1
|
Tsai WA, Brosnan CA, Mitter N, Dietzgen RG. Involvement of MicroRNAs in the Hypersensitive Response of Capsicum Plants to the Capsicum Chlorosis Virus at Elevated Temperatures. Pathogens 2024; 13:745. [PMID: 39338939 PMCID: PMC11434723 DOI: 10.3390/pathogens13090745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
The orthotospovirus capsicum chlorosis virus (CaCV) is an important pathogen affecting capsicum plants. Elevated temperatures may affect disease progression and pose a potential challenge to capsicum production. To date, CaCV-resistant capsicum breeding lines have been established; however, the impact of an elevated temperature of 35 °C on this genetic resistance remains unexplored. Thus, this study aimed to investigate how high temperature (HT) influences the response of CaCV-resistant capsicum to the virus. Phenotypic analysis revealed a compromised resistance in capsicum plants grown at HT, with systemic necrotic spots appearing in 8 out of 14 CaCV-infected plants. Molecular analysis through next-generation sequencing identified 105 known and 83 novel microRNAs (miRNAs) in CaCV-resistant capsicum plants. Gene ontology revealed that phenylpropanoid and lignin metabolic processes, regulated by Can-miR408a and Can- miR397, are likely involved in elevated-temperature-mediated resistance-breaking responses. Additionally, real-time PCR validated an upregulation of Can-miR408a and Can-miR397 by CaCV infection at HT; however, only the Laccase 4 transcript, targeted by Can-miR397, showed a tendency of negative correlation with this miRNA. Overall, this study provides the first molecular insights into how elevated temperature affects CaCV resistance in capsicum plants and reveals the potential role of miRNA in temperature-sensitive tospovirus resistance.
Collapse
Affiliation(s)
- Wei-An Tsai
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | | | - Ralf G. Dietzgen
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
2
|
Li J, Zhang W, Lu Q, Sun J, Cheng C, Huang S, Li S, Li Q, Zhang W, Zhou C, Liu B, Xiang F. GmDFB1, an ARM-repeat superfamily protein, regulates floral organ identity through repressing siRNA- and miRNA-mediated gene silencing in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1620-1638. [PMID: 38860597 DOI: 10.1111/jipb.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 05/04/2024] [Indexed: 06/12/2024]
Abstract
The development of flowers in soybean (Glycine max) is essential for determining the yield potential of the plant. Gene silencing pathways are involved in modulating flower development, but their full elucidation is still incomplete. Here, we conducted a forward genetic screen and identified an abnormal flower mutant, deformed floral bud1-1 (Gmdfb1-1), in soybean. We mapped and identified the causal gene, which encodes a member of the armadillo (ARM)-repeat superfamily. Using small RNA sequencing (sRNA-seq), we found an abnormal accumulation of small interfering RNAs (siRNAs) and microRNA (miRNAs) in the Gmdfb1 mutants. We further demonstrated that GmDFB1 interacts with the RNA exosome cofactor SUPER KILLER7 (GmSKI7). Additionally, GmDFB1 interacts with the PIWI domain of ARGONAUTE 1 (GmAGO1) to inhibit the cleavage efficiency on the target genes of sRNAs. The enhanced gene silencing mediated by siRNA and miRNA in the Gmdfb1 mutants leads to the downregulation of their target genes associated with flower development. This study revealed the crucial role of GmDFB1 in regulating floral organ identity in soybean probably by participating in two distinct gene silencing pathways.
Collapse
Affiliation(s)
- Jie Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Wenxiao Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qing Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jiaqi Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chuang Cheng
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shiyu Huang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shuo Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qiang Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Wei Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Bin Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fengning Xiang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
3
|
Li J, Yao H, Zhao F, An J, Wang Q, Mu J, Liu Z, Zou MH, Xie Z. Pycard deficiency inhibits microRNA maturation and prevents neointima formation by promoting chaperone-mediated autophagic degradation of AGO2/argonaute 2 in adipose tissue. Autophagy 2024; 20:629-644. [PMID: 37963060 PMCID: PMC10936599 DOI: 10.1080/15548627.2023.2277610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
PYCARD (PYD and CARD domain containing), a pivotal adaptor protein in inflammasome assembly and activation, contributes to innate immunity, and plays an essential role in the pathogenesis of atherosclerosis and restenosis. However, its roles in microRNA biogenesis remain unknown. Therefore, this study aimed to investigate the roles of PYCARD in miRNA biogenesis and neointima formation using pycard knockout (pycard-/-) mice. Deficiency of Pycard reduced circulating miRNA profile and inhibited Mir17 seed family maturation. The systemic pycard knockout also selectively reduced the expression of AGO2 (argonaute RISC catalytic subunit 2), an important enzyme in regulating miRNA biogenesis, by promoting chaperone-mediated autophagy (CMA)-mediated degradation of AGO2, specifically in adipose tissue. Mechanistically, pycard knockout increased PRMT8 (protein arginine N-methyltransferase 8) expression in adipose tissue, which enhanced AGO2 methylation, and subsequently promoted its binding to HSPA8 (heat shock protein family A (Hsp70) member 8) that targeted AGO2 for lysosome degradation through chaperone-mediated autophagy. Finally, the reduction of AGO2 and Mir17 family expression prevented vascular injury-induced neointima formation in Pycard-deficient conditions. Overexpression of AGO2 or administration of mimic of Mir106b (a major member of the Mir17 family) prevented Pycard deficiency-mediated inhibition of neointima formation in response to vascular injury. These data demonstrate that PYCARD inhibits CMA-mediated degradation of AGO2, which promotes microRNA maturation, thereby playing a critical role in regulating neointima formation in response to vascular injury independently of inflammasome activity and suggest that modulating PYCARD expression and function may represent a powerful therapeutic strategy for neointima formation.Abbreviations: 6-AN: 6-aminonicotinamide; ACTB: actin, beta; aDMA: asymmetric dimethylarginine; AGO2: argonaute RISC catalytic subunit 2; CAL: carotid artery ligation; CALCOCO2: calcium binding and coiled-coil domain 2; CMA: chaperone-mediated autophagy; CTSB: cathepsin B; CTSD: cathepsin D; DGCR8: DGCR8 microprocessor complex subunit; DOCK2: dedicator of cyto-kinesis 2; EpiAdi: epididymal adipose tissue; HSPA8: heat shock protein family A (Hsp70) member 8; IHC: immunohistochemical; ISR: in-stent restenosis; KO: knockout; LAMP2: lysosomal-associated membrane protein 2; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; miRNA: microRNA; NLRP3: NLR family pyrin domain containing 3; N/L: ammonium chloride combined with leupeptin; PRMT: protein arginine methyltransferase; PVAT: peri-vascular adipose tissues; PYCARD: PYD and CARD domain containing; sDMA: symmetric dimethylarginine; ULK1: unc-51 like kinase 1; VSMCs: vascular smooth muscle cells; WT: wild-type.
Collapse
Affiliation(s)
- Jian Li
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Hongmin Yao
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Fujie Zhao
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Junqing An
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Qilong Wang
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Jing Mu
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Zhixue Liu
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Ming-Hui Zou
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Zhonglin Xie
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| |
Collapse
|
4
|
Lv Z, Zhao W, Kong S, Li L, Lin S. Overview of molecular mechanisms of plant leaf development: a systematic review. FRONTIERS IN PLANT SCIENCE 2023; 14:1293424. [PMID: 38146273 PMCID: PMC10749370 DOI: 10.3389/fpls.2023.1293424] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/22/2023] [Indexed: 12/27/2023]
Abstract
Leaf growth initiates in the peripheral region of the meristem at the apex of the stem, eventually forming flat structures. Leaves are pivotal organs in plants, serving as the primary sites for photosynthesis, respiration, and transpiration. Their development is intricately governed by complex regulatory networks. Leaf development encompasses five processes: the leaf primordium initiation, the leaf polarity establishment, leaf size expansion, shaping of leaf, and leaf senescence. The leaf primordia starts from the side of the growth cone at the apex of the stem. Under the precise regulation of a series of genes, the leaf primordia establishes adaxial-abaxial axes, proximal-distal axes and medio-lateral axes polarity, guides the primordia cells to divide and differentiate in a specific direction, and finally develops into leaves of a certain shape and size. Leaf senescence is a kind of programmed cell death that occurs in plants, and as it is the last stage of leaf development. Each of these processes is meticulously coordinated through the intricate interplay among transcriptional regulatory factors, microRNAs, and plant hormones. This review is dedicated to examining the regulatory influences of major regulatory factors and plant hormones on these five developmental aspects of leaves.
Collapse
Affiliation(s)
- Zhuo Lv
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Wanqi Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Shuxin Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Shuyan Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
5
|
Yıldırım K, Miladinović D, Sweet J, Akin M, Galović V, Kavas M, Zlatković M, de Andrade E. Genome editing for healthy crops: traits, tools and impacts. FRONTIERS IN PLANT SCIENCE 2023; 14:1231013. [PMID: 37965029 PMCID: PMC10641503 DOI: 10.3389/fpls.2023.1231013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023]
Abstract
Crop cultivars in commercial use have often been selected because they show high levels of resistance to pathogens. However, widespread cultivation of these crops for many years in the environments favorable to a pathogen requires durable forms of resistance to maintain "healthy crops". Breeding of new varieties tolerant/resistant to biotic stresses by incorporating genetic components related to durable resistance, developing new breeding methods and new active molecules, and improving the Integrated Pest Management strategies have been of great value, but their effectiveness is being challenged by the newly emerging diseases and the rapid change of pathogens due to climatic changes. Genome editing has provided new tools and methods to characterize defense-related genes in crops and improve crop resilience to disease pathogens providing improved food security and future sustainable agricultural systems. In this review, we discuss the principal traits, tools and impacts of utilizing genome editing techniques for achieving of durable resilience and a "healthy plants" concept.
Collapse
Affiliation(s)
- Kubilay Yıldırım
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Türkiye
| | - Dragana Miladinović
- Institute of Field and Vegetable Crops, National Institute of Republic of Serbia, Novi Sad, Serbia
| | - Jeremy Sweet
- Sweet Environmental Consultants, Cambridge, United Kingdom
| | - Meleksen Akin
- Department of Horticulture, Iğdır University, Iğdır, Türkiye
| | - Vladislava Galović
- Institute of Lowland Forestry and Environment (ILFE), University of Novi Sad, Novi Sad, Serbia
| | - Musa Kavas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Türkiye
| | - Milica Zlatković
- Institute of Lowland Forestry and Environment (ILFE), University of Novi Sad, Novi Sad, Serbia
| | - Eugenia de Andrade
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| |
Collapse
|
6
|
Aslam M, Fakher B, Qin Y. Big Role of Small RNAs in Female Gametophyte Development. Int J Mol Sci 2022; 23:ijms23041979. [PMID: 35216096 PMCID: PMC8878111 DOI: 10.3390/ijms23041979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
In living organisms, sexual reproduction relies on the successful development of the gametes. Flowering plants produce gametes in the specialized organs of the flower, the gametophytes. The female gametophyte (FG), a multicellular structure containing female gametes (egg cell and central cell), is often referred to as an embryo sac. Intriguingly, several protein complexes, molecular and genetic mechanisms participate and tightly regulate the female gametophyte development. Recent evidence indicates that small RNA (sRNA) mediated pathways play vital roles in female gametophyte development and specification. Here, we present an insight into our understanding and the recent updates on the molecular mechanism of different players of small RNA-directed regulatory pathways during ovule formation and growth.
