1
|
Jin T, Li Y, Sun X, Li Y, Xiao Z, Wang W, Yu J, Yang L. DNA Demethylase ROS1 Interferes with DNA Methylation and Activates Stress Response Genes in Plants Infected with Beet Severe Curly Top Virus. Int J Mol Sci 2025; 26:2807. [PMID: 40141447 PMCID: PMC11943037 DOI: 10.3390/ijms26062807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
DNA methylation is one mechanism of epigenetic regulation in plants. Small interfering RNAs (siRNAs) targeted endogenous genes and caused the promoters to be hypermethylated, namely RNA-directed DNA methylation (RdDM). Repressor of silencing 1 (ROS1) is an active DNA demethylase involved in the regulation of DNA methylation. This study indicates that ROS1-mediated DNA demethylation plays important roles in regulating the expression of these stress response genes and in response to biotic stresses. Further experiments confirmed that the expression level of the ROS1 gene was significantly upregulated in A. thaliana plants infected with beet severe curly top virus (BSCTV). Moreover, the DNA sequencing results demonstrated that ROS1 interferes with DNA methylation of repeat regions in the promoters of ACD6, GSTF14, and ACO3 in A. thaliana plants infected with BSCTV. These findings reveal the epigenetic mechanisms by which ROS1 regulates the expression of the stress response genes, thereby improving the adaptability of plants to biotic stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liping Yang
- The School of Life Sciences, Jilin Normal University, Siping 136000, China; (T.J.); (Y.L.); (X.S.); (Y.L.); (Z.X.); (W.W.); (J.Y.)
| |
Collapse
|
2
|
Akgul B, Aydinoglu F. Evaluation of zma-miR408 and its target genes function on maize (Zea mays) leaf growth response to cold stress by VIGS-based STTM approach. Gene 2025; 938:149161. [PMID: 39674290 DOI: 10.1016/j.gene.2024.149161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
miR408 is a conserved plant miRNA family that is known to regulate genes involved in copper metabolism. However, the function of miR408 in maize leaf growth regulation under cold stress isn't defined. In this study, endogenous maize miR408 was transiently silenced by using virus-induced gene silencing (VIGS) combined with short tandem target mimic (STTM) approaches. To this end, STTM-miR408a/b was designed, synthesized, and applied to maize seedlings. Subsequently, STTM-miR408a/b (STTM) and mock-treated (M) seedlings were subjected to cold stress (C) and the growth response of the seedlings was monitored. Finally, STTM-miR408a/b-treatment successfully downregulated the expression of endogenous mir408a/b and upregulated their putative targets Basic Blue Protein (BBP) and Blue Copper Protein (BCP) antagonistically in the STTM and STTM_C groups compared to M and M_C groups. On the other hand, their putative target Laccase (LAC22) gene was upregulated in the STTM group compared to the M group, but there were no significant expression differences between the M_C and STTM_C groups. The elongation rate of the STTM-miR408a/b-treated second and third leaves was reduced by 10% and 19% resulting in 19% and 11% shortening, respectively. Furthermore, the activity of catalase (CAT) and glutathione reductase (GR) was decreased by 57% in STTM, M_C, and STTM_C, and 29% and 28% in the M_C and STTM_C groups and ascorbate peroxidase (APX) was increased by 15% in M_C and STTM_C groups, respectively. These findings illuminated the maize leaf growth response to cold via regulation of expression of miR408 and its target genes and antioxidant system.
