1
|
Mukherjee T, Kambhampati S, Morley SA, Durrett TP, Allen DK. Metabolic flux analysis to increase oil in seeds. PLANT PHYSIOLOGY 2025; 197:kiae595. [PMID: 39499667 PMCID: PMC11823122 DOI: 10.1093/plphys/kiae595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 11/07/2024]
Abstract
Ensuring an adequate food supply and enough energy to sustainably support future global populations will require enhanced productivity from plants. Oilseeds can help address these needs; but the fatty acid composition of seed oils is not always optimal, and higher yields are required to meet growing demands. Quantitative approaches including metabolic flux analysis can provide insights on unexpected metabolism (i.e. when metabolism is different than in a textbook) and can be used to guide engineering efforts; however, as metabolism is context specific, it changes with tissue type, local environment, and development. This review describes recent insights from metabolic flux analysis in oilseeds and indicates engineering opportunities based on emerging topics and developing technologies that will aid quantitative understanding of metabolism and enable efforts to produce more oil. We also suggest that investigating the key regulators of fatty acid biosynthesis, such as transcription factors, and exploring metabolic signals like phytohormones in greater depth through flux analysis could open new pathways for advancing genetic engineering and breeding strategies to enhance oil crop production.
Collapse
Affiliation(s)
- Thiya Mukherjee
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Shrikaar Kambhampati
- Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Stewart A Morley
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 1711 Claflin Rd, Manhattan, KS 66502, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
- United States Department of Agriculture, Agriculture Research Service, 975 North Warson Road, St. Louis, MO 63132, USA
| |
Collapse
|
2
|
Balo F. Theoretical Modelling, Experimental Testing and Simulation Analysis of Thermal Properties for Green Building-Insulation Materials. Polymers (Basel) 2025; 17:340. [PMID: 39940542 PMCID: PMC11820312 DOI: 10.3390/polym17030340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
In this study, 45 alternative green materials for building walls were experimentally produced, utilizing renewable (epoxidized sesame oil), natural (clay), and waste (Seyitömer fly ash) resources. These materials were evaluated based on key technical properties such as mass, tensile-compressive strength, and thermal conductivity, all of which are essential for construction and insulation applications. Subsequently, theoretical modeling was conducted for the material coded SE45, which demonstrated the lowest thermal conductivity. Through mathematical calculations, the theoretical thermal conductivity value was determined with a deviation of +5.88%. Furthermore, 48 alternative scenarios were designed for three different building envelope types (internally insulated, externally insulated, and sandwich), using commonly used building insulation materials alongside the sesame oil-based green material with the lowest thermal conductivity (SE45). Energy performance evaluations were conducted by analyzing temperature distributions along the walls of all designed scenarios using ANSYS simulations under the climatic conditions of Ankara, Turkey.
Collapse
Affiliation(s)
- Figen Balo
- Department of METE, Engineering Faculty, Firat University, 23119 Elazig, Turkey
| |
Collapse
|
3
|
Yang X, Shaw RK, Li L, Jiang F, Fan X. Novel candidate genes and genetic basis analysis of kernel starch content in tropical maize. BMC PLANT BIOLOGY 2025; 25:105. [PMID: 39856590 PMCID: PMC11760711 DOI: 10.1186/s12870-025-06125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Starch is the most abundant carbohydrate in maize grains, serving as a primary energy source for both humans and animals, and playing a crucial role in various industrial applications. Increasing the starch content of maize grains is beneficial for improving the grain yield and quality. To gain insight into the genetic basis of starch content in maize kernels, a multiparent population (MPP) was constructed and evaluated for starch content in three different environments. RESULTS The integration of QTL mapping and genome-wide association analysis (GWAS) identified two SNPs, 8_166371888 and 8_178656036, which overlapped the QTL interval of qSC8-1, identified in the tropical maize line YML46. The phenotypic variance explained (PVE) by the QTL qSC8-1 was12.17%, while the SNPs 8_166371888 and 8_178656036 explained 10.19% and 5.72% of the phenotypic variance. Combined GWAS and QTL analyses led to the identification of two candidate genes, Zm00001d012005 and Zm00001d012687 located on chromosome 8. CONCLUSIONS The candidate gene Zm00001d012005 encodes histidine kinase, which is known to play a role in starch accumulation in rice spikes. Related histidine kinases, such as AHK1, are involved in endosperm transfer cell development in barley, which affects grain quality. Zm00001d012687 encodes triacylglycerol lipase, which reduces seed oil content. Since oil content in cereal kernels is negatively correlated with starch content, this gene is likely involved in regulating the starch content in maize kernels. These findings provide insights into the genetic mechanisms underlying kernel starch content and establish a theoretical basis for breeding maize varieties with high starch content.
Collapse
Affiliation(s)
- Xiaoping Yang
- College of Agriculture, Yunnan University, Kunming, 650500, China
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Ranjan K Shaw
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Linzhuo Li
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Fuyan Jiang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China.
| |
Collapse
|
4
|
Klińska-Bąchor S, Demski K, Gong Y, Banaś A. Biochemical characterization of acyl-CoA:diacylglycerol acyltransferase2 from the diatom Phaeodactylum tricornutum and its potential effect on LC-PUFAs biosynthesis in planta. BMC PLANT BIOLOGY 2024; 24:309. [PMID: 38649801 PMCID: PMC11036593 DOI: 10.1186/s12870-024-05014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), belonging to ω-3 long-chain polyunsaturated fatty acids (ω3-LC-PUFAs), are essential components of human diet. They are mainly supplemented by marine fish consumption, although their native producers are oleaginous microalgae. Currently, increasing demand for fish oils is insufficient to meet the entire global needs, which puts pressure on searching for the alternative solutions. One possibility may be metabolic engineering of plants with an introduced enzymatic pathway producing ω3-LC-PUFAs. RESULT In this study we focused on the acyl-CoA:diacylglycerol acyltransferase2b (PtDGAT2b) from the diatom Phaeodactylum tricornutum, an enzyme responsible for triacylglycerol (TAG) biosynthesis via acyl-CoA-dependent pathway. Gene encoding PtDGAT2b, incorporated into TAG-deficient yeast strain H1246, was used to confirm its activity and conduct biochemical characterization. PtDGAT2b exhibited a broad acyl-CoA preference with both di-16:0-DAG and di-18:1-DAG, whereas di-18:1-DAG was favored. The highest preference for acyl donors was observed for 16:1-, 10:0- and 12:0-CoA. PtDGAT2b also very efficiently utilized CoA-conjugated ω-3 LC-PUFAs (stearidonic acid, eicosatetraenoic acid and EPA). Additionally, verification of the potential role of PtDGAT2b in planta, through its transient expression in tobacco leaves, indicated increased TAG production with its relative amount increasing to 8%. Its co-expression with the gene combinations aimed at EPA biosynthesis led to, beside elevated TAG accumulation, efficient accumulation of EPA which constituted even 25.1% of synthesized non-native fatty acids (9.2% of all fatty acids in TAG pool). CONCLUSIONS This set of experiments provides a comprehensive biochemical characterization of DGAT enzyme from marine microalgae. Additionally, this study elucidates that PtDGAT2b can be used successfully in metabolic engineering of plants designed to obtain a boosted TAG level, enriched not only in ω-3 LC-PUFAs but also in medium-chain and ω-7 fatty acids.
Collapse
Affiliation(s)
- Sylwia Klińska-Bąchor
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland.
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Kamil Demski
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Yangmin Gong
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Antoni Banaś
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
5
|
Tan Q, Han B, Haque ME, Li YL, Wang Y, Wu D, Wu SB, Liu AZ. The molecular mechanism of WRINKLED1 transcription factor regulating oil accumulation in developing seeds of castor bean. PLANT DIVERSITY 2023; 45:469-478. [PMID: 37601547 PMCID: PMC10435909 DOI: 10.1016/j.pld.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 08/22/2023]
Abstract
The transcription factor WRINKLED1 (WRI1), a member of AP2 gene family that contain typical AP2 domains, has been considered as a master regulator regulating oil biosynthesis in oilseeds. However, the regulatory mechanism of RcWRI1 in regulating oil accumulation during seed development has not been clearly addressed. Castor bean (Ricinus communis) is one of the most important non-edible oil crops and its seed oils are rich in hydroxy fatty acids, widely applied in industry. In this study, based on castor bean reference genome, three RcWRIs genes (RcWRI1, RcWRI2 and RcWRI3) were identified and the expressed association of RcWRI1 with oil accumulation were determined. Heterologous transformation of RcWRI1 significantly increased oil content in tobacco leaf, confirming that RcWRI1 activate lipid biosynthesis pathway. Using DNA Affinity Purification sequencing (DAP-seq) technology, we confirmed RcWRI1 binding with Transcription Start Site of genes and identified 7961 WRI1-binding candidate genes. Functionally, these identified genes were mainly involved in diverse metabolism pathways (including lipid biosynthesis). Three cis-elements AW-box ([CnTnG](n)7[CG]) and AW-boxes like ([GnAnC](n)6[GC]/[GnAnC](n)7[G]) bound with RcWRI1 were identified. Co-expression network analysis of RcWRI1 further found that RcWRI1 might be widely involved in biosynthesis of storage materials during seed development. In particular, yeast one hybrid experiments found that both AP2 domains within RcWRI1 were required in binding targeted genes. These results not only provide new evidence to understand the regulatory mechanism of RcWRI1 in regulation of oil accumulation during castor bean seed development, but also give candidate gene resource for subsequent genetic improvement toward increasing oil content in oilseed crops.
Collapse
Affiliation(s)
- Qing Tan
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Han
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Mohammad Enamul Haque
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Ye-Lan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yue Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Di Wu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Shi-Bo Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Ai-Zhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China (Ministry of Education), Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
6
|
Kim S, Lee KR, Suh MC. Ectopic Expression of Perilla frutescens WRI1 Enhanced Storage Oil Accumulation in Nicotiana benthamiana Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:1081. [PMID: 36903941 PMCID: PMC10005204 DOI: 10.3390/plants12051081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Vegetable oils are indispensable in human and animal diets and have been widely used for the production of detergents, lubricants, cosmetics, and biofuels. The seeds of an allotetraploid Perilla frutescens contain approximately 35 to 40% oils with high levels of polyunsaturated fatty acids (PUFAs). WRINKELD1 (WRI1) encoding an AP2/ERF-type transcription factor is known to upregulate the expression of genes involved in glycolysis and fatty acid biosynthesis and TAG assembly. In this study, two WRI1 isoforms, PfWRI1A, and PfWRI1B were isolated from Perilla and predominantly expressed in developing Perilla seeds. The fluorescent signals from PfWRI1A:eYFP and PfWRI1B:eYFP driven by the CaMV 35S promoter were detected in the nucleus of the Nicotiana benthamiana leaf epidermis. Ectopic expression of each of PfWRI1A and PfWRI1B increased the levels of TAG by approximately 2.9- and 2.7-fold in N. benthamiana leaves and particularly, the enhanced levels (mol%) of C18:2, and C18:3 in the TAGs were prominent with the concomitant reduction in the amounts of saturated fatty acids. The expression levels of NbPl-PKβ1, NbKAS1, and NbFATA, which were known to be target genes of WRI1, significantly increased in tobacco leaves overexpressing PfWRI1A or PfWRI1B. Therefore, newly characterized PfWRI1A and PfWRI1B can be potentially useful for the enhanced accumulation of storage oils with increased PUFAs in oilseed crops.
Collapse
Affiliation(s)
- Semi Kim
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| | - Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju 54875, Republic of Korea
| | - Mi Chung Suh
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
7
|
Sagun JV, Yadav UP, Alonso AP. Progress in understanding and improving oil content and quality in seeds. FRONTIERS IN PLANT SCIENCE 2023; 14:1116894. [PMID: 36778708 PMCID: PMC9909563 DOI: 10.3389/fpls.2023.1116894] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
The world's population is projected to increase by two billion by 2050, resulting in food and energy insecurity. Oilseed crops have been identified as key to address these challenges: they produce and store lipids in the seeds as triacylglycerols that can serve as a source of food/feed, renewable fuels, and other industrially-relevant chemicals. Therefore, improving seed oil content and composition has generated immense interest. Research efforts aiming to unravel the regulatory pathways involved in fatty acid synthesis and to identify targets for metabolic engineering have made tremendous progress. This review provides a summary of the current knowledge of oil metabolism and discusses how photochemical activity and unconventional pathways can contribute to high carbon conversion efficiency in seeds. It also highlights the importance of 13C-metabolic flux analysis as a tool to gain insights on the pathways that regulate oil biosynthesis in seeds. Finally, a list of key genes and regulators that have been recently targeted to enhance seed oil production are reviewed and additional possible targets in the metabolic pathways are proposed to achieve desirable oil content and quality.