Collapse
Affiliation(s)
- Mohammad Aslam
- Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China;
- Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Beenish Fakher
- Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yuan Qin
- Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China;
- Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Correspondence:
| |
Collapse
|
7
|
Zhou J, Zhang R, Jia X, Tang X, Guo Y, Yang H, Zheng X, Qian Q, Qi Y, Zhang Y. CRISPR-Cas9 mediated OsMIR168a knockout reveals its pleiotropy in rice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:310-322. [PMID: 34555252 PMCID: PMC8753357 DOI: 10.1111/pbi.13713] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 05/21/2023]
Abstract
MicroRNA168 (MIR168) is a key miRNA that targets the main RNA-induced silencing complex component Argonaute 1 (AGO1) to regulate plant growth and environmental stress responses. However, the regulatory functions of MIR168 need to be further elucidated in rice. In this paper, we generated clean OsMIR168a deletion mutants by CRISPR-Cas9 strategy. We then phenotypically and molecularly characterized these mutants. The rice OsMIR168a mutants grew rapidly at the seedling stage, produced more tillers and matured early. Compared to the wild-type plants, the mutants were shorter at maturity and produced smaller spikelets and seeds. Analysis of gene expression showed that the transcription levels of OsMIR168a's target genes such as OsAGO1a, OsAGO1b and OsAGO1d were elevated significantly in the OsMIR168a mutants. Intriguingly, OsAGO18, a member of a new AGO clade that is conserved in monocots, was confirmed to be a target of OsMIR168a not only by informatic prediction but also by expression analysis and a cell-based cleavage assay in the OsMIR168a mutants. Many protein-coding genes and miRNAs showed differential expression in the OsMIR168a mutants, suggesting OsMIR168a exerts a major transcriptional regulatory role, likely through its potential target genes such as OsAGO1s and OsAGO18. KEGG enrichment analysis of these differentially expressed genes pointed to OsMIR168a's involvement in important processes such as plant hormone signalling transduction and plant-pathogen interaction. These data collectively support that the complex regulation module of OsMIR168a-OsAGO1/OsAGO18-miRNAs-target genes contributes to agronomically important traits, which sheds light on miRNA-mediated crop breeding.
Collapse
Affiliation(s)
- Jianping Zhou
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Rui Zhang
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xinyu Jia
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xu Tang
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Yachong Guo
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Han Yang
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xuelian Zheng
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Qian Qian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Yiping Qi
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMDUSA
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandRockvilleMDUSA
| | - Yong Zhang
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
8
|
Luo P, Di D, Wu L, Yang J, Lu Y, Shi W. MicroRNAs Are Involved in Regulating Plant Development and Stress Response through Fine-Tuning of TIR1/AFB-Dependent Auxin Signaling. Int J Mol Sci 2022; 23:ijms23010510. [PMID: 35008937 PMCID: PMC8745101 DOI: 10.3390/ijms23010510] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 11/30/2022] Open
Abstract
Auxin, primarily indole-3-acetic acid (IAA), is a versatile signal molecule that regulates many aspects of plant growth, development, and stress response. Recently, microRNAs (miRNAs), a type of short non-coding RNA, have emerged as master regulators of the auxin response pathways by affecting auxin homeostasis and perception in plants. The combination of these miRNAs and the autoregulation of the auxin signaling pathways, as well as the interaction with other hormones, creates a regulatory network that controls the level of auxin perception and signal transduction to maintain signaling homeostasis. In this review, we will detail the miRNAs involved in auxin signaling to illustrate its in planta complex regulation.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
- Correspondence: (P.L.); (D.D.)
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.L.); (W.S.)
- Correspondence: (P.L.); (D.D.)
| | - Lei Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Jiangwei Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yufang Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.L.); (W.S.)
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.L.); (W.S.)
| |
Collapse
|
9
|
Karamat U, Sun X, Li N, Zhao J. Genetic regulators of leaf size in Brassica crops. HORTICULTURE RESEARCH 2021; 8:91. [PMID: 33931619 PMCID: PMC8087820 DOI: 10.1038/s41438-021-00526-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/03/2021] [Accepted: 02/24/2021] [Indexed: 05/06/2023]
Abstract
Leaf size influences plant development and biomass and is also an important agricultural trait in Brassica crops, in which leaves are the main organ produced for consumption. Leaf size is determined by the coordinated regulation of cell proliferation and cell expansion during leaf development, and these processes are strictly controlled by various integrated signals from the intrinsic regulatory network and the growth environment. Understanding the molecular mechanism of leaf size control is a prerequisite for molecular breeding for crop improvement purposes. Although research on leaf size control is just beginning in Brassica, recent studies have identified several genes and QTLs that are important in leaf size regulation. These genes have been proposed to influence leaf growth through different pathways and mechanisms, including phytohormone biosynthesis and signaling, transcription regulation, small RNAs, and others. In this review, we summarize the current findings regarding the genetic regulators of leaf size in Brassica and discuss future prospects for this research.
Collapse
Affiliation(s)
- Umer Karamat
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000, Baoding, China
| | - Xiaoxue Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000, Baoding, China
| | - Na Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000, Baoding, China.
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000, Baoding, China.
| |
Collapse
|
10
|
Díez-Sainz E, Lorente-Cebrián S, Aranaz P, Riezu-Boj JI, Martínez JA, Milagro FI. Potential Mechanisms Linking Food-Derived MicroRNAs, Gut Microbiota and Intestinal Barrier Functions in the Context of Nutrition and Human Health. Front Nutr 2021; 8:586564. [PMID: 33768107 PMCID: PMC7985180 DOI: 10.3389/fnut.2021.586564] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules from 18 to 24 nucleotides that are produced by prokaryote and eukaryote organisms, which play a crucial role in regulating gene expression through binding to their mRNA targets. MiRNAs have acquired special attention for their potential in cross kingdom communication, notably food-derived microRNAs (xenomiRs), which could have an impact on microorganism and mammal physiology. In this review, we mainly aim to deal with new perspectives on: (1) The mechanism by which food-derived xenomiRs (mainly dietary plant xenomiRs) could be incorporated into humans through diet, in a free form, associated with proteins or encapsulated in exosome-like nanoparticles. (2) The impact of dietary plant-derived miRNAs in modulating gut microbiota composition, which in turn, could regulate intestinal barrier permeability and therefore, affect dietary metabolite, postbiotics or food-derived miRNAs uptake efficiency. Individual gut microbiota signature/composition could be also involved in xenomiR uptake efficiency through several mechanisms such us increasing the bioavailability of exosome-like nanoparticles miRNAs. (3) Gut microbiota dysbiosis has been proposed to contribute to disease development by affecting gut epithelial barrier permeability. For his reason, the availability and uptake of dietary plant xenomiRs might depend, among other factors, on this microbiota-related permeability of the intestine. We hypothesize and critically review that xenomiRs-microbiota interaction, which has been scarcely explored yet, could contribute to explain, at least in part, the current disparity of evidences found dealing with dietary miRNA uptake and function in humans. Furthermore, dietary plant xenomiRs could be involved in the establishment of the multiple gut microenvironments, in which microorganism would adapt in order to optimize the resources and thrive in them. Additionally, a particular xenomiR could preferentially accumulate in a specific region of the gastrointestinal tract and participate in the selection and functions of specific gut microbial communities.
Collapse
Affiliation(s)
- Ester Díez-Sainz
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Silvia Lorente-Cebrián
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Paula Aranaz
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - José I. Riezu-Boj
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - J. Alfredo Martínez
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Wang H, Li Y, Chern M, Zhu Y, Zhang LL, Lu JH, Li XP, Dang WQ, Ma XC, Yang ZR, Yao SZ, Zhao ZX, Fan J, Huang YY, Zhang JW, Pu M, Wang J, He M, Li WT, Chen XW, Wu XJ, Li SG, Li P, Li Y, Ronald PC, Wang WM. Suppression of rice miR168 improves yield, flowering time and immunity. NATURE PLANTS 2021; 7:129-136. [PMID: 33594262 DOI: 10.1038/s41477-021-00852-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/12/2021] [Indexed: 05/20/2023]
Abstract
MicroRNA168 (miR168) is a key miRNA that targets Argonaute1 (AGO1), a major component of the RNA-induced silencing complex1,2. Previously, we reported that miR168 expression was responsive to infection by Magnaporthe oryzae, the causal agent of rice blast disease3. However, how miR168 regulates immunity to rice blast and whether it affects rice development remains unclear. Here, we report our discovery that the suppression of miR168 by a target mimic (MIM168) not only improves grain yield and shortens flowering time in rice but also enhances immunity to M. oryzae. These results were validated through repeated tests in rice fields in the absence and presence of rice blast pressure. We found that the miR168-AGO1 module regulates miR535 to improve yield by increasing panicle number, miR164 to reduce flowering time, and miR1320 and miR164 to enhance immunity. Our discovery demonstrates that changes in a single miRNA enhance the expression of multiple agronomically important traits.
Collapse
Affiliation(s)
- He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Mawsheng Chern
- Department of Plant Pathology, University of California Davis, and the Joint BioEnergy Institute, Davis, CA, USA
| | - Yong Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Ling-Li Zhang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Jun-Hua Lu
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Xu-Pu Li
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Wen-Qiang Dang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Chun Ma
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Rui Yang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Sheng-Ze Yao
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Wei-Tao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Xue-Wei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Xian-Jun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Shi-Gui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Ping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Pamela C Ronald
- Department of Plant Pathology, University of California Davis, and the Joint BioEnergy Institute, Davis, CA, USA
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
12
|
Weng ST, Kuo YW, King YC, Lin HH, Tu PY, Tung KS, Jeng ST. Regulation of micoRNA2111 and its target IbFBK in sweet potato on wounding. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110391. [PMID: 32005396 DOI: 10.1016/j.plantsci.2019.110391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/25/2019] [Accepted: 12/24/2019] [Indexed: 05/14/2023]
Abstract
Plant microRNAs (miRNAs) are non-coding RNAs, which are composed of 20-24 nucleotides. MiRNAs play important roles in plant growth and responses to biotic and abiotic stresses. Wounding is one of the most serious stresses for plants; however, the regulation of miRNAs in plants upon wounding is not well studied. In this study, miR2111, a wound-repressed miRNA, identified previously in sweet potato (Ipomoea batatas cv Tainung 57) by small RNA deep sequencing was chosen for further analysis. Based on sweet potato transcriptome database, F-box/kelch repeat protein (IbFBK), a target gene of miR2111, was identified. IbFBK is a wound-inducible gene, and the miR2111-induced cleavage site in IbFBK mRNA is between the 10th and 11th nucleotides of miR2111. IbFBK is a component of the E3 ligase SCF (SKP1-Cullin-F-box) complex participating in protein ubiquitination and degradation. The results of yeast two-hybrid and bimolecular fluorescence complementation assays demonstrate that IbFBK was conjugated with IbSKP1 through the F-box domain in IbFBK N-terminus to form SCF complex, and interacted with IbCNR8 through the kelch-repeat domain in IbFBK C-terminus. The interaction of IbFBK and IbCNR8 may lead to the ubiquitination and degradation of IbCNR8. In conclusion, the suppression of miR2111 resulted in the increase of IbFBK, and may regulate protein degradation of IbCNR8 in sweet potato responding to wounding.
