1
|
Parris S, Lovell JT, Ding F, Zhang Z, Olvey J, Olvey M, Schmutz J, Grimwood J, Sreedasyam A, Kumar S, Li Z, Joshi P, Jenkins JW, Plott C, Stewart A, Webber J, Stiller WN, Jones DC, Saski CA. Polyploidy-mediated variations in glutamate receptor proteins linked to Fusarium wilt resistance in upland cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70125. [PMID: 40227120 PMCID: PMC11995877 DOI: 10.1111/tpj.70125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025]
Abstract
Cotton production in the US faces a serious threat from Fusarium oxysporum f. sp. vasinfectum race 4 (FOV4), a soil-borne fungus causing Fusarium wilt by infecting the roots and vascular system of susceptible cotton, leading to rapid wilting and death. Here, we investigate genetic mechanisms of resistance to FOV4 in the highly resistant upland cotton genotype "U1" using an early-generation segregating biparental population ("U1" × "CSX8308") with comprehensive genomic resources. Reference-grade genomic assemblies of the parents revealed minor structural variations between "U1" haplotypes, a high degree of collinearity at chromosome synteny and micro-synteny levels, and significant divergence from "CSX8308" with 8.9 million SNPs. QTL analysis identified significant markers on chromosomes D03 and A02 linked to reduced Fusarium wilt severity. Within these regions, two glutamate-receptor-like (GLR) genes showed structural variation and overlapped between translocated segments on A02 and D03, suggesting a rare but important reinforcing effect of parallel evolution between susceptible and resistant genotypes. Transcriptome profiles of "U1" under FOV4 infection reveal activation of calcium-binding proteins and transcription factors regulating plant hormones (ethylene, abscisic acid, jasmonic acid, and salicylic acid), along with enzymes involved in cell wall remodeling and phytoalexin production. Advancing cotton improvement depends on incorporating durable genetic disease resistance into high-yielding, high-quality cultivars.
Collapse
Affiliation(s)
- Stephen Parris
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - John T. Lovell
- Genome Sequencing CenterHudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
- Department of Energy Joint Genome InstituteBerkeleyCaliforniaUSA
| | - Feng Ding
- Department of Physics and AstronomyClemson UniversityClemsonSouth CarolinaUSA
| | - Zhenzhen Zhang
- Department of Physics and AstronomyClemson UniversityClemsonSouth CarolinaUSA
| | | | | | - Jeremy Schmutz
- Genome Sequencing CenterHudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
- Department of Energy Joint Genome InstituteBerkeleyCaliforniaUSA
| | - Jane Grimwood
- Genome Sequencing CenterHudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Avinash Sreedasyam
- Genome Sequencing CenterHudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Sonika Kumar
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - Zhigang Li
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - Priyanka Joshi
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - Jerry W. Jenkins
- Genome Sequencing CenterHudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Christopher Plott
- Genome Sequencing CenterHudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Ada Stewart
- Genome Sequencing CenterHudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Jenell Webber
- Genome Sequencing CenterHudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | | | | | - Christopher A. Saski
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth CarolinaUSA
| |
Collapse
|
2
|
Emelianova K, Hawranek A, Eriksson MC, Wolfe TM, Paun O. Ecological divergence of sibling allopolyploid marsh orchids is associated with species specific plasticity and distinct fungal communities. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70001. [PMID: 39968573 PMCID: PMC11836771 DOI: 10.1111/tpj.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 02/20/2025]
Abstract
Phenotypic plasticity, the dynamic adjustment of traits to environmental variations, is crucial for enabling species to exploit broader niches and withstand suboptimal conditions. This adaptability is particularly relevant for newly formed allopolyploids, which possess redundant gene copies and must become established in diverse environments distinct from their parents and other relatives. By evaluating gene expression and root mycobiome among two ecologically divergent sibling allopolyploid marsh orchids (Dactylorhiza majalis and D. traunsteineri) in reciprocal transplants at localities where both species are native, we aimed to understand the drivers of species persistence in the face of interspecific gene flow. Despite consistent abiotic differences characterising the alternative environments at each locality, the majority of gene expression differences between the allopolyploids appears to be plastic. Ecologically relevant processes, such as photosynthesis and transmembrane transport, include some genes that are differentially expressed between the two orchids regardless of the environment, while others change their activity plastically in one species or the other. This suggests that although plasticity helps define the specific ecological range of each sibling allopolyploid, it also mediates gene flow between them, thereby preventing differentiation. Extending our investigations to the root mycobiome, we uncover more diverse fungal communities for either species when grown in the environment with nutrient-poor soils, indicating that both abiotic and biotic factors drive the distribution of sibling marsh orchids. Altogether, our results indicate that plasticity can simultaneously promote diversification and homogenisation of lineages, influencing the establishment and persistence of recurrently formed allopolyploid species.
Collapse
Affiliation(s)
- Katie Emelianova
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
| | - Anna‐Sophie Hawranek
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
| | - Mimmi C. Eriksson
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
- Vienna Graduate School of Population GeneticsViennaAustria
- Department of Plant BiologySwedish University of Agricultural SciencesUppsalaSweden
| | - Thomas M. Wolfe
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
- Vienna Graduate School of Population GeneticsViennaAustria
- Institute of Forest Entomology, Forest Pathology and Forest Protection (IFFF), BOKUPeter‐Jordan‐Straße 82/IViennaA‐1190Austria
| | - Ovidiu Paun
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
| |
Collapse
|
3
|
Zhang X, Tang C, Jiang B, Zhang R, Li M, Wu Y, Yao Z, Huang L, Luo Z, Zou H, Yang Y, Wu M, Chen A, Wu S, Hou X, Liu X, Fei Z, Fu J, Wang Z. Refining polyploid breeding in sweet potato through allele dosage enhancement. NATURE PLANTS 2025; 11:36-48. [PMID: 39668213 DOI: 10.1038/s41477-024-01873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024]
Abstract
Allele dosage plays a key role in the phenotypic variation of polyploids. Here we present a genome-wide variation map of hexaploid sweet potato that captures allele dosage information, constructed from deep sequencing of 294 hexaploid accessions. Genome-wide association studies identified quantitative trait loci with dosage effects on 23 agronomic traits. Our analyses reveal that sweet potato breeding has progressively increased the dosage of favourable alleles to enhance trait performance. Notably, the Mesoamerican gene pool has evolved towards higher dosages of favourable alleles at multiple loci, which have been increasingly introgressed into modern Chinese cultivars. We substantiated the breeding-driven dosage accumulation through transgenic validation of IbEXPA4, an expansin gene influencing tuberous root weight. In addition, we explored causative sequence variations that alter the expression of the Orange gene, which regulates flesh colour. Our findings illuminate the breeding history of sweet potato and establish a foundation for leveraging allele dosages in polyploid breeding practices.
Collapse
Affiliation(s)
- Xiangbo Zhang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Chaochen Tang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Bingzhi Jiang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Rong Zhang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Ming Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yaoyao Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhufang Yao
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Lifei Huang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Zhongxia Luo
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Hongda Zou
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Yiling Yang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Minyi Wu
- Guangdong Provincial Key Laboratory of Applied Botany, and State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ao Chen
- Guangdong Provincial Key Laboratory of Applied Botany, and State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shan Wu
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany, and State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xu Liu
- Guangdong Provincial Key Laboratory of Applied Botany, and State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA.
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA.
| | - Junjie Fu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Zhangying Wang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China.
| |
Collapse
|
4
|
Yu Z, Cui B, Xiao J, Jiao W, Wang H, Wang Z, Sun L, Song Q, Yuan J, Wang X. Dosage effect genes modulate grain development in synthesized Triticum durum-Haynaldia villosa allohexaploid. J Genet Genomics 2024; 51:1089-1100. [PMID: 38670432 DOI: 10.1016/j.jgg.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Polyploidization in plants often leads to increased cell size and grain size, which may be affected by the increased genome dosage and transcription abundance. The synthesized Triticum durum (AABB)-Haynaldia villosa (VV) amphiploid (AABBVV) has significantly increased grain size, especially grain length, than the tetraploid and diploid parents. To investigate how polyploidization affects grain development at the transcriptional level, we perform transcriptome analysis using the immature seeds of T. durum, H. villosa, and the amphiploid. The dosage effect genes are contributed more by differentially expressed genes from genome V of H. villosa. The dosage effect genes overrepresent grain development-related genes. Interestingly, the vernalization gene TaVRN1 is among the positive dosage effect genes in the T. durum‒H. villosa and T. turgidum‒Ae. tauschii amphiploids. The expression levels of TaVRN1 homologs are positively correlated with the grain size and weight. The TaVRN1-B1 or TaVRN1-D1 mutation shows delayed florescence, decreased cell size, grain size, and grain yield. These data indicate that dosage effect genes could be one of the important explanations for increased grain size by regulating grain development. The identification and functional validation of dosage effect genes may facilitate the finding of valuable genes for improving wheat yield.
Collapse
Affiliation(s)
- Zhongyu Yu
- State Key Lab of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP/Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210095, China
| | - Baofeng Cui
- State Key Lab of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP/Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210095, China
| | - Jin Xiao
- State Key Lab of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP/Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210095, China
| | - Wu Jiao
- State Key Lab of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP/Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210095, China
| | - Haiyan Wang
- State Key Lab of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP/Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210095, China
| | - Zongkuan Wang
- State Key Lab of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP/Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210095, China
| | - Li Sun
- State Key Lab of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP/Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210095, China
| | - Qingxin Song
- State Key Lab of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP/Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210095, China
| | - Jingya Yuan
- State Key Lab of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP/Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210095, China.
| | - Xiue Wang
- State Key Lab of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP/Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
5
|
Prohaska A, Petit A, Lesemann S, Rey-Serra P, Mazzoni L, Masny A, Sánchez-Sevilla JF, Potier A, Gaston A, Klamkowski K, Rothan C, Mezzetti B, Amaya I, Olbricht K, Denoyes B. Strawberry phenotypic plasticity in flowering time is driven by the interaction between genetic loci and temperature. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5923-5939. [PMID: 38938160 PMCID: PMC11427845 DOI: 10.1093/jxb/erae279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Flowering time (FT), which determines when fruits or seeds can be harvested, is subject to phenotypic plasticity, that is, the ability of a genotype to display different phenotypes in response to environmental variation. Here, we investigated how the environment affects the genetic architecture of FT in cultivated strawberry (Fragaria × ananassa) and modifies its quantitative trait locus (QTL) effects. To this end, we used a bi-parental segregating population grown for 2 years at widely divergent latitudes (five European countries) and combined climatic variables with genomic data (Affymetrix SNP array). Examination, using different phenological models, of the response of FT to photoperiod, temperature, and global radiation indicated that temperature is the main driver of FT in strawberry. We next characterized in the segregating population the phenotypic plasticity of FT by using three statistical approaches that generated plasticity parameters including reaction norm parameters. We detected 25 FT QTLs summarized as 10 unique QTLs. Mean values and plasticity parameter QTLs were co-localized in three of them, including the major 6D_M QTL whose effect is strongly modulated by temperature. The design and validation of a genetic marker for the 6D_M QTL offers great potential for breeding programs, for example selecting early-flowering strawberry varieties well adapted to different environmental conditions.
Collapse
Affiliation(s)
- Alexandre Prohaska
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140, France
- INVENIO, MIN de Brienn, 110 quai de Paludate, 33800 Bordeaux, France
| | - Aurélie Petit
- INVENIO, MIN de Brienne, 110 quai de Paludate, 33800 Bordeaux, France
| | | | - Pol Rey-Serra
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140, France
| | - Luca Mazzoni
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Agnieszka Masny
- National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - José F Sánchez-Sevilla
- Centro IFAPA de Málaga, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), 29140, Málaga, Spain
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, 29010, Málaga, Spain
| | - Aline Potier
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140, France
| | - Amèlia Gaston
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140, France
| | - Krzysztof Klamkowski
- National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - Christophe Rothan
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140, France
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Iraida Amaya
- Centro IFAPA de Málaga, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), 29140, Málaga, Spain
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, 29010, Málaga, Spain
| | | | - Béatrice Denoyes
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140, France
| |
Collapse
|
6
|
Shahzad K, Zhang M, Mubeen I, Zhang X, Guo L, Qi T, Feng J, Tang H, Qiao X, Wu J, Xing C. Integrative analyses of long and short-read RNA sequencing reveal the spliced isoform regulatory network of seedling growth dynamics in upland cotton. Funct Integr Genomics 2024; 24:156. [PMID: 39230785 DOI: 10.1007/s10142-024-01420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
The polyploid genome of cotton has significantly increased the transcript complexity. Recent advances in full-length transcript sequencing are now widely used to characterize the complete landscape of transcriptional events. Such studies in cotton can help us to explore the genetic mechanisms of the cotton seedling growth. Through long-read single-molecule RNA sequencing, this study compared the transcriptomes of three yield contrasting genotypes of upland cotton. Our analysis identified different numbers of spliced isoforms from 31,166, 28,716, and 28,713 genes in SJ48, Z98, and DT8 cotton genotypes, respectively, most of which were novel compared to previous cotton reference transcriptomes, and showed significant differences in the number of exon structures and coding sequence length due to intron retention. Quantification of isoform expression revealed significant differences in expression in the root and leaf of each genotype. An array of key isoform target genes showed protein kinase or phosphorylation functions, and their protein interaction network contained most of the circadian oscillator proteins. Spliced isoforms from the GIGANTEA (GI) protien were differentially regulated in each genotype and might be expected to regulate translational activities, including the sequence and function of target proteins. In addition, these spliced isoforms generate diurnal expression profiles in cotton leaves, which may alter the transcriptional regulatory network of seedling growth. Silencing of the novel spliced GI isoform Gh_A02G0645_N17 significantly affected biomass traits, contributed to variable growth, and increased transcription of the early flowering pathway gene ELF in cotton. Our high-throughput hybrid sequencing results will be useful to dissect functional differences among spliced isoforms in the polyploid cotton genome.