Collapse
Affiliation(s)
| | | | - Ana Paula Alonso
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| |
Collapse
|
8
|
Yin Y, Raboanatahiry N, Chen K, Chen X, Tian T, Jia J, He H, He J, Guo Z, Yu L, Li M. Class A lysophosphatidic acid acyltransferase 2 from Camelina sativa promotes very long-chain fatty acids accumulation in phospholipid and triacylglycerol. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1141-1158. [PMID: 36209492 DOI: 10.1111/tpj.15999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Very long-chain fatty acids (VLCFAs) are important industrial raw materials and can be produced by genetically modified oil plants. For a long time, class A lysophosphatidic acid acyltransferase (LPAT) was considered unable to promote the accumulation of VLCFA in oil crops. The bottlenecks that the transgenic high VLCFA lines have an oil content penalty and the low amount of VLCFA in phosphatidylcholine remains intractable. In the present study, a class A LPAT2 from Camelina sativa (CsaLPAT2) promoting VLCFAs accumulation in phospholipid was found. Overexpression of CsaLPAT2 alone in Arabidopsis seeds significantly increased the VLCFA content in triacylglycerol, including C20:0, C20:2, C20:3, C22:0, and C22:1. The proportion of phosphatidic acid molecules containing VLCFAs in transgenic seeds reached up to 45%, which was 2.8-fold greater than that in wild type. The proportion of phosphatidylcholine and diacylglycerol molecules containing VLCFAs also increased significantly. Seed size in CsaLPAT2 transgenic lines showed a slight increase without an oil content penalty. The total phospholipid content in the seed of the CsaLPAT2 transgenic line was significantly increased. Furthermore, the function of class A LPAT in promoting the accumulation of VLCFAs is conserved in the representative oil crops of Brassicaceae, such as C. sativa, Arabidopsis thaliana, Brassica napus, Brassica rapa, and Brassica oleracea. The findings of this study provide a promising gene resource for the production of VLCFAs.
Collapse
Affiliation(s)
- Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xinfeng Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tian Tian
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jia Jia
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongsheng He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenyi Guo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Longjiang Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
9
|
Li W, Wang L, Qi Y, Xie Y, Zhao W, Dang Z, Zhang J. Overexpression of WRINKLED1 improves the weight and oil content in seeds of flax ( Linum usitatissimum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1003758. [PMID: 36247608 PMCID: PMC9562325 DOI: 10.3389/fpls.2022.1003758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Seeds of flax (Linum usitatissimum L.) are highly rich in both oil and linolenic acid (LIN). It is crucial for flax agricultural production to identify positive regulators of fatty acid biosynthesis. In this study, we find that WRINKLED1 transcription factors play important positive roles during flax seed oil accumulation. Two WRINKLED1 genes, LuWRI1a and LuWRI1b, were cloned from flax, and LuWRI1a was found be expressed predominantly in developing seeds during maturation. Overexpression of LuWRI1a increased seed size, weight, and oil content in Arabidopsis and increased seed storage oil content in transgenic flax without affecting seed production or seed oil quality. The rise in oil content in transgenic flax seeds was primarily attributable to the increase in seed weight, according to a correlational analysis. Furthermore, overexpression or interference of LuWRI1a upregulated the expression of genes in the fatty acid biosynthesis pathway and LAFL genes, and the expression level of WRI1 was highly significantly positively associated between L1L, LEC1, and BCCP2. Our findings give a theoretical scientific foundation for the future application of genetic engineering to enhance the oil content of plant seeds.
Collapse
|
10
|
Winichayakul S, Curran A, Moraga R, Cookson R, Xue H, Crowther T, Roldan M, Bryan G, Roberts N. An alternative angiosperm DGAT1 topology and potential motifs in the N-terminus. FRONTIERS IN PLANT SCIENCE 2022; 13:951389. [PMID: 36186081 PMCID: PMC9523541 DOI: 10.3389/fpls.2022.951389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
The highly variable cytoplasmic N-terminus of the plant diacylglycerol acyltransferase 1 (DGAT1) has been shown to have roles in oligomerization as well as allostery; however, the biological significance of the variation within this region is not understood. Comparing the coding sequences over the variable N-termini revealed the Poaceae DGAT1s contain relatively high GC compositional gradients as well as numerous direct and inverted repeats in this region. Using a variety of reciprocal chimeric DGAT1s from angiosperms we show that related N-termini had similar effects (positive or negative) on the accumulation of the recombinant protein in Saccharomyces cerevisiae. When expressed in Camelina sativa seeds the recombinant proteins of specific chimeras elevated total lipid content of the seeds as well as increased seed size. In addition, we combine N- and C-terminal as well as internal tags with high pH membrane reformation, protease protection and differential permeabilization. This led us to conclude the C-terminus is in the ER lumen; this contradicts earlier reports of the cytoplasmic location of plant DGAT1 C-termini.
Collapse
Affiliation(s)
- Somrutai Winichayakul
- Resilient Agriculture Innovation Centre of Excellence, AgResearch Ltd., Palmerston North, New Zealand
| | - Amy Curran
- ZeaKal Inc., San Diego, CA, United States
| | - Roger Moraga
- Bioinformatics and Statistics, AgResearch Ltd., Palmerston North, New Zealand
| | - Ruth Cookson
- Resilient Agriculture Innovation Centre of Excellence, AgResearch Ltd., Palmerston North, New Zealand
| | - Hong Xue
- Resilient Agriculture Innovation Centre of Excellence, AgResearch Ltd., Palmerston North, New Zealand
| | - Tracey Crowther
- Resilient Agriculture Innovation Centre of Excellence, AgResearch Ltd., Palmerston North, New Zealand
| | - Marissa Roldan
- Resilient Agriculture Innovation Centre of Excellence, AgResearch Ltd., Palmerston North, New Zealand
| | - Greg Bryan
- Resilient Agriculture Innovation Centre of Excellence, AgResearch Ltd., Palmerston North, New Zealand
- ZeaKal Inc., San Diego, CA, United States
| | - Nick Roberts
- Resilient Agriculture Innovation Centre of Excellence, AgResearch Ltd., Palmerston North, New Zealand
- ZeaKal Inc., San Diego, CA, United States
| |
Collapse
|
11
|
Nwafor CC, Li D, Qin P, Li L, Zhang W, Zhou Y, Xu J, Yin Y, Cao J, He L, Xiang F, Liu C, Guo L, Zhou Y, Cahoon EB, Zhang C. Genetic and Biochemical Investigation of Seed Fatty Acid Accumulation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:942054. [PMID: 35909728 PMCID: PMC9328158 DOI: 10.3389/fpls.2022.942054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
As a vegetable oil, consisting principally of triacylglycerols, is the major storage form of photosynthetically-fixed carbon in oilseeds which are of significant agricultural and industrial value. Photosynthesis in chlorophyll-containing green seeds, along with photosynthesis in leaves and other green organs, generates ATP and reductant (NADPH and NADH) needed for seed fatty acid production. However, contribution of seed photosynthesis to fatty acid accumulation in seeds have not been well-defined. Here, we report the contribution of seed-photosynthesis to fatty acid production by probing segregating green (photosynthetically-competent) and non-green or yellow (photosynthetically-non-competent) seeds in siliques of an Arabidopsis chlorophyll synthase mutant. Using this mutant, we found that yellow seeds lacking photosynthetic capacity reached 80% of amounts of oil in green seeds at maturity. Combining this with studies using shaded siliques, we determined that seed-photosynthesis accounts for 20% and silique and leaf/stem photosynthesis each account for ~40% of the ATP and reductant for seed oil production. Transmission electron microscopy (TEM) and pyridine nucleotides and ATP analyses revealed that seed photosynthesis provides ATP and reductant for oil production mostly during early development, as evidenced by delayed oil accumulation in non-green seeds. Transcriptomic analyses suggests that the oxidative pentose phosphate pathway could be the source of carbon, energy and reductants required for fatty acid synthesis beyond the early stages of seed development.
Collapse
Affiliation(s)
- Chinedu Charles Nwafor
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Delin Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ping Qin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Long Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Zhang
- Department of Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Yuanwei Zhou
- Yichang Academy of Agricultural Science, Yichang, China
| | - Jingjing Xu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Cao
- Public Laboratory of Electron Microscopy, Huazhong Agricultural University, Wuhan, China
| | - Limin He
- Public Laboratory of Electron Microscopy, Huazhong Agricultural University, Wuhan, China
| | - Fu Xiang
- Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains and College of Biology and Agriculture Resource, Huanggang Normal University, Huanggang, China
| | - Chao Liu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Edgar B. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Yu XH, Cai Y, Keereetaweep J, Wei K, Chai J, Deng E, Liu H, Shanklin J. Biotin attachment domain-containing proteins mediate hydroxy fatty acid-dependent inhibition of acetyl CoA carboxylase. PLANT PHYSIOLOGY 2021; 185:892-901. [PMID: 33793910 PMCID: PMC8133645 DOI: 10.1093/plphys/kiaa109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 05/02/2023]
Abstract
Hundreds of naturally occurring specialized fatty acids (FAs) have potential as desirable chemical feedstocks if they could be produced at large scale by crop plants; however, transgenic expression of their biosynthetic genes has generally been accompanied by dramatic reductions in oil yield. For example, expression of castor (Ricinus communis) FA hydroxylase (FAH) in the Arabidopsis thaliana FA elongation mutant fae1 resulted in a 50% reduction of FA synthesis rate that was attributed to inhibition of acetyl-CoA carboxylase (ACCase) by an undefined mechanism. Here, we tested the hypothesis that the ricinoleic acid-dependent decrease in ACCase activity is mediated by biotin attachment domain-containing (BADC) proteins. BADCs are inactive homologs of biotin carboxy carrier protein that lack a biotin cofactor and can inhibit ACCase. Arabidopsis contains three BADC genes. To reduce expression levels of BADC1 and BADC3 in fae1/FAH plants, a homozygous badc1,3/fae1/FAH line was created. The rate of FA synthesis in badc1,3/fae1/FAH seeds doubled relative to fae1/FAH, restoring it to fae1 levels, increasing both native FA and HFA accumulation. Total FA per seed, seed oil content, and seed yield per plant all increased in badc1,3/fae1/FAH, to 5.8 µg, 37%, and 162 mg, respectively, relative to 4.9 µg, 33%, and 126 mg, respectively, for fae1/FAH. Transcript levels of FA synthesis-related genes, including those encoding ACCase subunits, did not significantly differ between badc1,3/fae1/FAH and fae1/FAH. These results demonstrate that BADC1 and BADC3 mediate ricinoleic acid-dependent inhibition of FA synthesis. We propose that BADC-mediated FAS inhibition as a general mechanism that limits FA accumulation in specialized FA-accumulating seeds.
Collapse
Affiliation(s)
- Xiao-Hong Yu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yuanheng Cai
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Kenneth Wei
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jin Chai
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Elen Deng
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hui Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
13
|
Liu F, Wang P, Xiong X, Zeng X, Zhang X, Wu G. A Review of Nervonic Acid Production in Plants: Prospects for the Genetic Engineering of High Nervonic Acid Cultivars Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:626625. [PMID: 33747006 PMCID: PMC7973461 DOI: 10.3389/fpls.2021.626625] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/29/2021] [Indexed: 05/15/2023]
Abstract
Nervonic acid (NA) is a very-long-chain monounsaturated fatty acid that plays crucial roles in brain development and has attracted widespread research interest. The markets encouraged the development of a refined, NA-enriched plant oil as feedstocks for the needed further studies of NA biological functions to the end commercial application. Plant seed oils offer a renewable and environmentally friendly source of NA, but their industrial production is presently hindered by various factors. This review focuses on the NA biosynthesis and assembly, NA resources from plants, and the genetic engineering of NA biosynthesis in oil crops, discusses the factors that affect NA production in genetically engineered oil crops, and provides prospects for the application of NA and prospective trends in the engineering of NA. This review emphasizes the progress made toward various NA-related topics and explores the limitations and trends, thereby providing integrated and comprehensive insight into the nature of NA production mechanisms during genetic engineering. Furthermore, this report supports further work involving the manipulation of NA production through transgenic technologies and molecular breeding for the enhancement of crop nutritional quality or creation of plant biochemical factories to produce NA for use in nutraceutical, pharmaceutical, and chemical industries.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Pandi Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaojuan Xiong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xinhua Zeng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaobo Zhang
- Life Science and Technology Center, China National Seed Group Co. Ltd., Wuhan, China
| | - Gang Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
14
|
Abstract
This article comments on:Lakhssassi N, Zhou Z, Liu S, Piya S, Cullen MA, El Baze A, Knizia D, Patil GB, Badad O, Embaby MG, Meksem J, Lakhssassi A, Ghazaleh A, Hewezi T, Meksem K. 2020. Soybean TILLING-by-sequencing+ reveals the role of novel GmSACPD members in unsaturated fatty acid biosynthesis while maintaining healthy nodules. Journal of Experimental Botany 71, 6969–6987.