Collapse
Affiliation(s)
- Shiau-Ting Weng
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| | - Yun-Wei Kuo
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; Academy of Agricultural Sciences, Sanming 365000, Fujian, China.
| | - Yu-Chi King
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| | - Hsin-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei 11114, Taiwan.
| | - Pin-Yang Tu
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| | - Kuei-Shu Tung
- Institute of Molecular and Cellular Biology and Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| | - Shih-Tong Jeng
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
13
|
Zhang Z, Qiu M, Du H, Li Q, Gan W, Xiong X, Yu C, Peng H, Xia B, Song X, Yang L, Hu C, Chen J, Yang C, Jiang X. Small RNA sequencing of pectoral muscle tissue reveals microRNA-mediated gene modulation in chicken muscle growth. J Anim Physiol Anim Nutr (Berl) 2020; 104:867-875. [PMID: 31957920 DOI: 10.1111/jpn.13312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/20/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022]
Abstract
Sichuan mountainous black-bone (SMB) chicken is a small-sized black-feathered chicken breed with low amount of meat, while Dahen (DH) chicken has a larger body size and a faster growth rate. MicroRNAs (miRNAs) are involved in various physiological processes, but their role in chicken muscle growth remains unclear. We aimed to investigate the miRNAs and pathways participating in the muscle growth of chicken. MiRNA profiles of four SMB chickens and four DH chickens were detected by small RNA sequencing. A total of 994 known miRNAs were identified, among which gga-miR-1a-3p, gga-miR-148-3p and gga-miR-133a-3p exhibited the highest enrichment in both breeds of chickens. Thirty-two miRNAs were differently expressed between SMB and DH chickens. The differently expressed miRNAs were mainly associated with fatty acid metabolism, immunity and MAPK activation-related processes. Kyoto encyclopaedia of genes and genomes (KEGG) analysis showed that miRNAs were involved in the immunity-related and MAPK signalling pathways. Moreover, miR-204 was downregulated in DH chicken compared with SMB chicken, and significantly inhibited the expression of MAP3K13, which is involved in the MAPK pathway. It was confirmed through luciferase reporter assays that miR-204 specifically inhibited the activity of MAP3K13. Our results helped demonstrate the potential molecular mechanisms of muscle growth in chickens and provide valuable information for chicken breeding.
Collapse
Affiliation(s)
- Zengrong Zhang
- Sichuan Animal Science Academy, Chengdu, Sichuan, China.,Animal Breeding and Genetics key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Mohan Qiu
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Huarui Du
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Qingyun Li
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Wu Gan
- Shanghai Ying Biotechnology Company, Shanghai, China
| | - Xia Xiong
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Chunlin Yu
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Han Peng
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Bo Xia
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Xiaoyan Song
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Li Yang
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Chenming Hu
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Jialei Chen
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Chaowu Yang
- Sichuan Animal Science Academy, Chengdu, Sichuan, China.,Animal Breeding and Genetics key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Xiaosong Jiang
- Sichuan Animal Science Academy, Chengdu, Sichuan, China.,Animal Breeding and Genetics key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Han Q, Bartels A, Cheng X, Meyer A, An YQC, Hsieh TF, Xiao W. Epigenetics Regulates Reproductive Development in Plants. PLANTS 2019; 8:plants8120564. [PMID: 31810261 PMCID: PMC6963493 DOI: 10.3390/plants8120564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022]
Abstract
Seed, resulting from reproductive development, is the main nutrient source for human beings, and reproduction has been intensively studied through genetic, molecular, and epigenetic approaches. However, how different epigenetic pathways crosstalk and integrate to regulate seed development remains unknown. Here, we review the recent progress of epigenetic changes that affect chromatin structure, such as DNA methylation, polycomb group proteins, histone modifications, and small RNA pathways in regulating plant reproduction. In gametogenesis of flowering plants, epigenetics is dynamic between the companion cell and gametes. Cytosine DNA methylation occurs in CG, CHG, CHH contexts (H = A, C, or T) of genes and transposable elements, and undergoes dynamic changes during reproduction. Cytosine methylation in the CHH context increases significantly during embryogenesis, reaches the highest levels in mature embryos, and decreases as the seed germinates. Polycomb group proteins are important transcriptional regulators during seed development. Histone modifications and small RNA pathways add another layer of complexity in regulating seed development. In summary, multiple epigenetic pathways are pivotal in regulating seed development. It remains to be elucidated how these epigenetic pathways interplay to affect dynamic chromatin structure and control reproduction.
Collapse
Affiliation(s)
- Qiang Han
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA (A.B.); (X.C.)
| | - Arthur Bartels
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA (A.B.); (X.C.)
| | - Xi Cheng
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA (A.B.); (X.C.)
| | - Angela Meyer
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA (A.B.); (X.C.)
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Yong-Qiang Charles An
- US Department of Agriculture, Agricultural Research Service, Midwest Area, Plant Genetics Research Unit, Donald Danforth Plant Science Center, MO 63132, USA;
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA;
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Wenyan Xiao
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA (A.B.); (X.C.)
- Correspondence: ; Tel.: +1-314-977-2547
| |
Collapse
|
15
|
Small RNA Mobility: Spread of RNA Silencing Effectors and its Effect on Developmental Processes and Stress Adaptation in Plants. Int J Mol Sci 2019; 20:ijms20174306. [PMID: 31484348 PMCID: PMC6747330 DOI: 10.3390/ijms20174306] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 01/22/2023] Open
Abstract
Plants are exposed every day to multiple environmental cues, and tight transcriptome reprogramming is necessary to control the balance between responses to stress and processes of plant growth. In this context, the silencing phenomena mediated by small RNAs can drive transcriptional and epigenetic regulatory modifications, in turn shaping plant development and adaptation to the surrounding environment. Mounting experimental evidence has recently pointed to small noncoding RNAs as fundamental players in molecular signalling cascades activated upon exposure to abiotic and biotic stresses. Although, in the last decade, studies on stress responsive small RNAs increased significantly in many plant species, the physiological responses triggered by these molecules in the presence of environmental stresses need to be further explored. It is noteworthy that small RNAs can move either cell-to-cell or systemically, thus acting as mobile silencing effectors within the plant. This aspect has great importance when physiological changes, as well as epigenetic regulatory marks, are inspected in light of plant environmental adaptation. In this review, we provide an overview of the categories of mobile small RNAs in plants, particularly focusing on the biological implications of non-cell autonomous RNA silencing in the stress adaptive response and epigenetic modifications.
Collapse
|
16
|
Çelik Ö, Akdaş EY. Tissue-specific transcriptional regulation of seven heavy metal stress-responsive miRNAs and their putative targets in nickel indicator castor bean (R. communis L.) plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:682-690. [PMID: 30580162 DOI: 10.1016/j.ecoenv.2018.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
R.communis L. has high capability to accumulate nickel which is a trace nutrient for higher plants and also an environmental contaminant causes toxicity related symptoms at higher concentrations. MicroRNAs (miRNAs) are known to be important modulators of responses against heavy metal stress for detoxification of the metal. In this study, we experimentally measured and validated the transcript levels of the seven heavy metal stress response-related miRNAs and the expression levels of target genes in both leaf and root tissues of R. communis L. subjected to three different concentrations of nickel stress via qRT-PCR quantification. The results demonstrated differential regulations of heavy metal stress-responsive miRNAs and their putative targets in both tissues in same stress treatments. This dynamic regulation suggest that regulatory processes differ between the tissues under nickel stress. Our data suggest that, miR838 was the most responsive to the Ni2+ stress. miR398 target gene Cu-Zn/SOD was found to be up-regulated in both root and leaf tissues. The relations between TCP and expression levels of miR159 and miR319 were also found statistically significant exclusive to leaf tissues. In leaf tissue, changes in miR395 level and its putative target genes, sulphate transporter and sulphate adenyltransferase gene were found in relation whereas, only expression level of sulphate transporter represented a statistically significant relation in root tissue. The sharp decrease in transcript levels of 2r3 myb gene at lower nickel dose suggest to investigate the role of r2r3 myb and the all MYB family members in primary and secondary metabolisms against nickel stress.
Collapse
Affiliation(s)
- Özge Çelik
- Istanbul Kultur University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, Ataköy, 34156 Istanbul, Turkey.
| | - Enes Yağız Akdaş
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Turkey
| |
Collapse
|
17
|
Noon JB, Hewezi T, Baum TJ. Homeostasis in the soybean miRNA396-GRF network is essential for productive soybean cyst nematode infections. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1653-1668. [PMID: 30715445 PMCID: PMC6411377 DOI: 10.1093/jxb/erz022] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/15/2019] [Indexed: 05/20/2023]
Abstract
Heterodera glycines, the soybean cyst nematode, penetrates soybean roots and migrates to the vascular cylinder where it forms a feeding site called the syncytium. MiRNA396 (miR396) targets growth-regulating factor (GRF) genes, and the miR396-GRF1/3 module is a master regulator of syncytium development in model cyst nematode H. schachtii infection of Arabidopsis. Here, we investigated whether this regulatory system operates similarly in soybean roots and is likewise important for H. glycines infection. We found that a network involving nine MIR396 and 23 GRF genes is important for normal development of soybean roots and that GRF function is specified in the root apical meristem by miR396. All MIR396 genes are down-regulated in the syncytium during its formation phase while, specifically, 11 different GRF genes are up-regulated. The switch to the syncytium maintenance phase coincides with up-regulation of MIR396 and down-regulation of the 11 GRF genes specifically via post-transcriptional regulation by miR396. Furthermore, interference with the miR396-GRF6/8-13/15-17/19 regulatory network, through either overexpression or knockdown experiments, does not affect the number of H. glycines juveniles that enter the vascular cylinder to initiate syncytia, but specifically inhibits efficient H. glycines development to adult females. Therefore, homeostasis in the miR396-GRF6/8-13/15-17/19 regulatory network is essential for productive H. glycines infections.