Collapse
Affiliation(s)
- Kashif Shahzad
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Meng Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Iqra Mubeen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xuexian Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Liping Guo
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Tingxiang Qi
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Juanjuan Feng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Huini Tang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xiuqin Qiao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Jianyong Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| | - Chaozhu Xing
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| |
Collapse
|
7
|
Batiru G, Lübberstedt T. Polyploidy in maize: from evolution to breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:182. [PMID: 39001883 DOI: 10.1007/s00122-024-04688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/29/2024] [Indexed: 07/15/2024]
Abstract
Polyploidy played an important role in the evolution of the three most important crops: wheat, maize and rice, each of them providing a unique model for studying allopolyploidy, segmental alloploidy or paleopolyploidy. However, its genetic and evolutionary role is still vague. The undelying mechanisms and consequences of polyploidy remain fundamental objectives in the study of eukaryotes. Maize is one of the underutilized crops at the polyploid level. This species has no stable natural polyploids, the existing ones being artificially obtained. From the experimental polyploid series of maize, only the tetraploid forms (4n = 40) are of interest. They are characterized by some valuable morphological, physiological and biochemical features, superior to the diploid forms from which they originated, but also by some drawbacks such as: reduced fertility, slower development, longer vegetation period, low productivity and adaptedness. Due to these barriers to using tetraploids in field production, maize tetraploids primarily found utility in scientific studies regarding genetic variability, inbreeding, heterosis and gene dosage effect. Since the first mention of a triploid maize plant to present, many scientists and schools, devoted their efforts to capitalize on the use of polyploidy in maize. Despite its common disadvantages as a crop, significant progress in developing tetraploid maize with good agronomic performance was achieved leading to registered tetraploid maize varieties. In this review we summarize and discuss the different aspects of polyploidy in maize, such as evolutionary context, methods of induction, morphology, fertility issue, inheritance patterns, gene expression and potential use.
Collapse
Affiliation(s)
- Grigorii Batiru
- Department of Agronomy and Environment, Technical University of Moldova, MD-2049, Chisinau, Republic of Moldova.
| | - Thomas Lübberstedt
- Department of Agronomy, Iowa State University, Ames, IA, 50011-1051, USA
| |
Collapse
|
8
|
Sun W, Li M, Wang J. Characteristics of duplicated gene expression and DNA methylation regulation in different tissues of allopolyploid Brassica napus. BMC PLANT BIOLOGY 2024; 24:518. [PMID: 38851683 PMCID: PMC11162574 DOI: 10.1186/s12870-024-05245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Plant polyploidization increases the complexity of epigenomes and transcriptional regulation, resulting in genome evolution and enhanced adaptability. However, few studies have been conducted on the relationship between gene expression and epigenetic modification in different plant tissues after allopolyploidization. In this study, we studied gene expression and DNA methylation modification patterns in four tissues (stems, leaves, flowers and siliques) of Brassica napusand its diploid progenitors. On this basis, the alternative splicing patterns and cis-trans regulation patterns of four tissues in B. napus and its diploid progenitors were also analyzed. It can be seen that the number of alternative splicing occurs in the B. napus is higher than that in the diploid progenitors, and the IR type increases the most during allopolyploidy. In addition, we studied the fate changes of duplicated genes after allopolyploidization in B. napus. We found that the fate of most duplicated genes is conserved, but the number of neofunctionalization and specialization is also large. The genetic fate of B. napus was classified according to five replication types (WGD, PD, DSD, TD, TRD). This study also analyzed generational transmission analysis of expression and DNA methylation patterns. Our study provides a reference for the fate differentiation of duplicated genes during allopolyploidization.
Collapse
Affiliation(s)
- Weiqi Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
9
|
Lopes JML, Nascimento LSDQ, Souza VC, de Matos EM, Fortini EA, Grazul RM, Santos MO, Soltis DE, Soltis PS, Otoni WC, Viccini LF. Water stress modulates terpene biosynthesis and morphophysiology at different ploidal levels in Lippia alba (Mill.) N. E. Brown (Verbenaceae). PROTOPLASMA 2024; 261:227-243. [PMID: 37665420 DOI: 10.1007/s00709-023-01890-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Monoterpenes are the main component in essential oils of Lippia alba. In this species, the chemical composition of essential oils varies with genome size: citral (geraniol and neral) is dominant in diploids and tetraploids, and linalool in triploids. Because environmental stress impacts various metabolic pathways, we hypothesized that stress responses in L. alba could alter the relationship between genome size and essential oil composition. Water stress affects the flowering, production, and reproduction of plants. Here, we evaluated the effect of water stress on morphophysiology, essential oil production, and the expression of genes related to monoterpene synthesis in diploid, triploid, and tetraploid accessions of L. alba cultivated in vitro for 40 days. First, using transcriptome data, we performed de novo gene assembly and identified orthologous genes using phylogenetic and clustering-based approaches. The expression of candidate genes related to terpene biosynthesis was estimated by real-time quantitative PCR. Next, we assessed the expression of these genes under water stress conditions, whereby 1% PEG-4000 was added to MS medium. Water stress modulated L. alba morphophysiology at all ploidal levels. Gene expression and essential oil production were affected in triploid accessions. Polyploid accessions showed greater growth and metabolic tolerance under stress compared to diploids. These results confirm the complex regulation of metabolic pathways such as the production of essential oils in polyploid genomes. In addition, they highlight aspects of genotype and environment interactions, which may be important for the conservation of tropical biodiversity.
Collapse
Affiliation(s)
- Juliana Mainenti Leal Lopes
- Department of Biology, Insitute of Biological Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
- School of Life Science and Environment, Department of Genetic and Biotechnology, University of Trás-Os-Montes and Alto Douro, 5001-801, Vila Real, Portugal
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1649-004, Lisbon, Portugal
| | | | - Vinicius Carius Souza
- Department of Biology, Insitute of Biological Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Elyabe Monteiro de Matos
- Department of Biology, Insitute of Biological Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Evandro Alexandre Fortini
- Laboratory of Plant Tissue Culture (LCTII), Department of Plant Biology/BIOAGRO, Universidade Federal de Viçosa, Av. P.H. Rolfs S/N, Campus Universitário, Viçosa, MG, 36570-000, Brazil
| | | | - Marcelo Oliveira Santos
- Department of Biology, Insitute of Biological Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Wagner Campos Otoni
- Laboratory of Plant Tissue Culture (LCTII), Department of Plant Biology/BIOAGRO, Universidade Federal de Viçosa, Av. P.H. Rolfs S/N, Campus Universitário, Viçosa, MG, 36570-000, Brazil
| | - Lyderson Facio Viccini
- Department of Biology, Insitute of Biological Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil.
| |
Collapse
|
10
|
Singh P, Ansari N, Mishra AK, Agrawal M, Agrawal SB. Growth, ultrastructural and physiological characteristics of Abelmoschus cytotypes under elevated ozone stress: a study on ploidy-specific responses. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23229. [PMID: 38310884 DOI: 10.1071/fp23229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
Tropospheric ozone (O3 ) is a significant abiotic stressor whose rising concentration negatively influences plant growth. Studies related to the differential response of Abelmoschus cytotypes to elevated O3 treatment are scarce and need further exploration to recognise the role of polyploidisation in stress tolerance. In this study, we analysed the changes in growth pattern, ultrastructure, physiology and foliar protein profile occurring under O3 stress in Abelmoschus moschatus (monoploid), Abelmoschus esculentus (diploid) and Abelmoschus caillei (triploid). Our findings showed that higher stomatal conductance in A. moschatus triggered higher O3 intake, causing damage to stomatal cells and photosynthetic pigments. Additionally, it caused a reduction in photosynthetic rates, leading to reduced plant growth, total biomass and economic yield. This O3 -induced toxicity was less in diploid and triploid cytotypes of Abelmoschus . Protein profiling by sodium dodecyl sulpate-polyacrylamide gel electrophoresis showed a significant decrease in the commonly found RuBisCO larger and smaller subunits. The decrease was more prominent in monoploid compared to diploid and triploid. This study provides crucial data for research that aim to enhance plant ability to withstand O3 induced oxidative stress. Our findings may help in developing a tolerant variety through plant breeding techniques, which will be economically more advantageous in reaching the objective of sustainable production at the high O3 levels projected under a climate change scenario.
Collapse
Affiliation(s)
- Priyanka Singh
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Naushad Ansari
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Amit Kumar Mishra
- Department of Botany, School of Life Sciences, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
11
|
Yoo MJ, Koh J, Boatwright JL, Soltis DE, Soltis PS, Barbazuk WB, Chen S. Investigation of regulatory divergence between homoeologs in the recently formed allopolyploids, Tragopogon mirus and T. miscellus (Asteraceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1191-1205. [PMID: 37997015 DOI: 10.1111/tpj.16553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Polyploidy is an important evolutionary process throughout eukaryotes, particularly in flowering plants. Duplicated gene pairs (homoeologs) in allopolyploids provide additional genetic resources for changes in molecular, biochemical, and physiological mechanisms that result in evolutionary novelty. Therefore, understanding how divergent genomes and their regulatory networks reconcile is vital for unraveling the role of polyploidy in plant evolution. Here, we compared the leaf transcriptomes of recently formed natural allotetraploids (Tragopogon mirus and T. miscellus) and their diploid parents (T. porrifolius X T. dubius and T. pratensis X T. dubius, respectively). Analysis of 35 400 expressed loci showed a significantly higher level of transcriptomic additivity compared to old polyploids; only 22% were non-additively expressed in the polyploids, with 5.9% exhibiting transgressive expression (lower or higher expression in the polyploids than in the diploid parents). Among approximately 7400 common orthologous regions (COREs), most loci in both allopolyploids exhibited expression patterns that were vertically inherited from their diploid parents. However, 18% and 20.3% of the loci showed novel expression bias patterns in T. mirus and T. miscellus, respectively. The expression changes of 1500 COREs were explained by cis-regulatory divergence (the condition in which the two parental subgenomes do not interact) between the diploid parents, whereas only about 423 and 461 of the gene expression changes represent trans-effects (the two parental subgenomes interact) in T. mirus and T. miscellus, respectively. The low degree of both non-additivity and trans-effects on gene expression may present the ongoing evolutionary processes of the newly formed Tragopogon polyploids (~80-90 years).
Collapse
Affiliation(s)
- Mi-Jeong Yoo
- Department of Biology, Clarkson University, Potsdam, New York, 13699, USA
| | - Jin Koh
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, 32610, USA
| | - J Lucas Boatwright
- Plant and Environmental Science Department, Clemson University, Clemson, South Carolina, 29634, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
- Genetics Institute, University of Florida, Gainesville, Florida, 32610, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
| | - Pamela S Soltis
- Genetics Institute, University of Florida, Gainesville, Florida, 32610, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
| | - W Brad Barbazuk
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
- Genetics Institute, University of Florida, Gainesville, Florida, 32610, USA
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, Mississippi, 38677, USA
| |
Collapse
|
12
|
Jia J, Zhao G, Li D, Wang K, Kong C, Deng P, Yan X, Zhang X, Lu Z, Xu S, Jiao Y, Chong K, Liu X, Cui D, Li G, Zhang Y, Du C, Wu L, Li T, Yan D, Zhan K, Chen F, Wang Z, Zhang L, Kong X, Ru Z, Wang D, Gao L. Genome resources for the elite bread wheat cultivar Aikang 58 and mining of elite homeologous haplotypes for accelerating wheat improvement. MOLECULAR PLANT 2023; 16:1893-1910. [PMID: 37897037 DOI: 10.1016/j.molp.2023.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 07/12/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Despite recent progress in crop genomics studies, the genomic changes brought about by modern breeding selection are still poorly understood, thus hampering genomics-assisted breeding, especially in polyploid crops with compound genomes such as common wheat (Triticum aestivum). In this work, we constructed genome resources for the modern elite common wheat variety Aikang 58 (AK58). Comparative genomics between AK58 and the landrace cultivar Chinese Spring (CS) shed light on genomic changes that occurred through recent varietal improvement. We also explored subgenome diploidization and divergence in common wheat and developed a homoeologous locus-based genome-wide association study (HGWAS) approach, which was more effective than single homoeolog-based GWAS in unraveling agronomic trait-associated loci. A total of 123 major HGWAS loci were detected using a genetic population derived from AK58 and CS. Elite homoeologous haplotypes (HHs), formed by combinations of subgenomic homoeologs of the associated loci, were found in both parents and progeny, and many could substantially improve wheat yield and related traits. We built a website where users can download genome assembly sequence and annotation data for AK58, perform blast analysis, and run JBrowse. Our work enriches genome resources for wheat, provides new insights into genomic changes during modern wheat improvement, and suggests that efficient mining of elite HHs can make a substantial contribution to genomics-assisted breeding in common wheat and other polyploid crops.
