leal Dos Santos
- Faculty of Geography, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Avenue, N 6681, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Marilise Brittes Rott
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
28
|
Rojo JU, Rajendran R, Salazar JH. Laboratory Diagnosis of Primary Amoebic Meningoencephalitis. Lab Med 2023; 54:e124-e132. [PMID: 36638160 DOI: 10.1093/labmed/lmac158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Primary amebic meningoencephalitis (PAM) is a fulminant fatal human disease caused by the free-living amoeba Naegleria fowleri. Infection occurs after inhalation of water containing the amoeba, typically after swimming in bodies of warm freshwater. N. fowleri migrates to the brain where it incites meningoencephalitis and cerebral edema leading to death of the patient 7 to 10 days postinfection. Although the disease is rare, it is almost always fatal and believed to be underreported. The incidence of PAM in countries other than the United States is unclear and possibly on track to being an emerging disease. Poor prognosis is caused by rapid progression, suboptimal treatment, and underdiagnosis. As diagnosis is often performed postmortem and testing is only performed by a few laboratories, more accessible testing is necessary. This article reviews the current methods used in the screening and confirmation of PAM and makes recommendations for improved diagnostic practices and awareness.
Collapse
Affiliation(s)
- Juan U Rojo
- Department of Clinical Laboratory Sciences, School of Health Professions, University of Texas Medical Branch, Galveston, Texas, US
| | - Rajkumar Rajendran
- Department of Clinical Laboratory Sciences, School of Health Professions, University of Texas Medical Branch, Galveston, Texas, US
| | - Jose H Salazar
- Department of Clinical Laboratory Sciences, School of Health Professions, University of Texas Medical Branch, Galveston, Texas, US
| |
Collapse
|
29
|
Milanez GD, Carlos KB, Adao ME, Ayson BB, Dicon AV, Gahol RAM, Lacre SKS, Marquez FPE, Perez AJM, Karanis P. Epidemiology of free-living amoebae infections in Africa: a review. Pathog Glob Health 2023; 117:527-534. [PMID: 36562083 PMCID: PMC10392319 DOI: 10.1080/20477724.2022.2160890] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
FLA-related conditions are a rare medical occurrence. Despite their rarity, they are considered a public health concern for two reasons: the absence of a regular treatment regimen in the case of central nervous system infections and the fast progression of the symptoms leading to fatal outcomes. A total of 358 articles were retrieved from different databases (91 from PubMed, 26 from NCBI, 138 from Academia, 102 from Science Direct, and one from IJMED). 7 (46.6%) clinical cases came from Egypt, 2 (13.3%) cases of FLA infection came from Nigeria, 3 (20%) cases came from the Gambia, and 1 (6.6%) case was reported from African countries like Algeria, Tunisia, South Africa, and Zambia. Medical conditions caused by free-living amoeba are considered significant public health concerns. These ubiquitous organisms can cause both fatal and debilitating health conditions. Immediate diagnosis of cases and proper hygienic practices are necessary to provide direct medical intervention. They may be the key to reducing the morbidity and mortality rates from FLA-acquired infections. Although several government-led initiatives have been implemented to mitigate a plethora of parasitic diseases, the case of FLA-related conditions in African countries has yet to be realized.
Collapse
Affiliation(s)
- Giovanni D. Milanez
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Karlo B. Carlos
- School of Medicine, Saint Louis University, Baguio, Philippines
| | - Mary Erika Adao
- Department of Medical Technology, Far Eastern University, Manila, Philippines
| | - Bernadette B Ayson
- Department of Medical Technology, Far Eastern University, Manila, Philippines
| | - Ariela V. Dicon
- Department of Medical Technology, Far Eastern University, Manila, Philippines
| | | | | | | | - April Jane M. Perez
- Department of Medical Technology, Far Eastern University, Manila, Philippines
| | - Panagiotis Karanis
- Medical Faculty, University of Cologne, Cologne, Germany
- Department of Basic and Clinical Science, University of Nicosia Medical School, Nicosia, Cyprus
| |
Collapse
|
30
|
Lefebvre M, Razakandrainibe R, Schapman D, François A, Genty D, Galas L, Villena I, Favennec L, Costa D. Interactions between free-living amoebae and Cryptosporidium parvum: an experimental study. Parasite 2023; 30:31. [PMID: 37606589 PMCID: PMC10443459 DOI: 10.1051/parasite/2023033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/05/2023] [Indexed: 08/23/2023] Open
Abstract
Free-Living Amebae (FLA) and Cryptosporidium oocysts occasionally share the same environment. From 2004 to 2016, Cryptosporidium was responsible for 60% of 905 worldwide waterborne outbreaks caused by protozoan parasites. The aim of this study was to evaluate interactions between C. parvum oocysts and two common FLAs (Acanthamoeba castellanii and Vermamoeba vermiformis) in a water environment. Encystment and survival of FLAs were evaluated by microscopy using trypan blue vital coloration. Oocysts were numerated on microscopy. Interactions were studied over time in conditions both unfavorable and favorable to phagocytosis. Potential phagocytosis was directly evaluated by several microscopic approaches and indirectly by numeration of microorganisms and oocyst infectivity evaluation. Occasional phagocytosis of C. parvum by FLAs was documented. However, oocyst concentrations did not decrease significantly, suggesting resistance of oocysts to phagocytosis. A temporary decrease of oocyst infectivity was observed in the presence of A. castellanii. The effect of these interactions on C. parvum infectivity is particularly interesting. The biofilm condition could favor the persistence or even the proliferation of oocysts over time. This study demonstrated interactions between C. parvum and FLAs. Further knowledge of the mechanisms involved in the decrease of oocyst infectivity in the presence of A. castellanii could facilitate the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Marion Lefebvre