Collapse
Affiliation(s)
- Burak Akgul
- Molecular Biology and Genetics Department, Gebze Technical University, Kocaeli, Turkey
| | - Fatma Aydinoglu
- Molecular Biology and Genetics Department, Gebze Technical University, Kocaeli, Turkey.
| |
Collapse
|
3
|
Kharbikar LL, Shanware AS, Nandanwar SK, Saharan MS, Nayak S, Martha SR, Marathe A, Dixit A, Mishra NS, Edwards SG. An in - silico perspective on the role of methylation-related genes in wheat - Fusarium graminearum interaction. 3 Biotech 2025; 15:12. [PMID: 39698303 PMCID: PMC11649892 DOI: 10.1007/s13205-024-04179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/16/2024] [Indexed: 12/20/2024] Open
Abstract
Wheat (Triticum aestivum L.), a vital cereal crop, provides over 20% of the total calories and protein in the human diet. However, Fusarium graminearum, the pathogen responsible for Fusarium head blight (FHB), poses a significant threat to wheat production by contaminating grains with harmful mycotoxins. Although Fusarium head blight is currently a minor disease in India, it has the potential to cause substantial yield and quality losses, especially if rain occurs during mid-anthesis. Epigenetic mechanisms, including DNA methylation and sRNA accumulation, are crucial in regulating gene expression and enabling plants to adapt to environmental stresses. Previous studies investigating wheat's response to F. graminearum through transcriptome analysis of lines differing in 2DL FHB resistance QTLs did not fully explore the role of methylation-related genes. To address this gap, we re-analyzed RNA-Seq data to uncover the response of methylation-related genes to pathogen infection. Our analysis revealed that 16 methylation-related genes were down-regulated in the susceptible line 2-2890, with Gene Ontology (GO) analysis linking these genes to L-methionine salvage from methylthioadenosine (GO:0019509), S-adenosylmethionine metabolism (GO:0033353), and steroid biosynthesis (GO:0006694) (p-value = 0.001). Co-expression analysis identified a negative correlation (-0.82) between methionine S-methyl-transferase (MSM; TraesCS1A02G013800) and 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR; TraesCS5A02G269300). HMGCR also showed negative correlations (-1.00) with genes encoding pathogenesis-related, detoxification proteins, and xylanase inhibitors, with GO associating these genes with methionine S-methyl transferase activity (p-value = 0.001). In pathogen-inoculated samples, the elevated expression of HMGCR (Log2 3.25-4.00) and the suppression of MSM (Log2 1.25-3.25) suggest a dual role in stress response and susceptibility, potentially linked to disrupted DNA methylation and isoprenoid biosynthesis pathways. Furthermore, 43 genes down-regulated by miR9678 were associated with biotic stimulus responses and glucan endo-1,4-beta-glucanase activity, highlighting the complex regulatory networks involved in wheat's defense against F. graminearum. This study reveals the roles of methylation-related genes in susceptible wheat lines 2-2890, providing new insights into their potential impact on pathogen response and plant susceptibility. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04179-0.
Collapse
Affiliation(s)
- Lalit L. Kharbikar
- ICAR - National Institute of Biotic Stress Management, Baronda, Raipur, 493 225 Chhattisgarh India
- Rajiv Gandhi Biotechnology Centre, RTM Nagpur University, Nagpur, 440 034 M.S India
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110 067 India
- Agriculture and Environment Department, Harper Adams University, Newport Shropshire, TF10 8NB UK
| | - Arti S. Shanware
- Rajiv Gandhi Biotechnology Centre, RTM Nagpur University, Nagpur, 440 034 M.S India
| | - Shweta K. Nandanwar
- ICAR - National Institute of Biotic Stress Management, Baronda, Raipur, 493 225 Chhattisgarh India
| | - Mahender S. Saharan
- Division of Plant Pathology, ICAR – Indian Agricultural Research Institute, Pusa, New Delhi 110 012 India
| | - Sarmistha Nayak
- ICAR - National Institute of Biotic Stress Management, Baronda, Raipur, 493 225 Chhattisgarh India
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar, 751 003 India
| | - Sushma Rani Martha
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar, 751 003 India
| | - Ashish Marathe
- ICAR - National Institute of Biotic Stress Management, Baronda, Raipur, 493 225 Chhattisgarh India
| | - Anil Dixit
- ICAR - National Institute of Biotic Stress Management, Baronda, Raipur, 493 225 Chhattisgarh India
| | - Neeti Sanan Mishra