Collapse
Affiliation(s)
- Jizeng Jia
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China; State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guangyao Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Danping Li
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Wang
- Xi'An Shansheng Biosciences Co., Ltd., Xi'an 710000, China
| | - Chuizheng Kong
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pingchuan Deng
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 612100, China
| | - Xueqing Yan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueyong Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zefu Lu
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shujuan Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Chong
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xu Liu
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dangqun Cui
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Guangwei Li
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chunguang Du
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Liang Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Yazhou Bay Seed Laboratory, Hainan Institute of Zhejiang University, Sanya, Hainan 562000, China
| | - Tianbao Li
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China; State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dong Yan
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kehui Zhan
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Feng Chen
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Zhiyong Wang
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Lichao Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuying Kong
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhengang Ru
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.
| | - Daowen Wang
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Lifeng Gao
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
13
|
Nicolas E, Simion P, Guérineau M, Terwagne M, Colinet M, Virgo J, Lingurski M, Boutsen A, Dieu M, Hallet B, Van Doninck K. Horizontal acquisition of a DNA ligase improves DNA damage tolerance in eukaryotes. Nat Commun 2023; 14:7638. [PMID: 37993452 PMCID: PMC10665377 DOI: 10.1038/s41467-023-43075-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/30/2023] [Indexed: 11/24/2023] Open
Abstract
Bdelloid rotifers are part of the restricted circle of multicellular animals that can withstand a wide range of genotoxic stresses at any stage of their life cycle. In this study, bdelloid rotifer Adineta vaga is used as a model to decipher the molecular basis of their extreme tolerance. Proteomic analysis shows that a specific DNA ligase, different from those usually involved in DNA repair in eukaryotes, is strongly over-represented upon ionizing radiation. A phylogenetic analysis reveals its orthology to prokaryotic DNA ligase E, and its horizontal acquisition by bdelloid rotifers and plausibly other eukaryotes. The fungus Mortierella verticillata, having a single copy of this DNA Ligase E homolog, also exhibits an increased radiation tolerance with an over-expression of this DNA ligase E following X-ray exposure. We also provide evidence that A. vaga ligase E is a major contributor of DNA breaks ligation activity, which is a common step of all important DNA repair pathways. Consistently, its heterologous expression in human cell lines significantly improves their radio-tolerance. Overall, this study highlights the potential of horizontal gene transfers in eukaryotes, and their contribution to the adaptation to extreme conditions.
Collapse
Affiliation(s)
- Emilien Nicolas
- Université Libre de Bruxelles, Molecular Biology and Evolution, Brussels, 1050, Belgium.
| | - Paul Simion
- Université de Namur, Laboratory of Evolutionary Genetics and Ecology, Namur, 5000, Belgium
- Université de Rennes, Ecosystèmes, biodiversité, évolution (ECOBIO UMR 6553), CNRS, Rennes, France
| | - Marc Guérineau
- Université Libre de Bruxelles, Molecular Biology and Evolution, Brussels, 1050, Belgium
| | - Matthieu Terwagne
- Université de Namur, Laboratory of Evolutionary Genetics and Ecology, Namur, 5000, Belgium
| | - Mathilde Colinet
- Université de Namur, Laboratory of Evolutionary Genetics and Ecology, Namur, 5000, Belgium
| | - Julie Virgo
- Université de Namur, Laboratory of Evolutionary Genetics and Ecology, Namur, 5000, Belgium
| | - Maxime Lingurski
- Université Libre de Bruxelles, Molecular Biology and Evolution, Brussels, 1050, Belgium
| | - Anaïs Boutsen
- Université de Namur, Laboratory of Evolutionary Genetics and Ecology, Namur, 5000, Belgium
| | - Marc Dieu
- Université de Namur, MaSUN-mass spectrometry facility, Namur, 5000, Belgium
| | - Bernard Hallet
- Université Catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Louvain-la-Neuve, 1348, Belgium.
| | - Karine Van Doninck
- Université Libre de Bruxelles, Molecular Biology and Evolution, Brussels, 1050, Belgium.
- Université de Namur, Laboratory of Evolutionary Genetics and Ecology, Namur, 5000, Belgium.
| |
Collapse
|
14
|
Li C, Zhao A, Yu Y, Cui C, Zeng Q, Shen W, Zhao Y, Wang F, Dong J, Gao X, Yang M. Exploring the Role of TaPLC1-2B in Heat Tolerance at Seedling and Adult Stages of Wheat through Transcriptome Analysis. Int J Mol Sci 2023; 24:16583. [PMID: 38068906 PMCID: PMC10706844 DOI: 10.3390/ijms242316583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Heat stress is a major abiotic stress that can cause serious losses of a crop. Our previous work identified a gene involved in heat stress tolerance in wheat, TaPLC1-2B. To further investigate its mechanisms, in the present study, TaPLC1-2B RNAi-silenced transgenic wheat and the wild type were comparatively analyzed at both the seedling and adult stages, with or without heat stress, using transcriptome sequencing. A total of 15,549 differentially expressed genes (DEGs) were identified at the adult stage and 20,535 DEGs were detected at the seedling stage. After heat stress, an enrichment of pathways such as phytohormones and mitogen-activated protein kinase signaling was mainly found in the seedling stage, and pathways related to metabolism, glycerophospholipid metabolism, circadian rhythms, and ABC transporter were enriched in the adult stage. Auxin and abscisic acid were downregulated in the seedling stage and vice versa in the adult stage; and the MYB, WRKY, and no apical meristem gene families were downregulated in the seedling stage in response to heat stress and upregulated in the adult stage in response to heat stress. This study deepens our understanding of the mechanisms of TaPLC1-2B in regard to heat stress in wheat at the seedling and adult stages.
Collapse
Affiliation(s)
- Chenyang Li
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (C.L.); (Y.Y.); (C.C.); (Q.Z.); (W.S.); (Y.Z.); (F.W.); (J.D.); (X.G.)
| | - Ahui Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yan Yu
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (C.L.); (Y.Y.); (C.C.); (Q.Z.); (W.S.); (Y.Z.); (F.W.); (J.D.); (X.G.)
| | - Chao Cui
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (C.L.); (Y.Y.); (C.C.); (Q.Z.); (W.S.); (Y.Z.); (F.W.); (J.D.); (X.G.)
| | - Quan Zeng
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (C.L.); (Y.Y.); (C.C.); (Q.Z.); (W.S.); (Y.Z.); (F.W.); (J.D.); (X.G.)
| | - Wei Shen
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (C.L.); (Y.Y.); (C.C.); (Q.Z.); (W.S.); (Y.Z.); (F.W.); (J.D.); (X.G.)
| | - Yang Zhao
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (C.L.); (Y.Y.); (C.C.); (Q.Z.); (W.S.); (Y.Z.); (F.W.); (J.D.); (X.G.)
| | - Fei Wang
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (C.L.); (Y.Y.); (C.C.); (Q.Z.); (W.S.); (Y.Z.); (F.W.); (J.D.); (X.G.)
| | - Jian Dong
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (C.L.); (Y.Y.); (C.C.); (Q.Z.); (W.S.); (Y.Z.); (F.W.); (J.D.); (X.G.)
| | - Xiang Gao
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (C.L.); (Y.Y.); (C.C.); (Q.Z.); (W.S.); (Y.Z.); (F.W.); (J.D.); (X.G.)
| | - Mingming Yang
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (C.L.); (Y.Y.); (C.C.); (Q.Z.); (W.S.); (Y.Z.); (F.W.); (J.D.); (X.G.)
| |
Collapse
|
15
|
Bharati R, Sen MK, Severová L, Svoboda R, Fernández-Cusimamani E. Polyploidization and genomic selection integration for grapevine breeding: a perspective. FRONTIERS IN PLANT SCIENCE 2023; 14:1248978. [PMID: 38034577 PMCID: PMC10684766 DOI: 10.3389/fpls.2023.1248978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Grapevines are economically important woody perennial crops widely cultivated for their fruits that are used for making wine, grape juice, raisins, and table grapes. However, grapevine production is constantly facing challenges due to climate change and the prevalence of pests and diseases, causing yield reduction, lower fruit quality, and financial losses. To ease the burden, continuous crop improvement to develop superior grape genotypes with desirable traits is imperative. Polyploidization has emerged as a promising tool to generate genotypes with novel genetic combinations that can confer desirable traits such as enhanced organ size, improved fruit quality, and increased resistance to both biotic and abiotic stresses. While previous studies have shown high polyploid induction rates in Vitis spp., rigorous screening of genotypes among the produced polyploids to identify those exhibiting desired traits remains a major bottleneck. In this perspective, we propose the integration of the genomic selection approach with omics data to predict genotypes with desirable traits among the vast unique individuals generated through polyploidization. This integrated approach can be a powerful tool for accelerating the breeding of grapevines to develop novel and improved grapevine varieties.
Collapse
Affiliation(s)
- Rohit Bharati
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Suchdol, Czechia
| | - Madhab Kumar Sen
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Suchdol, Czechia
| | - Lucie Severová
- Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Prague, Czechia
| | - Roman Svoboda
- Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Prague, Czechia
| | - Eloy Fernández-Cusimamani
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Suchdol, Czechia
| |
Collapse
|
16
|
Puccio G, Ingraffia R, Giambalvo D, Frenda AS, Harkess A, Sunseri F, Mercati F. Exploring the genetic landscape of nitrogen uptake in durum wheat: genome-wide characterization and expression profiling of NPF and NRT2 gene families. FRONTIERS IN PLANT SCIENCE 2023; 14:1302337. [PMID: 38023895 PMCID: PMC10665861 DOI: 10.3389/fpls.2023.1302337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Nitrate uptake by plants primarily relies on two gene families: Nitrate transporter 1/peptide transporter (NPF) and Nitrate transporter 2 (NRT2). Here, we extensively characterized the NPF and NRT2 families in the durum wheat genome, revealing 211 NPF and 20 NRT2 genes. The two families share many Cis Regulatory Elements (CREs) and Transcription Factor binding sites, highlighting a partially overlapping regulatory system and suggesting a coordinated response for nitrate transport and utilization. Analyzing RNA-seq data from 9 tissues and 20 cultivars, we explored expression profiles and co-expression relationships of both gene families. We observed a strong correlation between nucleotide variation and gene expression within the NRT2 gene family, implicating a shared selection mechanism operating on both coding and regulatory regions. Furthermore, NPF genes showed highly tissue-specific expression profiles, while NRT2s were mainly divided in two co-expression modules, one expressed in roots (NAR2/NRT3 dependent) and the other induced in anthers and/ovaries during maturation. Our evidences confirmed that the majority of these genes were retained after small-scale duplication events, suggesting a neo- or sub-functionalization of many NPFs and NRT2s. Altogether, these findings indicate that the expansion of these gene families in durum wheat could provide valuable genetic variability useful to identify NUE-related and candidate genes for future breeding programs in the context of low-impact and sustainable agriculture.
Collapse
Affiliation(s)
- Guglielmo Puccio
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
| | - Rosolino Ingraffia
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Dario Giambalvo
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Alfonso S. Frenda
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Francesco Sunseri
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
- Department Agraria , University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Francesco Mercati
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
| |
Collapse
|
17
|
Sha Y, Li Y, Zhang D, Lv R, Wang H, Wang R, Ji H, Li S, Gong L, Li N, Liu B. Genome shock in a synthetic allotetraploid wheat invokes subgenome-partitioned gene regulation, meiotic instability, and karyotype variation. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5547-5563. [PMID: 37379452 DOI: 10.1093/jxb/erad247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
It is becoming increasingly evident that interspecific hybridization at the homoploid level or coupled with whole-genome duplication (i.e. allopolyploidization) has played a major role in biological evolution. However, the direct impacts of hybridization and allopolyploidization on genome structure and function, phenotype, and fitness remains to be fully understood. Synthetic hybrids and allopolyploids are trackable experimental systems that can be used to address this issue. In this study, we resynthesized a pair of reciprocal F1 hybrids and corresponding reciprocal allotetraploids using the two diploid progenitor species of bread wheat (Triticum aestivum, BBAADD), namely T. urartu (AA) and Aegilops tauschii (DD). By comparing phenotypes related to growth, development, and fitness, and by analysing genome expression in both hybrids and allotetraploids in relation to the parents, we found that the types and trends of karyotype variation in the immediately formed allotetraploids were correlated with both instability of meiosis and chromosome- and subgenome-biased expression. We determined clear advantages of allotetraploids over diploid F1 hybrids in several morphological traits including fitness that mirrored the tissue- and developmental stage-dependent subgenome-partitioning of the allotetraploids. The allotetraploids were meiotically unstable primarily due to homoeologous pairing that varied dramatically among the chromosomes. Nonetheless, the manifestation of organismal karyotype variation and the occurrence of meiotic irregularity were not concordant, suggesting a role of functional constraints probably imposed by subgenome- and chromosome-biased gene expression. Our results provide new insights into the direct impacts and consequences of hybridization and allopolyploidization that are relevant to evolution and likely to be informative for future crop improvement approaches using synthetic polyploids.
Collapse
Affiliation(s)
- Yan Sha
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yang Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Deshi Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Han Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ruisi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Heyu Ji
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Shuhang Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
18
|
Huang Y, Zhao X, Zheng Q, He X, Zhang MM, Ke S, Li Y, Zhang C, Ahmad S, Lan S, Liu ZJ. Genome-Wide Identification of TCP Gene Family in Dendrobium and Their Expression Patterns in Dendrobium chrysotoxum. Int J Mol Sci 2023; 24:14320. [PMID: 37762622 PMCID: PMC10531990 DOI: 10.3390/ijms241814320] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The TCP gene family are plant-specific transcription factors that play important roles in plant growth and development. Dendrobium chrysotoxum, D. nobile, and D. huoshanense are orchids with a high ornamental value, but few studies have investigated the specific functions of TCPs in Dendrobium flower development. In this study, we used these three Dendrobium species to analyze TCPs, examining their physicochemical properties, phylogenetic relationships, gene structures, and expression profiles. A total of 50 TCPs were identified across three Dendrobium species; they were divided into two clades-Class-I (PCF subfamily) and Class-II (CIN and CYC/TB1 subfamilies)-based on their phylogenetic relationships. Our sequence logo analysis showed that almost all Dendrobium TCPs contain a conserved TCP domain, as well as the existence of fewer exons, and the cis-regulatory elements of the TCPs were mostly related to light response. In addition, our transcriptomic data and qRT-PCR results showed that DchTCP2 and DchTCP13 had a significant impact on lateral organs. Moreover, changes in the expression level of DchTCP4 suggested its important role in the phenotypic variation of floral organs. Therefore, this study provides a significant reference for the further exploration of TCP gene functions in the regulation of different floral organs in Dendrobium orchids.