- Univ Rouen Normandie, Laboratory of Parasitology-Mycology, EA7510 ESCAPE, University hospital of Rouen Normandie 76000 Rouen France
| | - Romy Razakandrainibe
- Univ Rouen Normandie, Laboratory of Parasitology-Mycology, EA7510 ESCAPE, University hospital of Rouen Normandie 76000 Rouen France
- National Reference Center Cryptosporidiosis, microsporidia and other protozoa, University Hospital of Rouen Normandie 76000 Rouen France
| | - Damien Schapman
- Univ Rouen Normandie, INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN 76000 Rouen France
| | - Arnaud François
- Univ Rouen Normandie, Laboratory of Parasitology-Mycology, EA7510 ESCAPE, University hospital of Rouen Normandie 76000 Rouen France
- Department of anathomopathology, University Hospital of Rouen Normandie 76000 Rouen France
| | - Damien Genty
- Department of anathomopathology, University Hospital of Rouen Normandie 76000 Rouen France
| | - Ludovic Galas
- Univ Rouen Normandie, INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN 76000 Rouen France
| | - Isabelle Villena
- Reims Champagne-Ardenne University, Laboratory of Parasitology-Mycology, EA7510 ESCAPE 51454 Reims France
| | - Loic Favennec
- Univ Rouen Normandie, Laboratory of Parasitology-Mycology, EA7510 ESCAPE, University hospital of Rouen Normandie 76000 Rouen France
- National Reference Center Cryptosporidiosis, microsporidia and other protozoa, University Hospital of Rouen Normandie 76000 Rouen France
| | - Damien Costa
- Univ Rouen Normandie, Laboratory of Parasitology-Mycology, EA7510 ESCAPE, University hospital of Rouen Normandie 76000 Rouen France
- National Reference Center Cryptosporidiosis, microsporidia and other protozoa, University Hospital of Rouen Normandie 76000 Rouen France
| |
Collapse
|
31
|
Wang L, Mai Y, Li S, Shu L, Fang J. Efficient inactivation of amoeba spores and their intraspore bacteria by solar/chlorine: Kinetics and mechanisms. WATER RESEARCH 2023; 242:120288. [PMID: 37419027 DOI: 10.1016/j.watres.2023.120288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Amoebae are widespread in water and serve as environment vectors for pathogens, which may threaten public health. This study evaluated the inactivation of amoeba spores and their intraspore bacteria by solar/chlorine. Dictyostelium discoideum and Burkholderia agricolaris B1qs70 were selected as model amoebae and intraspore bacteria, respectively. Compared to solar irradiation and chlorine, solar/chlorine enhanced the inactivation of amoeba spores and intraspore bacteria, with 5.1 and 5.2-log reduction at 20 min, respectively. The enhancement was similar in real drinking water by solar/chlorine under natural sunlight. However, the spore inactivation decreased to 2.97-log by 20 min solar/chlorine under oxygen-free condition, indicating that ozone played a crucial role in the spore inactivation, as also confirmed by the scavenging test using tert‑butanol to scavenge the ground-state atomic oxygen (O(3P)) as a ozone precursor. Moreover, solar/chlorine induced the shape destruction and structural collapse of amoeba spores by scanning electron microscopy. As for intraspore bacteria, their inactivation was likely ascribed to endogenous reactive oxygen species. As pH increased from 5.0 to 9.0, the inactivation of amoeba spores decreased, whereas that of intraspore bacteria was similar at pH 5.0 and 6.5 during solar/chlorine treatment. This study first reports the efficient inactivation of amoeba spores and their intraspore pathogenic bacteria by solar/chlorine in drinking water.
Collapse
Affiliation(s)
- Liping Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 China
| | - Yingwen Mai
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 China
| | - Shenzhou Li
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 China
| | - Longfei Shu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 China.
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 China.
| |
Collapse
|
32
|
Büchele MLC, Nunes BF, Filippin-Monteiro FB, Caumo KS. Diagnosis and treatment of Acanthamoeba Keratitis: A scoping review demonstrating unfavorable outcomes. Cont Lens Anterior Eye 2023; 46:101844. [PMID: 37117130 DOI: 10.1016/j.clae.2023.101844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
Acanthamoeba spp. are pathogens that cause Acanthamoeba keratitis (AK), a serious cornea inflammation that can lead to gradual loss of vision, permanent blindness, and keratoplasty. The efficacy of AK treatment depends on the drug's ability to reach the target tissue by escaping the protective eye barrier. No single drug can eradicate the living forms of the amoeba and be non-toxic to the cornea tissue. The treatment aims to eradicate both forms of protozoan life but is hampered by the resistance of the cysts to the most available drugs, leading to prolonged infection and relapses. Drug therapy is currently performed mainly using diamidines and biguanides, as they are more effective against cysts. However, they are cytotoxic to corneal cells. Drugs are applied topically, and hourly. Over time, the frequency of administration decreases, but the treatment time varies from month to years. This study aims to obtain an up-to-date summary of the literature since 2010, allowing us to identify the trends and gaps and address future research involving new alternatives for treating AK. The results were divided into three phases, pre-treatment, empirical treatment, and the treatment after diagnosis confirmation. The drugs prescribed were stratified into antiamoebic, antibiotic, antifungal, antivirals, and steroids. It was possible to observe the transition in drug prescription during three different stages until the diagnosis was confirmed. There were more indications for antibiotic, antifungal, and antiviral drugs in the early stages of the disease. The antiamoebic drugs were only prescribed after exhausting other treatments. This can be directly involved in developing complications and no responsiveness to medical treatment.