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110 067 India
| | - Simon G. Edwards
- Agriculture and Environment Department, Harper Adams University, Newport Shropshire, TF10 8NB UK
| |
Collapse
|
4
|
Aslam HMU, Chikh-Ali M, Zhou XG, Zhang S, Harris S, Chanda AK, Riaz H, Hameed A, Aslam S, Killiny N. Epigenetic modulation of fungal pathogens: a focus on Magnaporthe oryzae. Front Microbiol 2024; 15:1463987. [PMID: 39529673 PMCID: PMC11550944 DOI: 10.3389/fmicb.2024.1463987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Epigenetics has emerged as a potent field of study for understanding the factors influencing the effectiveness of human disease treatments and for identifying alternations induced by pathogens in host plants. However, there has been a paucity of research on the epigenetic control of the proliferation and pathogenicity of fungal plant pathogens. Fungal plant pathogens such as Magnaporthe oryzae, a significant threat to global rice production, provide an important model for exploring how epigenetic mechanisms govern fungal proliferation and virulence. In M. oryzae, epigenetic alterations, such as DNA methylation, histone modification, and non-coding RNAs, regulate gene expression patterns that influence the pathogen's ability to infect its host. These modifications can enhance fungal adaptability, allowing the pathogen to survive in diverse environments and evade host immune responses. Our primary objective is to provide a comprehensive review of the existing epigenetic research on M. oryzae and shed light on how these changes influence the pathogen's lifecycle, its ability to invade host tissues, and the overall severity of the disease. We begin by examining the epigenetic alterations occurring in M. oryzae and their contributions to the virulence and proliferation of the fungus. To advance our understanding of epigenetic mechanisms in M. oryzae and similar plant diseases, we emphasize the need to address unanswered questions and explore future research directions. This information is crucial for developing new antifungal treatments that target epigenetic pathways, which could lead to improved disease management.
Collapse
Affiliation(s)
- Hafiz Muhammad Usman Aslam
- Department of Plant Pathology, San Luis Valley Research Center, Colorado State University, Fort Collins, CO, United States
- Department of Plant Pathology, Institute of Plant Protection, MNS-University of Agriculture, Multan, Pakistan
| | - Mohamad Chikh-Ali
- Department of Plant Pathology, San Luis Valley Research Center, Colorado State University, Fort Collins, CO, United States
| | - Xin-Gen Zhou
- Texas A&M AgriLife Research Center, Beaumont, TX, United States
| | - Shouan Zhang
- Department of Plant Pathology, Tropical Research and Education Center, University of Florida, IFAS, Homestead, FL, United States
| | - Steven Harris
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, United States
| | - Ashok K. Chanda
- Department of Plant Pathology and Northwest Research and Outreach Center, University of Minnesota, St. Paul, Crookston, MN, United States
| | - Hasan Riaz
- Department of Plant Pathology, Institute of Plant Protection, MNS-University of Agriculture, Multan, Pakistan
| | - Akhtar Hameed
- Department of Plant Pathology, Institute of Plant Protection, MNS-University of Agriculture, Multan, Pakistan
| | - Saba Aslam
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL, United States
| |
Collapse
|
5
|
Nityagovsky NN, Kiselev KV, Suprun AR, Dubrovina AS. Impact of Exogenous dsRNA on miRNA Composition in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2335. [PMID: 39204771 PMCID: PMC11360658 DOI: 10.3390/plants13162335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
The application of double-stranded RNAs (dsRNAs) to plant surfaces has emerged as a promising tool for manipulating gene expression in plants and pathogens, offering new opportunities for crop improvement. While research has shown the capability of exogenous dsRNAs to silence genes, the full spectrum of their impact, particularly on the intricate network of microRNAs (miRNAs), remains largely unexplored. Here, we show that the exogenous application of chalcone synthase (CHS)-encoding dsRNA to the rosette leaves of Arabidopsis thaliana induced extensive alterations in the miRNA profile, while non-specific bacterial neomycin phosphotransferase II (NPTII) dsRNA had a minimal effect. Two days after treatment, we detected 60 differentially expressed miRNAs among the 428 miRNAs found in the A. thaliana