Collapse
Affiliation(s)
- Ye Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (X.Z.); (Q.Z.); (X.H.); (M.-M.Z.); (S.K.); (Y.L.); (C.Z.); (S.A.)
| | - Xuewei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (X.Z.); (Q.Z.); (X.H.); (M.-M.Z.); (S.K.); (Y.L.); (C.Z.); (S.A.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (X.Z.); (Q.Z.); (X.H.); (M.-M.Z.); (S.K.); (Y.L.); (C.Z.); (S.A.)
| | - Xin He
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (X.Z.); (Q.Z.); (X.H.); (M.-M.Z.); (S.K.); (Y.L.); (C.Z.); (S.A.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng-Meng Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (X.Z.); (Q.Z.); (X.H.); (M.-M.Z.); (S.K.); (Y.L.); (C.Z.); (S.A.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijie Ke
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (X.Z.); (Q.Z.); (X.H.); (M.-M.Z.); (S.K.); (Y.L.); (C.Z.); (S.A.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (X.Z.); (Q.Z.); (X.H.); (M.-M.Z.); (S.K.); (Y.L.); (C.Z.); (S.A.)
| | - Cuili Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (X.Z.); (Q.Z.); (X.H.); (M.-M.Z.); (S.K.); (Y.L.); (C.Z.); (S.A.)
| | - Sagheer Ahmad
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (X.Z.); (Q.Z.); (X.H.); (M.-M.Z.); (S.K.); (Y.L.); (C.Z.); (S.A.)
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (X.Z.); (Q.Z.); (X.H.); (M.-M.Z.); (S.K.); (Y.L.); (C.Z.); (S.A.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (X.Z.); (Q.Z.); (X.H.); (M.-M.Z.); (S.K.); (Y.L.); (C.Z.); (S.A.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
19
|
Li Y, Sha Y, Wang H, Lv R, Zhang D, Li S, Xu C, Liu B. Developmental Instability and Gene Dysregulation in an Extracted Tetraploid from Hexaploid Wheat. Int J Mol Sci 2023; 24:14037. [PMID: 37762338 PMCID: PMC10531679 DOI: 10.3390/ijms241814037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
The BBAA subgenomes of hexaploid common wheat can be 'extracted' to constitute a viable and self-reproducing novel tetraploid wheat, termed extracted tetraploid wheat (ETW). Prior studies have shown ETW manifesting phenotypic abnormalities and alteration in gene expression and epigenetic modifications. No population level investigation has been conducted, leaving the issue unclear regarding whether developmental stability, an essential property evolved in all natural organisms, might have been undermined in ETW. Here, we measured variations in five morphological traits and somatic chromosomal stability in populations of ETW and of its hexaploid donor, a resynthesized hexaploid and a natural tetraploid wheat. We observed phenotypic defects in ETW. Meanwhile, we documented much greater within-population variations in ETW than in the other wheat genotypes, most probably due to disrupted developmental stability in ETW. Also, somatic structural chromosome variations were detected only in ETW. Comparative transcriptome analyses indicated that the disrupted developmental stability of ETW is likely linked to massive dysregulation of genome-wide gene expression rather than to genetic mutations. Population network analysis of gene expression implicated intrinsic connectivity among the variable traits, while gene set enrichment analysis provided possible links between dysregulated gene expression and interlaced trait variation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
20
|
Zhang Z, Lv R, Wang B, Xun H, Liu B, Xu C. Effects of Allopolyploidization and Homoeologous Chromosomal Segment Exchange on Homoeolog Expression in a Synthetic Allotetraploid Wheat under Variable Environmental Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3111. [PMID: 37687357 PMCID: PMC10490264 DOI: 10.3390/plants12173111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
Allopolyploidy through the combination of divergent genomes into a common nucleus at doubled dosage is known as a potent genetic and evolutionary force. As a macromutation, a striking feature of allopolyploidy in comparison with other mutational processes is that 'genome shock' can be evoked, thereby generating rapid and saltational biological consequences. A major manifestation of genome shock is genome-wide gene expression rewiring, which previously remained to be fully elucidated. Here, using a large set of RNAseq-based transcriptomic data of a synthetic allotetraploid wheat (genome AADD) and its parental species, we performed in-depth analyses of changes in the genome-wide gene expression under diverse environmental conditions at the subgenome (homoeolog) level and investigated the additional effects of homoeologous chromosomal segment exchanges (abbreviated HEs). We show that allopolyploidy caused large-scale changes in gene expression that were variable across the conditions and exacerbated by both stresses and HEs. Moreover, although both subgenomes (A and D) showed clear commonality in the changes, they responded differentially under variable conditions. The subgenome- and condition-dependent differentially expressed genes were enriched for different gene ontology terms implicating different biological functions. Our results provide new insights into the direct impacts of allopolyploidy on condition-dependent changes in subgenome expression and the additional effects of HEs in nascent allopolyploidy.
Collapse
Affiliation(s)
- Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences (CAS), Changchun 130102, China
| | - Hongwei Xun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
21
|
Katche EI, Schierholt A, Schiessl SV, He F, Lv Z, Batley J, Becker HC, Mason AS. Genetic factors inherited from both diploid parents interact to affect genome stability and fertility in resynthesized allotetraploid Brassica napus. G3 (BETHESDA, MD.) 2023; 13:jkad136. [PMID: 37313757 PMCID: PMC10411605 DOI: 10.1093/g3journal/jkad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
Established allopolyploids are known to be genomically stable and fertile. However, in contrast, most newly resynthesized allopolyploids are infertile and meiotically unstable. Identifying the genetic factors responsible for genome stability in newly formed allopolyploid is key to understanding how 2 genomes come together to form a species. One hypothesis is that established allopolyploids may have inherited specific alleles from their diploid progenitors which conferred meiotic stability. Resynthesized Brassica napus lines are often unstable and infertile, unlike B. napus cultivars. We tested this hypothesis by characterizing 41 resynthesized B. napus lines produced by crosses between 8 Brassica rapa and 8 Brassica oleracea lines for copy number variation resulting from nonhomologous recombination events and fertility. We resequenced 8 B. rapa and 5 B. oleracea parent accessions and analyzed 19 resynthesized lines for allelic variation in a list of meiosis gene homologs. SNP genotyping was performed using the Illumina Infinium Brassica 60K array for 3 individuals per line. Self-pollinated seed set and genome stability (number of copy number variants) were significantly affected by the interaction between both B. rapa and B. oleracea parental genotypes. We identified 13 putative meiosis gene candidates which were significantly associated with frequency of copy number variants and which contained putatively harmful mutations in meiosis gene haplotypes for further investigation. Our results support the hypothesis that allelic variants inherited from parental genotypes affect genome stability and fertility in resynthesized rapeseed.
Collapse
Affiliation(s)
- Elizabeth Ihien Katche
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
| | - Antje Schierholt
- Department of Crop Sciences, Division of Plant Breeding Methodology, Georg-August University Göttingen, Göttingen 37073, Germany
| | - Sarah-Veronica Schiessl
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main D-60325, Germany
| | - Fei He
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
| | - Zhenling Lv
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Heiko C Becker
- Department of Crop Sciences, Division of Plant Breeding Methodology, Georg-August University Göttingen, Göttingen 37073, Germany
| | - Annaliese S Mason
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
| |
Collapse
|
22
|
Chen C, Han Y, Xiao H, Zou B, Wu D, Sha L, Yang C, Liu S, Cheng Y, Wang Y, Kang H, Fan X, Zhou Y, Zhang T, Zhang H. Chromosome-specific painting in Thinopyrum species using bulked oligonucleotides. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:177. [PMID: 37540294 DOI: 10.1007/s00122-023-04423-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Chromosome-specific painting probes were developed to identify the individual chromosomes from 1 to 7E in Thinopyrum species and detect alien genetic material of the E genome in a wheat background. The E genome of Thinopyrum is closely related to the ABD genome of wheat (Triticum aestivum L.) and harbors genes conferring beneficial traits to wheat, including high yield, disease resistance, and unique end-use quality. Species of Thinopyrum vary from diploid (2n = 2x = 14) to decaploid (2n = 10x = 70), and chromosome structural variation and differentiation have arisen during polyploidization. To investigate the variation and evolution of the E genome, we developed a complete set of E genome-specific painting probes for identification of the individual chromosomes 1E to 7E based on the genome sequences of Th. elongatum (Host) D. R. Dewey and wheat. By using these new probes in oligonucleotide-based chromosome painting, we showed that Th. bessarabicum (PI 531711, EbEb) has a close genetic relationship with diploid Th. elongatum (EeEe), with five chromosomes (1E, 2E, 3E, 6E, and 7E) maintaining complete synteny in the two species except for a reciprocal translocation between 4 and 5Eb. All 14 pairs of chromosomes of tetraploid Th. elongatum have maintained complete synteny with those of diploid Th. elongatum (Thy14), but the two sets of E genomes have diverged. This study also demonstrated that the E genome-specific painting probes are useful for rapid and effective detection of the alien genetic material of E genome in wheat-Thinopyrum derived lines.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yangshuo Han
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - He Xiao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bingcan Zou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lina Sha
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Cairong Yang
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, 611130, Sichuan, China
| | - Songqing Liu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, 611130, Sichuan, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Haiqin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
23
|
Bian X, Cao Y, Zhi X, Ma N. Genome-Wide Identification and Analysis of the Plant Cysteine Oxidase (PCO) Gene Family in Brassica napus and Its Role in Abiotic Stress Response. Int J Mol Sci 2023; 24:11242. [PMID: 37511002 PMCID: PMC10379087 DOI: 10.3390/ijms241411242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Plant Cysteine Oxidase (PCO) is a plant O2-sensing enzyme catalyzing the oxidation of cysteine to Cys-sulfinic acid at the N-termini of target proteins. To better understand the Brassica napus PCO gene family, PCO genes in B. napus and related species were analyzed. In this study, 20, 7 and 8 PCO genes were identified in Brassica napus, Brassica rapa and Brassica oleracea, respectively. According to phylogenetic analysis, the PCOs were divided into five groups: PCO1, PCO2, PCO3, PCO4 and PCO5. Gene organization and motif distribution analysis suggested that the PCO gene family was relatively conserved during evolution. According to the public expression data, PCO genes were expressed in different tissues at different developmental stages. Moreover, qRT-PCR data showed that most of the Bna/Bra/BoPCO5 members were expressed in leaves, roots, flowers and siliques, suggesting an important role in both vegetative and reproductive development. Expression of BnaPCO was induced by various abiotic stress, especially waterlogging stress, which was consistent with the result of cis-element analysis. In this study, the PCO gene family of Brassicaceae was analyzed for the first time, which contributes to a comprehensive understanding of the origin and evolution of PCO genes in Brassicaceae and the function of BnaPCO in abiotic stress responses.
Collapse
Affiliation(s)
- Xiaohua Bian
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yifan Cao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Ximin Zhi
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ni Ma
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
24
|
Mattingly KZ, Hovick SM. Autopolyploids of Arabidopsis thaliana are more phenotypically plastic than their diploid progenitors. ANNALS OF BOTANY 2023; 131:45-58. [PMID: 34175922 PMCID: PMC9904351 DOI: 10.1093/aob/mcab081] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/25/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Polyploids are often hypothesized to have increased phenotypic plasticity compared with their diploid progenitors, but recent work suggests that the relationship between whole-genome duplication (WGD) and plasticity is not so straightforward. Impacts of WGD on plasticity are moderated by other evolutionary processes in nature, which has impeded generalizations regarding the effects of WGD alone. We assessed shifts in phenotypic plasticity and mean trait values accompanying WGD, as well as the adaptive consequences of these shifts. METHODS To isolate WGD effects, we compared two diploid lineages of Arabidopsis thaliana wiht corresponding autotetraploids grown across different salt and nutrient conditions in a growth chamber. KEY RESULTS For the few cases in which diploids and polyploids differed in plasticity, polyploids were more plastic, consistent with hypotheses that WGD increases plasticity. Under stress, increased plasticity was often adaptive (associated with higher total seed mass), but in other cases plasticity was unrelated to fitness. Mean trait values and plasticity were equally likely to be affected by WGD, but the adaptive consequences of these shifts were often context dependent or lineage specific. For example, polyploids had extended life spans, a shift that was adaptive in one polyploid lineage under amenable conditions but was maladaptive in the other lineage under stress. CONCLUSIONS Our work shows that increased phenotypic plasticity can result from WGD alone, independent of other evolutionary processes. We find that the effects of WGD can differ depending on the genotype of the progenitor and the environmental context. Though our experiment was limited to two genotypes of a single species, these findings support the idea that WGD can indeed increase plasticity.
Collapse
Affiliation(s)
| | - Stephen M Hovick
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
25
|
Cavé-Radet A, Salmon A, Tran Van Canh L, Moyle RL, Pretorius LS, Lima O, Ainouche ML, El Amrani A. Recent allopolyploidy alters Spartina microRNA expression in response to xenobiotic-induced stress. PLANT MOLECULAR BIOLOGY 2023; 111:309-328. [PMID: 36581792 DOI: 10.1007/s11103-022-01328-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Environmental contamination by xenobiotics represents a major threat for natural ecosystems and public health. In response, xenobiotic detoxification is a fundamental trait of organisms for developmental plasticity and stress tolerance, but the underlying molecular mechanisms remain poorly understood in plants. To decipher this process, we explored the consequences of allopolyploidy on xenobiotic tolerance in the genus Spartina Schreb. Specifically, we focused on microRNAs (miRNAs) owing to their central function in the regulation of gene expression patterns, including responses to stress. Small RNA-Seq was conducted on the parents S. alterniflora and S. maritima, their F1 hybrid S. x townsendii and the allopolyploid S. anglica under phenanthrene-induced stress (phe), a model Polycyclic Aromatic Hydrocarbon (PAH) compound. Differentially expressed miRNAs in response to phe were specifically identified within species. In complement, the respective impacts of hybridization and genome doubling were detected, through changes in miRNA expression patterns between S. x townsendii, S. anglica and the parents. The results support the impact of allopolyploidy in miRNA-guided regulation of plant response to phe. In total, we identified 17 phe-responsive miRNAs in Spartina among up-regulated MIR156 and down-regulated MIR159. We also describe novel phe-responsive miRNAs as putative Spartina-specific gene expression regulators in response to stress. Functional validation using Arabidopsis (L.) Heynh. T-DNA lines inserted in homologous MIR genes was performed, and the divergence of phe-responsive miRNA regulatory networks between Arabidopsis and Spartina was discussed.