Collapse
Affiliation(s)
- Jason B Noon
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| |
Collapse
|
18
|
Nadiya F, Anjali N, Thomas J, Gangaprasad A, Sabu KK. Deep sequencing identified potential miRNAs involved in defence response, stress and plant growth characteristics of wild genotypes of cardamom. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:3-14. [PMID: 30098091 DOI: 10.1111/plb.12888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Cardamom has long been used as a food flavouring agent and in ayurvedic medicines for mouth ulcers, digestive problems and even depression. Extensive occurrence of pests and diseases adversely affect its cultivation and result in substantial reductions in total production and productivity. Numerous studies revealed the significant role of miRNAs in plant biotic stress responses. In the current study, miRNA profiling of cultivar and wild cardamom genotypes was performed using an Ion Proton sequencer. We identified 161 potential miRNAs representing 42 families, including monocot/tissue-specific and 14 novel miRNAs in both genotypes. Significant differences in miRNA family abundance between the libraries were observed in read frequencies. A total of 19 miRNAs (from known miRNAs) displayed a twofold difference in expression between wild and cultivar genotypes. We found 1168 unique potential targets for 40 known miRNA families in wild and 1025 potential targets for 42 known miRNA families in cultivar genotypes. The differential expression analysis revealed that most miRNAs identified were highly expressed in cultivars and, furthermore, lower expression of miR169 and higher expression of miR529 in wild cardamom proved evidence that wild genotypes have stronger drought stress tolerance and floral development than cultivars. Potential targets predicted for the newly identified miRNAs from the miRNA libraries of wild and cultivar cardamom genotypes involved in metabolic and developmental processes and in response to various stimuli. qRT-PCR confirmed miRNAs were differentially expressed between wild and cultivar genotypes. Furthermore, four target genes were validated experimentally to confirm miRNA-mRNA target pairing using RNA ligase-mediated 5' Rapid Amplification of cDNA Ends (5'RLM-RACE) PCR.
Collapse
Affiliation(s)
- F Nadiya
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Palode, Thiruvananthapuram, India
| | - N Anjali
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Palode, Thiruvananthapuram, India
| | - J Thomas
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Palode, Thiruvananthapuram, India
| | - A Gangaprasad
- Department of Botany, University of Kerala, Thiruvananthapuram, India
| | - K K Sabu
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Palode, Thiruvananthapuram, India
| |
Collapse
|
19
|
Arif M, Islam SU, Adnan M, Anwar M, Ali H, Wu Z. Recent progress on gene silencing/suppression by virus-derived small interfering RNAs in rice viruses especially Rice grassy stunt virus. Microb Pathog 2018; 125:210-218. [DOI: 10.1016/j.micpath.2018.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/08/2018] [Accepted: 09/11/2018] [Indexed: 12/16/2022]
|
20
|
Dynamic DNA Methylation in Plant Growth and Development. Int J Mol Sci 2018; 19:ijms19072144. [PMID: 30041459 PMCID: PMC6073778 DOI: 10.3390/ijms19072144] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/12/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is an epigenetic modification required for transposable element (TE) silencing, genome stability, and genomic imprinting. Although DNA methylation has been intensively studied, the dynamic nature of methylation among different species has just begun to be understood. Here we summarize the recent progress in research on the wide variation of DNA methylation in different plants, organs, tissues, and cells; dynamic changes of methylation are also reported during plant growth and development as well as changes in response to environmental stresses. Overall DNA methylation is quite diverse among species, and it occurs in CG, CHG, and CHH (H = A, C, or T) contexts of genes and TEs in angiosperms. Moderately expressed genes are most likely methylated in gene bodies. Methylation levels decrease significantly just upstream of the transcription start site and around transcription termination sites; its levels in the promoter are inversely correlated with the expression of some genes in plants. Methylation can be altered by different environmental stimuli such as pathogens and abiotic stresses. It is likely that methylation existed in the common eukaryotic ancestor before fungi, plants and animals diverged during evolution. In summary, DNA methylation patterns in angiosperms are complex, dynamic, and an integral part of genome diversity after millions of years of evolution.
Collapse
|
21
|
Chitarra W, Pagliarani C, Abbà S, Boccacci P, Birello G, Rossi M, Palmano S, Marzachì C, Perrone I, Gambino G. miRVIT: A Novel miRNA Database and Its Application to Uncover Vitis Responses to Flavescence dorée Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:1034. [PMID: 30065744 PMCID: PMC6057443 DOI: 10.3389/fpls.2018.01034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/26/2018] [Indexed: 05/08/2023]
Abstract
Micro(mi)RNAs play crucial roles in plant developmental processes and in defense responses to biotic and abiotic stresses. In the last years, many works on small RNAs in grapevine (Vitis spp.) were published, and several conserved and putative novel grapevine-specific miRNAs were identified. In order to reorganize the high quantity of available data, we produced "miRVIT," the first database of all novel grapevine miRNA candidates characterized so far, and still not deposited in miRBase. To this aim, each miRNA accession was renamed, repositioned in the last version of the grapevine genome, and compared with all the novel and conserved miRNAs detected in grapevine. Conserved and novel miRNAs cataloged in miRVIT were then used for analyzing Vitis vinifera plants infected by Flavescence dorée (FD), one of the most severe phytoplasma diseases affecting grapevine. The analysis of small RNAs from healthy, recovered (plants showing spontaneous and stable remission of symptoms), and FD-infected "Barbera" grapevines showed that FD altered the expression profiles of several miRNAs, including those involved in cell development and photosynthesis, jasmonate signaling, and disease resistance response. The application of miRVIT in a biological context confirmed the effectiveness of the followed approach, especially for the identification of novel miRNA candidates in grapevine. miRVIT database is available at http://mirvit.ipsp.cnr.it. Highlights: The application of the newly produced database of grapevine novel miRNAs to the analysis of plants infected by Flavescence dorée reveals key roles of miRNAs in photosynthesis and jasmonate signaling.
Collapse
Affiliation(s)
- Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
- Viticultural and Enology Research Centre, Council for Agricultural Research and Economics, Conegliano, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Simona Abbà
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Giancarlo Birello
- Research Institute on Sustainable Economic Growth, National Research Council of Italy, Turin, Italy
| | - Marika Rossi
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Sabrina Palmano
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Cristina Marzachì
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| |
Collapse
|
22
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
23
|
Jin Q, Xu Y, Mattson N, Li X, Wang B, Zhang X, Jiang H, Liu X, Wang Y, Yao D. Identification of Submergence-Responsive MicroRNAs and Their Targets Reveals Complex MiRNA-Mediated Regulatory Networks in Lotus ( Nelumbo nucifera Gaertn). FRONTIERS IN PLANT SCIENCE 2017; 8:6. [PMID: 28149304 PMCID: PMC5241310 DOI: 10.3389/fpls.2017.00006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/03/2017] [Indexed: 05/25/2023]
Abstract
MicroRNAs (miRNAs) are endogenous non-coding RNAs with important regulatory functions in plant development and stress responses. However, their population abundance in lotus (Nelumbo nucifera Gaertn) has so far been poorly described, particularly in response to stresses. In this work, submergence-related miRNAs and their target genes were systematically identified, compared, and validated at the transcriptome-wide level using high-throughput sequencing data of small RNA, Mrna, and the degradome. A total of 128 known and 20 novel miRNAs were differentially expressed upon submergence. We identified 629 target transcripts for these submergence-responsive miRNAs. Based on the miRNA expression profiles and GO and KEGG annotation of miRNA target genes, we suggest possible molecular responses and physiological changes of lotus in response to submergence. Several metabolic, physiological and morphological adaptations-related miRNAs, i.e., NNU_far-miR159, NNU_gma-miR393h, and NNU_aly-miR319c-3p, were found to play important regulatory roles in lotus response to submergence. This work will contribute to a better understanding of miRNA-regulated adaption responses of lotus to submergence stress.
Collapse
Affiliation(s)
- Qijiang Jin
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yingchun Xu
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Neil Mattson
- Horticulture Section, School of Integrative Plant Science, Cornell UniversityNew York, NY, USA
| | - Xin Li
- Institute of Agricultural Science of Taihu Lake DistrictSuzhou, China
| | - Bei Wang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xiao Zhang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Hongwei Jiang
- Institute of Agricultural Science of Taihu Lake DistrictSuzhou, China
| | - Xiaojing Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of SciencesNanjing, China
| | - Yanjie Wang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Dongrui Yao
- Institute of Botany, Jiangsu Province and Chinese Academy of SciencesNanjing, China
| |
Collapse
|
24
|
Rodriguez RE, Schommer C, Palatnik JF. Control of cell proliferation by microRNAs in plants. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:68-76. [PMID: 27794260 DOI: 10.1016/j.pbi.2016.10.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 05/04/2023]
Abstract
Plants have the ability to generate different and new organs throughout their life cycle. Organ growth is mostly determined by the combinatory effects of cell proliferation and cell expansion. Still, organ size and shape are adjusted constantly by environmental conditions and developmental timing. The plasticity of plant development is further illustrated by the diverse organ forms found in nature. MicroRNAs (miRNAs) are known to control key biological processes in plants. In this review, we will discuss recent findings showing the participation of miRNA networks in the regulation of cell proliferation and organ growth. It has become clear that miRNA networks play both integrative and specific roles in the control of organ development in Arabidopsis thaliana. Furthermore, recent work in different species demonstrated a broad role for miR396 in the control of organ size, and that specific tuning of the miR396 network can improve crop yield.
Collapse
Affiliation(s)
- Ramiro E Rodriguez
- IBR (Instituto de Biologia Molecular y Celular de Rosario), UNR/CONICET, Ocampo y Esmeralda s/n, 2000 Rosario, Argentina
| | - Carla Schommer
- IBR (Instituto de Biologia Molecular y Celular de Rosario), UNR/CONICET, Ocampo y Esmeralda s/n, 2000 Rosario, Argentina
| | - Javier F Palatnik
- IBR (Instituto de Biologia Molecular y Celular de Rosario), UNR/CONICET, Ocampo y Esmeralda s/n, 2000 Rosario, Argentina; CEI (Centro de Estudios Interdisciplinarios), Maipu 1062, 2000 Rosario, Argentina.