genome. A total of 59 miRNAs were significantly changed after AtCHS-dsRNA treatment compared with water and NPTII-dsRNA, and 1 miRNA was significantly changed after AtCHS-dsRNA and NPTII-dsRNA compared with the water control. A comprehensive functional enrichment analysis revealed 17 major GO categories enriched among the genes potentially targeted by the up- and downregulated miRNAs. These categories included processes such as aromatic compound biosynthesis (a pathway directly related to CHS activity), heterocycle biosynthesis, RNA metabolism and biosynthesis, DNA transcription, and plant development. Several predicted targets of upregulated and downregulated miRNAs, including APETALA2, SCL27, SOD1, GRF1, AGO2, PHB, and PHV, were verified by qRT-PCR. The analysis showed a negative correlation between the expression of miRNAs and the expression of their predicted targets. Thus, exogenous plant gene-specific dsRNAs induce substantial changes in the plant miRNA composition, ultimately affecting the expression of a wide range of genes. These findings have profound implications for our understanding of the effects of exogenously induced RNA interference, which can have broader effects beyond targeted mRNA degradation, affecting the expression of other genes through miRNA regulation.
Collapse
Affiliation(s)
| | | | | | - Alexandra S. Dubrovina
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia; (N.N.N.); (A.R.S.)
| |
Collapse
|
6
|
Song J, Liu G, Jin C, Pei W, Zhang B, Jia B, Wu M, Ma J, Liu J, Zhang J, Yu J. Co-localization and analysis of miR477b with fiber length quantitative trait loci in cotton. PHYSIOLOGIA PLANTARUM 2024; 176:e14303. [PMID: 38698659 DOI: 10.1111/ppl.14303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 05/05/2024]
Abstract
Cotton is an important cash crop for the textile industry. However, the understanding of natural genetic variation of fiber elongation in relation to miRNA is lacking. A miRNA gene (miR477b) was found to co-localize with a previously mapped fiber length (FL) quantitative trait locus (QTL). The miR477b was differentially expressed during fiber elongation between two backcross inbred lines (BILs) differing in FL and its precursor sequences. Bioinformatics and qRT-PCR analysis were further used to analyse the miRNA genes, which could produce mature miR477b. Cotton plants with virus-induced gene silencing (VIGS) constructs to over-express the allele of miR477b from the BIL with longer fibers had significantly longer fibers as compared with negative control plants, while the VIGS plants with suppressed miRNA expression had significantly shorter fibers. The expression level of the target gene (DELLA) and related genes (RDL1 and EXPA1 for DELLA through HOX3 protein) in the two BILs and/or the VIGS plants were generally congruent, as expected. This report represents one of the first comprehensive studies to integrate QTL linkage mapping and physical mapping of small RNAs with both small and mRNA transcriptome analysis, followed by VIGS, to identify candidate small RNA genes affecting the natural variation of fiber elongation in cotton.
Collapse
Affiliation(s)
- Jikun Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Guoyuan Liu
- School of Life Science, Nantong University, Nantong, China
| | - Changyin Jin
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
- State Key Laboratory of Cotton Biology, Henan University, Kaifeng, P.R. China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Bingbing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Bing Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Man Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Jianjiang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, USA
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| |
Collapse
|
7
|
Abstract
The eukaryotic nucleus displays a variety of membraneless compartments with distinct biomolecular composition and specific cellular activities. Emerging evidence indicates that protein-based liquid-liquid phase separation (LLPS) plays an essential role in the formation and dynamic regulation of heterochromatin compartmentalization. This feature is especially conspicuous at the pericentric heterochromatin domains. In this review, we will describe our understanding of heterochromatin organization and LLPS. In addition, we will highlight the increasing importance of multivalent weak homo- and heteromolecular interactions in LLPS-mediated heterochromatin compartmentalization in the complex environment inside living cells.