Collapse
Affiliation(s)
- Miguel Alfonso
- Department of Plant Nutrition, EEAD-CSIC, Avda de Montañana, Zaragoza, Spain
| |
Collapse
|
15
|
Fan R, Cai G, Zhou X, Qiao Y, Wang J, Zhong H, Bo J, Miao F, Tu W, Long F, Li Z. Characterization of diacylglycerol acyltransferase 2 from Idesia polycarpa and function analysis. Chem Phys Lipids 2020; 234:105023. [PMID: 33259819 DOI: 10.1016/j.chemphyslip.2020.105023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
Idesia polycarpa is an oil-producing tree native to China and Northeast Asia. The fruits of I. polycarpa which are named oil grape are unique in that they contain large amounts saturated and unsaturated lipids. Diacylglycerol acyltransferase 2 (DGAT2) is a key enzyme catalyzing the final step of triacylglyceride (TAG) synthesis. However, expression and bioinformatics of DGAT2 in I. polycarpa are still blank. In order to further understand the lipogenesis of oil grape, we contrasted seven various growth periods fruits from seed formation to seed maturation. Lipid accumulation rates and final lipid content were significantly different among the different periods. We cloned and characterized the DGAT2 gene from fruits of I. polycarpa. A partial fragment of 239 bp of IpDGAT2 was amplified by PCR. We cloned the open-reading frame (ORF) of IpDGAT2 by RACE technique. The ORF of IpDGAT2 contains 984 bp and encodes 327 amino acids. The qPCR analysis manifested that IpDGAT2 was expressed in all oil grape growing periods and expression was highest on September 20 (seed maturation). In I. polycarpa fruits the expression of IpDGAT2 was positively correlated with the lipid accumulation rates. Rhodotorula glutinis expression analysis showed that IpDGAT2 have a diacylglycerol acyltransferase bio-functional. Heterologous expression of the 35S::IpDGAT2 in Arabidopsis thaliana confirmed that the isolated IpDGAT2 could catalyze lipid synthesis. The lipid content increased by 40 % in transgenic plants relative to the control. which suggests that high lipid content fruits can be created by the overexpression of IpDGAT2 in I. polycarpa.
Collapse
Affiliation(s)
- Ruishen Fan
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100 China
| | - Gui Cai
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100 China
| | - Xuanyuan Zhou
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100 China
| | - Yuxin Qiao
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100 China
| | - Jiabao Wang
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100 China
| | - Haoming Zhong
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100 China
| | - Jiaxin Bo
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100 China
| | - Fan Miao
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100 China
| | - Wei Tu
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100 China
| | - Feiyu Long
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100 China
| | - Zhouqi Li
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100 China.
| |
Collapse
|
16
|
Harwood JL. Working with Randy: The Diacylglycerol Acyltransferase Story. Lipids 2020; 55:419-423. [PMID: 32701170 DOI: 10.1002/lipd.12267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/29/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
Vegetable oils are one of the main agricultural commodities. Demand has been increasing steadily over the last five decades and, with finite land available, it is vital that we increase productivity. My laboratory has focused on the regulation of plant lipid metabolism and, as part of this work, we identified diacylglycerol acyltransferase (DGAT) as important at regulating carbon flux during oil accumulation. This led to collaborations with Randy Weselake's research group when we quantified the importance of DGAT in oilseed rape by using flux control analysis. Later, with David Taylor, we showed that over-expression of DGAT boosted oil accumulation in field-grown crops by around 8%. These studies led to a multitude of experiments with different oil crops, such as oil palm and soybean, as well as many rewarding collaborations with Randy.
Collapse
Affiliation(s)
- John L Harwood
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| |
Collapse
|
17
|
Ye Y, Fulcher YG, Sliman DJ, Day MT, Schroeder MJ, Koppisetti RK, Bates PD, Thelen JJ, Van Doren SR. The BADC and BCCP subunits of chloroplast acetyl-CoA carboxylase sense the pH changes of the light-dark cycle. J Biol Chem 2020; 295:9901-9916. [PMID: 32467229 PMCID: PMC7380191 DOI: 10.1074/jbc.ra120.012877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/26/2020] [Indexed: 01/20/2023] Open
Abstract
Acetyl-CoA carboxylase (ACCase) catalyzes the first committed step in the de novo synthesis of fatty acids. The multisubunit ACCase in the chloroplast is activated by a shift to pH 8 upon light adaptation and is inhibited by a shift to pH 7 upon dark adaptation. Here, titrations with the purified ACCase biotin attachment domain-containing (BADC) and biotin carboxyl carrier protein (BCCP) subunits from Arabidopsis indicated that they can competently and independently bind biotin carboxylase (BC) but differ in responses to pH changes representing those in the plastid stroma during light or dark conditions. At pH 7 in phosphate buffer, BADC1 and BADC2 gain an advantage over BCCP1 and BCCP2 in affinity for BC. At pH 8 in KCl solution, however, BCCP1 and BCCP2 had more than 10-fold higher affinity for BC than did BADC1. The pH-modulated shifts in BC preferences for BCCP and BADC partners suggest they contribute to light-dependent regulation of heteromeric ACCase. Using NMR spectroscopy, we found evidence for increased intrinsic disorder of the BADC and BCCP subunits at pH 7. We propose that this intrinsic disorder potentially promotes fast association with BC through a "fly-casting mechanism." We hypothesize that the pH effects on the BADC and BCCP subunits attenuate ACCase activity by night and enhance it by day. Consistent with this hypothesis, Arabidopsis badc1 badc3 mutant lines grown in a light-dark cycle synthesized more fatty acids in their seeds. In summary, our findings provide evidence that the BADC and BCCP subunits function as pH sensors required for light-dependent switching of heteromeric ACCase activity.
Collapse
Affiliation(s)
- Yajin Ye
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Yan G Fulcher
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - David J Sliman
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Mizani T Day
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Mark J Schroeder
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Rama K Koppisetti
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Steven R Van Doren
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
18
|
Qi W, Lu H, Zhang Y, Cheng J, Huang B, Lu X, Sheteiwy MSA, Kuang S, Shao H. Oil crop genetic modification for producing added value lipids. Crit Rev Biotechnol 2020; 40:777-786. [PMID: 32605455 DOI: 10.1080/07388551.2020.1785384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Plant lipids, mainly stored in seeds and other plant parts, are not only a crucial resource for food and fodder but are also a promising alternative to fossil oils as a chemical industry feedstock. Oil crop cultivation and processing are always important parts of agriculture worldwide. Vegetable oils containing polyunsaturated fatty acids, very long chain fatty acids, conjugated fatty acids, hydroxy fatty acids and wax esters, have outstanding nutritional, lubricating, surfactant, and artificial-fibre-synthesis properties, amongst others. Enhancing the production of such specific lipid components is of economic interest. There has been a considerable amount of information reported about plant lipid biosynthesis, including identification of the pathway map of carbon flux, key enzymes (and the coding genes), and substrate affinities. Plant lipid biosynthesis engineering to produce special oil compounds has become feasible, although until now, only limited progress has been made in the laboratory. It is relatively easy to achieve the experimental objectives, for example, accumulating novel lipid compounds in given plant tissues facilitated by genetic modification. Applying such technologies to agricultural production is difficult, and the challenge is to make engineered crops economically attractive, which is impeded by only moderate success. To achieve this goal, more complicated and systematic strategies should be developed and discussed based on the relevant results currently available.
Collapse
Affiliation(s)
- Weicong Qi
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China.,Key Laboratory of Oil Crops in Huanghuaihai Plain, Ministry of Agriculture, PR China,Henan Provincial Key Laboratory for Oil Crops Improvement, Zheng Zhou, PR China
| | - Haiying Lu
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China
| | - Yang Zhang
- Key Laboratory of Oil Crops in Huanghuaihai Plain, Ministry of Agriculture, PR China,Henan Provincial Key Laboratory for Oil Crops Improvement, Zheng Zhou, PR China
| | - Jihua Cheng
- Yuan Longping High-tech Agriculture Co., LTD, Changsha, PR China
| | - Bangquan Huang
- College of Life Sciences, Hubei University, Wuhan, PR China
| | - Xin Lu
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China
| | - Mohamed Salah Amr Sheteiwy
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China.,Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, PR China
| | - Hongbo Shao
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China.,College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, PR China.,Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, PR China
| |
Collapse
|
19
|
Hotton SK, Kammerzell M, Chan R, Hernandez BT, Young HA, Tobias C, McKeon T, Brichta J, Thomson NJ, Thomson JG. Phenotypic Examination of Camelina sativa (L.) Crantz Accessions from the USDA-ARS National Genetics Resource Program. PLANTS (BASEL, SWITZERLAND) 2020; 9:E642. [PMID: 32438618 PMCID: PMC7286027 DOI: 10.3390/plants9050642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
Camelina sativa (L.) Crntz. is a hardy self-pollinated oilseed plant that belongs to the Brassicaceae family; widely grown throughout the northern hemisphere until the 1940s for production of vegetable oil but was later displaced by higher-yielding rapeseed and sunflower crops. However, interest in camelina as an alternative oil source has been renewed due to its high oil content that is rich in polyunsaturated fatty acids, antioxidants as well as its ability to grow on marginal lands with minimal requirements. For this reason, our group decided to screen the existing (2011) National Genetic Resources Program (NGRP) center collection of camelina for its genetic diversity and provide a phenotypic evaluation of the cultivars available. Properties evaluated include seed and oil traits, developmental and mature morphologies, as well as chromosome content. Selectable marker genes were also evaluated for potential use in biotech manipulation. Data is provided in a raw uncompiled format to allow other researchers to analyze the unbiased information for their own studies. Our evaluation has determined that the NGRP collection has a wide range of genetic potential for both breeding and biotechnological manipulation purposes. Accessions were identified within the NGRP collection that appear to have desirable seed harvest weight (5.06 g/plant) and oil content (44.1%). Other cultivars were identified as having fatty acid characteristics that may be suitable for meal and/or food use, such as low (<2%) erucic acid content, which is often considered for healthy consumption and ranged from a high of 4.79% to a low of 1.83%. Descriptive statistics are provided for a breadth of traits from 41 accessions, as well as raw data, and key seed traits are further explored. Data presented is available for public use.
Collapse
Affiliation(s)
| | | | - Ron Chan
- Crop Improvement and Genetics, USDA-ARS-WRRC, Albany, CA 94710, USA; (R.C.); (C.T.); (T.M.); (J.B.)
| | - Bryan T. Hernandez
- Department of Plant Sciences, University of California, Davis, CA 95616, USA;
| | | | - Christian Tobias
- Crop Improvement and Genetics, USDA-ARS-WRRC, Albany, CA 94710, USA; (R.C.); (C.T.); (T.M.); (J.B.)
| | - Thomas McKeon
- Crop Improvement and Genetics, USDA-ARS-WRRC, Albany, CA 94710, USA; (R.C.); (C.T.); (T.M.); (J.B.)
| | - Jenny Brichta
- Crop Improvement and Genetics, USDA-ARS-WRRC, Albany, CA 94710, USA; (R.C.); (C.T.); (T.M.); (J.B.)
| | | | - James G. Thomson
- Crop Improvement and Genetics, USDA-ARS-WRRC, Albany, CA 94710, USA; (R.C.); (C.T.); (T.M.); (J.B.)
| |
Collapse
|
20
|
Fei W, Yang S, Hu J, Yang F, Qu G, Peng D, Zhou B. Research advances of WRINKLED1 (WRI1) in plants. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:185-194. [PMID: 31968206 DOI: 10.1071/fp19225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
WRINKLED 1 (WRI1), a member of the AP2/EREBP class of transcription factors, regulates carbon allocation between the glycolytic and fatty acid biosynthetic pathways and plays important roles in other biological events. Previous studies have suggested that post-translational modifications and interacting partners modulate the activity of WRI1. We systematically summarised the structure of WRI1 as well as its molecular interactions during transcription and translation in plants. This work elucidates the genetic evolution and regulatory functions of WRI1 at the molecular level and describes a new pathway involving WRI1 that can be used to produce triacylglycerols (TAGs) in plants.