Collapse
Affiliation(s)
- Armand Cavé-Radet
- Université de Rennes 1, UMR CNRS 6553, Ecosystèmes-Biodiversité-Evolution, OSUR, Campus de Beaulieu, Bâtiment 14A, 35042, Rennes Cedex, France.
| | - Armel Salmon
- Université de Rennes 1, UMR CNRS 6553, Ecosystèmes-Biodiversité-Evolution, OSUR, Campus de Beaulieu, Bâtiment 14A, 35042, Rennes Cedex, France
| | - Loup Tran Van Canh
- Université de Rennes 1, UMR CNRS 6553, Ecosystèmes-Biodiversité-Evolution, OSUR, Campus de Beaulieu, Bâtiment 14A, 35042, Rennes Cedex, France
| | - Richard L Moyle
- Nexgen Plants Pty Ltd., School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Lara-Simone Pretorius
- Nexgen Plants Pty Ltd., School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Oscar Lima
- Université de Rennes 1, UMR CNRS 6553, Ecosystèmes-Biodiversité-Evolution, OSUR, Campus de Beaulieu, Bâtiment 14A, 35042, Rennes Cedex, France
| | - Malika L Ainouche
- Université de Rennes 1, UMR CNRS 6553, Ecosystèmes-Biodiversité-Evolution, OSUR, Campus de Beaulieu, Bâtiment 14A, 35042, Rennes Cedex, France
| | - Abdelhak El Amrani
- Université de Rennes 1, UMR CNRS 6553, Ecosystèmes-Biodiversité-Evolution, OSUR, Campus de Beaulieu, Bâtiment 14A, 35042, Rennes Cedex, France.
| |
Collapse
|
26
|
Hu CH, Li BB, Chen P, Shen HY, Xi WG, Zhang Y, Yue ZH, Wang HX, Ma KS, Li LL, Chen KM. Identification of CDPKs involved in TaNOX7 mediated ROS production in wheat. FRONTIERS IN PLANT SCIENCE 2023; 13:1108622. [PMID: 36756230 PMCID: PMC9900008 DOI: 10.3389/fpls.2022.1108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
As the critical sensors and decoders of calcium signal, calcium-dependent protein kinase (CDPK) has become the focus of current research, especially in plants. However, few resources are available on the properties and functions of CDPK gene family in Triticum aestivum (TaCDPK). Here, a total of 79 CDPK genes were identified in the wheat genome. These TaCDPKs could be classified into four subgroups on phylogenesis, while they may be classified into two subgroups based on their tissue and organ-spatiotemporal expression profiles or three subgroups according to their induced expression patterns. The analysis on the signal network relationships and interactions of TaCDPKs and NADPH (reduced nicotinamide adenine dinucleotide phosphate oxidases, NOXs), the key producers for reactive oxygen species (ROS), showed that there are complicated cross-talks between these two family proteins. Further experiments demonstrate that, two members of TaCDPKs, TaCDPK2/4, can interact with TaNOX7, an important member of wheat NOXs, and enhanced the TaNOX7-mediated ROS production. All the results suggest that TaCDPKs are highly expressed in wheat with distinct tissue or organ-specificity and stress-inducible diversity, and play vital roles in plant development and response to biotic and abiotic stresses by directly interacting with TaNOXs for ROS production.
Collapse
Affiliation(s)
- Chun-Hong Hu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Peng Chen
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Hai-Yan Shen
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Wei-Gang Xi
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Yi Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Zong-Hao Yue
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Hong-Xing Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Ke-Shi Ma
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Li-Li Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
27
|
Pootakham W, Sonthirod C, Naktang C, Yundaeng C, Yoocha T, Kongkachana W, Sangsrakru D, Somta P, Tangphatsornruang S. Genome assemblies of Vigna reflexo-pilosa (créole bean) and its progenitors, Vigna hirtella and Vigna trinervia, revealed homoeolog expression bias and expression-level dominance in the allotetraploid. Gigascience 2022; 12:giad050. [PMID: 37470496 PMCID: PMC10357499 DOI: 10.1093/gigascience/giad050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
Vigna reflexo-pilosa (créole bean) is a wild legume belonging to the subgenus Ceratoropis and is widely distributed in Asia. Créole bean is the only tetraploid species in the genus Vigna, and it has been shown to derive from the hybridization of Vigna hirtella and Vigna trinervia. In this study, we combined the long-read PacBio technology with the chromatin contact mapping (Hi-C) technique to obtain a chromosome-level assembly of V. reflexo-pilosa. The final assembly contained 998,724,903 bases with an N50 length of 42,545,650 bases. Our gene prediction recovered 99.4% of the highly conserved orthologs based on the BUSCO analysis. To investigate homoeolog expression bias and expression level dominance in the tetraploid, we also sequenced and assembled the genomes of its progenitors. Overall, the majority of the homoeolog pairs (72.9%) displayed no expression bias, and among those that exhibited biased expression, 16.3% showed unbalanced homoeolog expression bias toward the V. trinervia subgenome. Moreover, 41.2% and 36.2% of the expressed gene pairs exhibited transgressive expression and expression level dominance, respectively. Interestingly, the genome-wide expression level dominance in the tetraploid was biased toward the V. trinervia subgenome. The analysis of methylation patterns also revealed that the average methylation levels in coding regions were higher in the V. hirtella subgenome than those in the V. trinervia subgenome. The genomic/transcriptomic resources for these three species are useful not only for the development of elite cultivars in Vigna breeding programs but also to researchers studying comparative genomics and investigating genomic/epigenomic changes following polyploid events.
Collapse
Affiliation(s)
- Wirulda Pootakham
- National Science and Technology Development Agency (NSTDA), National Center for the Genetic Engineering and Biotechnology (BIOTEC), 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Chutima Sonthirod
- National Science and Technology Development Agency (NSTDA), National Center for the Genetic Engineering and Biotechnology (BIOTEC), 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Chaiwat Naktang
- National Science and Technology Development Agency (NSTDA), National Center for the Genetic Engineering and Biotechnology (BIOTEC), 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Chutintorn Yundaeng
- National Science and Technology Development Agency (NSTDA), National Center for the Genetic Engineering and Biotechnology (BIOTEC), 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Thippawan Yoocha
- National Science and Technology Development Agency (NSTDA), National Center for the Genetic Engineering and Biotechnology (BIOTEC), 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Wasitthee Kongkachana
- National Science and Technology Development Agency (NSTDA), National Center for the Genetic Engineering and Biotechnology (BIOTEC), 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Duangjai Sangsrakru
- National Science and Technology Development Agency (NSTDA), National Center for the Genetic Engineering and Biotechnology (BIOTEC), 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Sithichoke Tangphatsornruang
- National Science and Technology Development Agency (NSTDA), National Center for the Genetic Engineering and Biotechnology (BIOTEC), 111 Thailand Science Park, Pathum Thani 12120, Thailand
| |
Collapse
|
28
|
Valenzuela F, D’Afonseca V, Hernández R, Gómez A, Arencibia AD. Validation of Reference Genes in a Population of Blueberry (Vaccinium corymbosum) Plants Regenerated in Colchicine. PLANTS (BASEL, SWITZERLAND) 2022; 11:2645. [PMID: 36235509 PMCID: PMC9573746 DOI: 10.3390/plants11192645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
For the first time we report the validation of reference genes in plants from a population of blueberry (Vaccinium corymbosum) clones cultured in vitro on a colchicine-supplemented medium. Nodal segment explants of the cultivar Duke were regenerated by organogenesis under different periods of colchicine 1 mg/L exposure (1, 2, 3, 5, 30 days). The clones selected for the study showed variability for phenotypic traits after 2 years of adaptation to field conditions, compared to plants of the donor genotype that were regenerated on a medium without colchicine. Vaccinium myrtillus (GAPDH) and Vaccinium macrocarpon (ATP1, NADH, RPOB and COX2) were used as reference genomes for primer design. The results show that colchicine treatments can cause genomic changes in blueberry plants. At the molecular level, exposure of plants to colchicine in early periods could promote an increase in gene expression of specific genes such as ATP1, COX2, GAPDH, MATK, NADH and RPOB. However, prolonged exposure (30 days) could decrease gene expression of the genes studied. For qPCR assays, the primers designed for ATP1, COX2, GAPDH and MATK genes showed high efficiency. In addition, the GAPDH, ATP1, NADH and COX2 genes showed high stability and could be recommended as potential reference genes for gene expression assays in Vaccinium.
Collapse
Affiliation(s)
- Francisca Valenzuela
- Centro de Biotecnología en Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Ave San Miguel 3605, Talca 3466706, Chile
| | - Vivían D’Afonseca
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad Católica del Maule, Ave San Miguel 3605, Talca 3466706, Chile
| | - Ricardo Hernández
- Centro de Biotecnología en Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Ave San Miguel 3605, Talca 3466706, Chile
- Doctorado en Biotecnología Traslacional. Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Ave San Miguel 3605, Talca 3466706, Chile
| | - Aleydis Gómez
- Centro de Biotecnología en Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Ave San Miguel 3605, Talca 3466706, Chile
| | - Ariel D. Arencibia
- Centro de Biotecnología en Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Ave San Miguel 3605, Talca 3466706, Chile
| |
Collapse
|
29
|
Wang Z, Li Y, Sun P, Zhu M, Wang D, Lu Z, Hu H, Xu R, Zhang J, Ma J, Liu J, Yang Y. A high-quality Buxus austro-yunnanensis (Buxales) genome provides new insights into karyotype evolution in early eudicots. BMC Biol 2022; 20:216. [PMID: 36195948 PMCID: PMC9533543 DOI: 10.1186/s12915-022-01420-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Eudicots are the most diverse group of flowering plants that compromise five well-defined lineages: core eudicots, Ranunculales, Proteales, Trochodendrales, and Buxales. However, the phylogenetic relationships between these five lineages and their chromosomal evolutions remain unclear, and a lack of high-quality genome analyses for Buxales has hindered many efforts to address this knowledge gap. RESULTS Here, we present a high-quality chromosome-level genome of Buxus austro-yunnanensis (Buxales). Our phylogenomic analyses revealed that Buxales and Trochodendrales are genetically similar and classified as sisters. Additionally, both are sisters to the core eudicots, while Ranunculales was found to be the first lineage to diverge from these groups. Incomplete lineage sorting and hybridization were identified as the main contributors to phylogenetic discordance (34.33%) between the lineages. In fact, B. austro-yunnanensis underwent only one whole-genome duplication event, and collinear gene phylogeny analyses suggested that separate independent polyploidizations occurred in the five eudicot lineages. Using representative genomes from these five lineages, we reconstructed the ancestral eudicot karyotype (AEK) and generated a nearly gapless karyotype projection for each eudicot species. Within core eudicots, we recovered one common chromosome fusion event in asterids and malvids, respectively. Further, we also found that the previously reported fused AEKs in Aquilegia (Ranunculales) and Vitis (core eudicots) have different fusion positions, which indicates that these two species have different karyotype evolution histories. CONCLUSIONS Based on our phylogenomic and karyotype evolution analyses, we revealed the likely relationships and evolutionary histories of early eudicots. Ultimately, our study expands genomic resources for early-diverging eudicots.
Collapse
Affiliation(s)
- Zhenyue Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Ying Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Pengchuan Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mingjia Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Dandan Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Zhiqiang Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Hongyin Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Renping Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jianxiang Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Yongzhi Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
| |
Collapse
|
30
|
Grover CE, Forsythe ES, Sharbrough J, Miller ER, Conover JL, DeTar RA, Chavarro C, Arick MA, Peterson DG, Leal-Bertioli SCM, Sloan DB, Wendel JF. Variation in cytonuclear expression accommodation among allopolyploid plants. Genetics 2022; 222:iyac118. [PMID: 35951749 PMCID: PMC9526054 DOI: 10.1093/genetics/iyac118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cytonuclear coevolution is a common feature among plants, which coordinates gene expression and protein products between the nucleus and organelles. Consequently, lineage-specific differences may result in incompatibilities between the nucleus and cytoplasm in hybrid taxa. Allopolyploidy is also a common phenomenon in plant evolution. The hybrid nature of allopolyploids may result in cytonuclear incompatibilities, but the massive nuclear redundancy created during polyploidy affords additional avenues for resolving cytonuclear conflict (i.e. cytonuclear accommodation). Here we evaluate expression changes in organelle-targeted nuclear genes for 6 allopolyploid lineages that represent 4 genera (i.e. Arabidopsis, Arachis, Chenopodium, and Gossypium) and encompass a range in polyploid ages. Because incompatibilities between the nucleus and cytoplasm could potentially result in biases toward the maternal homoeolog and/or maternal expression level, we evaluate patterns of homoeolog usage, expression bias, and expression-level dominance in cytonuclear genes relative to the background of noncytonuclear expression changes and to the diploid parents. Although we find subsets of cytonuclear genes in most lineages that match our expectations of maternal preference, these observations are not consistent among either allopolyploids or categories of organelle-targeted genes. Our results indicate that cytonuclear expression evolution may be subtle and variable among genera and genes, likely reflecting a diversity of mechanisms to resolve nuclear-cytoplasmic incompatibilities in allopolyploid species.