| |
Collapse
|
25
|
Gao F, Nan F, Feng J, Lv J, Liu Q, Xie S. Identification of conserved and novel microRNAs in Porphyridium purpureum via deep sequencing and bioinformatics. BMC Genomics 2016; 17:612. [PMID: 27516065 PMCID: PMC4981961 DOI: 10.1186/s12864-016-2985-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/01/2016] [Indexed: 11/22/2022] Open
Abstract
Background Porphyridium purpureum has been utilized in important industrial and pharmaceutical fields. The identification of microRNAs (miRNAs) in this unique species is of great importance: such identification can help fill gaps in the small RNA (sRNA) studies of this organism and help to elucidate essential biological processes and their regulation mechanisms in this special micro alga. Results In this study, 254 high-confidence miRNAs (203 conserved miRNAs and 51 novel miRNAs) were identified by sRNA deep sequencing (sRNA-seq) combined with bioinformatics. A total of 235 putative miRNA families were predicted, including 192 conserved families and 43 species-specific families. The conservation and diversity of predicted miRNA families were analysed in different plant species. Both the 100 % northern blot validation rate (VR) of four randomly selected miRNAs and the results of stem-loop quantitative real time RT-PCR (qRT-PCR) assays of 25 randomly selected miRNAs demonstrated that the majority of the miRNAs identified in this study are credible. A total of 14,958 and 2184 genes were predicted to be targeted by the 186 conserved and 41 novel miRNAs. Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that some target genes likely provide valuable references for further understanding of vital functions in P. purpureum. In addition, a cytoscape network will provide some clues for research into the complex biological processes that occur in this unique alga. Conclusions We first identified a large set of conserved and novel miRNAs in P. purpureum. The characteristic and validation analysis on miRNAs demonstrated authenticity of identification data. Functional annotation of target genes and metabolic pathways they involved in illuminated the direction for further utilization and development this micro alga based on its unique properties. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2985-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fan Gao
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Fangru Nan
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Jia Feng
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Junping Lv
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Qi Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Shulian Xie
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
26
|
Biswas S, Hazra S, Chattopadhyay S. Identification of conserved miRNAs and their putative target genes in Podophyllum hexandrum (Himalayan Mayapple). ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2016.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Chen J, Zheng Y, Qin L, Wang Y, Chen L, He Y, Fei Z, Lu G. Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis. BMC PLANT BIOLOGY 2016; 16:80. [PMID: 27068118 PMCID: PMC4828810 DOI: 10.1186/s12870-016-0770-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/06/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs), a class of non-coding small RNAs (sRNAs), regulate various biological processes. Although miRNAs have been identified and characterized in several plant species, miRNAs in Asparagus officinalis have not been reported. As a dioecious plant with homomorphic sex chromosomes, asparagus is regarded as an important model system for studying mechanisms of plant sex determination. RESULTS Two independent sRNA libraries from male and female asparagus plants were sequenced with Illumina sequencing, thereby generating 4.13 and 5.88 million final clean reads, respectively. Both libraries predominantly contained 24-nt sRNAs, followed by 21-nt sRNAs. Further analysis identified 154 conserved miRNAs, which belong to 26 families, and 39 novel miRNA candidates seemed to be specific to asparagus. Comparative profiling revealed that 63 miRNAs exhibited significant differential expression between male and female plants, which was confirmed by real-time quantitative PCR analysis. Among them, 37 miRNAs were significantly up-regulated in the female library, whereas the others were preferentially expressed in the male library. Furthermore, 40 target mRNAs representing 44 conserved and seven novel miRNAs were identified in asparagus through high-throughput degradome sequencing. Functional annotation showed that these target mRNAs were involved in a wide range of developmental and metabolic processes. CONCLUSIONS We identified a large set of conserved and specific miRNAs and compared their expression levels between male and female asparagus plants. Several asparagus miRNAs, which belong to the miR159, miR167, and miR172 families involved in reproductive organ development, were differentially expressed between male and female plants, as well as during flower development. Consistently, several predicted targets of asparagus miRNAs were associated with floral organ development. These findings suggest the potential roles of miRNAs in sex determination and reproductive developmental processes in asparagus.
Collapse
Affiliation(s)
- Jingli Chen
- />Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058 PR China
| | - Yi Zheng
- />Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, New York 14853 USA
| | - Li Qin
- />Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058 PR China
| | - Yan Wang
- />Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058 PR China
| | - Lifei Chen
- />Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058 PR China
| | - Yanjun He
- />Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058 PR China
| | - Zhangjun Fei
- />Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, New York 14853 USA
- />USDA Robert W. Holley Center for Agriculture and Health, Tower Road Ithaca, New York, 14853 USA
| | - Gang Lu
- />Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058 PR China
| |
Collapse
|
28
|
Rogans SJ, Rey C. Unveiling the Micronome of Cassava (Manihot esculenta Crantz). PLoS One 2016; 11:e0147251. [PMID: 26799216 PMCID: PMC4723133 DOI: 10.1371/journal.pone.0147251] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/03/2016] [Indexed: 12/03/2022] Open
Abstract
MicroRNAs (miRNAs) are an important class of endogenous non-coding single-stranded small RNAs (21-24 nt in length), which serve as post-transcriptional negative regulators of gene expression in plants. Despite the economic importance of Manihot esculenta Crantz (cassava) only 153 putative cassava miRNAs (from multiple germplasm) are available to date in miRBase (Version 21), and identification of a number of miRNAs from the cassava EST database have been limited to comparisons with Arabidopsis. In this study, mature sequences of all known plant miRNAs were used as a query for homologous searches against cassava EST and GSS databases, and additional identification of novel and conserved miRNAs were gleaned from next generation sequencing (NGS) of two cassava landraces (T200 from southern Africa and TME3 from West Africa) at three different stages post explant transplantation and acclimatization. EST and GSS derived data revealed 259 and 32 miRNAs in cassava, and one of the miRNA families (miR2118) from previous studies has not been reported in cassava. NGS data collectively displayed expression of 289 conserved miRNAs in leaf tissue, of which 230 had not been reported previously. Of the 289 conserved miRNAs identified in T200 and TME3, 208 were isomiRs. Thirty-nine novel cassava-specific miRNAs of low abundance, belonging to 29 families, were identified. Thirty-eight (98.6%) of the putative new miRNAs identified by NGS have not been previously reported in cassava. Several miRNA targets were identified in T200 and TME3, highlighting differential temporal miRNA expression between the two cassava landraces. This study contributes to the expanding knowledge base of the micronome of this important crop.
Collapse
Affiliation(s)
- Sarah Jane Rogans
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Chrissie Rey
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
29
|
Kulcheski FR, Molina LG, da Fonseca GC, de Morais GL, de Oliveira LFV, Margis R. Novel and conserved microRNAs in soybean floral whorls. Gene 2016; 575:213-23. [PMID: 26341053 DOI: 10.1016/j.gene.2015.08.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/23/2015] [Accepted: 08/28/2015] [Indexed: 11/20/2022]
Abstract
MicroRNAs (miRNAs) correspond to a class of endogenous small non-coding RNAs (19-24 nt) that regulates the gene expression, through mRNA target cleavage or translation inhibition. In plants, miRNAs have been shown to play pivotal roles in a wide variety of metabolic and biological processes like plant growth, development, and response to biotic and abiotic stress. Soybean is one of the most important crops worldwide, due to the production of oil and its high protein content. The reproductive phase is considered the most important for soybean yield, which is mainly intended to produce the grains. The identification of miRNAs is not yet saturated in soybean, and there are no studies linking them to the different floral organs. In this study, three different mature soybean floral whorls were used in the construction of sRNA libraries. The sequencing of petal, carpel and stamen libraries generated a total of 10,165,661 sequences. Subsequent analyses identified 200 miRNAs sequences, among which, 41 were novel miRNAs, 80 were conserved soybean miRNAs, 31 were new antisense conserved soybean miRNAs and 46 were soybean miRNAs isoforms. We also found a new miRNA conserved in other plant species, and finally one miRNA-sibling of a soybean conserved miRNA. Conserved and novel miRNAs were evaluated by RT-qPCR. We observed a differential expression across the three whorls for six miRNAs. Computational predicted targets for miRNAs analyzed by RT-qPCR were identified and present functions related to reproductive process in plants. In summary, the increased accumulation of specific and novel miRNAs in different whorls indicates that miRNAs are an important part of the regulatory network in soybean flower.
Collapse
Affiliation(s)
- F R Kulcheski
- PPGBCM, Centro de Biotecnologia, Laboratório de Genomas e Populações de Plantas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Departamento de Biofísica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - L G Molina
- PPGBCM, Centro de Biotecnologia, Laboratório de Genomas e Populações de Plantas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; PPGGBM, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - G C da Fonseca
- PPGBCM, Centro de Biotecnologia, Laboratório de Genomas e Populações de Plantas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - G L de Morais
- PPGBCM, Centro de Biotecnologia, Laboratório de Genomas e Populações de Plantas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; LNCC, Laboratorio Nacional de Ciência da Computação, Petrópolis, RJ, Brazil
| | - L F V de Oliveira
- PPGBCM, Centro de Biotecnologia, Laboratório de Genomas e Populações de Plantas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; PPGGBM, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - R Margis
- PPGBCM, Centro de Biotecnologia, Laboratório de Genomas e Populações de Plantas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Departamento de Biofísica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; PPGGBM, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
30
|
Roodbarkelari F, Du F, Truernit E, Laux T. ZLL/AGO10 maintains shoot meristem stem cells during Arabidopsis embryogenesis by down-regulating ARF2-mediated auxin response. BMC Biol 2015; 13:74. [PMID: 26358077 PMCID: PMC4565019 DOI: 10.1186/s12915-015-0180-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/21/2015] [Indexed: 01/04/2023] Open
Abstract
Background The shoot meristem gives rise to new organs throughout a plant’s life by the activity of pluripotent stem cells in the meristem center. Organ initiation at the periphery of the shoot meristem is triggered by the accumulation of the phytohormone auxin at the initiation site. Loss-of-function mutants of the ZWILLE/ARGONAUTE10/PINHEAD (ZLL/AGO10/PNH) gene terminate shoot meristem stem cells late in embryogenesis and can form a leaf or a leaf-like structure instead, indicating that AGO10 activity is required to maintain shoot meristem stem cells undifferentiated. Results Here, we addressed whether stem cell maintenance by AGO10 involves regulation of auxin. We found that in zll-1 mutants, auxin accumulation and expression of the response reporter DR5:GFP are elevated, and transcription of the Auxin Response Factor 2 (ARF2) gene is upregulated. Downregulation of ARF2 significantly restores stem cells in zll-1 mutants, whereas increased expression of ARF2 enhances differentiation of stem cells in zll-1 mutants. We further found that upregulation of the AGO10 effector gene REVOLUTA restores ARF2 expression and stem cell maintenance in zll-1 embryos. Conclusions Our results indicate that maintenance of shoot meristem stem cells by AGO10 involves negative regulation of auxin signaling and, via REV-mediated downregulation of ARF2 expression, auxin response. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0180-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Farshad Roodbarkelari
- BIOSS Centre for Biological Signaling Studies, Faculty of Biology, Albert-Ludwigs-Universität, 79104, Freiburg, Germany.
| | - Fei Du
- BIOSS Centre for Biological Signaling Studies, Faculty of Biology, Albert-Ludwigs-Universität, 79104, Freiburg, Germany.
| | - Elisabeth Truernit
- BIOSS Centre for Biological Signaling Studies, Faculty of Biology, Albert-Ludwigs-Universität, 79104, Freiburg, Germany. .,Present address: ETH Zürich LFW E 51, Universitätstr. 2, 8092, Zürich, Switzerland.
| | - Thomas Laux
- BIOSS Centre for Biological Signaling Studies, Faculty of Biology, Albert-Ludwigs-Universität, 79104, Freiburg, Germany.
| |
Collapse
|
31
|
Csorba T, Kontra L, Burgyán J. viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology 2015; 479-480:85-103. [DOI: 10.1016/j.virol.2015.02.028] [Citation(s) in RCA: 368] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/31/2015] [Accepted: 02/16/2015] [Indexed: 12/27/2022]
|
32
|
Zhang F, Dong W, Huang L, Song A, Wang H, Fang W, Chen F, Teng N. Identification of MicroRNAs and their Targets Associated with Embryo Abortion during Chrysanthemum Cross Breeding via High-Throughput Sequencing. PLoS One 2015; 10:e0124371. [PMID: 25909659 PMCID: PMC4409343 DOI: 10.1371/journal.pone.0124371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/27/2015] [Indexed: 12/22/2022] Open
Abstract
Background MicroRNAs (miRNAs) are important regulators in plant development. They post-transcriptionally regulate gene expression during various biological and metabolic processes by binding to the 3’-untranslated region of target mRNAs to facilitate mRNA degradation or inhibit translation. Chrysanthemum (Chrysanthemum morifolium) is one of the most important ornamental flowers with increasing demand each year. However, embryo abortion is the main reason for chrysanthemum cross breeding failure. To date, there have been no experiments examining the expression of miRNAs associated with chrysanthemum embryo development. Therefore, we sequenced three small RNA libraries to identify miRNAs and their functions. Our results will provide molecular insights into chrysanthemum embryo abortion. Results Three small RNA libraries were built from normal chrysanthemum ovules at 12 days after pollination (DAP), and normal and abnormal chrysanthemum ovules at 18 DAP. We validated 228 miRNAs with significant changes in expression frequency during embryonic development. Comparative profiling revealed that 69 miRNAs exhibited significant differential expression between normal and abnormal embryos at 18 DAP. In addition, a total of 1037 miRNA target genes were predicted, and their annotations were defined by transcriptome data. Target genes associated with metabolic pathways were most highly represented according to the annotation. Moreover, 52 predicted target genes were identified to be associated with embryonic development, including 31 transcription factors and 21 additional genes. Gene ontology (GO) annotation also revealed that high-ranking miRNA target genes related to cellular processes and metabolic processes were involved in transcription regulation and the embryo developmental process. Conclusions The present study generated three miRNA libraries and gained information on miRNAs and their targets in the chrysanthemum embryo. These results enrich the growing database of new miRNAs and lay the foundation for the further understanding of miRNA biological function in the regulation of chrysanthemum embryo abortion.