Collapse
Affiliation(s)
- Wenjie Fei
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha,Hunan, China, 410004
| | - Shiqian Yang
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha,Hunan, China, 410004
| | - Jing Hu
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha,Hunan, China, 410004
| | - Feng Yang
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha,Hunan, China, 410004
| | - Gaoyi Qu
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha,Hunan, China, 410004
| | - Dan Peng
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha,Hunan, China, 410004; and Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education,Central South University of Forestry and Technology, 410018, Changsha, China; and Forestry Biotechnology Hunan Key Laboratories, Hunan Changsha, 410004; and National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China,Changsha 410004, Hunan, China; and Huitong National Field Station for Scientific Observation and Research of Chinese Fir PlantationEcosystem in Hunan Province, Huitong 438107
| | - Bo Zhou
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha,Hunan, China, 410004; and Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education,Central South University of Forestry and Technology, 410018, Changsha, China; and Forestry Biotechnology Hunan Key Laboratories, Hunan Changsha, 410004; and National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China,Changsha 410004, Hunan, China; and Huitong National Field Station for Scientific Observation and Research of Chinese Fir PlantationEcosystem in Hunan Province, Huitong 438107; and Corresponding author.
| |
Collapse
|
21
|
Ding LN, Gu SL, Zhu FG, Ma ZY, Li J, Li M, Wang Z, Tan XL. Long-chain acyl-CoA synthetase 2 is involved in seed oil production in Brassica napus. BMC PLANT BIOLOGY 2020; 20:21. [PMID: 31931712 PMCID: PMC6958636 DOI: 10.1186/s12870-020-2240-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/07/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Triacylglycerols (TAGs) are the main composition of plant seed oil. Long-chain acyl-coenzyme A synthetases (LACSs) catalyze the synthesis of long-chain acyl-coenzyme A, which is one of the primary substrates for TAG synthesis. In Arabidopsis, the LACS gene family contains nine members, among which LACS1 and LACS9 have overlapping functions in TAG biosynthesis. However, functional characterization of LACS proteins in rapeseed have been rarely reported. RESULTS An orthologue of the Arabidopsis LACS2 gene (BnLACS2) that is highly expressed in developing seeds was identified in rapeseed (Brassica napus). The BnLACS2-GFP fusion protein was mainly localized to the endoplasmic reticulum, where TAG biosynthesis occurs. Interestingly, overexpression of the BnLACS2 gene resulted in significantly higher oil contents in transgenic rapeseed plants compared to wild type, while BnLACS2-RNAi transgenic rapeseed plants had decreased oil contents. Furthermore, quantitative real-time PCR expression data revealed that the expression of several genes involved in glycolysis, as well as fatty acid (FA) and lipid biosynthesis, was also affected in transgenic plants. CONCLUSIONS A long chain acyl-CoA synthetase, BnLACS2, located in the endoplasmic reticulum was identified in B. napus. Overexpression of BnLACS2 in yeast and rapeseed could increase oil content, while BnLACS2-RNAi transgenic rapeseed plants exhibited decreased oil content. Furthermore, BnLACS2 transcription increased the expression of genes involved in glycolysis, and FA and lipid synthesis in developing seeds. These results suggested that BnLACS2 is an important factor for seed oil production in B. napus.
Collapse
Affiliation(s)
- Li-Na Ding
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Shou-Lai Gu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Fu-Ge Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zhong-Yan Ma
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Juan Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ming Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zheng Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
22
|
Zafar S, Tang MQ, Wang YK, Sarwar R, Liu SY, Tan XL. Candidate genes-association study to identify loci related to oleic acid in Brassica napus using SNP markers and their heterologous expression in yeast. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:294-302. [PMID: 31783205 DOI: 10.1016/j.plaphy.2019.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Brassica napus (rapeseed) serves as a main source of edible oil, and the oil's quality is mainly determined by the relative proportions of fatty acids. A high oleic acid concentration in B. napus oil increases its shelf life and oxidative stability. Therefore, attaining a high oleic acid concentration is necessary to enhance the nutritional quality of rapeseed oil. Here, an association study of candidate genes was conducted using a population of 324 genetically diverse rapeseed accessions, and several loci related to oleic acid content were identified. Furthermore, these loci were functionally characterized in Saccharomyces cerevisiae to assess their functions, and the promising candidate loci were validated using single nucleotide polymorphic markers in an independent inbred population. The results increased our understanding of fatty acid metabolism in B. napus. Moreover, these findings may assist in marker-based breeding efforts to improve the fatty acid composition and quality of B. napus oil.
Collapse
Affiliation(s)
- Sundus Zafar
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China; Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Min-Qiang Tang
- The Oil Crops Research Institute (OCRI) of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Yu-Kang Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Rehman Sarwar
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Sheng-Yi Liu
- The Oil Crops Research Institute (OCRI) of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Xiao-Li Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
23
|
Wang M, Gao L, Li G, Zhou C, Jian J, Xing Z, Wang Y, Zhang W, Song Z, Hu Y, Yang J. Interspecific Variation in the Unsaturation Level of Seed Oils Were Associated With the Expression Pattern Shifts of Duplicated Desaturase Genes and the Potential Role of Other Regulatory Genes. FRONTIERS IN PLANT SCIENCE 2020; 11:616338. [PMID: 33519875 PMCID: PMC7838364 DOI: 10.3389/fpls.2020.616338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/22/2020] [Indexed: 05/08/2023]
Abstract
Seed oils are of great economic importance both for human consumption and industrial applications. The nutritional quality and industrial value of seed oils are mostly determined by their fatty acid profiles, especially the relative proportions of unsaturated fatty acids. Tree peony seed oils have recently been recognized as novel edible oils enriched in α-linolenic acid (ALA). However, congeneric species, such as Paeonia ostii and P. ludlowii, showed marked variation in the relative proportions of different unsaturated fatty acids. By comparing the dynamics of fatty acid accumulation and the time-course gene expression patterns between P. ostii and P. ludlowii, we identified genes that were differentially expressed between two species in developing seeds, and showed congruent patterns of variation between expression levels and phenotypes. In addition to the well-known desaturase and acyltransferase genes associated with fatty acid desaturation, among them were some genes that were conservatively co-expressed with the desaturation pathway genes across phylogenetically distant ALA-rich species, including Camelina sativa and Perilla frutescens. Go enrichment analysis revealed that these genes were mainly involved in transcriptional regulation, protein post-translational modification and hormone biosynthesis and response, suggesting that the fatty acid synthesis and desaturation pathway might be subject to multiple levels of regulation.
Collapse
Affiliation(s)
- Mengli Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), Fudan University, Shanghai, China
| | - Lexuan Gao
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Gengyun Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), Fudan University, Shanghai, China
| | - Chengchuan Zhou
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), Fudan University, Shanghai, China
| | - Jinjing Jian
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), Fudan University, Shanghai, China
| | - Zhen Xing
- Tibet Agricultural and Animal Husbandry University, Linzhi, China
| | - Yuguo Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), Fudan University, Shanghai, China
| | - Wenju Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), Fudan University, Shanghai, China
| | - Zhiping Song
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), Fudan University, Shanghai, China
| | - Yonghong Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- *Correspondence: Yonghong Hu,
| | - Ji Yang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), Fudan University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- *Correspondence: Yonghong Hu,
| |
Collapse
|
24
|
Yuan L, Li R. Metabolic Engineering a Model Oilseed Camelina sativa for the Sustainable Production of High-Value Designed Oils. FRONTIERS IN PLANT SCIENCE 2020; 11:11. [PMID: 32117362 PMCID: PMC7028685 DOI: 10.3389/fpls.2020.00011] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/08/2020] [Indexed: 05/06/2023]
Abstract
Camelina sativa (L.) Crantz is an important Brassicaceae oil crop with a number of excellent agronomic traits including low water and fertilizer input, strong adaptation and resistance. Furthermore, its short life cycle and easy genetic transformation, combined with available data of genome and other "-omics" have enabled camelina as a model oil plant to study lipid metabolism regulation and genetic improvement. Particularly, camelina is capable of rapid metabolic engineering to synthesize and accumulate high levels of unusual fatty acids and modified oils in seeds, which are more stable and environmentally friendly. Such engineered camelina oils have been increasingly used as the super resource for edible oil, health-promoting food and medicine, biofuel oil and high-valued chemical production. In this review, we mainly highlight the latest advance in metabolic engineering towards the predictive manipulation of metabolism for commercial production of desirable bio-based products using camelina as an ideal platform. Moreover, we deeply analysis camelina seed metabolic engineering strategy and its promising achievements by describing the metabolic assembly of biosynthesis pathways for acetyl glycerides, hydroxylated fatty acids, medium-chain fatty acids, ω-3 long-chain polyunsaturated fatty acids, palmitoleic acid (ω-7) and other high-value oils. Future prospects are discussed, with a focus on the cutting-edge techniques in camelina such as genome editing application, fine directed manipulation of metabolism and future outlook for camelina industry development.
Collapse
Affiliation(s)
- Lixia Yuan
- College of Biological Science and Technology, Jinzhong University, Jinzhong, China
| | - Runzhi Li
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, China
- *Correspondence: Runzhi Li,
| |
Collapse
|
25
|
Zafar S, Li YL, Li NN, Zhu KM, Tan XL. Recent advances in enhancement of oil content in oilseed crops. J Biotechnol 2019; 301:35-44. [PMID: 31158409 DOI: 10.1016/j.jbiotec.2019.05.307] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
Abstract
Plant oils are very valuable agricultural commodity. The manipulation of seed oil composition to deliver enhanced fatty acid compositions, which are appropriate for feed or fuel, has always been a main objective of metabolic engineers. The last two decennary have been noticeable by numerous significant events in genetic engineering for identification of different gene targets to improve oil yield in oilseed crops. Particularly, genetic engineering approaches have presented major breakthrough in elevating oil content in oilseed crops such as Brassica napus and soybean. Additionally, current research efforts to explore the possibilities to modify the genetic expression of key regulators of oil accumulation along with biochemical studies to elucidate lipid biosynthesis will establish protocols to develop transgenic oilseed crops along much improved oil content. In this review, we describe current distinct genetic engineering approaches investigated by researchers for ameliorating oil content and its nutritional quality. Moreover, we will also discuss some auspicious and innovative approaches and challenges for engineering oil content to yield oil at much higher rate in oilseed crops.
Collapse
Affiliation(s)
- Sundus Zafar
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China; Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yu-Long Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Nan-Nan Li
- School of Resource and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Ke-Ming Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xiao-Li Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
26
|
Kanai M, Yamada T, Hayashi M, Mano S, Nishimura M. Soybean (Glycine max L.) triacylglycerol lipase GmSDP1 regulates the quality and quantity of seed oil. Sci Rep 2019; 9:8924. [PMID: 31222045 PMCID: PMC6586785 DOI: 10.1038/s41598-019-45331-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/05/2019] [Indexed: 11/17/2022] Open
Abstract
Seeds of soybean (Glycine max L.) are a major source of plant-derived oils. In the past, improvements have been made in the quantity and quality of seed oil. Triacylglycerols (TAGs) are the principal components of soybean seed oil, and understanding the metabolic regulation of TAGs in soybean seeds is essential. Here, we identified four soybean genes encoding TAG lipases, designated as SUGAR DEPENDENT1-1 (GmSDP1-1), GmSDP1-2, GmSDP1-3 and GmSDP1-4; these are homologous to Arabidopsis thaliana SDP1 (AtSDP1). To characterize the function of these genes during grain filling, transgenic lines of soybean were generated via RNA interference to knockdown the expression of all four GmSDP1 genes. The seed oil content of the transgenic soybean lines was significantly increased compared with the wild type (WT). Additionally, fatty acid profiles of the WT and transgenic soybean lines were altered; the content of linoleic acid, a major fatty acid in soybean seeds, was significantly reduced, whereas that of oleic acid was increased in transgenic soybean seeds compared with the WT. Substrate specificity experiments showed that TAG lipase preferentially cleaved oleic acid than linoleic acid in the oil body membrane in WT soybean. This study demonstrates that the GmSDP1 proteins regulate both the TAG content and fatty acid composition of soybean seeds during grain filling. These results provide a novel strategy for improving both the quantity and quality of soybean seed oil.