Collapse
Affiliation(s)
- Hui Zhang
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Weihua Qin
- Human Biology and Bioimaging, Faculty of Biology, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Hector Romero
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Heinrich Leonhardt
- Human Biology and Bioimaging, Faculty of Biology, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - M. Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany,CONTACT M. Cristina Cardoso Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287Darmstadt, Germany
| |
Collapse
|
8
|
Hazra S, Moulick D, Mukherjee A, Sahib S, Chowardhara B, Majumdar A, Upadhyay MK, Yadav P, Roy P, Santra SC, Mandal S, Nandy S, Dey A. Evaluation of efficacy of non-coding RNA in abiotic stress management of field crops: Current status and future prospective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107940. [PMID: 37738864 DOI: 10.1016/j.plaphy.2023.107940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/23/2023] [Accepted: 08/04/2023] [Indexed: 09/24/2023]
Abstract
Abiotic stresses are responsible for the major losses in crop yield all over the world. Stresses generate harmful ROS which can impair cellular processes in plants. Therefore, plants have evolved antioxidant systems in defence against the stress-induced damages. The frequency of occurrence of abiotic stressors has increased several-fold due to the climate change experienced in recent times and projected for the future. This had particularly aggravated the risk of yield losses and threatened global food security. Non-coding RNAs are the part of eukaryotic genome that does not code for any proteins. However, they have been recently found to have a crucial role in the responses of plants to both abiotic and biotic stresses. There are different types of ncRNAs, for example, miRNAs and lncRNAs, which have the potential to regulate the expression of stress-related genes at the levels of transcription, post-transcription, and translation of proteins. The lncRNAs are also able to impart their epigenetic effects on the target genes through the alteration of the status of histone modification and organization of the chromatins. The current review attempts to deliver a comprehensive account of the role of ncRNAs in the regulation of plants' abiotic stress responses through ROS homeostasis. The potential applications ncRNAs in amelioration of abiotic stresses in field crops also have been evaluated.
Collapse
Affiliation(s)
- Swati Hazra
- Sharda School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh 201310, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | | | - Synudeen Sahib
- S. S. Cottage, Njarackal, P.O.: Perinad, Kollam, 691601, Kerala, India.
| | - Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Arunachal Pradesh 792103, India.
| | - Arnab Majumdar
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, West Bengal 741246, India.
| | - Munish Kumar Upadhyay
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| | - Poonam Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Priyabrata Roy
- Department of Molecular Biology and Biotechnology, University of Kalyani, West Bengal 741235, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | - Sayanti Mandal
- Department of Biotechnology, Dr. D. Y. Patil Arts, Commerce & Science College (affiliated to Savitribai Phule Pune University), Sant Tukaram Nagar, Pimpri, Pune, Maharashtra-411018, India.
| | - Samapika Nandy
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India; Department of Botany, Vedanta College, 33A Shiv Krishna Daw Lane, Kolkata-700054, India.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India.
| |
Collapse
|
9
|
Xi F, Zhang Z, Wu L, Wang B, Gao P, Chen K, Zhao L, Gao J, Gu L, Zhang H. Insight into gene expression associated with DNA methylation and small RNA in the rhizome-root system of Moso bamboo. Int J Biol Macromol 2023; 248:125921. [PMID: 37499707 DOI: 10.1016/j.ijbiomac.2023.125921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Moso bamboo (Phyllostachys edulis), typically a monopodial scattering bamboo, is famous for its rapid growth. The rhizome-root system of Moso bamboo plays a crucial role in its clonal growth and spatial distribution. However, few studies have focused on rhizome-root systems. Here we collected LBs, RTs, and RGFNSs, the most important parts of the rhizome-root system, to study the molecular basis of the rapid growth of Moso bamboo due to epigenetic changes, such as DNA modifications and small RNAs. The angle of the shoot apical meristem of LB gradually decreased with increasing distance from the mother plant, and the methylation levels of LB were much higher than those of RT and RGFNS. 24 nt small RNAs and mCHH exhibited similar distribution patterns in transposable elements, suggesting a potential association between these components. The miRNA abundance of LB gradually increased with increasing distance from the mother plant, and a negative correlation was observed between gene expression levels and mCG and mCHG levels in the gene body. This study paves the way for further exploring the effects of epigenetic factors on the physiology of Moso bamboo.