Collapse
Affiliation(s)
- Corrinne E Grover
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Evan S Forsythe
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joel Sharbrough
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| | - Emma R Miller
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Justin L Conover
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Rachael A DeTar
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Carolina Chavarro
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
| | - Mark A Arick
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Soraya C M Leal-Bertioli
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jonathan F Wendel
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
31
|
Morphological, Transcriptome, and Hormone Analysis of Dwarfism in Tetraploids of Populus alba × P. glandulosa. Int J Mol Sci 2022; 23:ijms23179762. [PMID: 36077160 PMCID: PMC9456051 DOI: 10.3390/ijms23179762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022] Open
Abstract
Breeding for dwarfism is an important approach to improve lodging resistance. Here, we performed comparative analysis of the phenotype, transcriptome, and hormone contents between diploids and tetraploids of poplar 84K (Populus alba × P. glandulosa). Compared with diploids, the indole-3-acetic acid (IAA) and gibberellin (GA3) contents were increased, whereas the jasmonic acid (JA) and abscisic acid (ABA) contents were decreased in tetraploids. RNA-sequencing revealed that differentially expressed genes (DEGs) in leaves of tetraploids were mainly involved in plant hormone pathways. Most DEGs associated with IAA and GA promotion of plant growth and development were downregulated, whereas most DEGs associated with ABA and JA promotion of plant senescence were upregulated. Weighted gene co-expression network analysis indicated that certain transcription factors may be involved in the regulation of genes involved in plant hormone pathways. Thus, the altered expression of some genes in the plant hormone pathways may lead to a reduction in IAA and GA contents, as well as an elevation in ABA and JA contents, resulting in the dwarfing of tetraploids. The results show that polyploidization is a complex biological process affected by multiple plant hormone signals, and it provides a foundation for further exploration of the mechanism of tetraploids dwarfing in forest trees.
Collapse
|
32
|
Sabooni N, Gharaghani A. Induced polyploidy deeply influences reproductive life cycles, related phytochemical features, and phytohormonal activities in blackberry species. FRONTIERS IN PLANT SCIENCE 2022; 13:938284. [PMID: 36035697 PMCID: PMC9412943 DOI: 10.3389/fpls.2022.938284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
In some cases, polyploidy is an important phenomenon in the evolution of fruit crops. Polyploidy can be used in fruit breeding programs to develop varieties with higher yields and better fruit quality, as well as better adaptation to adverse environmental conditions. In this study, three wild species of blackberry were subjected to different degrees of induced polyploidy, and the effects of which were evaluated on morphological, physiological, and phytohormonal traits. With the aim of gaining a deep insight into the generative phase of plant growth and development, different levels of induced polyploidy were evaluated on the three blackberry species, i.e., Rubus persicus Bioss. (2x, 4x, and 8x), R. caesius L. (2x and 4x), and R. hirtus Schreb. (2x and 4x). The results showed that the polyploid plants performed significantly better than their diploid counterparts in terms of morphological traits such as flower count per spike and berry weight, as well as biochemical traits such as total soluble solids in the leaves. Induced polyploidy increased berry weight and drupe count per fruit. Microscopic examinations revealed a smaller number of viable pollen in the polyploids, compared to the diploids. Electron microscopy showed that the octaploid R. persicus had larger conical cells on the flower surface, compared to the diploid R. persicus. Correlation analysis showed that the ratio of indoleacetic acid to jasmonic acid changed synergistically with the total soluble solids in the leaves during the fruit set. The ploidy level correlated significantly with the number of pistils, leaf green index, total soluble solids in the leaves, and glucose content in floral nectar. Overall, induced polyploidy allowed Rubus to develop advantageous traits that can benefit future breeding programs and expand reproductive research in blackberries.
Collapse
|
33
|
Eriksson MC, Mandáková T, McCann J, Temsch EM, Chase MW, Hedrén M, Weiss-Schneeweiss H, Paun O. Repeat Dynamics across Timescales: A Perspective from Sibling Allotetraploid Marsh Orchids (Dactylorhiza majalis s.l.). Mol Biol Evol 2022; 39:msac167. [PMID: 35904928 PMCID: PMC9366187 DOI: 10.1093/molbev/msac167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
To provide insights into the fate of transposable elements (TEs) across timescales in a post-polyploidization context, we comparatively investigate five sibling Dactylorhiza allotetraploids (Orchidaceae) formed independently and sequentially between 500 and 100K generations ago by unidirectional hybridization between diploids D. fuchsii and D. incarnata. Our results first reveal that the paternal D. incarnata genome shows a marked increased content of LTR retrotransposons compared to the maternal species, reflected in its larger genome size and consistent with a previously hypothesized bottleneck. With regard to the allopolyploids, in the youngest D. purpurella both genome size and TE composition appear to be largely additive with respect to parents, whereas for polyploids of intermediate ages we uncover rampant genome expansion on a magnitude of multiple entire genomes of some plants such as Arabidopsis. The oldest allopolyploids in the series are not larger than the intermediate ones. A putative tandem repeat, potentially derived from a non-autonomous miniature inverted-repeat TE (MITE) drives much of the genome dynamics in the allopolyploids. The highly dynamic MITE-like element is found in higher proportions in the maternal diploid, D. fuchsii, but is observed to increase in copy number in both subgenomes of the allopolyploids. Altogether, the fate of repeats appears strongly regulated and therefore predictable across multiple independent allopolyploidization events in this system. Apart from the MITE-like element, we consistently document a mild genomic shock following the allopolyploidizations investigated here, which may be linked to their relatively large genome sizes, possibly associated with strong selection against further genome expansions.
Collapse
Affiliation(s)
- Mimmi C Eriksson
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
- Vienna Graduate School of Population Genetics, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Terezie Mandáková
- Plant Cytogenomics Research Group, CEITEC−Central−European Institute of Technology, Masaryk University, Brno 62500, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Jamie McCann
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Eva M Temsch
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Mark W Chase
- Royal Botanic Gardens Kew, London TW9 3AE, United Kingdom
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| | - Mikael Hedrén
- Department of Biology, University of Lund, Sölvegatan 37, SE-223 62 Lund, Sweden
| | - Hanna Weiss-Schneeweiss
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| |
Collapse
|
34
|
Dong Y, Hu G, Grover CE, Miller ER, Zhu S, Wendel JF. Parental legacy versus regulatory innovation in salt stress responsiveness of allopolyploid cotton (Gossypium) species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:872-887. [PMID: 35686631 PMCID: PMC9540634 DOI: 10.1111/tpj.15863] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Polyploidy provides an opportunity for evolutionary innovation and species diversification, especially under stressful conditions. In allopolyploids, the conditional dynamics of homoeologous gene expression can be either inherited from ancestral states pre-existing in the parental diploids or novel upon polyploidization, the latter potentially permitting a wider range of phenotypic responses to stresses. To gain insight into regulatory mechanisms underlying the diversity of salt resistance in Gossypium species, we compared global transcriptomic responses to modest salinity stress in two allotetraploid (AD-genome) cotton species, Gossypium hirsutum and G. mustelinum, relative to their model diploid progenitors (A-genome and D-genome). Multivariate and pairwise analyses of salt-responsive changes revealed a profound alteration of gene expression for about one third of the transcriptome. Transcriptional responses and associated functional implications of salt acclimation varied across species, as did species-specific coexpression modules among species and ploidy levels. Salt responsiveness in both allopolyploids was strongly biased toward the D-genome progenitor. A much lower level of transgressive downregulation was observed in the more salt-tolerant G. mustelinum than in the less tolerant G. hirsutum. By disentangling inherited effects from evolved responses, we show that expression biases that are not conditional upon salt stress approximately equally reflect parental legacy and regulatory novelty upon allopolyploidization, whereas stress-responsive biases are predominantly novel, or evolved, in allopolyploids. Overall, our work suggests that allopolyploid cottons acquired a wide range of stress response flexibility relative to their diploid ancestors, most likely mediated by complex suites of duplicated genes and regulatory factors.
Collapse
Affiliation(s)
- Yating Dong
- Department of AgronomyZhejiang UniversityHangzhouZhejiang310 053China
- Department of Ecology, Evolution, and Organismal Biology (EEOB), Bessey HallIowa State UniversityAmesIA50011USA
| | - Guanjing Hu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang455 000China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhen518 120China
| | - Corrinne E. Grover
- Department of Ecology, Evolution, and Organismal Biology (EEOB), Bessey HallIowa State UniversityAmesIA50011USA
| | - Emma R. Miller
- Department of Ecology, Evolution, and Organismal Biology (EEOB), Bessey HallIowa State UniversityAmesIA50011USA
| | - Shuijin Zhu
- Department of AgronomyZhejiang UniversityHangzhouZhejiang310 053China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology (EEOB), Bessey HallIowa State UniversityAmesIA50011USA
| |
Collapse
|
35
|
Lei W, Wang Z, Cao M, Zhu H, Wang M, Zou Y, Han Y, Wang D, Zheng Z, Li Y, Liu B, Ru D. Chromosome-level genome assembly and characterization of Sophora Japonica. DNA Res 2022; 29:6573451. [PMID: 35466378 PMCID: PMC9154292 DOI: 10.1093/dnares/dsac009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
Sophora japonica is a medium-size deciduous tree belonging to Leguminosae family and famous for its high ecological, economic and medicinal value. Here, we reveal a draft genome of S. japonica, which was ∼511.49 Mb long (contig N50 size of 17.34 Mb) based on Illumina, Nanopore and Hi-C data. We reliably assembled 110 contigs into 14 chromosomes, representing 91.62% of the total genome, with an improved N50 size of 31.32 Mb based on Hi-C data. Further investigation identified 271.76 Mb (53.13%) of repetitive sequences and 31,000 protein-coding genes, of which 30,721 (99.1%) were functionally annotated. Phylogenetic analysis indicates that S. japonica separated from Arabidopsis thaliana and Glycine max ∼107.53 and 61.24 million years ago, respectively. We detected evidence of species-specific and common-legume whole-genome duplication events in S. japonica. We further found that multiple TF families (e.g. BBX and PAL) have expanded in S. japonica, which might have led to its enhanced tolerance to abiotic stress. In addition, S. japonica harbours more genes involved in the lignin and cellulose biosynthesis pathways than the other two species. Finally, population genomic analyses revealed no obvious differentiation among geographical groups and the effective population size continuously declined since 2 Ma. Our genomic data provide a powerful comparative framework to study the adaptation, evolution and active ingredients biosynthesis in S. japonica. More importantly, our high-quality S. japonica genome is important for elucidating the biosynthesis of its main bioactive components, and improving its production and/or processing.
Collapse
Affiliation(s)
- Weixiao Lei
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Zefu Wang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Man Cao
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Hui Zhu
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Min Wang
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yi Zou
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yunchun Han
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Dandan Wang
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Zeyu Zheng
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Ying Li
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Bingbing Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
- To whom correspondence should be addressed. Tel. 13880788291. (D.R.); Tel. 13880788291. (B.L.)
| | - Dafu Ru
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou 730000, China
- To whom correspondence should be addressed. Tel. 13880788291. (D.R.); Tel. 13880788291. (B.L.)
| |
Collapse
|
36
|
Wu W, Guo W, Ni G, Wang L, Zhang H, Ng WL. Expression Level Dominance and Homeolog Expression Bias Upon Cold Stress in the F1 Hybrid Between the Invasive Sphagneticola trilobata and the Native S. calendulacea in South China, and Implications for Its Invasiveness. Front Genet 2022; 13:833406. [PMID: 35664338 PMCID: PMC9160872 DOI: 10.3389/fgene.2022.833406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
The role of hybridization is significant in biological invasion, and thermotolerance is a trait critical to range expansions. The South American Sphagneticola trilobata is now widespread in South China, threatening the native S. calendulacea by competition and hybridization. Furthermore, upon formation, their F1 hybrid can quickly replace both parents. In this study, the three taxa were used as a model to investigate the consequences of hybridization on cold tolerance, particularly the effect of subgenome dominance in the hybrid. Upon chilling treatments, physiological responses and transcriptome profiles were compared across different temperature points to understand their differential responses to cold. While both parents showed divergent responses, the hybrid’s responses showed an overall resemblance to S. calendulacea, but the contribution of homeolog expression bias to cold stress was not readily evident in the F1 hybrid possibly due to inherent bias that comes with the sampling location. Our findings provided insights into the role of gene expression in differential cold tolerance, and further contribute to predicting the invasive potential of other hybrids between S. trilobata and its congeners around the world.
Collapse
Affiliation(s)
- Wei Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wei Guo
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Guangyan Ni
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Longyuan Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hui Zhang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wei Lun Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia
- *Correspondence: Wei Lun Ng,
| |
Collapse
|
37
|
Li M, Wang F, Ma J, Liu H, Ye H, Zhao P, Wang J. Comprehensive Evolutionary Analysis of CPP Genes in Brassica napus L. and Its Two Diploid Progenitors Revealing the Potential Molecular Basis of Allopolyploid Adaptive Advantage Under Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:873071. [PMID: 35548281 PMCID: PMC9085292 DOI: 10.3389/fpls.2022.873071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Allopolyploids exist widely in nature and have strong environmental adaptability. The typical allopolyploid Brassica napus L. is a widely cultivated crop, but whether it is superior to its diploid progenitors in abiotic stress resistance and the key genes that may be involved are not fully understood. Cystein-rich polycomb-like protein (CPP) genes encode critical transcription factors involved in the response of abiotic stress, including salt stress. To explore the potential molecular basis of allopolyploid adaptation to salt stress, we comprehensively analyzed the characteristics and salt stress response of the CPP genes in B. napus and its two diploid progenitors in this study. We found some molecular basis that might be associated with the adaptability of B. napus, including the expansion of the CPP gene family, the acquisition of introns by some BnCPPs, and abundant cis-acting elements upstream of BnCPPs. We found two duplication modes (whole genome duplication and transposed duplication) might be the main reasons for the expansion of CPP gene family in B. napus during allopolyploidization. CPP gene expression levels and several physiological indexes were changed in B. napus and its diploid progenitors after salt stress, suggesting that CPP genes might play important roles in the response of salt stress. We found that some BnCPPs might undergo new functionalization or subfunctionalization, and some BnCPPs also show biased expression, which might contribute to the adaptation of B. napus under saline environment. Compared with diploid progenitors, B. napus showed stronger physiological responses, and BnCPP gene expression also showed higher changes after salt stress, indicating that the allopolyploid B. napus had an adaptive advantage under salt stress. This study could provide evidence for the adaptability of polyploid and provide important clues for the study of the molecular mechanism of salt stress resistance in B. napus.