Collapse
Affiliation(s)
- Masatake Kanai
- Laboratory of Organelle Regulation, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Tetsuya Yamada
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Makoto Hayashi
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, 526-0829, Japan
| | - Shoji Mano
- Laboratory of Organelle Regulation, National Institute for Basic Biology, Okazaki, 444-8585, Japan.
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan.
| | - Mikio Nishimura
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, 658-8501, Japan.
| |
Collapse
|
27
|
Kotapati HK, Bates PD. A normal phase high performance liquid chromatography method for the separation of hydroxy and non-hydroxy neutral lipid classes compatible with ultraviolet and in-line liquid scintillation detection of radioisotopes. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1102-1103:52-59. [PMID: 30368043 DOI: 10.1016/j.jchromb.2018.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/24/2018] [Accepted: 10/13/2018] [Indexed: 11/16/2022]
Abstract
In this paper, we report a method for the separation of hydroxy fatty acid and non-hydroxy fatty acid containing neutral lipid classes via normal phase HPLC with UV detection on a PVA-Sil column. The hexane/isopropanol/methanol/water based method separates all the neutral lipids in 21 min, and subsequently flushes through the polar lipids by 27 min such that prefractionation of neutral and polar lipids are not required, and the column is re-equilibrated for the next run in 15 min, for a total run time of 45 min per sample. The separation was demonstrated at both 1.0 mL/min and 1.5 mL/min for added applicability for fraction collection or inline analysis. Separation of various hydroxy fatty acid containing lipids was demonstrated from three different plant species Ricinus communis, Physaria fendleri, and engineered Arabidopsis thaliana. Additionally, we have combined this method with an in-line liquid scintillation counter for the separation and quantification of 14C labeled lipids obtained from in vivo metabolic flux experiments conducted in the developing seeds of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hari Kiran Kotapati
- Department of Chemistry & Biochemistry, The University of Southern Mississippi, 118 College Drive, Box # 5043, Hattiesburg, MS 39406, USA
| | - Philip D Bates
- Department of Chemistry & Biochemistry, The University of Southern Mississippi, 118 College Drive, Box # 5043, Hattiesburg, MS 39406, USA.
| |
Collapse
|
28
|
Karki N, Bates PD. The effect of light conditions on interpreting oil composition engineering in Arabidopsis seeds. PLANT DIRECT 2018; 2:e00067. [PMID: 31245729 PMCID: PMC6508571 DOI: 10.1002/pld3.67] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/25/2018] [Accepted: 06/11/2018] [Indexed: 05/20/2023]
Abstract
Arabidopsis thaliana is the most developed and utilized model plant. In particular, it is an excellent model for proof-of-concept seed oil engineering studies because it accumulates approximately 37% seed oil by weight, and it is closely related to important Brassicaceae oilseed crops. Arabidopsis can be grown under a wide variety of conditions including continuous light; however, the amount of light is strongly correlated with total seed oil accumulation. In addition, many attempts to engineer novel seed oil fatty acid compositions in Arabidopsis have reported significant reductions in oil accumulation; however, the relative reduction from the nontransgenic controls varies greatly within the literature. A set of experiments were conducted to systematically analyze the effect of light conditions (including day/night cycle vs. continuous light, and different light intensities) on the relative accumulation of seed oil between three different transgenic lines producing novel hydroxy fatty acids and their nontransgenic background. Oil content was measured per seed and as a percentage of seed weight. Our results indicate the relative amount of seed oil between transgenic lines and nontransgenic controls is dependent on both the light conditions and the type of oil content measurement utilized. In addition, the light conditions effect the relative accumulation of the novel fatty acids between various transgenic lines. Therefore, the success of novel fatty acid proof-of-concept engineering strategies on both oil accumulation and fatty acid composition in Arabidopsis seeds should be considered in light of the select growth and measurement conditions prior to moving engineering strategies into crop plants.
Collapse
Affiliation(s)
- Nischal Karki
- Department of Chemistry and BiochemistryThe University of Southern MississippiHattiesburgMississippi
| | - Philip D. Bates
- Department of Chemistry and BiochemistryThe University of Southern MississippiHattiesburgMississippi
| |
Collapse
|
29
|
Tang G, Xu P, Ma W, Wang F, Liu Z, Wan S, Shan L. Seed-Specific Expression of AtLEC1 Increased Oil Content and Altered Fatty Acid Composition in Seeds of Peanut ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2018; 9:260. [PMID: 29559985 PMCID: PMC5845668 DOI: 10.3389/fpls.2018.00260] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/14/2018] [Indexed: 05/20/2023]
Abstract
Peanut (Arachis hypogaea L.) is one of the major oil crops and is the fifth largest source of plant oils in the world. Numerous genes participate in regulating the biosynthesis and accumulation of the storage lipids in seeds or other reservoir organs, among which several transcription factors, such as LEAFY COTYLEDON1 (AtLEC1), LEC2, and WRINKLED1 (WRI1), involved in embryo development also control the lipid reservoir in seeds. In this study, the AtLEC1 gene was transferred into the peanut genome and expressed in a seed-specific manner driven by the NapinA full-length promoter or its truncated 230-bp promoter. Four homozygous transgenic lines, two lines with the longer promoter and the other two with the truncated one, were selected for further analysis. The AtLEC1 mRNA level and the corresponding protein accumulation in different transgenic overexpression lines were altered, and the transgenic plants grew and developed normally without any detrimental effects on major agronomic traits. In the developing seeds of transgenic peanuts, the mRNA levels of a series of genes were upregulated. These genes are associated with fatty acid (FA) biosynthesis and lipid accumulation. The former set of genes included the homomeric ACCase A (AhACC II), the BC subunit of heteromeric ACCase (AhBC4), ketoacyl-ACP synthetase (AhKAS II), and stearoyl-ACP desaturase (AhSAD), while the latter ones were the diacylglycerol acyltransferases and oleosins (AhDGAT1, AhDGAT2, AhOle1, AhOle2, and AhOle3). The oil content and seed weight increased by 4.42-15.89% and 11.1-22.2%, respectively, and the levels of major FA components including stearic acid, oleic acid, and linoleic acid changed significantly in all different lines.
Collapse
Affiliation(s)
- Guiying Tang
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Pingli Xu
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wenhua Ma
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong University, Jinan, China
| | - Fang Wang
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zhanji Liu
- Shandong Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shubo Wan
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong University, Jinan, China
- *Correspondence: Lei Shan, Shubo Wan,
| | - Lei Shan
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong University, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
- *Correspondence: Lei Shan, Shubo Wan,
| |
Collapse
|
30
|
Poliner E, Pulman JA, Zienkiewicz K, Childs K, Benning C, Farré EM. A toolkit for Nannochloropsis oceanica CCMP1779 enables gene stacking and genetic engineering of the eicosapentaenoic acid pathway for enhanced long-chain polyunsaturated fatty acid production. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:298-309. [PMID: 28605577 PMCID: PMC5785352 DOI: 10.1111/pbi.12772] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/05/2017] [Accepted: 06/06/2017] [Indexed: 05/04/2023]
Abstract
Nannochloropsis oceanica is an oleaginous microalga rich in ω3 long-chain polyunsaturated fatty acids (LC-PUFAs) content, in the form of eicosapentaenoic acid (EPA). We identified the enzymes involved in LC-PUFA biosynthesis in N. oceanica CCMP1779 and generated multigene expression vectors aiming at increasing LC-PUFA content in vivo. We isolated the cDNAs encoding four fatty acid desaturases (FAD) and determined their function by heterologous expression in S. cerevisiae. To increase the expression of multiple fatty acid desaturases in N. oceanica CCMP1779, we developed a genetic engineering toolkit that includes an endogenous bidirectional promoter and optimized peptide bond skipping 2A peptides. The toolkit also includes multiple epitopes for tagged fusion protein production and two antibiotic resistance genes. We applied this toolkit, towards building a gene stacking system for N. oceanica that consists of two vector series, pNOC-OX and pNOC-stacked. These tools for genetic engineering were employed to test the effects of the overproduction of one, two or three desaturase-encoding cDNAs in N. oceanica CCMP1779 and prove the feasibility of gene stacking in this genetically tractable oleaginous microalga. All FAD overexpressing lines had considerable increases in the proportion of LC-PUFAs, with the overexpression of Δ12 and Δ5 FAD encoding sequences leading to an increase in the final ω3 product, EPA.
Collapse
Affiliation(s)
- Eric Poliner
- MSU‐DOE Plant Research LaboratoryMichigan State UniversityEast LansingMIUSA
- Cell and Molecular Biology ProgramMichigan State UniversityEast LansingMIUSA
| | - Jane A. Pulman
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
| | - Krzysztof Zienkiewicz
- MSU‐DOE Plant Research LaboratoryMichigan State UniversityEast LansingMIUSA
- Department of Plant BiochemistryAlbrecht‐von‐Haller‐Institute for Plant SciencesGeorg‐August‐UniversityGottingenGermany
| | - Kevin Childs
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
| | - Christoph Benning
- MSU‐DOE Plant Research LaboratoryMichigan State UniversityEast LansingMIUSA
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| | - Eva M. Farré
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
| |
Collapse
|
31
|
Yurchenko O, Shockey JM, Gidda SK, Silver MI, Chapman KD, Mullen RT, Dyer JM. Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1010-1023. [PMID: 28083898 PMCID: PMC5506653 DOI: 10.1111/pbi.12695] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/28/2016] [Accepted: 01/05/2017] [Indexed: 05/23/2023]
Abstract
The seeds of many nondomesticated plant species synthesize oils containing high amounts of a single unusual fatty acid, many of which have potential usage in industry. Despite the identification of enzymes for unusual oxidized fatty acid synthesis, the production of these fatty acids in engineered seeds remains low and is often hampered by their inefficient exclusion from phospholipids. Recent studies have established the feasibility of increasing triacylglycerol content in plant leaves, which provides a novel approach for increasing energy density of biomass crops. Here, we determined whether the fatty acid composition of leaf oil could be engineered to accumulate unusual fatty acids. Eleostearic acid (ESA) is a conjugated fatty acid produced in seeds of the tung tree (Vernicia fordii) and has both industrial and nutritional end-uses. Arabidopsis thaliana lines with elevated leaf oil were first generated by transforming wild-type, cgi-58 or pxa1 mutants (the latter two of which contain mutations disrupting fatty acid breakdown) with the diacylglycerol acyltransferases (DGAT1 or DGAT2) and/or oleosin genes from tung. High-leaf-oil plant lines were then transformed with tung FADX, which encodes the fatty acid desaturase/conjugase responsible for ESA synthesis. Analysis of lipids in leaves revealed that ESA was efficiently excluded from phospholipids, and co-expression of tung FADX and DGAT2 promoted a synergistic increase in leaf oil content and ESA accumulation. Taken together, these results provide a new approach for increasing leaf oil content that is coupled with accumulation of unusual fatty acids. Implications for production of biofuels, bioproducts, and plant-pest interactions are discussed.