Collapse
Affiliation(s)
- Feihu Xi
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeyu Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Wu
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baijie Wang
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengfei Gao
- College of Forestry, Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kai Chen
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liangzhen Zhao
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jian Gao
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, China.
| | - Lianfeng Gu
- College of Forestry, Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hangxiao Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
10
|
Shi S, Zhang S, Wu J, Liu X, Zhang Z. Identification of long non-coding RNAs involved in floral scent of Rosa hybrida. FRONTIERS IN PLANT SCIENCE 2022; 13:996474. [PMID: 36267940 PMCID: PMC9577252 DOI: 10.3389/fpls.2022.996474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) were found to play important roles in transcriptional, post-transcriptional, and epigenetic gene regulation in various biological processes. However, lncRNAs and their regulatory roles remain poorly studied in horticultural plants. Rose is economically important not only for their wide use as garden and cut flowers but also as important sources of natural fragrance for perfume and cosmetics industry, but presently little was known about the regulatory mechanism of the floral scent production. In this paper, a RNA-Seq analysis with strand-specific libraries, was performed to rose flowers in different flowering stages. The scented variety 'Tianmidemeng' (Rosa hybrida) was used as plant material. A total of 13,957 lncRNAs were identified by mining the RNA-Seq data, including 10,887 annotated lncRNAs and 3070 novel lncRNAs. Among them, 10,075 lncRNAs were predicted to possess a total of 29,622 target genes, including 54 synthase genes and 24 transcription factors related to floral scent synthesis. 425 lncRNAs were differentially expressed during the flowering process, among which 19 were differentially expressed among all the three flowering stages. Using weighted correlation network analysis (WGCNA), we correlate the differentially-expressed lncRNAs to synthesis of individual floral scent compounds. Furthermore, regulatory function of one of candidate lncRNAs for floral scent synthesis was verified using VIGS method in the rose. In this study, we were able to show that lncRNAs may play important roles in floral scent production in the rose. This study also improves our understanding of how plants regulate their secondary metabolism by lncRNAs.
Collapse
Affiliation(s)
- Shaochuan Shi
- Vegetable Research Institute, Shandong Academy of Agricultural Science, Jinan, China
| | - Shiya Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Jie Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Hajieghrari B, Farrokhi N. Plant RNA-mediated gene regulatory network. Genomics 2021; 114:409-442. [PMID: 34954000 DOI: 10.1016/j.ygeno.2021.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/21/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
Not all transcribed RNAs are protein-coding RNAs. Many of them are non-protein-coding RNAs in diverse eukaryotes. However, some of them seem to be non-functional and are resulted from spurious transcription. A lot of non-protein-coding transcripts have a significant function in the translation process. Gene expressions depend on complex networks of diverse gene regulatory pathways. Several non-protein-coding RNAs regulate gene expression in a sequence-specific system either at the transcriptional level or post-transcriptional level. They include a significant part of the gene expression regulatory network. RNA-mediated gene regulation machinery is evolutionarily ancient. They well-evolved during the evolutionary time and are becoming much more complex than had been expected. In this review, we are trying to summarizing the current knowledge in the field of RNA-mediated gene silencing.