Collapse
Affiliation(s)
- Maria Luiza Carneiro Büchele
- Laboratório de Investigação Aplicada a Protozoários de Protozoários Emergentes (LADIPE), Florianópolis, SC 88040-970, Brazil
| | - Bruno Fonseca Nunes
- Department of Clinical Analyses, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900, Brazil
| | - Fabíola Branco Filippin-Monteiro
- Department of Clinical Analyses, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900, Brazil.
| | - Karin Silva Caumo
- Laboratório de Investigação Aplicada a Protozoários de Protozoários Emergentes (LADIPE), Florianópolis, SC 88040-970, Brazil; Department of Clinical Analyses, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900, Brazil.
| |
Collapse
|
33
|
Marinho BTS, Santos DLD, Santos DLD, Rott MB. First report of free-living amoebae in watercourses in southern Brazil: molecular diagnosis and phylogenetic analysis of Vermamoeba vermiformis, Naegleria gruberi, and Acanthamoeba spp. JOURNAL OF WATER AND HEALTH 2023; 21:972-980. [PMID: 37515566 PMCID: wh_2023_126 DOI: 10.2166/wh.2023.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
Free-living amoebae (FLA) are protozoa dispersed in different environments and are responsible for different infections caused to humans and other animals. Microorganisms such as Acanthamoeba spp., Vermamoeba sp., and Naegleria sp. are associated with diseases that affect the central nervous system, in addition to skin infections and keratitis, as occurs in the genus Acanthamoeba and with Vermamoeba vermiformis. Due to the concerns of these FLA in anthropogenic aquatic environments, this work aimed to identify these microorganisms present in waters of Porto Alegre, Brazil. One litre sample was collected in two watercourses during the summer of 2022 and inoculated onto non-nutrient agar plates containing heat-inactivated Escherichia coli. Polymerase chain reaction results indicated the presence of FLA of the genera Acanthamoeba, Vermamoeba, and Naegleria in the study areas. Genetic sequencing indicated the presence of V. vermiformis and Naegleria gruberi. These aquatic and anthropogenic environments can serve as a means of spread and contamination by FLA, which gives valuable information on public health in the city.
Collapse
Affiliation(s)
- Brenda Teixeira Scardini Marinho
- Protozoology Laboratory, Microbiology Immunology and Parasitology Department, Basic Health Sciences Institute, Federal University of Rio Grande do Sul, Ramiro Barcelos Street, N 2600, Porto Alegre, Rio Grande do Sul 90035-002, Brazil E-mail:
| | - Denise Leal Dos Santos
- Protozoology Laboratory, Microbiology Immunology and Parasitology Department, Basic Health Sciences Institute, Federal University of Rio Grande do Sul, Ramiro Barcelos Street, N 2600, Porto Alegre, Rio Grande do Sul 90035-002, Brazil
| | - Daniel Leal Dos Santos
- Faculty of Geography, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Avenue, N 6681, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Marilise Brittes Rott
- Protozoology Laboratory, Microbiology Immunology and Parasitology Department, Basic Health Sciences Institute, Federal University of Rio Grande do Sul, Ramiro Barcelos Street, N 2600, Porto Alegre, Rio Grande do Sul 90035-002, Brazil
| |
Collapse
|
34
|
Arberas-Jiménez I, Cen-Pacheco F, Chao-Pellicer J, Sifaoui I, Rizo-Liendo A, Morales EQ, Daranas AH, Díaz-Marrero AR, Piñero JE, Fernández JJ, Lorenzo-Morales J. Identification and characterization of novel marine oxasqualenoid yucatecone against Naegleria fowleri. Int J Parasitol Drugs Drug Resist 2023; 22:61-71. [PMID: 37270868 PMCID: PMC10258243 DOI: 10.1016/j.ijpddr.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
Naegleria fowleri is an opportunistic protozoan, belonging to the free-living amoeba group, that can be found in warm water bodies. It is causative agent the primary amoebic meningoencephalitis, a fulminant disease with a rapid progression that affects the central nervous system. However, no 100% effective treatments are available and those that are currently used involve the appearance of severe side effects, therefore, there is an urgent need to find novel antiamoebic compounds with low toxicity. In this study, the in vitro activity of six oxasqualenoids obtained from the red algae Laurencia viridis was evaluated against two different strains of N. fowleri (ATCC® 30808 and ATCC® 30215) as well as their cytotoxicity against murine macrophages. Yucatecone was the molecule with the highest selectivity index (>2.98 and 5.23 respectively) and it was selected to continue with the cell death type determination assays. Results showed that yucatone induced programmed cell death like responses in treated amoebae causing DNA condensation and cellular membrane damage among others. In this family of oxasqualenoids, it seems that the most significative structural feature to induce activity against N. fowleri is the presence of a ketone at C-18. This punctual oxidation transforms an inactive compound into a lead compound as the yucatecone and 18-ketodehydrotyrsiferol with IC50 values of 16.25 and 12.70 μM, respectively. The assessment of in silico ADME/Tox analysis revealed that the active compounds showed good Human Oral Absorption and demonstrate that are found to be within the limit of approved drug parameter range. Hence, the study highlights promising potential of yucatone to be tested for therapeutic use against primary amoebic meningoencephalitis.
Collapse
Affiliation(s)
- Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain
| | - Francisco Cen-Pacheco
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain; Facultad de Bioanálisis, Universidad Veracruzana (UV), Agustín de Iturbide s/n, Centro, Veracruz, 91700, Mexico
| | - Javier Chao-Pellicer
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, 28220, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain
| | - Aitor Rizo-Liendo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain
| | - Ezequiel Q Morales
- Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), Avda. Astrofísico Francisco Sánchez 3, La Laguna, 38206, Tenerife, Spain
| | - Antonio H Daranas
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain; Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), Avda. Astrofísico Francisco Sánchez 3, La Laguna, 38206, Tenerife, Spain
| | - Ana R Díaz-Marrero
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain; Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), Avda. Astrofísico Francisco Sánchez 3, La Laguna, 38206, Tenerife, Spain.
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, 28220, Spain.
| | - José J Fernández
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain; Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38203 La Laguna, Tenerife, Spain.