Collapse
Affiliation(s)
- Olga Yurchenko
- USDA‐ARSUS Arid‐Land Agricultural Research CenterMaricopaAZUSA
| | - Jay M. Shockey
- USDA‐ARSSouthern Regional Research CenterNew OrleansLAUSA
| | - Satinder K. Gidda
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Maxwell I. Silver
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Kent D. Chapman
- Department of Biological SciencesUniversity of North TexasDentonTXUSA
| | - Robert T. Mullen
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - John M. Dyer
- USDA‐ARSUS Arid‐Land Agricultural Research CenterMaricopaAZUSA
| |
Collapse
|
32
|
Guo X, Fan C, Chen Y, Wang J, Yin W, Wang RRC, Hu Z. Identification and characterization of an efficient acyl-CoA: diacylglycerol acyltransferase 1 (DGAT1) gene from the microalga Chlorella ellipsoidea. BMC PLANT BIOLOGY 2017; 17:48. [PMID: 28222675 PMCID: PMC5319178 DOI: 10.1186/s12870-017-0995-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 02/02/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Oil in the form of triacylglycerols (TAGs) is quantitatively the most important storage form of energy for eukaryotic cells. Diacylglycerol acyltransferase (DGAT) is considered the rate-limiting enzyme for TAG accumulation. Chlorella, a unicellular eukaryotic green alga, has attracted much attention as a potential feedstock for renewable energy production. However, the function of DGAT1 in Chlorella has not been reported. RESULTS A full-length cDNA encoding a putative diacylglycerol acyltransferase 1 (DGAT1, EC 2.3.1.20) was obtained from Chlorella ellipsoidea. The 2,142 bp open reading frame of this cDNA, designated CeDGAT1, encodes a protein of 713 amino acids showing no more than 40% identity with DGAT1s of higher plants. Transcript analysis showed that the expression level of CeDGAT1 markedly increased under nitrogen starvation, which led to significant triacylglycerol (TAG) accumulation. CeDGAT1 activity was confirmed in the yeast quadruple mutant strain H1246 by restoring its ability to produce TAG. Upon expression of CeDGAT1, the total fatty acid content in wild-type yeast (INVSc1) increased by 142%, significantly higher than that transformed with DGAT1s from higher plants, including even the oil crop soybean. The over-expression of CeDGAT1 under the NOS promoter in wild-type Arabidopsis thaliana and Brassica napus var. Westar significantly increased the oil content by 8-37% and 12-18% and the average 1,000-seed weight by 9-15% and 6-29%, respectively, but did not alter the fatty acid composition of the seed oil. The net increase in the 1,000-seed total lipid content was up to 25-50% in both transgenic Arabidopsis and B. napus. CONCLUSIONS We identified a gene encoding DGAT1 in C. ellipsoidea and confirmed that it plays an important role in TAG accumulation. This is the first functional analysis of DGAT1 in Chlorella. This information is important for understanding lipid synthesis and accumulation in Chlorella and for genetic engineering to enhance oil production in microalgae and oil plants.
Collapse
Affiliation(s)
- Xuejie Guo
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chengming Fan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yuhong Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jingqiao Wang
- Institute of Economical Crops, Yunnan Agricultural Academy, Kunming, 65023 China
| | - Weibo Yin
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Richard R. C. Wang
- United States Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT 84322-6300 USA
| | - Zanmin Hu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Present address: Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing, 100101 China
| |
Collapse
|
33
|
Claver A, Rey R, López MV, Picorel R, Alfonso M. Identification of target genes and processes involved in erucic acid accumulation during seed development in the biodiesel feedstock Pennycress (Thlaspi arvense L.). JOURNAL OF PLANT PHYSIOLOGY 2017; 208:7-16. [PMID: 27889523 DOI: 10.1016/j.jplph.2016.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/07/2016] [Accepted: 10/09/2016] [Indexed: 05/05/2023]
Abstract
We studied erucic acid accumulation in the biodiesel feedstock Pennycress (Thlaspi arvense L.) as a first step towards the development of a sustainable strategy for biofuel production in the EU territory. To that end, two inbred Pennycress lines of European origin, "NASC" and "French," were cultivated in a controlled chamber and in experimental field plots, and their growth, seed production and seed oil characteristics analyzed. Differences in some agronomical traits like vernalization (winter-French versus spring-NASC), flowering time (delayed in the French line) and seed production (higher in the French line) were detected. Both lines showed a high amount (35-39%) of erucic acid (22:1Δ13) in their seed oil. Biochemical characterization of the Pennycress seed oil indicated that TAG was the major reservoir of 22:1Δ13. Incorporation of 22:1Δ13 to TAG occurred very early during seed maturation, concomitant with a decrease of desaturase activity. This change in the acyl fluxes towards elongation was controlled by different genes at different levels. TaFAE1 gene, encoding the fatty acid elongase, seemed to be controlled at the transcriptional level with high expression at the early stages of seed development. On the contrary, the TaFAD2 gene that encodes the Δ12 fatty acid desaturase or TaDGAT1 that catalyzes TAG biosynthesis were controlled post-transcriptionally. TaWRI1, the master regulator of seed-oil biosynthesis, showed also high expression at the early stages of seed development. Our data identified genes and processes that might improve the biotechnological manipulation of Pennycress seeds for high-quality biodiesel production.
Collapse
Affiliation(s)
- Ana Claver
- Department of Plant Nutrition, Estación Experimental de Aula Dei-CSIC, Avda. Montañana 1005, 50059, Zaragoza, Spain
| | - Raquel Rey
- Laboratorio Agroambiental, Gobierno de Aragón, Avda. Montañana 1005, 50071, Zaragoza, Spain
| | - M Victoria López
- Department of Soil and Water, Estación Experimental de Aula Dei-CSIC, Avda. Montañana 1005, 50059, Zaragoza, Spain
| | - Rafael Picorel
- Department of Plant Nutrition, Estación Experimental de Aula Dei-CSIC, Avda. Montañana 1005, 50059, Zaragoza, Spain
| | - Miguel Alfonso
- Department of Plant Nutrition, Estación Experimental de Aula Dei-CSIC, Avda. Montañana 1005, 50059, Zaragoza, Spain.
| |
Collapse
|
34
|
Tiwari GJ, Liu Q, Shreshtha P, Li Z, Rahman S. RNAi-mediated down-regulation of the expression of OsFAD2-1: effect on lipid accumulation and expression of lipid biosynthetic genes in the rice grain. BMC PLANT BIOLOGY 2016; 16:189. [PMID: 27581494 PMCID: PMC5007732 DOI: 10.1186/s12870-016-0881-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/24/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND The bran from polished rice grains can be used to produce rice bran oil (RBO). High oleic (HO) RBO has been generated previously through RNAi down-regulation of OsFAD2-1. HO-RBO has higher oxidative stability and could be directly used in the food industry without hydrogenation, and is hence free of trans fatty acids. However, relative to a classic oilseed, lipid metabolism in the rice grain is poorly studied and the genetic alteration in the novel HO genotype remains unexplored. RESULTS Here, we have undertaken further analysis of role of OsFAD2-1 in the developing rice grain. The use of Illumina-based NGS transcriptomics analysis of developing rice grain reveals that knockdown of Os-FAD2-1 gene expression was accompanied by the down regulation of the expression of a number of key genes in the lipid biosynthesis pathway in the HO rice line. A slightly higher level of oil accumulation was also observed in the HO-RBO. CONCLUSION Prominent among the down regulated genes were those that coded for FatA, LACS, SAD2, SAD5, caleosin and steroleosin. It may be possible to further increase the oleic acid content in rice oil by altering the expression of the lipid biosynthetic genes that are affected in the HO line.
Collapse
Affiliation(s)
- Gopal Ji Tiwari
- School of Science, Monash University Malaysia, 46150 Bandar Sunway, Selangor, Malaysia
- Monash University Malaysia Genomics Facility, 46150 Bandar Sunway, Selangor, Malaysia
| | - Qing Liu
- CSIRO Agriculture & Food, PO Box 1600, Canberra, ACT, 2601, Australia
| | - Pushkar Shreshtha
- CSIRO Agriculture & Food, PO Box 1600, Canberra, ACT, 2601, Australia
| | - Zhongyi Li
- CSIRO Agriculture & Food, PO Box 1600, Canberra, ACT, 2601, Australia
| | - Sadequr Rahman
- School of Science, Monash University Malaysia, 46150 Bandar Sunway, Selangor, Malaysia.
- Monash University Malaysia Genomics Facility, 46150 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
35
|
Kumar A, Sharma A, Upadhyaya KC. Vegetable Oil: Nutritional and Industrial Perspective. Curr Genomics 2016; 17:230-40. [PMID: 27252590 PMCID: PMC4869010 DOI: 10.2174/1389202917666160202220107] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 12/26/2022] Open
Abstract
Oils of plant origin have been predominantly used for food-based applications. Plant oils not only represent a non-polluting renewable resource but also provide a wide diversity in fatty acids (FAs) composition with diverse applications. Besides being edible, they are now increasingly being used in industrial applications such as paints, lubricants, soaps, biofuels etc. In addition, plants can be engineered to produce fatty acids which are nutritionally beneficial to human health. Thus these oils have potential to 1) substitute ever increasing demand of non –renewable petroleum sources for industrial application and 2) also spare the marine life by providing an alternative source to nutritionally and medically important long chain polyunsaturated fatty acids or ‘Fish oil’. The biochemical pathways producing storage oils in plants have been extensively characterized, but the factors regulating fatty acid synthesis and controlling total oil content in oilseed crops are still poorly understood. Thus understanding of plant lipid metabolism is fundamental to its manipulation and increased production. This review on oils discusses fatty acids of nutritional and industrial importance, and approaches for achieving future designer vegetable oil for both edible and non-edible uses. The review will discuss the success and bottlenecks in efficient production of novel FAs in non-native plants using genetic engineering as a tool.
Collapse
Affiliation(s)
- Aruna Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Aarti Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Kailash C Upadhyaya
- Amity Institute of Molecular Biology and Genomics, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
36
|
Li Q, Hu L, Guo J, Yang T, Chen L. Molecular characterization of two type I acyl-CoA: diacylglycerol acyltransferase genes in maize. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1157036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Qingzhi Li
- Department of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, P.R. China
| | - Lizong Hu
- Department of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, P.R. China
| | - Jinjie Guo
- Key Laboratory constructed by Ministry of Education and Hebei province, Hebei sub-center for National Maize Improvement Center, Hebei Agricultural University, Baoding, P.R. China
| | - Tongwen Yang
- Department of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, P.R. China
| | - Long Chen
- Department of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, P.R. China
| |
Collapse
|
37
|
Bates PD. Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1214-1225. [PMID: 27003249 DOI: 10.1016/j.bbalip.2016.03.021] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
Abstract
Plant oil biosynthesis involves a complex metabolic network with multiple subcellular compartments, parallel pathways, cycles, and pathways that have a dual function to produce essential membrane lipids and triacylglycerol. Modern molecular biology techniques provide tools to alter plant oil compositions through bioengineering, however with few exceptions the final composition of triacylglycerol cannot be predicted. One reason for limited success in oilseed bioengineering is the inadequate understanding of how to control the flux of fatty acids through various fatty acid modification, and triacylglycerol assembly pathways of the lipid metabolic network. This review focuses on the mechanisms of acyl flux through the lipid metabolic network, and highlights where uncertainty resides in our understanding of seed oil biosynthesis. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Philip D Bates
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Dr. #5043, Hattiesburg, MS 39406-0001, United States.
| |
Collapse
|
38
|
Maravi DK, Kumar S, Sharma PK, Kobayashi Y, Goud VV, Sakurai N, Koyama H, Sahoo L. Ectopic expression of AtDGAT1, encoding diacylglycerol O-acyltransferase exclusively committed to TAG biosynthesis, enhances oil accumulation in seeds and leaves of Jatropha. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:226. [PMID: 27790288 PMCID: PMC5073959 DOI: 10.1186/s13068-016-0642-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/11/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Jatropha curcas is an important biofuel crop due to the presence of high amount of oil in its seeds suitable for biodiesel production. Triacylglycerols (TAGs) are the most abundant form of storage oil in plants. Diacylglycerol O-acyltransferase (DGAT1) enzyme is responsible for the last and only committed step in seed TAG biosynthesis. Direct upregulation of TAG biosynthesis in seeds and vegetative tissues through overexpression of the DGAT1 could enhance the energy density of the biomass, making significant impact on biofuel production. RESULTS The enzyme diacylglycerol O-acyltransferase is the rate-limiting enzyme responsible for the TAG biosynthesis in seeds. We generated transgenic Jatropha ectopically expressing an Arabidopsis DGAT1 gene through Agrobacterium-mediated transformation. The resulting AtDGAT1 transgenic plants showed a dramatic increase in lipid content by 1.5- to 2 fold in leaves and 20-30 % in seeds, and an overall increase in TAG and DAG, and lower free fatty acid (FFA) levels compared to the wild-type plants. The increase in oil content in transgenic plants is accompanied with increase in average plant height, seeds per tree, average 100-seed weight, and seed length and breadth. The enhanced TAG accumulation in transgenic plants had no penalty on the growth rates, growth patterns, leaf number, and leaf size of plants. CONCLUSIONS In this study, we produced transgenic Jatropha ectopically expressing AtDGAT1. We successfully increased the oil content by 20-30 % in seeds and 1.5- to 2.0-fold in leaves of Jatropha through genetic engineering. Transgenic plants had reduced FFA content compared with control plants. Our strategy of increasing energy density by enhancing oil accumulation in both seeds and leaves in Jatropha would make it economically more sustainable for biofuel production.