Collapse
Affiliation(s)
- Behzad Hajieghrari
- Department of Agricultural Biotechnology, College of Agriculture, Jahrom University, Jahrom, Iran.
| | - Naser Farrokhi
- Department of Cell, Molecular Biology Faculty of Life Sciences, Biotechnology, Shahid Beheshti University, G. C Evin, Tehran, Iran.
| |
Collapse
|
12
|
Rashid MM, Vaishnav A, Verma RK, Sharma P, Suprasanna P, Gaur RK. Epigenetic regulation of salinity stress responses in cereals. Mol Biol Rep 2021; 49:761-772. [PMID: 34773178 DOI: 10.1007/s11033-021-06922-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
Cereals are important crops and are exposed to various types of environmental stresses that affect the overall growth and yield. Among the various abiotic stresses, salt stress is a major environmental factor that influences the genetic, physiological, and biochemical responses of cereal crops. Epigenetic regulation which includes DNA methylation, histone modification, and chromatin remodelling plays an important role in salt stress tolerance. Recent studies in rice genomics have highlighted that the epigenetic changes are heritable and therefore can be considered as molecular signatures. An epigenetic mechanism under salinity induces phenotypic responses involving modulations in gene expression. Association between histone modification and altered DNA methylation patterns and differential gene expression has been evidenced for salt sensitivity in rice and other cereal crops. In addition, epigenetics also creates stress memory that helps the plant to better combat future stress exposure. In the present review, we have discussed epigenetic influences in stress tolerance, adaptation, and evolution processes. Understanding the epigenetic regulation of salinity could help for designing salt-tolerant varieties leading to improved crop productivity.
Collapse
Affiliation(s)
- Md Mahtab Rashid
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.,Department of Plant Pathology, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, India
| | - Anukool Vaishnav
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281121, India.,Agroecology and Environment, Agroscope (Reckenholz), 8046, Zürich, Switzerland
| | - Rakesh Kumar Verma
- Department of Biosciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Pradeep Sharma
- Department of Biotechnology, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - P Suprasanna
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - R K Gaur
- Department of Biotechnology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, India.
| |
Collapse
|
13
|
Khanna K, Ohri P, Bhardwaj R. Genetic toolbox and regulatory circuits of plant-nematode associations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:137-146. [PMID: 34038810 DOI: 10.1016/j.plaphy.2021.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Plant-nematode associations are the most imperative area of study that forms the basis to understand their regulatory networks and coordinated functional aspects. Nematodes are highly parasitic organisms known so far, to cause relentless damage towards agricultural crops on a global scale. They pierce the roots of host plants and form neo-plastic feeding structures to extract out resources for their functional development. Moreover, they undergo re-differentiation within plant cells to form giant multi-nucleate feeding structures or syncytium. All these processes are facilitated by numerous transcriptomic, proteomic, metabolomic and epigenetic modifications, that regulate different biological attractions among plants and nematodes. Nevertheless, these mechanisms are quite remarkable and have been explored in the present review. Here, we have shed light on genomic as well as genetic approaches to acquire an effective understanding regarding plant-nematode associations. Transcriptomics have revealed an extensive network to unravel feeding mechanism of nematodes through gene-expression programming of target genes. Also, the regulatory circuits of epigenetic alterations through DNA-methylation, non-coding RNAs and histone modifications very well explain epigenetic profiling within plants. Since decades, research have observed many intricacies to elucidate the dynamic nature of epigenetic modulations in plant-nematode attractions. By this review, we have highlighted the functional aspects of small RNAs in inducing plant-nematode parasitism along with the putative role of miRNAs. These RNAs act as chief genetic elements to mediate the expressional changes in plants through post-transcriptional silencing of various effector proteins as well as transcriptional factors. A pragmatic role of miRNAs in modulating gene expression in nematode infection and feeding site development have also been reviewed. Hence, they have been considered master regulators for functional reprogramming the expression during establishment of feeding sites. We have also encapsulated the advancement of genome-broadened DNA-methylation and untangled the nematode mediated dynamic alterations within plant methylome along with assessing transcriptional activities of various genes and transposons. In particular, we have highlighted the role of effector proteins in stimulating epigenetic changes. Finally, we have emerged towards a molecular-based core understanding about plant-nematode associations.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