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, 28220, Spain.
| |
Collapse
|
35
|
Siddiqui R, Boghossian A, Kawish M, Jabri T, Shah MR, Anuar TS, Al-Shareef Z, Khan NA. Nanocarrier Drug Conjugates Exhibit Potent Anti-Naegleria fowleri and Anti-Balamuthia mandrillaris Properties. Diseases 2023; 11:diseases11020058. [PMID: 37092440 PMCID: PMC10123729 DOI: 10.3390/diseases11020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 04/09/2023] Open
Abstract
Given the opportunity and access, pathogenic protists (Balamuthia mandrillaris and Naegleria fowleri) can produce fatal infections involving the central nervous system. In the absence of effective treatments, there is a need to either develop new antimicrobials or enhance the efficacy of existing compounds. Nanocarriers as drug delivery systems are gaining increasing attention in the treatment of parasitic infections. In this study, novel nanocarriers conjugated with amphotericin B and curcumin were evaluated for anti-amoebic efficacy against B. mandrillaris and N. fowleri. The results showed that nanocarrier conjugated amphotericin B exhibited enhanced cidal properties against both amoebae tested compared with the drug alone. Similarly, nanocarrier conjugated curcumin exhibited up to 75% cidal effects versus approx. 50% cidal effects for curcumin alone. Cytopathogenicity assays revealed that the pre-treatment of both parasites with nanoformulated-drugs reduced parasite-mediated host cellular death compared with the drugs alone. Importantly, the cytotoxic effects of amphotericin B on human cells alone were reduced when conjugated with nanocarriers. These are promising findings and further suggest the need to explore nanocarriers as a means to deliver medicine against parasitic infections.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Anania Boghossian
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Muhammad Kawish
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Tooba Jabri
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Raza Shah
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Tengku Shahrul Anuar
- Centre for Medical Laboratory Technology Studies, Faculty of Health Sciences, Universiti Teknologi MARA, PuncakAlam Campus, Selangor 42300, Malaysia
| | - Zainab Al-Shareef
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
36
|
Siddiqui R, Boghossian A, Alqassim SS, Kawish M, Gul J, Jabri T, Shah MR, Khan NA. Anti-Balamuthia mandrillaris and anti-Naegleria fowleri effects of drugs conjugated with various nanostructures. Arch Microbiol 2023; 205:170. [PMID: 37017767 DOI: 10.1007/s00203-023-03518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/08/2023] [Accepted: 03/25/2023] [Indexed: 04/06/2023]
Abstract
Balamuthia mandrillaris and Naegleria fowleri are protist pathogens that can cause fatal infections. Despite mortality rate of > 90%, there is no effective therapy. Treatment remains problematic involving repurposed drugs, e.g., azoles, amphotericin B and miltefosine but requires early diagnosis. In addition to drug discovery, modifying existing drugs using nanotechnology offers promise in the development of therapeutic interventions against these parasitic infections. Herein, various drugs conjugated with nanoparticles were developed and evaluated for their antiprotozoal activities. Characterizations of the drugs' formulations were accomplished utilizing Fourier-transform infrared spectroscopy, efficiency of drug entrapment, polydispersity index, zeta potential, size, and surface morphology. The nanoconjugates were tested against human cells to determine their toxicity in vitro. The majority of drug nanoconjugates exhibited amoebicidal effects against B. mandrillaris and N. fowleri. Amphotericin B-, Sulfamethoxazole-, Metronidazole-based nanoconjugates are of interest since they exhibited significant amoebicidal effects against both parasites (p < 0.05). Furthermore, Sulfamethoxazole and Naproxen significantly diminished host cell death caused by B. mandrillaris by up to 70% (p < 0.05), while Amphotericin B-, Sulfamethoxazole-, Metronidazole-based drug nanoconjugates showed the highest reduction in host cell death caused by N. fowleri by up to 80%. When tested alone, all of the drug nanoconjugates tested in this study showed limited toxic effects against human cells in vitro (less than 20%). Although these are promising findings, prospective work is warranted to comprehend the mechanistic details of nanoconjugates versus amoebae as well as their in vivo testing, to develop antimicrobials against the devastating infections caused by these parasites.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
| | - Anania Boghossian
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| | - Saif S Alqassim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, 505055, Dubai, United Arab Emirates
| | - Muhammad Kawish
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Jasra Gul
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Tooba Jabri
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Raza Shah
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey.
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
37
|
Acanthamoeba castellanii Genotype T4: Inhibition of Proteases Activity and Cytopathic Effect by Bovine Apo-Lactoferrin. Microorganisms 2023; 11:microorganisms11030708. [PMID: 36985284 PMCID: PMC10059889 DOI: 10.3390/microorganisms11030708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Acanthamoeba castellanii genotype T4 is a clinically significant free-living amoeba that causes granulomatous amoebic encephalitis and amoebic keratitis in human beings. During the initial stages of infection, trophozoites interact with various host immune responses, such as lactoferrin (Lf), in the corneal epithelium, nasal mucosa, and blood. Lf plays an important role in the elimination of pathogenic microorganisms, and evasion of the innate immune response is crucial in the colonization process. In this study, we describe the resistance of A. castellanii to the microbicidal effect of bovine apo-lactoferrin (apo-bLf) at different concentrations (25, 50, 100, and 500 µM). Acanthamoeba castellanii trophozoites incubated with apo-bLf at 500 µM for 12 h maintained 98% viability. Interestingly, despite this lack of effect on viability, our results showed that the apo-bLf inhibited the cytopathic effect of A. castellanii in MDCK cells culture, and analysis of amoebic proteases by zymography showed significant inhibition of cysteine and serine proteases by interaction with the apo-bLf. From these results, we conclude that bovine apo-Lf influences the activity of A. castellanii secretion proteases, which in turn decreases amoebic cytopathic activity.