Collapse
Affiliation(s)
| | - Sanjeev Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| | - Prabin Kumar Sharma
- Center for Energy, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| | - Yasufumi Kobayashi
- Center for Energy, Indian Institute of Technology Guwahati, Guwahati, 781039 India
- Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu, 501-1193 Japan
| | - Vaibhav V. Goud
- Center for Energy, Indian Institute of Technology Guwahati, Guwahati, 781039 India
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| | - Nozomu Sakurai
- Department of Technology Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818 Japan
| | - Hiroyuki Koyama
- Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu, 501-1193 Japan
| | - Lingaraj Sahoo
- Center for Energy, Indian Institute of Technology Guwahati, Guwahati, 781039 India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| |
Collapse
|
39
|
Zhang D, Jasieniecka-Gazarkiewicz K, Wan X, Luo L, Zhang Y, Banas A, Jiang M, Gong Y. Molecular Characterization of Two Lysophospholipid:acyl-CoA Acyltransferases Belonging to the MBOAT Family in Nicotiana benthamiana. PLoS One 2015; 10:e0144653. [PMID: 26684752 PMCID: PMC4684200 DOI: 10.1371/journal.pone.0144653] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/20/2015] [Indexed: 12/03/2022] Open
Abstract
In the remodeling pathway for the synthesis of phosphatidylcholine (PC), acyl-CoA-dependent lysophosphatidylcholine (lysoPC) acyltransferase (LPCAT) catalyzes the reacylation of lysoPC. A number of genes encoding LPCATs have been cloned and characterized from several plants in recent years. Using Arabidopsis and other plant LPCAT sequences to screen the genome database of Nicotiana benthamiana, we identified two cDNAs encoding the putative tobacco LPCATs (NbLPCAT1 and NbLPCAT2). Both of them were predicted to encode a protein of 463 amino acids with high similarity to LPCATs from other plants. Protein sequence features such as the presence of at least eight putative transmembrane regions, four highly conserved signature motifs and several invariant residues indicate that NbLPCATs belong to the membrane bound O-acyltransferase family. Lysophospholipid acyltransferase activity of NbLPCATs was confirmed by testing lyso-platelet-activating factor (lysoPAF) sensitivity through heterologous expression of each full-length cDNA in a yeast mutant Y02431 (lca1△) disrupted in endogenous LPCAT enzyme activity. Analysis of fatty acid profiles of phospholipids from the NbLPCAT-expressing yeast mutant Y02431 cultures supplemented with polyunsaturated fatty acids suggested more incorporation of linoleic acid (18:2n6, LA) and α-linolenic acid (18:3n3, ALA) into PC compared to yeast mutant harbouring empty vector. In vitro enzymatic assay demonstrated that NbLPCAT1had high lysoPC acyltransferase activity with a clear preference for α-linolenoyl-CoA (18:3), while NbLPCAT2 showed a high lysophosphatidic acid (lysoPA) acyltransferase activity towards α-linolenoyl-CoA and a weak lysoPC acyltransferase activity. Tissue-specific expression analysis showed a ubiquitous expression of NbLPCAT1 and NbLPCAT2 in roots, stems, leaves, flowers and seeds, and a strong expression in developing flowers. This is the first report on the cloning and characterization of lysophospholipid acyltransferases from N. benthamiana.
Collapse
Affiliation(s)
- Donghui Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | | | - Xia Wan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Ling Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yinbo Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Antoni Banas
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80–822, Gdansk, Poland
| | - Mulan Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yangmin Gong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| |
Collapse
|
40
|
Kim HU, Lee KR, Jung SJ, Shin HA, Go YS, Suh MC, Kim JB. Senescence-inducible LEC2 enhances triacylglycerol accumulation in leaves without negatively affecting plant growth. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1346-59. [PMID: 25790072 PMCID: PMC5448714 DOI: 10.1111/pbi.12354] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 12/28/2014] [Accepted: 01/30/2015] [Indexed: 05/08/2023]
Abstract
The synthesis of fatty acids and glycerolipids in wild-type Arabidopsis leaves does not typically lead to strong triacylglycerol (TAG) accumulation. LEAFY COTYLEDON2 (LEC2) is a master regulator of seed maturation and oil accumulation in seeds. Constitutive ectopic LEC2 expression causes somatic embryogenesis and defects in seedling growth. Here, we report that senescence-inducible LEC2 expression caused a threefold increase in TAG levels in transgenic leaves compared with that in the leaves of wild-type plants. Plant growth was not severely affected by the accumulation the TAG in response to LEC2 expression. The levels of plastid-synthesized lipids, mono- and di-galactosyldiacylglycerol and phosphatidylglycerol were reduced more in senescence-induced LEC2 than in endoplasmic reticulum-synthesized lipids, including phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol. Senescence-induced LEC2 up-regulated the expression of many genes involved in fatty acid and TAG biosynthesis at precise times in senescent leaves, including WRINKLED1 (WRI1), which encodes a fatty acid transcription factor. The expressions of glycerol-3-phosphate dehydrogenase 1 and phospholipid:diacylglycerol 2 were increased in the transgenic leaves. Five seed-type oleosin-encoding genes, expressed during oil-body formation, and the seed-specific FAE1 gene, which encodes the enzyme responsible for the synthesis of C20:1 and C22:1 fatty acids, were also expressed at higher levels in senescing transgenic leaves than in wild-type leaves. Senescence-inducible LEC2 triggers the key metabolic steps that increase TAG accumulation in vegetative tissues.
Collapse
Affiliation(s)
- Hyun Uk Kim
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea
- Corresponding author: Hyun Uk Kim, Tel: 82-031-299-1703, Fax: 82-031-299-1672,
| | - Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea
| | - Su-Jin Jung
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea
| | - Hyun A Shin
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea
| | - Young Sam Go
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Mi-Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Jong Bum Kim
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea
| |
Collapse
|
41
|
Shi J, Lang C, Wu X, Liu R, Zheng T, Zhang D, Chen J, Wu G. RNAi knockdown of fatty acid elongase1 alters fatty acid composition in Brassica napus. Biochem Biophys Res Commun 2015; 466:518-22. [DOI: 10.1016/j.bbrc.2015.09.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 09/10/2015] [Indexed: 10/23/2022]
|
42
|
Aznar-Moreno J, Denolf P, Van Audenhove K, De Bodt S, Engelen S, Fahy D, Wallis JG, Browse J. Type 1 diacylglycerol acyltransferases of Brassica napus preferentially incorporate oleic acid into triacylglycerol. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66. [PMID: 26195728 PMCID: PMC4588894 DOI: 10.1093/jxb/erv363] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
DGAT1 enzymes (acyl-CoA:diacylglycerol acyltransferase 1, EC 2.3.1.20) catalyse the formation of triacylglycerols (TAGs), the most abundant lipids in vegetable oils. Thorough understanding of the enzymology of oil accumulation is critical to the goal of modifying oilseeds for improved vegetable oil production. Four isoforms of BnDGAT1, the final and rate-limiting step in triacylglycerol synthesis, were characterized from Brassica napus, one of the world's most important oilseed crops. Transcriptional profiling of developing B. napus seeds indicated two genes, BnDGAT1-1 and BnDGAT1-2, with high expression and two, BnDGAT1-3 and BnDGAT1-4, with low expression. The activities of each BnDGAT1 isozyme were characterized following expression in a strain of yeast deficient in TAG synthesis. TAG from B. napus seeds contain only 10% palmitic acid (16:0) at the sn-3 position, so it was surprising that all four BnDGAT1 isozymes exhibited strong (4- to 7-fold) specificity for 16:0 over oleic acid (18:1) as the acyl-CoA substrate. However, the ratio of 18:1-CoA to 16:0-CoA in B. napus seeds during the peak period of TAG synthesis is 3:1. When substrate selectivity assays were conducted with 18:1-CoA and 16:0-CoA in a 3:1 ratio, the four isozymes incorporated 18:1 in amounts 2- to 5-fold higher than 16:0. This strong sensitivity of the BnDGAT1 isozymes to the relative concentrations of acyl-CoA substrates substantially explains the observed fatty acid composition of B. napus seed oil. Understanding these enzymes that are critical for triacylglycerol synthesis will facilitate genetic and biotechnological manipulations to improve this oilseed crop.
Collapse
Affiliation(s)
- Jose Aznar-Moreno
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - Peter Denolf
- Bayer CropScience N.V., Technologiepark 38, B-9052 Ghent, Belgium
| | | | - Stefanie De Bodt
- Bayer CropScience N.V., Technologiepark 38, B-9052 Ghent, Belgium
| | - Steven Engelen
- Bayer CropScience N.V., Technologiepark 38, B-9052 Ghent, Belgium
| | - Deirdre Fahy
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - James G Wallis
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| |
Collapse
|
43
|
Pollard M, Martin TM, Shachar-Hill Y. Lipid analysis of developing Camelina sativa seeds and cultured embryos. PHYTOCHEMISTRY 2015; 118:23-32. [PMID: 26262674 DOI: 10.1016/j.phytochem.2015.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/17/2015] [Accepted: 07/27/2015] [Indexed: 05/20/2023]
Abstract
Camelina sativa is a cultivated oilseed rich in triacylglycerols containing oleic, linoleic, α-linolenic and eicosenoic acids. As it holds promise as a model species, its lipid synthesis was characterized in vivo and in culture. Lipid accumulates at a maximum rate of about 26 μg/day/seed (11.5 mg lipid/day/g fresh seed weight), a rate comparable with other oilseeds. Noteworthy is a late stage surge in α-linolenic acid accumulation. Small amounts of unusual epoxy and hydroxy fatty acids are also present in the triacylglycerols. These include 15,16-epoxy- and 15-hydroxy-octadecadienoic acids and homologous series of ω7-hydroxy-alk-ω9-enoic and ω9/10-hydroxy-alkanoic acids. Mid-maturation embryos cultured in vitro have growth and lipid deposition rates and fatty acid compositions that closely match that of seeds, but extended culture periods allow these rates to rise and surpass those observed in planta. Optimized thin layer chromatography systems for characterization of labeled products from acetate or glycerol labeling are described. Glycerol label is only found in acylglycerols, largely as the intact glyceryl backbone, but acetate can label acyl groups and sterols, the latter to a much higher relative specific activity. This presumably occurs because mevalonic acid precursor is derived from the non-plastid pool of acetyl-CoA that is also the source for malonyl-CoA to drive FAE1-dependent chain elongation. Particular attention has been paid to the separation of sterols and diacylglycerols, and to hydrogenation of triacylglycerols to simplify their analysis. These improved methods will allow more accurate analyses of the fluxes of lipid metabolism in cultured plant embryos.
Collapse
Affiliation(s)
- Mike Pollard
- Department of Plant Biology, Michigan State University, 612 Wilson Rd., East Lansing, MI 48824, United States.
| | - Tina M Martin
- Department of Plant Biology, Michigan State University, 612 Wilson Rd., East Lansing, MI 48824, United States
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, 612 Wilson Rd., East Lansing, MI 48824, United States
| |
Collapse
|
44
|
Meesapyodsuk D, Chen Y, Ng SH, Chen J, Qiu X. Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance. J Lipid Res 2015; 56:2102-9. [PMID: 26323290 DOI: 10.1194/jlr.m060954] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 12/24/2022] Open
Abstract
Ricinoleic acid (12-hydroxyoctadec-cis-9-enoic acid) has many specialized uses in bioproduct industries, while castor bean is currently the only commercial source for the fatty acid. This report describes metabolic engineering of a microbial system (Pichia pastoris) to produce ricinoleic acid using a "push" (synthesis) and "pull" (assembly) strategy. CpFAH, a fatty acid hydroxylase from Claviceps purpurea, was used for synthesis of ricinoleic acid, and CpDGAT1, a diacylglycerol acyl transferase for the triacylglycerol synthesis from the same species, was used for assembly of the fatty acid. Coexpression of CpFAH and CpDGAT1 produced higher lipid contents and ricinoleic acid levels than expression of CpFAH alone. Coexpression in a mutant haploid strain defective in the Δ12 desaturase activity resulted in a higher level of ricinoleic acid than that in the diploid strain. Intriguingly, the ricinoleic acid produced was mainly distributed in the neutral lipid fractions, particularly the free fatty acid form, but with little in the polar lipids. This work demonstrates the effectiveness of the metabolic engineering strategy and excellent capacity of the microbial system for production of ricinoleic acid as an alternative to plant sources for industrial uses.