Collapse
Affiliation(s)
- Mengdi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fan Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiayu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Wang Z, Yang J, Cheng F, Li P, Xin X, Wang W, Yu Y, Zhang D, Zhao X, Yu S, Zhang F, Dong Y, Su T. Subgenome dominance and its evolutionary implications in crop domestication and breeding. HORTICULTURE RESEARCH 2022; 9:uhac090. [PMID: 35873727 PMCID: PMC9297153 DOI: 10.1093/hr/uhac090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 05/29/2023]
Abstract
Polyploidization or whole-genome duplication (WGD) is a well-known speciation and adaptation mechanism in angiosperms, while subgenome dominance is a crucial phenomenon in allopolyploids, established following polyploidization. The dominant subgenomes contribute more to genome evolution and homoeolog expression bias, both of which confer advantages for short-term phenotypic adaptation and long-term domestication. In this review, we firstly summarize the probable mechanistic basis for subgenome dominance, including the effects of genetic [transposon, genetic incompatibility, and homoeologous exchange (HE)], epigenetic (DNA methylation and histone modification), and developmental and environmental factors on this evolutionary process. We then move to Brassica rapa, a typical allopolyploid with subgenome dominance. Polyploidization provides the B. rapa genome not only with the genomic plasticity for adapting to changeable environments, but also an abundant genetic basis for morphological variation, making it a representative species for subgenome dominance studies. According to the 'two-step theory', B. rapa experienced genome fractionation twice during WGD, in which most of the genes responding to the environmental cues and phytohormones were over-retained, enhancing subgenome dominance and consequent adaption. More than this, the pangenome of 18 B. rapa accessions with different morphotypes recently constructed provides further evidence to reveal the impacts of polyploidization and subgenome dominance on intraspecific diversification in B. rapa. Above and beyond the fundamental understanding of WGD and subgenome dominance in B. rapa and other plants, however, it remains elusive why subgenome dominance has tissue- and spatiotemporal-specific features and could shuffle between homoeologous regions of different subgenomes by environments in allopolyploids. We lastly propose acceleration of the combined application of resynthesized allopolyploids, omics technology, and genome editing tools to deepen mechanistic investigations of subgenome dominance, both genetic and epigenetic, in a variety of species and environments. We believe that the implications of genomic and genetic basis of a variety of ecologically, evolutionarily, and agriculturally interesting traits coupled with subgenome dominance will be uncovered and aid in making new discoveries and crop breeding.
Collapse
Affiliation(s)
| | | | | | - Peirong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Xiaoyun Xin
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Weihong Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Yangjun Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Deshuang Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Xiuyun Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Fenglan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | | | | |
Collapse
|
39
|
Quan C, Chen G, Li S, Jia Z, Yu P, Tu J, Shen J, Yi B, Fu T, Dai C, Ma C. Transcriptome shock in interspecific F1 allotriploid hybrids between Brassica species. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2336-2353. [PMID: 35139197 DOI: 10.1093/jxb/erac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Interspecific hybridization drives the evolution of angiosperms and can be used to introduce novel alleles for important traits or to activate heterosis in crop breeding. Hybridization brings together gene expression networks from two different species, potentially causing global alterations of gene expression in the F1 plants which is called 'transcriptome shock'. Here, we explored such a transcriptome shock in allotriploid Brassica hybrids. We generated interspecific F1 allotriploid hybrids between the allotetraploid species Brassica napus and three accessions of the diploid species Brassica rapa. RNA-seq of the F1 hybrids and the parental plants revealed that 26.34-30.89% of genes were differentially expressed between the parents. We also analyzed expression level dominance and homoeolog expression bias between the parents and the F1 hybrids. The expression-level dominance biases of the Ar, An, and Cn subgenomes was genotype and stage dependent, whereas significant homoeolog expression bias was observed among three subgenomes from different parents. Furthermore, more genes were involved in trans regulation than in cis regulation in allotriploid F1 hybrids. Our findings provide new insights into the transcriptomic responses of cross-species hybrids and hybrids showing heterosis, as well as a new method for promoting the breeding of desirable traits in polyploid Brassica species.
Collapse
Affiliation(s)
- Chengtao Quan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Guoting Chen
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Sijia Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibo Jia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Pugang Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
40
|
Li M, Hou L, Zhang C, Yang W, Liu X, Zhao H, Pang X, Li Y. Genome-Wide Identification of Direct Targets of ZjVND7 Reveals the Putative Roles of Whole-Genome Duplication in Sour Jujube in Regulating Xylem Vessel Differentiation and Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:829765. [PMID: 35185994 PMCID: PMC8854171 DOI: 10.3389/fpls.2022.829765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/12/2022] [Indexed: 06/02/2023]
Abstract
The effects of whole-genome duplication span multiple levels. Previous study reported that the autotetraploid sour jujube exhibited superior drought tolerance than diploid. However, the difference in water transport system between diploids and autotetraploids and its mechanism remain unclear. Here, we found the number of xylem vessels and parenchyma cells in autotetraploid sour jujube increased to nearly twice that of diploid sour jujube, which may be closely related to the differences in xylem vessel differentiation-related ZjVND7 targets between the two ploidy types. Although the five enriched binding motifs are different, the most reliable motif in both diploid and autotetraploid sour jujube was CTTNAAG. Additionally, ZjVND7 targeted 236 and 321 genes in diploids and autotetraploids, respectively. More identified targeted genes of ZjVND7 were annotated to xylem development, secondary wall synthesis, cell death, cell division, and DNA endoreplication in autotetraploids than in diploids. SMR1 plays distinct roles in both proliferating and differentiated cells. Under drought stress, the binding signal of ZjVND7 to ZjSMR1 was stronger in autotetraploids than in diploids, and the fold-changes in the expression of ZjVND7 and ZjSMR1 were larger in the autotetraploids than in the diploids. These results suggested that the targeted regulation of ZjVND7 on ZjSMR1 may play valuable roles in autotetraploids in the response to drought stress. We hypothesized that the binding of ZjVND7 to ZjSMR1 might play a role in cell division and transdifferentiation from parenchyma cells to vessels in the xylem. This regulation could prolong the cell cycle and regulate endoreplication in response to drought stress and abscisic acid, which may be stronger in polyploids.
Collapse
Affiliation(s)
- Meng Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Lu Hou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Chenxing Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Weicong Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xinru Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Hanqing Zhao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xiaoming Pang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Yingyue Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
41
|
Fu H, Zhao J, Ren Z, Yang K, Wang C, Zhang X, Elesawi IE, Zhang X, Xia J, Chen C, Lu P, Chen Y, Liu H, Yu G, Liu B. Interfered chromosome pairing at high temperature promotes meiotic instability in autotetraploid Arabidopsis. PLANT PHYSIOLOGY 2022; 188:1210-1228. [PMID: 34927688 PMCID: PMC8825311 DOI: 10.1093/plphys/kiab563] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/04/2021] [Indexed: 05/03/2023]
Abstract
Changes in environmental temperature affect multiple meiotic processes in flowering plants. Polyploid plants derived from whole-genome duplication (WGD) have enhanced genetic plasticity and tolerance to environmental stress but face challenges in organizing and segregating doubled chromosome sets. In this study, we investigated the impact of increased environmental temperature on male meiosis in autotetraploid Arabidopsis (Arabidopsis thaliana). Under low to mildly increased temperatures (5°C-28°C), irregular chromosome segregation universally occurred in synthetic autotetraploid Columbia-0 (Col-0). Similar meiotic lesions occurred in autotetraploid rice (Oryza sativa L.) and allotetraploid canola (Brassica napus cv Westar), but not in evolutionarily derived hexaploid wheat (Triticum aestivum). At extremely high temperatures, chromosome separation and tetrad formation became severely disordered due to univalent formation caused by the suppression of crossing-over. We found a strong correlation between tetravalent formation and successful chromosome pairing, both of which were negatively correlated with temperature elevation, suggesting that increased temperature interferes with crossing-over predominantly by impacting homolog pairing. We also showed that loading irregularities of axis proteins ASY1 and ASY4 co-localize on the chromosomes of the syn1 mutant and the heat-stressed diploid and autotetraploid Col-0, revealing that heat stress affects the lateral region of synaptonemal complex (SC) by impacting the stability of the chromosome axis. Moreover, we showed that chromosome axis and SC in autotetraploid Col-0 are more sensitive to increased temperature than those in diploid Arabidopsis. Taken together, our data provide evidence suggesting that WGD negatively affects the stability and thermal tolerance of meiotic recombination in newly synthetic autotetraploid Arabidopsis.
Collapse
Affiliation(s)
- Huiqi Fu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jiayi Zhao
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ziming Ren
- College of Agriculture and Biotechnology, Zhejiang University, Zhejiang 310058, China
| | - Ke Yang
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Chong Wang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiaohong Zhang
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ibrahim Eid Elesawi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Xianhua Zhang
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jing Xia
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, College of Life Science, Guizhou University, Guiyang 550025, China
| | - Ping Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongxing Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Guanghui Yu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Bing Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
- Author for communication:
| |
Collapse
|
42
|
Yuan J, Sun H, Wang Y, Li L, Chen S, Jiao W, Jia G, Wang L, Mao J, Ni Z, Wang X, Song Q. Open chromatin interaction maps reveal functional regulatory elements and chromatin architecture variations during wheat evolution. Genome Biol 2022; 23:34. [PMID: 35073966 PMCID: PMC8785527 DOI: 10.1186/s13059-022-02611-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Bread wheat (Triticum aestivum) is an allohexaploid that is generated by two subsequent allopolyploidization events. The large genome size (16 Gb) and polyploid complexity impede our understanding of how regulatory elements and their interactions shape chromatin structure and gene expression in wheat. The open chromatin enrichment and network Hi-C (OCEAN-C) is a powerful antibody-independent method to detect chromatin interactions between open chromatin regions throughout the genome. RESULTS Here we generate open chromatin interaction maps for hexaploid wheat and its tetraploid and diploid relatives using OCEAN-C. The anchors of chromatin loops show high chromatin accessibility and are concomitant with several active histone modifications, with 67% of them interacting with multiple loci. Binding motifs of various transcription factors are significantly enriched in the hubs of open chromatin interactions (HOCIs). The genes linked by HOCIs represent higher expression level and lower coefficient expression variance than the genes linked by other loops, which suggests HOCIs may coordinate co-expression of linked genes. Thousands of interchromosomal loops are identified, while limited interchromosomal loops (0.4%) are identified between homoeologous genes in hexaploid wheat. Moreover, we find structure variations contribute to chromatin interaction divergence of homoeologs and chromatin topology changes between different wheat species. The genes with discrepant chromatin interactions show expression alteration in hexaploid wheat compared with its tetraploid and diploid relatives. CONCLUSIONS Our results reveal open chromatin interactions in different wheat species, which provide new insights into the role of open chromatin interactions in gene expression during the evolution of polyploid wheat.
Collapse
Affiliation(s)
- Jingya Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Haojie Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Yijin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Lulu Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Shiting Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Wu Jiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Guanghong Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Longfei Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Junrong Mao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
43
|
Li M, Hu M, Xiao Y, Wu X, Wang J. The activation of gene expression and alternative splicing in the formation and evolution of allopolyploid Brassica napus. HORTICULTURE RESEARCH 2022; 9:uhab075. [PMID: 35043208 PMCID: PMC8923814 DOI: 10.1093/hr/uhab075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Allopolyploids contain two or more sets of subgenomes. To establish a compatible relationship between subgenomes, a series of gene expression changes occurred in allopolyploids. What evolutionary changes of transcripts have taken place in Brassica napus during the early establishment and subsequent evolution was a fascinating scientific question. Here, we study this issue using a set of materials (natural, resynthesized B. napus and their progenitors/parents) by long-read RNA sequencing technology. The results showed that more genes were up-regulated in resynthesized B. napus compared with its two parents, and more up-regulated expressed genes were observed in natural B. napus compared with resynthesized B. napus. The presence of up-regulation genes in organism may help it adapt to the influence of "genomic shock" and cope with natural environment. Isoforms are produced from precursor mRNAs by alternative splicing (AS) events, and more than 60% of novel isoforms were identified in all materials, which could improve the reference genome information of B. napus. We found that the isoform numbers, the number of genes potentially involved in AS and alternative polyadenylation increased in B. napus after evolution, which may involve in the adaptation of plants to natural environment. In addition, all identified isoforms were functional annotated by searching 7 databases. In general, this study could improve our overall understanding of the full-length transcriptome of B. napus, and help us recognize the significant gene expression changes and isoform abundance changes occurred in allopolyploid B. napus during evolution.
Collapse
Affiliation(s)
- Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Meimei Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yafang Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of CAAS, Wuhan 430062, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
44
|
Genome-Wide Identification and Characterization of the RCI2 Gene Family in Allotetraploid Brassica napus Compared with Its Diploid Progenitors. Int J Mol Sci 2022; 23:ijms23020614. [PMID: 35054810 PMCID: PMC8775908 DOI: 10.3390/ijms23020614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are suitable for studying the problems associated with polyploidization. As an important anti-stress protein, RCI2 proteins widely exist in various tissues of plants, and are crucial to plant growth, development, and stress response. In this study, the RCI2 gene family was comprehensively identified and analyzed, and 9, 9, and 24 RCI2 genes were identified in B. rapa, B. oleracea, and B. napus, respectively. Phylogenetic analysis showed that all of the identified RCI2 genes were divided into two groups, and further divided into three subgroups. Ka/Ks analysis showed that most of the identified RCI2 genes underwent a purifying selection after the duplication events. Moreover, gene structure analysis showed that the structure of RCI2 genes is largely conserved during polyploidization. The promoters of the RCI2 genes in B. napus contained more cis-acting elements, which were mainly involved in plant development and growth, plant hormone response, and stress responses. Thus, B. napus might have potential advantages in some biological aspects. In addition, the changes of RCI2 genes during polyploidization were also discussed from the aspects of gene number, gene structure, gene relative location, and gene expression, which can provide reference for future polyploidization analysis.