Collapse
|
38
|
Dereeper A, Allouch N, Guerlais V, Garnier M, Ma L, De Jonckheere JF, Joseph SJ, Ali IKM, Talarmin A, Marcelino I. Naegleria genus pangenome reveals new structural and functional insights into the versatility of these free-living amoebae. Front Microbiol 2023; 13:1056418. [PMID: 36817109 PMCID: PMC9928731 DOI: 10.3389/fmicb.2022.1056418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/21/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction Free-living amoebae of the Naegleria genus belong to the major protist clade Heterolobosea and are ubiquitously distributed in soil and freshwater habitats. Of the 47 Naegleria species described, N. fowleri is the only one being pathogenic to humans, causing a rare but fulminant primary amoebic meningoencephalitis. Some Naegleria genome sequences are publicly available, but the genetic basis for Naegleria diversity and ability to thrive in diverse environments (including human brain) remains unclear. Methods Herein, we constructed a high-quality Naegleria genus pangenome to obtain a comprehensive catalog of genes encoded by these amoebae. For this, we first sequenced, assembled, and annotated six new Naegleria genomes. Results and Discussion Genome architecture analyses revealed that Naegleria may use genome plasticity features such as ploidy/aneuploidy to modulate their behavior in different environments. When comparing 14 near-to-complete genome sequences, our results estimated the theoretical Naegleria pangenome as a closed genome, with 13,943 genes, including 3,563 core and 10,380 accessory genes. The functional annotations revealed that a large fraction of Naegleria genes show significant sequence similarity with those already described in other kingdoms, namely Animalia and Plantae. Comparative analyses highlighted a remarkable genomic heterogeneity, even for closely related strains and demonstrate that Naegleria harbors extensive genome variability, reflected in different metabolic repertoires. If Naegleria core genome was enriched in conserved genes essential for metabolic, regulatory and survival processes, the accessory genome revealed the presence of genes involved in stress response, macromolecule modifications, cell signaling and immune response. Commonly reported N. fowleri virulence-associated genes were present in both core and accessory genomes, suggesting that N. fowleri's ability to infect human brain could be related to its unique species-specific genes (mostly of unknown function) and/or to differential gene expression. The construction of Naegleria first pangenome allowed us to move away from a single reference genome (that does not necessarily represent each species as a whole) and to identify essential and dispensable genes in Naegleria evolution, diversity and biology, paving the way for further genomic and post-genomic studies.
Collapse
Affiliation(s)
- Alexis Dereeper
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Nina Allouch
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Vincent Guerlais
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Maëlle Garnier
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Laurence Ma
- Institut Pasteur de Paris, Biomics, Paris, France
| | | | - Sandeep J. Joseph
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Ibne Karim M. Ali
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Antoine Talarmin
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Isabel Marcelino
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France,*Correspondence: Isabel Marcelino,
| |
Collapse
|
39
|
Qumsani AT. Molecular Identification, Isolation, Morphologic and Serologic of Acanthamoeba sp. Throw the Ovary of Sprague-Dawley Rats. Pak J Biol Sci 2023; 26:124-130. [PMID: 37480269 DOI: 10.3923/pjbs.2023.124.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
<b>Background and Objective:</b> Typically, free-living amoebae, members of the genus <i>Acanthamoeba</i> can exist in a range of biological niches, such as fresh and brackish water, filters for heating, soil, airborne dust, ventilation, in addition to air conditioning, as well as pools and hot tubs. On rare occasions, these can be linked to infections of the central nervous system in both people in addition to animals. This study aimed to identify the cause of rats' death by isolating and identifying <i>Acanthamoeba</i> sp., from the ovary of Sprague-Dawley rats. <b>Materials and Methods:</b> An amoeba was identified and cultured from the ovary of Sprague-Dawley rats that succumbed to an amoebic illness. Considering culture attributes, growth shape and immunofluorescence measures, <i>Acanthamoeba</i> sp., was determined as the infecting amoeba. <b>Results:</b> <i>Acanthamoeba</i> sp., the contaminating single adaptable cell, was discovered. Furthermore, by sequencing a symptomatic part of the atomic little subunit ribosomal RNA gene to recognize the one-celled critter as <i>Acanthamoeba</i> sp., <b>Conclusion:</b> An <i>Acanthamoeba</i> strain was demonstrated that has a wide range of genotypes and is capable of infecting people and other species can also infect rats fatally.
Collapse
|
40
|
Nikam PB, Salunkhe JD, Marathe KR, Alghuthaymi MA, Abd-Elsalam KA, Patil SV. Rhizobium pusense-Mediated Selenium Nanoparticles-Antibiotics Combinations against Acanthamoeba sp. Microorganisms 2022; 10:microorganisms10122502. [PMID: 36557755 PMCID: PMC9785558 DOI: 10.3390/microorganisms10122502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Severe ocular infections by Acanthamoeba sp. lead to keratitis, resulting in irreversible vision loss in immune-compromised individuals. When a protozoal infection spreads to neural tissues, it causes granulomatous encephalitis, which can be fatal. Treatment often takes longer due to the transition of amoeba from trophozoites to cyst stages, cyst being the dormant form of Acanthamoeba. A prolonged use of therapeutic agents, such as ciprofloxacin (Cipro), results in severe side effects; thus, it is critical to improve the therapeutic efficacy of these widely used antibiotics, possibly by limiting the drug-sensitive protozoal-phase transition to cyst formation. Owing to the biomedical potential of selenium nanoparticles (SeNPs), we evaluated the synergistic effects of ciprofloxacin and Rhizobium pusense-biogenic SeNPs combination. SeNPs synthesized using Rhizobium pusense isolated from root nodules were characterized using UV-Visible spectrophotometer, FT-IR, SEM with EDX, particle size analysis, and Zeta potential. The combination was observed to reduce the sub-lethal dose of Cipro, which may help reduce its side effects. The selenium and ciprofloxacin (SeNPs-Cipro) combination reduced the LC50 by 33.43%. The anti-protozoal efficacy of SeNPs-Cipro was found to transduce through decreased protozoal-cyst formations and the inhibition of the galactosidase and protease enzymes of trophozoites. Furthermore, high leakage of sugar, proteins, and amino acids during the SeNPs-Cipro treatment was one primary reason for killing the trophozoites. These experimental results may be helpful in the further pre-clinical evaluation of SeNPs-Cipro to combat protozoal infections. Future studies for combinations of SeNPs with other antibiotics need to be conducted to know the potential of SeNPs against antibiotic resistance in Acanthamoeba.