Collapse
Affiliation(s)
- Fengjiao Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing, China
| | - Wen Dong
- China Rural Technology Development Center, Beijing, China
| | - Lulu Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Haibin Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Nianjun Teng
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing, China
- * E-mail:
| |
Collapse
|
33
|
Martinho C, Confraria A, Elias CA, Crozet P, Rubio-Somoza I, Weigel D, Baena-González E. Dissection of miRNA pathways using arabidopsis mesophyll protoplasts. MOLECULAR PLANT 2015; 8:261-75. [PMID: 25680775 DOI: 10.1016/j.molp.2014.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/10/2014] [Accepted: 10/10/2014] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) control gene expression mostly post-transcriptionally by guiding transcript cleavage and/or translational repression of complementary mRNA targets, thereby regulating developmental processes and stress responses. Despite the remarkable expansion of the field, the mechanisms underlying miRNA activity are not fully understood. In this article, we describe a transient expression system in Arabidopsis mesophyll protoplasts, which is highly amenable for the dissection of miRNA pathways. We show that by transiently overexpressing primary miRNAs and target mimics, we can manipulate miRNA levels and consequently impact on their targets. Furthermore, we developed a set of luciferase-based sensors for quantifying miRNA activity that respond specifically to both endogenous and overexpressed miRNAs and target mimics. We demonstrate that these miRNA sensors can be used to test the impact of putative components of the miRNA pathway on miRNA activity, as well as the impact of specific mutations, by either overexpression or the use of protoplasts from the corresponding mutants. We further show that our miRNA sensors can be used for investigating the effect of chemicals on miRNA activity. Our cell-based transient expression system is fast and easy to set up, and generates quantitative results, being a powerful tool for assaying miRNA activity in vivo.
Collapse
Affiliation(s)
- Cláudia Martinho
- Plant Stress Signaling, Instituto Gulbenkian de Ciência, Rua da Quinta Grande - 6, 2780-156 Oeiras, Portugal
| | - Ana Confraria
- Plant Stress Signaling, Instituto Gulbenkian de Ciência, Rua da Quinta Grande - 6, 2780-156 Oeiras, Portugal
| | - Carlos Alexandre Elias
- Plant Stress Signaling, Instituto Gulbenkian de Ciência, Rua da Quinta Grande - 6, 2780-156 Oeiras, Portugal
| | - Pierre Crozet
- Plant Stress Signaling, Instituto Gulbenkian de Ciência, Rua da Quinta Grande - 6, 2780-156 Oeiras, Portugal
| | - Ignacio Rubio-Somoza
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Elena Baena-González
- Plant Stress Signaling, Instituto Gulbenkian de Ciência, Rua da Quinta Grande - 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
34
|
Chen H, Zhang L, Yu K, Wang A. Pathogenesis of Soybean mosaic virus in soybean carrying Rsv1 gene is associated with miRNA and siRNA pathways, and breakdown of AGO1 homeostasis. Virology 2015; 476:395-404. [PMID: 25591174 DOI: 10.1016/j.virol.2014.12.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/26/2014] [Accepted: 12/20/2014] [Indexed: 11/30/2022]
Abstract
Profiling small RNAs in soybean Williams 82 (rsv), susceptible to Soybean mosaic virus (SMV, the genus Potyvirus, family Potyviridae) strains G2 and G7, and soybean PI96983 (Rsv1), resistant to G2 but susceptible to G7, identified the microRNA miR168 that was highly overexpressed only in G7-infected PI96983 showing a lethal systemic hypersensitive response (LSHR). Overexpression of miR168 was in parallel with the high-level expression of AGO1 mRNA, high-level accumulation of miR168-mediated AGO1 mRNA cleavage products but with severely repressed AGO1 protein. In contrast, AGO1 mRNA, degradation products and protein remained without significant changes in G2- and G7-infected Williams 82. Moreover, knock-down of SGS3, an essential component in RNA silencing, suppressed AGO1 siRNA, partially recovered repressed AGO1 protein, and alleviated LSHR severity in G7-infected Rsv1 soybean. These results suggest that both miRNA and siRNA pathways are involved in G7 infection of Rsv1 soybean, and LSHR is associated with breakdown of AGO1 homeostasis.
Collapse
Affiliation(s)
- Hui Chen
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada; Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5B7
| | - Lingrui Zhang
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada; Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5B7
| | - Kangfu Yu
- Greenhouse and Processing Crops Research Centre, Agriculture and Agri-Food Canada, 2585 County Road, 20, Harrow, Ontario, Canada N0R 1G0
| | - Aiming Wang
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada; Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5B7.
| |
Collapse
|
35
|
Tang CY, Yang MK, Wu FY, Zhao H, Pang YJ, Yang RW, Lu GH, Yang YH. Identification of miRNAs and their targets in transgenic Brassica napus and its acceptor (Westar) by high-throughput sequencing and degradome analysis. RSC Adv 2015. [DOI: 10.1039/c5ra14672k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of noncoding small RNAs (sRNAs) that play many roles in plant growth, development, and the stress response.
Collapse
Affiliation(s)
- Cheng-Yi Tang
- State Key Laboratory of Pharmaceutical Biotechnology
- NJU-NJFU Joint Institute of Plant Molecular Biology
- School of Life Sciences
- Nanjing University
- Nanjing 210093
| | - Min-Kai Yang
- State Key Laboratory of Pharmaceutical Biotechnology
- NJU-NJFU Joint Institute of Plant Molecular Biology
- School of Life Sciences
- Nanjing University
- Nanjing 210093
| | - Feng-Yao Wu
- State Key Laboratory of Pharmaceutical Biotechnology
- NJU-NJFU Joint Institute of Plant Molecular Biology
- School of Life Sciences
- Nanjing University
- Nanjing 210093
| | - Hua Zhao
- State Key Laboratory of Pharmaceutical Biotechnology
- NJU-NJFU Joint Institute of Plant Molecular Biology
- School of Life Sciences
- Nanjing University
- Nanjing 210093
| | - Yan-Jun Pang
- State Key Laboratory of Pharmaceutical Biotechnology
- NJU-NJFU Joint Institute of Plant Molecular Biology
- School of Life Sciences
- Nanjing University
- Nanjing 210093
| | - Rong-Wu Yang
- State Key Laboratory of Pharmaceutical Biotechnology
- NJU-NJFU Joint Institute of Plant Molecular Biology
- School of Life Sciences
- Nanjing University
- Nanjing 210093
| | - Gui-Hua Lu
- State Key Laboratory of Pharmaceutical Biotechnology
- NJU-NJFU Joint Institute of Plant Molecular Biology
- School of Life Sciences
- Nanjing University
- Nanjing 210093
| | - Yong-Hua Yang
- State Key Laboratory of Pharmaceutical Biotechnology
- NJU-NJFU Joint Institute of Plant Molecular Biology
- School of Life Sciences
- Nanjing University
- Nanjing 210093
| |
Collapse
|
36
|
Das SS, Karmakar P, Nandi AK, Sanan-Mishra N. Small RNA mediated regulation of seed germination. FRONTIERS IN PLANT SCIENCE 2015; 6:828. [PMID: 26528301 PMCID: PMC4602112 DOI: 10.3389/fpls.2015.00828] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/22/2015] [Indexed: 05/03/2023]
Abstract
Mature seeds of most of the higher plants harbor dormant embryos and go through the complex process of germination under favorable environmental conditions. The germination process involves dynamic physiological, cellular and metabolic events that are controlled by the interplay of several gene products and different phytohormones. The small non-coding RNAs comprise key regulatory modules in the process of seed dormancy and germination. Recent studies have implicated the small RNAs in plant growth in correlation with various plant physiological processes including hormone signaling and stress response. In this review we provide a brief overview of the regulation of seed germination or dormancy while emphasizing on the current understanding of the role of small RNAs in this regard. We have also highlighted specific examples of stress responsive small RNAs in seed germination and discussed their future potential.
Collapse
Affiliation(s)
- Shabari Sarkar Das
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Prakash Karmakar
- Department of Botany and Forestry, Vidyasagar University, Midnapore, West Bengal, India
| | - Asis Kumar Nandi
- Department of Botany and Forestry, Vidyasagar University, Midnapore, West Bengal, India
| | - Neeti Sanan-Mishra
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- *Correspondence: Neeti Sanan-Mishra,
| |
Collapse
|
37
|
Nandety RS, Kuo YW, Nouri S, Falk BW. Emerging strategies for RNA interference (RNAi) applications in insects. Bioengineered 2014; 6:8-19. [PMID: 25424593 PMCID: PMC4601220 DOI: 10.4161/21655979.2014.979701] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/29/2014] [Accepted: 10/14/2014] [Indexed: 11/19/2022] Open
Abstract
RNA interference (RNAi) in insects is a gene regulatory process that also plays a vital role in the maintenance and in the regulation of host defenses against invading viruses. Small RNAs determine the specificity of the RNAi through precise recognition of their targets. These small RNAs in insects comprise small interfering RNAs (siRNAs), micro RNAs (miRNAs) and Piwi interacting RNAs (piRNAs) of various lengths. In this review, we have explored different forms of the RNAi inducers that are presently in use, and their applications for an effective and efficient fundamental and practical RNAi research with insects. Further, we reviewed trends in next generation sequencing (NGS) technologies and their importance for insect RNAi, including the identification of novel insect targets as well as insect viruses. Here we also describe a rapidly emerging trend of using plant viruses to deliver the RNAi inducer molecules into insects for an efficient RNAi response.