Collapse
Affiliation(s)
- Dauenpen Meesapyodsuk
- Department of Food & Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Yan Chen
- Department of Food & Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada
| | - Siew Hon Ng
- Department of Food & Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada
| | - Jianan Chen
- Department of Food & Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada
| | - Xiao Qiu
- Department of Food & Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| |
Collapse
|
45
|
Cao H. Genome-Wide Analysis of Oleosin Gene Family in 22 Tree Species: An Accelerator for Metabolic Engineering of BioFuel Crops and Agrigenomics Industrial Applications? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:521-41. [PMID: 26258573 DOI: 10.1089/omi.2015.0073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Trees contribute to enormous plant oil reserves because many trees contain 50%-80% of oil (triacylglycerols, TAGs) in the fruits and kernels. TAGs accumulate in subcellular structures called oil bodies/droplets, in which TAGs are covered by low-molecular-mass hydrophobic proteins called oleosins (OLEs). The OLEs/TAGs ratio determines the size and shape of intracellular oil bodies. There is a lack of comprehensive sequence analysis and structural information of OLEs among diverse trees. The objectives of this study were to identify OLEs from 22 tree species (e.g., tung tree, tea-oil tree, castor bean), perform genome-wide analysis of OLEs, classify OLEs, identify conserved sequence motifs and amino acid residues, and predict secondary and three-dimensional structures in tree OLEs and OLE subfamilies. Data mining identified 65 OLEs with perfect conservation of the "proline knot" motif (PX5SPX3P) from 19 trees. These OLEs contained >40% hydrophobic amino acid residues. They displayed similar properties and amino acid composition. Genome-wide phylogenetic analysis and multiple sequence alignment demonstrated that these proteins could be classified into five OLE subfamilies. There were distinct patterns of sequence conservation among the OLE subfamilies and within individual tree species. Computational modeling indicated that OLEs were composed of at least three α-helixes connected with short coils without any β-strand and that they exhibited distinct 3D structures and ligand binding sites. These analyses provide fundamental information in the similarity and specificity of diverse OLE isoforms within the same subfamily and among the different species, which should facilitate studying the structure-function relationship and identify critical amino acid residues in OLEs for metabolic engineering of tree TAGs.
Collapse
Affiliation(s)
- Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center , New Orleans, Louisiana
| |
Collapse
|
46
|
Liu J, Rice A, McGlew K, Shaw V, Park H, Clemente T, Pollard M, Ohlrogge J, Durrett TP. Metabolic engineering of oilseed crops to produce high levels of novel acetyl glyceride oils with reduced viscosity, freezing point and calorific value. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:858-65. [PMID: 25756355 DOI: 10.1111/pbi.12325] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 05/20/2023]
Abstract
Seed oils have proved recalcitrant to modification for the production of industrially useful lipids. Here, we demonstrate the successful metabolic engineering and subsequent field production of an oilseed crop with the highest accumulation of unusual oil achieved so far in transgenic plants. Previously, expression of the Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) gene in wild-type Arabidopsis seeds resulted in the accumulation of 45 mol% of unusual 3-acetyl-1,2-diacyl-sn-glycerols (acetyl-TAGs) in the seed oil (Durrett et al., 2010 PNAS 107:9464). Expression of EaDAcT in dgat1 mutants compromised in their ability to synthesize regular triacylglycerols increased acetyl-TAGs to 65 mol%. Camelina and soybean transformed with the EaDAcT gene accumulate acetyl-triacylglycerols (acetyl-TAGs) at up to 70 mol% of seed oil. A similar strategy of coexpression of EaDAcT together with RNAi suppression of DGAT1 increased acetyl-TAG levels to up to 85 mol% in field-grown transgenic Camelina. Additionally, total moles of triacylglycerol (TAG) per seed increased 20%. Analysis of the acetyl-TAG fraction revealed a twofold reduction in very long chain fatty acids (VLCFA), consistent with their displacement from the sn-3 position by acetate. Seed germination remained high, and seedlings were able to metabolize the stored acetyl-TAGs as rapidly as regular triacylglycerols. Viscosity, freezing point and caloric content of the Camelina acetyl-TAG oils were reduced, enabling use of this oil in several nonfood and food applications.
Collapse
Affiliation(s)
- Jinjie Liu
- Department of Plant Biology, and Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Adam Rice
- Department of Plant Biology, and Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Kathleen McGlew
- Department of Plant Biology, and Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Vincent Shaw
- Department of Plant Biology, and Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Hyunwoo Park
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tom Clemente
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Mike Pollard
- Department of Plant Biology, and Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - John Ohlrogge
- Department of Plant Biology, and Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
47
|
Kim HJ, Silva JE, Vu HS, Mockaitis K, Nam JW, Cahoon EB. Toward production of jet fuel functionality in oilseeds: identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4251-65. [PMID: 25969557 PMCID: PMC4493788 DOI: 10.1093/jxb/erv225] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0-14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs (CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seeds and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8-C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids.
Collapse
Affiliation(s)
- Hae Jin Kim
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jillian E Silva
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Hieu Sy Vu
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Keithanne Mockaitis
- Department of Biology, and Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Jeong-Won Nam
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
48
|
Wickramarathna AD, Siloto RMP, Mietkiewska E, Singer SD, Pan X, Weselake RJ. Heterologous expression of flax PHOSPHOLIPID:DIACYLGLYCEROL CHOLINEPHOSPHOTRANSFERASE (PDCT) increases polyunsaturated fatty acid content in yeast and Arabidopsis seeds. BMC Biotechnol 2015; 15:63. [PMID: 26123542 PMCID: PMC4486708 DOI: 10.1186/s12896-015-0156-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/28/2015] [Indexed: 12/28/2022] Open
Abstract
Background Flax (Linum usitatissimum L.) is an agriculturally important crop with seed oil enriched in α-linolenic acid (18:3 cisΔ9, 12, 15; ALA). This polyunsaturated fatty acid (PUFA) is the major determinant for the quality of flax seed oil in food, nutraceuticals and industrial applications. The recently identified enzyme: phosphatidylcholine diacylglycerol cholinephosphotransferase (PDCT), catalyzes the interconversion between phosphatidylcholine (PC) and diacylglycerol (DAG), and has been shown to play an important role in PUFA accumulation in Arabidopsis thaliana seeds. Methods Two flax PDCT genes were identified using homology-based approach. Results In this study, we describe the isolation and characterization of two PDCT genes from flax (LuPDCT1 and LuPDCT2) with very high nucleotide sequence identity (97%) whose deduced amino acid sequences exhibited approximately 55% identity with that of A. thaliana PDCT (AtROD1). The genes encoded functionally active enzymes that were strongly expressed in developing embryos. Complementation studies with the A. thaliana rod1 mutant demonstrated that the flax PDCTs were capable of restoring PUFA levels in planta. Furthermore, PUFA levels increased in Saccharomyces cerevisiae when the flax PDCTs were co-expressed with FATTY ACID DESATURASES (FADs), FAD2 and FAD3, while seed-specific expression of LuPDCT1 and LuPDCT2 in A. thaliana resulted in 16.4% and 19.7% increases in C18-PUFAs, respectively, with a concomitant decrease in the proportion of oleic acid (18:1cisΔ9; OA). Conclusions The two novel PDCT homologs from flax are capable of increasing C18-PUFA levels substantially in metabolically engineered yeast and transgenic A. thaliana seeds. These flax PDCT proteins appear to play an important dual role in the determination of PUFA content by efficiently channelling monounsaturated FAs into PC for desaturation and moving the resulting PUFAs out of PC for subsequent use in TAG synthesis. These results indicate that flax PDCTs would be useful for bioengineering of oil crops to increase PUFA levels for applications in human food and nutritional supplements, animal feed and industrial bioproducts. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0156-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aruna D Wickramarathna
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | - Rodrigo M P Siloto
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | - Elzbieta Mietkiewska
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | - Stacy D Singer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | - Xue Pan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
49
|
Napier JA, Usher S, Haslam RP, Ruiz-Lopez N, Sayanova O. Transgenic plants as a sustainable, terrestrial source of fish oils. EUR J LIPID SCI TECH 2015; 117:1317-1324. [PMID: 26900346 PMCID: PMC4744972 DOI: 10.1002/ejlt.201400452] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 11/21/2022]
Abstract
An alternative, sustainable source of omega‐3 long chain polyunsaturated fatty acids is widely recognized as desirable, helping to reduce pressure on current sources (wild capture fisheries) and providing a de novo source of these health beneficial fatty acids. This review will consider the efforts and progress to develop transgenic plants as terrestrial sources of omega‐3 fish oils, focusing on recent developments and the possible explanations for advances in the field. We also consider the utility of such a source for use in aquaculture, since this industry is the major consumer of oceanic supplies of omega‐3 fish oils. Given the importance of the aquaculture industry in meeting global requirements for healthy foodstuffs, an alternative source of omega‐3 fish oils represents a potentially significant breakthrough for this production system.
Transgenic Camelina seeds engineered to accumulate the omega‐3 fatty acids EPA and DHA, represent a sustainable alternative to fish oils.
Collapse
Affiliation(s)
- Johnathan A Napier
- Department of Biological Chemistry and Crop Protection Rothamsted Research Harpenden UK
| | - Sarah Usher
- Department of Biological Chemistry and Crop Protection Rothamsted Research Harpenden UK
| | - Richard P Haslam
- Department of Biological Chemistry and Crop Protection Rothamsted Research Harpenden UK
| | | | - Olga Sayanova
- Department of Biological Chemistry and Crop Protection Rothamsted Research Harpenden UK
| |
Collapse
|
50
|
Allen DK, Bates PD, Tjellström H. Tracking the metabolic pulse of plant lipid production with isotopic labeling and flux analyses: Past, present and future. Prog Lipid Res 2015; 58:97-120. [PMID: 25773881 DOI: 10.1016/j.plipres.2015.02.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/30/2015] [Accepted: 02/11/2015] [Indexed: 11/25/2022]
Abstract
Metabolism is comprised of networks of chemical transformations, organized into integrated biochemical pathways that are the basis of cellular operation, and function to sustain life. Metabolism, and thus life, is not static. The rate of metabolites transitioning through biochemical pathways (i.e., flux) determines cellular phenotypes, and is constantly changing in response to genetic or environmental perturbations. Each change evokes a response in metabolic pathway flow, and the quantification of fluxes under varied conditions helps to elucidate major and minor routes, and regulatory aspects of metabolism. To measure fluxes requires experimental methods that assess the movements and transformations of metabolites without creating artifacts. Isotopic labeling fills this role and is a long-standing experimental approach to identify pathways and quantify their metabolic relevance in different tissues or under different conditions. The application of labeling techniques to plant science is however far from reaching it potential. In light of advances in genetics and molecular biology that provide a means to alter metabolism, and given recent improvements in instrumentation, computational tools and available isotopes, the use of isotopic labeling to probe metabolism is becoming more and more powerful. We review the principal analytical methods for isotopic labeling with a focus on seminal studies of pathways and fluxes in lipid metabolism and carbon partitioning through central metabolism. Central carbon metabolic steps are directly linked to lipid production by serving to generate the precursors for fatty acid biosynthesis and lipid assembly. Additionally some of the ideas for labeling techniques that may be most applicable for lipid metabolism in the future were originally developed to investigate other aspects of central metabolism. We conclude by describing recent advances that will play an important future role in quantifying flux and metabolic operation in plant tissues.
Collapse
Affiliation(s)
- Doug K Allen
- United States Department of Agriculture, Agricultural Research Service, 975 North Warson Road, St. Louis, MO 63132, United States; Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, United States.
| | - Philip D Bates
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, United States
| | - Henrik Tjellström
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, United States; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|