Collapse
Affiliation(s)
- Pradnya B. Nikam
- Department of Biochemistry, School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon 425001, India
| | - Jitendra D. Salunkhe
- Department of Biochemistry, School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon 425001, India
| | - Kiran R. Marathe
- Department of Biochemistry, School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon 425001, India
| | - Mousa A. Alghuthaymi
- Biology Department, Science and Humanities College, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
- Correspondence: (K.A.A.-E.); or (S.V.P.); Tel.: +91-0257-2257421–25 (S.V.P.)
| | - Satish V. Patil
- Department of Biochemistry, School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon 425001, India
- Correspondence: (K.A.A.-E.); or (S.V.P.); Tel.: +91-0257-2257421–25 (S.V.P.)
| |
Collapse
|
41
|
Siddiqui R, El-Gamal MI, Boghossian A, Saeed BQ, Oh CH, Abdel-Maksoud MS, Alharbi AM, Alfahemi H, Khan NA. Imidazothiazole Derivatives Exhibited Potent Effects against Brain-Eating Amoebae. Antibiotics (Basel) 2022; 11:1515. [PMID: 36358170 PMCID: PMC9686523 DOI: 10.3390/antibiotics11111515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 08/13/2023] Open
Abstract
Naegleria fowleri (N. fowleri) is a free-living, unicellular, opportunistic protist responsible for the fatal central nervous system infection, primary amoebic meningoencephalitis (PAM). Given the increase in temperatures due to global warming and climate change, it is estimated that the cases of PAM are on the rise. However, there is a current lack of awareness and effective drugs, meaning there is an urgent need to develop new therapeutic drugs. In this study, the target compounds were synthesized and tested for their anti-amoebic properties against N. fowleri. Most compounds exhibited significant amoebicidal effects against N. fowleri; for example, 1h, 1j, and 1q reduced N. fowleri's viability to 15.14%, 17.45% and 28.78%, respectively. Furthermore, the majority of the compounds showed reductions in amoeba-mediated host death. Of interest are the compounds 1f, 1k, and 1v, as they were capable of reducing the amoeba-mediated host cell death to 52.3%, 51%, and 56.9% from 100%, respectively. Additionally, these compounds exhibit amoebicidal properties as well; they were found to decrease N. fowleri's viability to 26.41%, 27.39%, and 24.13% from 100%, respectively. Moreover, the MIC50 values for 1e, 1f, and 1h were determined to be 48.45 µM, 60.87 µM, and 50.96 µM, respectively. Additionally, the majority of compounds were found to exhibit limited cytotoxicity, except for 1l, 1o, 1p, 1m, 1c, 1b, 1zb, 1z, 1y, and 1x, which exhibited negligible toxicity. It is anticipated that these compounds may be developed further as effective treatments against these devastating infections due to brain-eating amoebae.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Mohammed I. El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Anania Boghossian
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Balsam Qubais Saeed
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Chang-Hyun Oh
- Center of Biomaterials, Korea Institute of Science & Technology (KIST School), Seongbuk-gu, Seoul 02792, Korea
- Department of Biomolecular Sciences, University of Science & Technology (UST), Yuseong-gu, Daejeon 34113, Korea
| | - Mohammed S. Abdel-Maksoud
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Giza 12622, Egypt
| | - Ahmad M. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, Al-Baha 65799, Saudi Arabia
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
42
|
Zinc Oxide Nanoconjugates against Brain-Eating Amoebae. Antibiotics (Basel) 2022; 11:antibiotics11101281. [DOI: 10.3390/antibiotics11101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Naegleria fowleri and Balamuthia mandrillaris are opportunistic protists, responsible for fatal central nervous system infections such as primary amoebic meningoencephalitis (PAM) and granulomatous amoebic encephalitis (GAE) with mortality rates higher than 90%. Threatening a rise in cases is the increase in temperature due to global warming. No effective treatment is currently available. Herein, nanotechnology was used to conjugate Zinc oxide with Ampicillin, Ceftrixon, Naringin, Amphotericin B, and Quericitin, and the amoebicidal activity and host cell cytotoxicity of these resulting compounds were investigated. The compounds ZnO-CD-AMPi, ZnO-CD-CFT, ZnO-CD-Nar, ZnO-CD-AMB, and ZnO-CD-QT were found to reduce N. fowleri viability to 35.5%, 39.6%, 52.0%, 50.8%, 35.9%, and 69.9%, respectively, and B. mandrillaris viability to 40.9%, 48.2%, 51.6%, 43.8%, and 62.4%, respectively, when compared with their corresponding controls. Furthermore, the compounds reduced N. fowleri-mediated and B. mandrillaris-mediated host cell death significantly. Additionally, the compounds showed limited cytotoxicity against human cells; cell toxicity was 35.5%, 36.4%, 30.9%, 36.6%, and 35.6%, respectively, for the compounds ZnO-CD-AMPi, ZnO-CD-CFT, ZnO-CD-Nar, ZnO-CD-AMB, and ZnO-CD-QT. Furthermore, the minimum inhibitory concentrations to inhibit amoeba growth by 50% were determined for N. fowleri and B. mandrillaris. The MIC50 for N. fowleri were determined to be 69.52 µg/mL, 82.05 µg/mL, 88.16 µg/mL, 95.61 µg/mL, and 85.69 µg/mL, respectively; the MIC50 of the compounds for B. mandrillaris were determined to be 113.9 µg/mL, 102.3 µg/mL, 106.9 µg/mL, 146.4 µg/mL, and 129.6 µg/mL, respectively. Translational research to further develop therapies based on these compounds is urgently warranted, given the lack of effective therapies currently available against these devastating infections.
Collapse
|
43
|
Milanez GD, Masangkay FR, Martin I GL, Hapan MFZ, Manahan EP, Castillo J, Karanis P. Epidemiology of free-living amoebae in the Philippines: a review and update. Pathog Glob Health 2022; 116:331-340. [PMID: 35112656 PMCID: PMC9387320 DOI: 10.1080/20477724.2022.2035626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Free-living amoebae (FLA) are considered environmental pathogens and thus pose a public health threat. Their ubiquity in natural sources may magnify the potential severity of health outcomes in the future. However, less attention was given despite several probable public health risks that arise from the presence of pathogenic strains in the environment. Here, we provide epidemiological data based on investigations involving the distribution and occurrence of free-living amoebae in the Republic of the Philippines. This aims to connect data of fragmented studies of these organisms and provide potential roadmaps in FLA research in the country. The majority of the reviewed articles (n = 19) focused on characterization studies (36.8%; 7/19) while environmental isolation and isolation from biological samples had an equal frequency of 31.6% (6/19) each. There is a great disparity between the established ubiquity in environmental sources and the number of cases of FLA infections in the country. FLA-related research in the Philippines is still in its inceptive stage with several gaps to fill, which can be used to formulate policy briefs in the future regarding its isolation, identification, diagnosis, therapeutic management, and control of FLA infections in the country.