Collapse
Affiliation(s)
| | - Yen-Wen Kuo
- Department of Plant Pathology; University of California; Davis, CA USA
| | - Shahideh Nouri
- Department of Plant Pathology; University of California; Davis, CA USA
| | - Bryce W Falk
- Department of Plant Pathology; University of California; Davis, CA USA
| |
Collapse
|
38
|
Cao X, Wu Z, Jiang F, Zhou R, Yang Z. Identification of chilling stress-responsive tomato microRNAs and their target genes by high-throughput sequencing and degradome analysis. BMC Genomics 2014; 15:1130. [PMID: 25519760 PMCID: PMC4377850 DOI: 10.1186/1471-2164-15-1130] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 12/11/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are a class of noncoding small RNAs (sRNAs) that are 20-24 nucleotides (nt) in length. Extensive studies have indicated that miRNAs play versatile roles in plants, functioning in processes such as growth, development and stress responses. Chilling is a common abiotic stress that seriously affects plants growth and development. Recently, chilling-responsive miRNAs have been detected in several plant species. However, little is known about the miRNAs in the model plant tomato. 'LA1777' (Solanum habrochaites) has been shown to survive chilling stress due to its various characteristics. RESULTS Here, two small RNA libraries and two degradome libraries were produced from chilling-treated (CT) and non-chilling-treated (NT) leaves of S. habrochaites seedlings. Following high-throughput sequencing and filtering, 161 conserved and 236 novel miRNAs were identified in the two libraries. Of these miRNAs, 192 increased in the response to chilling stress while 205 decreased. Furthermore, the target genes of the miRNAs were predicted using a degradome sequencing approach. It was found that 62 target genes were cleaved by 42 conserved miRNAs, while nine target genes were cleaved by nine novel miRNAs. Additionally, nine miRNAs and six target genes were validated by quantitative real-time PCR (qRT-PCR). Target gene functional analysis showed that most target genes played positive roles in the chilling response, primarily by regulating the expression of anti-stress proteins, antioxidant enzyme and genes involved in cell wall formation. CONCLUSIONS Tomato is an important model plant for basic biological research. In this study, numerous conserved and novel miRNAs involved in the chilling response were identified using high-throughput sequencing, and the target genes were analyzed by degradome sequencing. The work helps identify chilling-responsive miRNAs in tomato and increases the number of identified miRNAs involved in chilling stress. Furthermore, the work provides a foundation for further study of the regulation of miRNAs in the plant response to chilling stress.
Collapse
Affiliation(s)
- Xue Cao
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 P.R. China
| | - Zhen Wu
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 P.R. China
| | - Fangling Jiang
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 P.R. China
| | - Rong Zhou
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 P.R. China
| | - Zeen Yang
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 P.R. China
| |
Collapse
|
39
|
Xu M, Li Y, Zhang Q, Xu T, Qiu L, Fan Y, Wang L. Novel miRNA and phasiRNA biogenesis networks in soybean roots from two sister lines that are resistant and susceptible to SCN race 4. PLoS One 2014; 9:e110051. [PMID: 25356812 PMCID: PMC4214822 DOI: 10.1371/journal.pone.0110051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/15/2014] [Indexed: 11/18/2022] Open
Abstract
The soybean cyst nematode (SCN), Heterodera glycines, is the most devastating pathogen of soybean worldwide. SiRNAs (small interfere RNAs) have been proven to induce the silencing of cyst nematode genes. However, whether small RNAs from soybean root have evolved a similar mechanism against SCN is unknown. Two genetically related soybean sister lines (ZP03-5373 and ZP03-5413), which are resistant and susceptible, respectively, to SCN race 4 infection were selected for small RNA deep sequencing to identify small RNAs targeted to SCN. We identified 71 less-conserved miRNAs-miRNAs* counterparts belonging to 32 families derived from 91 loci, and 88 novel soybean-specific miRNAs with distinct expression patterns. The identified miRNAs targeted 42 genes representing a wide range of enzymatic and regulatory activities. Roots of soybean conserved one TAS (Trans-acting siRNA) gene family with a similar but unique trans-acting small interfering RNA (tasiRNA) biogenesis profile. In addition, we found that six miRNAs (gma-miR393, 1507, 1510, 1515, 171, 2118) guide targets to produce secondary phasiRNAs (phased, secondary, small interfering RNAs) in soybean root. Multiple targets of these phasiRNAs were predicted and detected. Importantly, we also found that the expression of 34 miRNAs differed significantly between the two lines. Seven ZP03-5373-specific miRNAs were differentially expressed after SCN infection. Forty-four transcripts from SCN were predicted to be potential targets of ZP03-5373-specific differential miRNAs. These findings suggest that miRNAs play an important role in the soybean response to SCN.
Collapse
Affiliation(s)
- Miaoyun Xu
- Biotechnology Research Institute, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yinghui Li
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiuxue Zhang
- Biotechnology Research Institute, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Xu
- Biotechnology Research Institute, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijuan Qiu
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunliu Fan
- Biotechnology Research Institute, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Wang
- Biotechnology Research Institute, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
40
|
Song JB, Gao S, Sun D, Li H, Shu XX, Yang ZM. miR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner. BMC PLANT BIOLOGY 2013; 13:210. [PMID: 24330668 PMCID: PMC3870963 DOI: 10.1186/1471-2229-13-210] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/05/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are a class of short, endogenous non-coding small RNAs that have ability to base pair with their target mRNAs to induce their degradation in plants. miR394a/b are conserved small RNAs and its target gene LCR (LEAF CURLING RESPONSIVENESS) encodes an F-box protein (SKP1-Cullin/CDC53-F-box) but whether miR394a/b and its target gene LCR are involved in regulation of plant response to abscisic acid (ABA) and abiotic stresses is unknown. RESULTS Mature miR394 and precursor miR394a/b are shown to be slightly induced by ABA. By contrast, LCR expression is depressed by ABA. Analysis of LCR and its promoter (pLCR::GUS) revealed that LCR is expressed at all development stages. MIR394a/b over-expression (35S::MIR394a/b) and lcr (LCR loss of function) mutant plants are hypersensitive to salt stress, but LCR over-expressing (35S::m5LCR) plants display the salt-tolerant phenotype. Both 35S::MIR394a/b and lcr plants are highly tolerant to severe drought stress compared with wild-type, but 35S::m5LCR plants are susceptible to water deficiency. Over-expression of MIR394a/b led to ABA hypersensitivity and ABA-associated phenotypes, whereas 35S::m5LCR plants show ABA resistance phenotypes. Moreover, 35S::MIR394a/b plants accumulated higher levels of ABA-induced hydrogen peroxide and superoxide anion radicals than wild-type and 35S::m5LCR plants. Expressions of ABA- and stress-responsive genes, ABI3, ABI4, ABI5, ABF3, and ABF4 are up-regulated in MIR394a/b over-expressing plants but down-regulated in 35S::m5LCR plants. Over-expression of MIR394a in abi4-1 or abi5-1 background resulted in loss of ABA-sensitivity in 35S::MIR394a plants. CONCLUSIONS The silencing of LCR mRNA by miR394 is essential to maintain a certain phenotype favorable for the adaptive response to abiotic stresses. The contrasting phenotypes of salt and drought responses may be mediated by a functional balance between miR394 and LCR. If the balance is perturbed in case of the abiotic stress, an identical phenotype related to the stress response occurs, resulting in either ABA sensitive or insensitive response. Thus, miR394-regulated LCR abundance may allow plants to fine-tune their responses to ABA and abiotic stress.
Collapse
Affiliation(s)
- Jian Bo Song
- Weigang No. 1, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Gao
- Weigang No. 1, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Sun
- Weigang No. 1, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Li
- Weigang No. 1, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xia Xia Shu
- Weigang No. 1, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Min Yang
- Weigang No. 1, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
41
|
Speth C, Willing EM, Rausch S, Schneeberger K, Laubinger S. RACK1 scaffold proteins influence miRNA abundance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:433-45. [PMID: 23941160 DOI: 10.1111/tpj.12308] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) regulate plant development by post-transcriptional regulation of target genes. In Arabidopsis thaliana, DCL1 processes precursors (pri-miRNAs) to miRNA duplexes, which associate with AGO1. Additional proteins act in concert with DCL1 (e.g. HYL1 and SERRATE) or AGO1 to facilitate efficient and precise pri-miRNA processing and miRNA loading, respectively. In this study, we show that the accumulation of plant microRNAs depends on RECEPTOR FOR ACTIVATED C KINASE 1 (RACK1), a scaffold protein that is found in all higher eukaryotes. miRNA levels are reduced in rack1 mutants, and our data suggest that RACK1 affects the microRNA pathway via several distinct mechanisms involving direct interactions with known microRNA factors: RACK1 ensures the accumulation and processing of some pri-miRNAs, directly interacts with SERRATE and is part of an AGO1 complex. As a result, mutations in RACK1 lead to over-accumulation of miRNA target mRNAs, which are important for ABA responses and phyllotaxy, for example. In conclusion, our study identified complex functioning of RACK1 proteins in the Arabidopsis miRNA pathway; these proteins are important for miRNA production and therefore plant development.
Collapse
Affiliation(s)
- Corinna Speth
- Center for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany; Chemical Genomics Centre of the Max Planck Society, 44227, Dortmund, Germany; Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | | | | | | | | |
Collapse
|
42
|
Gébelin V, Leclercq J, Hu S, Tang C, Montoro P. Regulation of MIR genes in response to abiotic stress in Hevea brasiliensis. Int J Mol Sci 2013; 14:19587-604. [PMID: 24084713 PMCID: PMC3821574 DOI: 10.3390/ijms141019587] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/06/2013] [Accepted: 09/16/2013] [Indexed: 12/31/2022] Open
Abstract
Increasing demand for natural rubber (NR) calls for an increase in latex yield and also an extension of rubber plantations in marginal zones. Both harvesting and abiotic stresses lead to tapping panel dryness through the production of reactive oxygen species. Many microRNAs regulated during abiotic stress modulate growth and development. The objective of this paper was to study the regulation of microRNAs in response to different types of abiotic stress and hormone treatments in Hevea. Regulation of MIR genes differs depending on the tissue and abiotic stress applied. A negative co-regulation between HbMIR398b with its chloroplastic HbCuZnSOD target messenger is observed in response to salinity. The involvement of MIR gene regulation during latex harvesting and tapping panel dryness (TPD) occurrence is further discussed.