Collapse
|
45
|
Ji M, Sun K, Fang H, Zhuang Z, Chen H, Chen Q, Cao Z, Wang Y, Ditta A, Khan MKR, Wang K, Wang B. Genome-wide identification and characterization of the CLASP_N gene family in upland cotton ( Gossypium hirsutum L.). PeerJ 2022; 10:e12733. [PMID: 35036102 PMCID: PMC8734470 DOI: 10.7717/peerj.12733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/12/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cytoplasmic linker-associated proteins (CLASPs) are tubule proteins that can bind to microtubules and participate in regulating the structure and function of microtubules, which significantly affects the development and growth of plants. These proteins have been identified in Arabidopsis; however, little research has been performed in upland cotton. METHODS In this study, the whole genome of the CLASP_N family was analyzed to provide theoretical support for the function of this gene family in the development of upland cotton fiber. Bioinformatics was used to analyze the family characteristics of CLASP_N in upland cotton, such as member identification, sequence characteristics, conserved domain structure and coevolutionary relationships. Real-time fluorescent quantitative PCR (qRT-PCR) was used to clarify the expression pattern of the upland cotton CLASP_N gene family in cotton fiber. RESULTS At the genome-wide level, we identified 16 upland cotton CLASP_N genes. A chromosomal localization analysis revealed that these 16 genes were located on 13 chromosomes. The motif results showed that all CLASP_N proteins have the CLASP_N domain. Gene structure analysis showed that the structure and length of exons and introns were consistent in the subgroups. In the evolutionary analysis with other species, the gene family clearly diverged from the other species in the evolutionary process. A promoter sequence analysis showed that this gene family contains a large number of cis-acting elements related to a variety of plant hormones. qRT-PCR was used to clarify the expression pattern of the upland cotton CLASP_N gene family in cotton fiber and leaves, and Gh210800 was found to be highly expressed in the later stages of fiber development. The results of this study provide a foundation for further research on the molecular role of the CLASP_N genes in cotton fiber development.
Collapse
Affiliation(s)
- Meijun Ji
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Kangtai Sun
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Hui Fang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Zhimin Zhuang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Haodong Chen
- Cotton Sciences Research Institute of Hunan/ National Hybrid Cotton Research Promotion Center, Changde, Hunan, China
| | - Qi Chen
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Ziyi Cao
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Yiting Wang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Allah Ditta
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Muhammad Kashif Riaz Khan
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
46
|
Ma X, Zhang Z, Li G, Gou X, Bian Y, Zhao Y, Wang B, Lang M, Wang T, Xie K, Liu X, Liu B, Gong L. Spatial and Temporal Transcriptomic Heredity and Asymmetry in an Artificially Constructed Allotetraploid Wheat (AADD). FRONTIERS IN PLANT SCIENCE 2022; 13:887133. [PMID: 35651770 PMCID: PMC9150853 DOI: 10.3389/fpls.2022.887133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/08/2022] [Indexed: 05/15/2023]
Abstract
Polyploidy, or whole-genome duplication (WGD), often induces dramatic changes in gene expression due to "transcriptome shock. " However, questions remain about how allopolyploidy (the merging of multiple nuclear genomes in the same nucleus) affects gene expression within and across multiple tissues and developmental stages during the initial foundation of allopolyploid plants. Here, we systematically investigated the immediate effect of allopolyploidy on gene expression variation in an artificial allopolyploidy system consisting of a constructed allotetraploid wheat (AADD genome, accession AT2) and its diploid progenitors Triticum urartu and Aegilops tauschii. We performed comprehensive RNA sequencing of 81 samples from different genotypes, tissues, and developmental stages. First, we found that intrinsic interspecific differences between the diploid parents played a major role in establishing the expression architecture of the allopolyploid. Nonetheless, allopolyploidy per se also induced dramatic and asymmetric patterns of differential gene expression between the subgenomes, and genes from the D subgenome exhibited a more drastic response. Second, analysis of homoeolog expression bias (HEB) revealed that the D subgenome exhibited significant expression bias and that de novo-generated HEB was attributed mainly to asymmetrical differential gene expression. Homoeolog-specific expression (HSE) analyses showed that the cis-only regulatory pattern was predominant in AT2, reflecting significant divergence between the parents. Co-expression network analysis revealed that homoeolog expression connectivity (HEC) was significantly correlated with sequence divergence in cis elements between subgenomes. Interestingly, allopolyploidy-induced reconstruction of network modules was also associated with different HSE patterns. Finally, a transcriptome atlas of spike development demonstrated that the phenotypic similarity of AT2 to T. urartu may be attributed to the combination of relatively stable expression of A-subgenome genes and drastic downregulation of their D-subgenome homoeologs. These findings provide a broad, multidimensional characterization of allopolyploidy-induced transcriptomic responses and suggest that allopolyploidy can have immediate and complex regulatory effects on the expression of nuclear genes.
Collapse
Affiliation(s)
- Xintong Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Guo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiaowan Gou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yao Bian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- School of Life Sciences, Liaoning Normal University, Dalian, China
| | - Yue Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Man Lang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Kun Xie
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiaoming Liu
- Jia Sixie College of Agriculture, Weifang University of Science and Technology, Shouguang, China
- *Correspondence: Xiaoming Liu
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- Bao Liu
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- Lei Gong
| |
Collapse
|
47
|
Tossi VE, Martínez Tosar LJ, Laino LE, Iannicelli J, Regalado JJ, Escandón AS, Baroli I, Causin HF, Pitta-Álvarez SI. Impact of polyploidy on plant tolerance to abiotic and biotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:869423. [PMID: 36072313 PMCID: PMC9441891 DOI: 10.3389/fpls.2022.869423] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/25/2022] [Indexed: 05/04/2023]
Abstract
Polyploidy, defined as the coexistence of three or more complete sets of chromosomes in an organism's cells, is considered as a pivotal moving force in the evolutionary history of vascular plants and has played a major role in the domestication of several crops. In the last decades, improved cultivars of economically important species have been developed artificially by inducing autopolyploidy with chemical agents. Studies on diverse species have shown that the anatomical and physiological changes generated by either natural or artificial polyploidization can increase tolerance to abiotic and biotic stresses as well as disease resistance, which may positively impact on plant growth and net production. The aim of this work is to review the current literature regarding the link between plant ploidy level and tolerance to abiotic and biotic stressors, with an emphasis on the physiological and molecular mechanisms responsible for these effects, as well as their impact on the growth and development of both natural and artificially generated polyploids, during exposure to adverse environmental conditions. We focused on the analysis of those types of stressors in which more progress has been made in the knowledge of the putative morpho-physiological and/or molecular mechanisms involved, revealing both the factors in common, as well as those that need to be addressed in future research.
Collapse
Affiliation(s)
- Vanesa E. Tossi
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Leandro J. Martínez Tosar
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Departamento de Biotecnología, Alimentos, Agro y Ambiental (DEBAL), Facultad de Ingeniería y Ciencias Exactas, Universidad Argentina de la Empresa (UADE), Buenos Aires, Argentina
| | - Leandro E. Laino
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Jesica Iannicelli
- Instituto Nacional de Tecnología, Agropecuaria (INTA), Instituto de Genética “Ewald A. Favret”, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental (IBBEA), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - José Javier Regalado
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Alejandro Salvio Escandón
- Instituto Nacional de Tecnología, Agropecuaria (INTA), Instituto de Genética “Ewald A. Favret”, Buenos Aires, Argentina
| | - Irene Baroli
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental (IBBEA), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Irene Baroli,
| | - Humberto Fabio Causin
- Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Humberto Fabio Causin,
| | - Sandra Irene Pitta-Álvarez
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- *Correspondence: Sandra Irene Pitta-Álvarez, ;
| |
Collapse
|
48
|
Liu Z, Xiong T, Zhao Y, Qiu B, Chen H, Kang X, Yang J. Genome-wide characterization and analysis of Golden 2-Like transcription factors related to leaf chlorophyll synthesis in diploid and triploid Eucalyptus urophylla. FRONTIERS IN PLANT SCIENCE 2022; 13:952877. [PMID: 35968152 PMCID: PMC9366356 DOI: 10.3389/fpls.2022.952877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/30/2022] [Indexed: 05/02/2023]
Abstract
Golden 2-Like (GLK) transcription factors play a crucial role in chloroplast development and chlorophyll synthesis in many plant taxa. To date, no systematic analysis of GLK transcription factors in tree species has been conducted. In this study, 40 EgrGLK genes in the Eucalyptus grandis genome were identified and divided into seven groups based on the gene structure and motif composition. The EgrGLK genes were mapped to 11 chromosomes and the distribution of genes on chromosome was uneven. Phylogenetic analysis of GLK proteins between E. grandis and other species provided information for the high evolutionary conservation of GLK genes among different species. Prediction of cis-regulatory elements indicated that the EgrGLK genes were involved in development, light response, and hormone response. Based on the finding that the content of chlorophyll in mature leaves was the highest, and leaf chlorophyll content of triploid Eucalyptus urophylla was higher than that of the diploid control, EgrGLK expression pattern in leaves of triploid and diploid E. urophylla was examined by means of transcriptome analysis. Differential expression of EgrGLK genes in leaves of E. urophylla of different ploidies was consistent with the trend in chlorophyll content. To further explore the relationship between EgrGLK expression and chlorophyll synthesis, co-expression networks were generated, which indicated that EgrGLK genes may have a positive regulatory relationship with chlorophyll synthesis. In addition, three EgrGLK genes that may play an important role in chlorophyll synthesis were identified in the co-expression networks. And the prediction of miRNAs targeting EgrGLK genes showed that miRNAs might play an important role in the regulation of EgrGLK gene expression. This research provides valuable information for further functional characterization of GLK genes in Eucalyptus.
Collapse
Affiliation(s)
- Zhao Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Tao Xiong
- Guangxi Dongmen Forest Farm, Chongzuo, China
| | | | - Bingfa Qiu
- Guangxi Dongmen Forest Farm, Chongzuo, China
| | - Hao Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Xiangyang Kang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Jun Yang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
- *Correspondence: Jun Yang,
| |
Collapse
|
49
|
Zhang L, He J, He H, Wu J, Li M. Genome-wide unbalanced expression bias and expression level dominance toward Brassica oleracea in artificially synthesized intergeneric hybrids of Raphanobrassica. HORTICULTURE RESEARCH 2021; 8:246. [PMID: 34848691 PMCID: PMC8633066 DOI: 10.1038/s41438-021-00672-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 05/04/2023]
Abstract
Raphanobrassica (RrRrCrCr, 2n = 4x = 36), which is generated by distant hybridization between the maternal parent Raphanus sativus (RsRs, 2n = 2x = 18) and the paternal parent Brassica oleracea (C°C°, 2n = 2x = 18), displays intermediate silique phenotypes compared to diploid progenitors. However, the hybrid shares much more similarities in silique phenotypes with those of B. oleracea than those of R. sativus. Strikingly, the silique of Raphanobrassica is obviously split into two parts. To investigate the gene expression patterns behind these phenomena, transcriptome analysis was performed on the upper, middle, and lower sections of pods (RCsiu, RCsim, and RCsil), seeds in the upper and lower sections of siliques (RCseu and RCsel) from Raphanobrassica, whole pods (Rsi and Csi) and all seeds in the siliques (Rse and Cse) from R. sativus and B. oleracea. Transcriptome shock was observed in all five aforementioned tissues of Raphanobrassica. Genome-wide unbalanced biased expression and expression level dominance were also discovered, and both of them were toward B. oleracea in Raphanobrassica, which is consistent with the observed phenotypes. The present results reveal the global gene expression patterns of different sections of siliques of Raphanobrassica, pods, and seeds of B. oleracea and R. sativus, unraveling the tight correlation between global gene expression patterns and phenotypes of the hybrid and its parents.
Collapse
Affiliation(s)
- Libin Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianjie He
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongsheng He
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiangsheng Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Maoteng Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
50
|
Huang Y, Liu Y, Liu C, Birchler JA, Han F. Prospects and challenges of epigenomics in crop improvement. Genes Genomics 2021; 44:251-257. [PMID: 34837632 DOI: 10.1007/s13258-021-01187-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND The advent of high-throughput epigenome mapping techniques has ushered in a new era of multiomics with powerful tools now available to map and record genomic output at different levels. Integrating the different components of the epigenome from these multiomics measures allows investigations of cis-regulatory elements on a genome-scale. Mapping of chromatin state, chromatin accessibility dynamics, and higher-order chromatin structure enables a new level of understanding of cell fate determination, identity and function in normal growth and development, disease resistance, and yield. OBJECTIVE In this paper, the recent advances in epigenomics research of rice, maize, and wheat are reviewed, and the development trends of epigenomics of major crops in the coming years are projected. METHODS We highlight the role of epigenomics in regulating growth and development and identifying potential distal cis-regulatory elements in three major crops, and discuss the prospects and challenges for new epigenetics-mediated breeding technologies in crop improvement. CONCLUSION In this review, we summarize and analyze recent epigenomic advances in three major crops epigenomics and discuss possibilities and challenges for future research in the field.
Collapse
Affiliation(s)
- Yuhong Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - James A Birchler
- Division of Biological Sciences, University of Missouri at Columbia, Columbia, MO, 65211, USA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|