Collapse
Affiliation(s)
- Giovanni D. Milanez
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines,CONTACTGiovanni D. Milanez Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila1015, Philippines
| | - Frederick R. Masangkay
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Gregorio L. Martin I
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Ma. Frieda Z Hapan
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Edilberto P. Manahan
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | | | - Panagiotis Karanis
- Medical Faculty, University of Cologne, Cologne, Germany,Department of Basic and Clinical Science, University of Nicosia Medical School, Nicosia, Cyprus
| |
Collapse
|
44
|
Leal dos Santos D, Chaúque BJM, Virginio VG, Cossa VC, Pettan-Brewer C, Schrekker HS, Rott MB. Occurrence of Naegleria fowleri and their implication for health - a look under the One Health approaches. Int J Hyg Environ Health 2022; 246:114053. [DOI: 10.1016/j.ijheh.2022.114053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
|
45
|
Arberas-Jiménez I, Rizo-Liendo A, Sifaoui I, Chao-Pellicer J, Piñero JE, Lorenzo-Morales J. A Fluorometric Assay for the In Vitro Evaluation of Activity against Naegleria fowleri Cysts. Microbiol Spectr 2022; 10:e0051522. [PMID: 35862997 PMCID: PMC9430148 DOI: 10.1128/spectrum.00515-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Primary amoebic meningoencephalitis (PAM) is a lethal and rapid infection that affects the central nervous system and is caused by the free-living amoeba Naegleria fowleri. The life cycle of this protozoa consists of three different stages: The trophozoite, flagellate and cyst stages. Currently, no fully effective molecules have been found to treat PAM. In the search of new antiamoebic molecules, most of the efforts have focused on the trophozoidal activity of the compounds. However, there are no reports on the effect of the compounds on the N. fowleri cyst viability. In the present study, the cysticidal activity of four different molecules was evaluated using an alamarBlue based fluorometric assay. All the tested compounds were active against the cyst stage of N. fowleri. In fact, all the molecules except the amphotericin B, showed highest activity toward the cyst stage than the trophozoite stage. This work could be an effective protocol to select molecules with cysticidal and trophozoidal activity that can be considered a future PAM treatment. IMPORTANCE In the search of new anti-Naegleria fowleri compounds, most of the works focus on the activity of different molecules against the trophozoite stage; however, none of them include the effect of those compounds on the cyst viability. This manuscript presents a solid and reliable assay to evaluate the activity of compounds against the cyst stage of N. fowleri.
Collapse
Affiliation(s)
- Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Madrid, Spain
| | - Aitor Rizo-Liendo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Madrid, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Madrid, Spain
| | - Javier Chao-Pellicer
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Madrid, Spain
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Madrid, Spain
- Consorcio Centro de Investigacion Biomedica En Red M.P. (CIBER) de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Madrid, Spain
- Consorcio Centro de Investigacion Biomedica En Red M.P. (CIBER) de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
46
|
Lee DI, Park SH, Kang SA, Kim DH, Kim SH, Song SY, Lee SE, Yu HS. Free-Living Amoeba Vermamoeba vermiformis Induces Allergic Airway Inflammation. THE KOREAN JOURNAL OF PARASITOLOGY 2022; 60:229-239. [PMID: 36041484 PMCID: PMC9441446 DOI: 10.3347/kjp.2022.60.4.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022]
Abstract
The high percentage of Vermamoeba was found in tap water in Korea. This study investigated whether Vermamoeba induced allergic airway inflammation in mice. We selected 2 free-living amoebas (FLAs) isolated from tap water, which included Korean FLA 5 (KFA5; Vermamoeba vermiformis) and 21 (an homolog of Acanthamoeba lugdunensis KA/ E2). We axenically cultured KFA5 and KFA21. We applied approximately 1 × 106 to mice’s nasal passages 6 times and investigated their pathogenicity. The airway resistance value was significantly increased after KFA5 and KFA21 treatments. The eosinophil recruitment and goblet cell hyperplasia were concomitantly observed in bronchial alveolar lavage (BAL) fluid and lung tissue in mice infected with KFA5 and KFA21. These infections also activated the Th2-related interleukin 25, thymic stromal lymphopoietin, and thymus and activation-regulated chemokines gene expression in mouse lung epithelial cells. The CD4+ interleukin 4+ cell population was increased in the lung, and the secretion of Th2-, Th17-, and Th1-associated cytokines were upregulated during KFA5 and KFA21 infection in the spleen, lung-draining lymph nodes, and BAL fluid. The pathogenicity (allergenicity) of KFA5 and KFA21 might not have drastically changed during the long-term in vitro culture. Our results suggested that Vermamoeba could elicit allergic airway inflammation and may be an airway allergen.