Collapse
Affiliation(s)
- Virginie Gébelin
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, Avenue Agropolis, Montpellier F-34398, France; E-Mails: (V.G.); (J.L.)
| | - Julie Leclercq
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, Avenue Agropolis, Montpellier F-34398, France; E-Mails: (V.G.); (J.L.)
| | - Songnian Hu
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China; E-Mail:
| | - Chaorong Tang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 531737, China; E-Mail:
| | - Pascal Montoro
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, Avenue Agropolis, Montpellier F-34398, France; E-Mails: (V.G.); (J.L.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-0-467-61-5682; Fax: +33-0-467-61-5605
| |
Collapse
|
43
|
Guo W, Liew JY, Yuan YA. Structural insights into the arms race between host and virus along RNA silencing pathways inArabidopsis thaliana. Biol Rev Camb Philos Soc 2013; 89:337-55. [DOI: 10.1111/brv.12057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 06/29/2013] [Accepted: 07/30/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Wei Guo
- Department of Biological Sciences and Centre for Bioimaging Sciences; National University of Singapore; Singapore 117543 Singapore
| | - Jia Yee Liew
- Department of Biological Sciences and Centre for Bioimaging Sciences; National University of Singapore; Singapore 117543 Singapore
| | - Y. Adam Yuan
- Department of Biological Sciences and Centre for Bioimaging Sciences; National University of Singapore; Singapore 117543 Singapore
- Mechanobiology Institute; National University of Singapore; Singapore 117411 Singapore
- National University of Singapore (Suzhou) Research Institute; Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
44
|
García-López J, Brieño-Enríquez MA, del Mazo J. MicroRNA biogenesis and variability. Biomol Concepts 2013; 4:367-80. [DOI: 10.1515/bmc-2013-0015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/20/2013] [Indexed: 12/21/2022] Open
Abstract
AbstractMicroRNAs (miRNAs) are cell-endogenous small noncoding RNAs that, through RNA interference, are involved in the posttranscriptional regulation of mRNAs. The biogenesis and function of miRNAs entail multiple elements with different alternative pathways. These confer a high versatility of regulation and a high variability to generate different miRNAs and hence possess a broad potential to regulate gene expression. Here we review the different mechanisms, both canonical and noncanonical, that generate miRNAs in animals. The ‘miRNome’ panorama enhances our knowledge regarding the fine regulation of gene expression and provides new insights concerning normal, as opposed to pathological, cell differentiation and development.
Collapse
Affiliation(s)
- Jesús García-López
- 1Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu, 9, E-28040 Madrid, Spain
| | - Miguel A. Brieño-Enríquez
- 1Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu, 9, E-28040 Madrid, Spain
| | - Jesús del Mazo
- 1Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu, 9, E-28040 Madrid, Spain
| |
Collapse
|
45
|
Várallyay E, Havelda Z. Unrelated viral suppressors of RNA silencing mediate the control of ARGONAUTE1 level. MOLECULAR PLANT PATHOLOGY 2013; 14:567-75. [PMID: 23578299 PMCID: PMC6638692 DOI: 10.1111/mpp.12029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Various plant viruses ubiquitously mediate the induction of miR168, resulting in the control of ARGONAUTE 1 (AGO1), which is the pivotal component of the microRNA (miRNA) regulation pathway and can also exhibit antiviral function. Here, we demonstrate that miR168-driven control of AGO1 can persist for a long time in virus-infected plants and can be an important component of symptom development. We also show that infection of RNA viruses belonging to various genera is associated with the transcriptional induction of the MIR168 precursor gene. Moreover, in a transient expression study, we reveal that different unrelated viral suppressors of RNA silencing (VSRs) are responsible for the enhanced accumulation of miR168. The induction of miR168 accumulation is an early function of VSRs and this activity is associated with the control of the endogenous AGO1 protein level. The common ability of unrelated VSRs to induce the miR168 level implies that this activity might be a component of the host defence suppression in plant-virus interactions.
Collapse
Affiliation(s)
- Eva Várallyay
- Plant Developmental Biology Group, Agricultural Biotechnology Center, Szent Györgyi A. út 4, Gödöllő, H-2100, Hungary
| | | |
Collapse
|
46
|
Rodriguez RE, Debernardi JM, Palatnik JF. Morphogenesis of simple leaves: regulation of leaf size and shape. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 3:41-57. [PMID: 24902833 DOI: 10.1002/wdev.115] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plants produce new organs throughout their life span. Leaves first initiate as rod-like structures protruding from the shoot apical meristem, while they need to pass through different developmental stages to become the flat organ specialized in photosynthesis. Leaf morphogenesis is an active process regulated by many genes and pathways that can generate organs with a wide variety of sizes and shapes. Important differences in leaf architecture can be seen among different species, but also in single individuals. A key aspect of leaf morphogenesis is the precise control of cell proliferation. Modification or manipulation of this process may lead to leaves with different sizes and shapes, and changes in the organ margins and curvature. Many genes required for leaf development have been identified in Arabidopsis thaliana, and the mechanisms underlying leaf morphogenesis are starting to be unraveled at the molecular level.
Collapse
Affiliation(s)
- Ramiro E Rodriguez
- IBR (Instituto de Biología Molecular y Celular de Rosario) - CONICET/UNR, Rosario, Argentina
| | | | | |
Collapse
|
47
|
Moreno AB, Martínez de Alba AE, Bardou F, Crespi MD, Vaucheret H, Maizel A, Mallory AC. Cytoplasmic and nuclear quality control and turnover of single-stranded RNA modulate post-transcriptional gene silencing in plants. Nucleic Acids Res 2013; 41:4699-708. [PMID: 23482394 PMCID: PMC3632135 DOI: 10.1093/nar/gkt152] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic RNA quality control (RQC) uses both endonucleolytic and exonucleolytic degradation to eliminate dysfunctional RNAs. In addition, endogenous and exogenous RNAs are degraded through post-transcriptional gene silencing (PTGS), which is triggered by the production of double-stranded (ds)RNAs and proceeds through short-interfering (si)RNA-directed ARGONAUTE-mediated endonucleolytic cleavage. Compromising cytoplasmic or nuclear 5'-3' exoribonuclease function enhances sense-transgene (S)-PTGS in Arabidopsis, suggesting that these pathways compete for similar RNA substrates. Here, we show that impairing nonsense-mediated decay, deadenylation or exosome activity enhanced S-PTGS, which requires host RNA-dependent RNA polymerase 6 (RDR6/SGS2/SDE1) and SUPPRESSOR OF GENE SILENCING 3 (SGS3) for the transformation of single-stranded RNA into dsRNA to trigger PTGS. However, these RQC mutations had no effect on inverted-repeat-PTGS, which directly produces hairpin dsRNA through transcription. Moreover, we show that these RQC factors are nuclear and cytoplasmic and are found in two RNA degradation foci in the cytoplasm: siRNA-bodies and processing-bodies. We propose a model of single-stranded RNA tug-of-war between RQC and S-PTGS that ensures the correct partitioning of RNA substrates among these RNA degradation pathways.
Collapse
Affiliation(s)
- Ana Beatriz Moreno
- Institut des Sciences du Végétal, CNRS UPR 2355, SPS Saclay Plant Sciences, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Yamaguchi A, Abe M. Regulation of reproductive development by non-coding RNA in Arabidopsis: to flower or not to flower. JOURNAL OF PLANT RESEARCH 2012; 125:693-704. [PMID: 22836383 PMCID: PMC3485539 DOI: 10.1007/s10265-012-0513-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/06/2012] [Indexed: 05/18/2023]
Abstract
Plants monitor environmental factors, such as temperature and day length, and also endogenous factors, such as their age and phytohormones, to decide when to flower. These cues are utilized to control expression levels of genes required for flowering. Thus, flowering time control is a unique model for understanding how gene activity is precisely regulated at the transcriptional level. In Arabidopsis, a remarkable number of non-coding RNA molecules have been identified by advanced sequencing technology. Recent progress in the flowering field has revealed several non-coding RNAs that play a major role in determining flowering time. Here, we introduce how two types of non-coding RNA species, microRNA (miRNA) and long noncoding RNA (lncRNA), contribute to flowering via regulation of target gene activity involved in this vital developmental transition.
Collapse
Affiliation(s)
- Ayako Yamaguchi
- Laboratory of Plant Science, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- Present Address: Graduate School of Biostudies, Kyoto University, Yoshida Konoecho, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Mitsutomo Abe
- Laboratory of Plant Science, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
49
|
Xu MY, Dong Y, Zhang QX, Zhang L, Luo YZ, Sun J, Fan YL, Wang L. Identification of miRNAs and their targets from Brassica napus by high-throughput sequencing and degradome analysis. BMC Genomics 2012; 13:421. [PMID: 22920854 PMCID: PMC3599582 DOI: 10.1186/1471-2164-13-421] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 07/25/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are endogenous regulators of a broad range of physiological processes and act by either degrading mRNA or blocking its translation. Oilseed rape (Brassica napus) is one of the most important crops in China, Europe and other Asian countries with publicly available expressed sequence tags (ESTs) and genomic survey sequence (GSS) databases, but little is known about its miRNAs and their targets. To date, only 46 miRNAs have been identified in B. napus. RESULTS Forty-one conserved and 62 brassica-specific candidate B. napus miRNAs, including 20 miRNA* sequences, were identified using Solexa sequencing technology. Furthermore, 33 non-redundant mRNA targets of conserved brassica miRNAs and 19 new non-redundant mRNA targets of novel brassica-specific miRNAs were identified by genome-scale sequencing of mRNA degradome. CONCLUSIONS This study describes large scale cloning and characterization of B. napus miRNAs and their potential targets, providing the foundation for further characterization of miRNA function in the regulation of diverse physiological processes in B. napus.
Collapse
Affiliation(s)
- Miao Y Xu
- Biotechnology Research Institute, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Mecchia MA, Debernardi JM, Rodriguez RE, Schommer C, Palatnik JF. MicroRNA miR396 and RDR6 synergistically regulate leaf development. Mech Dev 2012; 130:2-13. [PMID: 22889666 DOI: 10.1016/j.mod.2012.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 07/16/2012] [Accepted: 07/30/2012] [Indexed: 12/19/2022]
Abstract
The microRNA (miRNA) miR396 regulates GROWTH-REGULATING FACTORs (GRFs), a plant specific family of transcription factors. Overexpression of miR396 causes a decrease in the GRFs that has been shown to affect cell proliferation in the meristem and developing leaves. To bring further insights into the function of the miR396 regulatory network we performed a mutant enhancer screen of a stable Arabidopsis transgenic line expressing 35S:miR396b, which has a reduction in leaf size. From this screen we recovered several mutants enhancing this phenotype and displaying organs with lotus- or needle-like shape. Analysis of these plants revealed mutations in as2 and rdr6. While 35S:miR396b in an as2 context generated organs with lotus-like shape, the overexpression of the miRNA in an rdr6 mutant background caused more important developmental defects, including pin-like organs and lobed leaves. Combination of miR396 overexpressors, and rdr6 and as2 mutants show additional organ defects, suggesting that the three pathways act in concert. Genetic interactions during leaf development were observed in a similar way between miR396 overexpression and mutants in RDR6, SGS3 or AGO7, which are known to participate in trans-acting siRNA (ta-siRNA) biogenesis. Furthermore, we found that miR396 can cause lotus- and pin-like organs per se, once a certain expression threshold is overcome. In good agreement, mutants accumulating high levels of TCP4, which induces miR396, interacted with the AS1/AS2 pathway to generate lotus-like organs. The results indicate that the miR396 regulatory network and the ta-siRNA biogenesis pathway synergistically interact during leaf development and morphogenesis.
Collapse
Affiliation(s)
- Martin A Mecchia
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | |
Collapse
|