Collapse
Affiliation(s)
- Da-In Lee
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Sung Hee Park
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Shin-Ae Kang
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Do Hyun Kim
- Department of Premedicine, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Sun Hyun Kim
- Department of Premedicine, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - So Yeon Song
- Department of Premedicine, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Sang Eun Lee
- Department of Premedicine, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan 50612, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
- Corresponding author ()
| |
Collapse
|
47
|
Saberi R, Nakhaei M, Fakhar M, Zarrinfar H, Sharifpour A, Hezarjaribi HZ. Molecular identification and genotyping of Acanthamoeba spp., in bronchoalveolar lavage fluid from immunocompetent patients with chronic respiratory disorders (CRD). Parasitol Res 2022; 121:3013-3017. [PMID: 35930044 PMCID: PMC9362591 DOI: 10.1007/s00436-022-07609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/24/2022] [Indexed: 10/26/2022]
Abstract
This study aimed to investigate the presence and genotyping of Acanthamoeba spp., in the bronchoalveolar lavage fluid (BALF) of immunocompetent patients with chronic respiratory disorders (CRD). In this study, 211 BALF samples were collected from patients with CRD during the COVID-19 pandemic who were candidates for fiberoptic bronchoscopy (FOB) at Imam Khomeini Hospital, Sari, Mazandaran Province, northern Iran and investigated for Acanthamoeba spp., by PCR. A total of 211 FBAL samples were examined; 5 (5/211; 2.36%) were positive by using the PCR test for Acanthamoeba spp. According to sequence analysis, three strains belonged to the T4 genotype and one strain to the T2 genotype. Our data demonstrate that the presence of Acanthamoeba (T4 and T2) in BALF specimens of patients with respiratory infections. However, it is important to note that these findings may be merely accidental. Our findings suggest further investigation to fully understand the role of Acanthamoeba spp. in the pathogenesis of lung infections.
Collapse
Affiliation(s)
- Reza Saberi
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, School of Medicine, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, P.O Box: 48471-91971, Sari, Iran
| | - Maryam Nakhaei
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, School of Medicine, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, P.O Box: 48471-91971, Sari, Iran
| | - Mahdi Fakhar
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, School of Medicine, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, P.O Box: 48471-91971, Sari, Iran.
| | - Hossein Zarrinfar
- Department of Medical Mycology and Parasitology, Faculty of Medicine, Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Sharifpour
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, School of Medicine, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, P.O Box: 48471-91971, Sari, Iran.,Pulmonary and Critical Care Division, Imam Khomeini Hospital, Iranian National Registry Center for Lophomoniasis (INRCL), Mazandaran University of Medical Sciences, Sari, Iran
| | - Hajar Ziaei Hezarjaribi
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, School of Medicine, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, P.O Box: 48471-91971, Sari, Iran
| |
Collapse
|
48
|
Stetkevich SA, Le ST, Ford AR, Brassard A, Kiuru M, Fung MA, Tartar DM. Isolated cutaneous acanthamoebiasis under prophylactic anticryptococcal treatment in an immunocompromised patient. JAAD Case Rep 2022; 28:77-79. [PMID: 36097622 PMCID: PMC9463523 DOI: 10.1016/j.jdcr.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Samuel A. Stetkevich
- Division of Dermatology, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio
| | - Stephanie T. Le
- Department of Dermatology, University of California, Davis, Davis, California
| | - Adam R. Ford
- Department of Dermatology, University of California, Davis, Davis, California
| | - Alain Brassard
- Department of Dermatology, University of California, Davis, Davis, California
| | - Maija Kiuru
- Department of Dermatology, University of California, Davis, Davis, California
- Department of Dermatopathology, University of California, Davis, Davis, California
| | - Maxwell A. Fung
- Department of Dermatology, University of California, Davis, Davis, California
- Department of Dermatopathology, University of California, Davis, Davis, California
| | - Danielle M. Tartar
- Department of Dermatology, University of California, Davis, Davis, California
- Correspondence to: Danielle M. Tartar, MD, PhD, University of California, Davis, 3301 C Street, Suite 1400, Sacramento, CA 95819.
| |
Collapse
|
49
|
Nageeb MM, Eldeek HEM, Attia RAH, Sakla AA, Alkhalil SS, Farrag HMM. Isolation and morphological and molecular characterization of waterborne free-living amoebae: Evidence of potentially pathogenic Acanthamoeba and Vahlkampfiidae in Assiut, Upper Egypt. PLoS One 2022; 17:e0267591. [PMID: 35802617 PMCID: PMC9269480 DOI: 10.1371/journal.pone.0267591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Free-living amoebae (FLA) are gaining attention due to the increasing number of related grave central nervous system (CNS) and sight-threatening eye infections and their role as Trojan horses for many bacteria and viruses. This study was conducted in Assiut City, Egypt to detect the presence of FLA in different water sources using morphological and molecular approaches and determine their potential pathogenicity. A total of 188 water samples (100 tap, 80 tank, and 8 swimming pool samples) were collected, cultivated on non-nutrient agar seeded with Escherichia coli, and inspected for FLA. Thermo- and osmo-tolerance assays were performed to determine their pathogenicity. Polymerase chain reaction and sequence analysis were performed to confirm the identification and analyze the genotype. Overall, 52 samples (27.7%) were positive for FLA. Of these, 20.7% were identified as Acanthamoeba, 1.6% as Vahlkampfiidae, and 5.3% as mixed Acanthamoeba and Vahlkampfiidae. Seven species of Acanthamoeba were recognized, of which A. triangularis, A. polyphaga, A. lenticulata, and A. culbertsoni are thermo- and osmo-tolerant, and A. astronyxis, A. comandoni, and A. echinulata are non-thermo- and non-osmo-tolerant. The phylogeny analysis revealed T4 and T7 genotypes. Among Vahlkampfiids, 61.5% were identified as thermo- and osmo-tolerant Vahlkampfia, and 30.8% were identified as non-pathogenic Naegleria. One isolate (7.7%) was identified as potentially pathogenic Allovahlkampfia, as confirmed by sequencing. This is the first report documenting the occurrence and phylogeny of waterborne FLA (Acanthamoeba/Vahlkampfiidae) in Assiut, Egypt. The presence of potentially pathogenic FLA highlights the possible health hazards and the need for preventive measures.
Collapse
Affiliation(s)
- Martina M. Nageeb
- Medical Parasitology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hanan E. M. Eldeek
- Medical Parasitology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
- * E-mail: ,
| | - Rasha A. H. Attia
- Medical Parasitology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Atef A. Sakla
- Medical Parasitology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Samia S. Alkhalil
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Haiam Mohamed Mahmoud Farrag
- Medical Parasitology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
50
|
Salehi M, Spotin A, Hajizadeh F, Soleimani F, Shokri A. Molecular characterization of Acanthamoeba spp. from different sources in Gonabad, Razavi Khorasan, Iran. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|