14
|
Abdellatef E, Kamal NM, Tsujimoto H. Tuning Beforehand: A Foresight on RNA Interference (RNAi) and In Vitro-Derived dsRNAs to Enhance Crop Resilience to Biotic and Abiotic Stresses. Int J Mol Sci 2021; 22:ijms22147687. [PMID: 34299307 PMCID: PMC8306419 DOI: 10.3390/ijms22147687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
Crop yield is severely affected by biotic and abiotic stresses. Plants adapt to these stresses mainly through gene expression reprogramming at the transcriptional and post-transcriptional levels. Recently, the exogenous application of double-stranded RNAs (dsRNAs) and RNA interference (RNAi) technology has emerged as a sustainable and publicly acceptable alternative to genetic transformation, hence, small RNAs (micro-RNAs and small interfering RNAs) have an important role in combating biotic and abiotic stresses in plants. RNAi limits the transcript level by either suppressing transcription (transcriptional gene silencing) or activating sequence-specific RNA degradation (post-transcriptional gene silencing). Using RNAi tools and their respective targets in abiotic stress responses in many crops is well documented. Many miRNAs families are reported in plant tolerance response or adaptation to drought, salinity, and temperature stresses. In biotic stress, the spray-induced gene silencing (SIGS) provides an intelligent method of using dsRNA as a trigger to silence target genes in pests and pathogens without producing side effects such as those caused by chemical pesticides. In this review, we focus on the potential of SIGS as the most recent application of RNAi in agriculture and point out the trends, challenges, and risks of production technologies. Additionally, we provide insights into the potential applications of exogenous RNAi against biotic stresses. We also review the current status of RNAi/miRNA tools and their respective targets on abiotic stress and the most common responsive miRNA families triggered by stress conditions in different crop species.
Collapse
Affiliation(s)
- Eltayb Abdellatef
- Commission for Biotechnology and Genetic Engineering, National Center for Research, P.O. Box 2404, Khartoum 11111, Sudan;
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan;
- Behavioural and Chemical Ecology Unit, International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi 00100, Kenya
| | - Nasrein Mohamed Kamal
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan;
- Agricultural Research Corporation, P.O. Box 30, Khartoum North 11111, Sudan
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan;
- Correspondence:
| |
Collapse
|
15
|
Li Y, Li J, Chen L, Xu L. The Roles of Long Non-coding RNA in Osteoporosis. Curr Stem Cell Res Ther 2021; 15:639-645. [PMID: 32357819 DOI: 10.2174/1574888x15666200501235735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
The Human Genome Project (HGP) announced in 2001 that it had sequenced the entire human genome, yielding nearly complete human DNA. About 98.5 percent of the human genome has been found to be non-coding sequences. Long non-coding RNA (lncRNA) is a non-coding RNA with a length between 200 and 100,000 nucleotide units. Because of shallow research on lncRNA, it was believed that it had no biological functions, but exists as a by-product of the transcription process. With the development of high-throughput sequencing technology, studies have shown that lncRNA plays important roles in many processes by participating in epigenetics, transcription, translation and protein modification. Current researches have shown that lncRNA also has an important part in the pathogenesis of osteoporosis. Osteoporosis is a common disorder of bone metabolism, also a major medical and socioeconomic challenge worldwide. It is characterized by a systemic reduction in bone mass and microstructure changes, which increases the risk of brittle fractures. It is more common in postmenopausal women and elderly men. However, the roles of lncRNA and relevant mechanisms in osteoporosis remain unclear. Based on this background, we hereby review the roles of lncRNA in osteoporosis, and how it influences the functions of osteoblasts and osteoclasts, providing reference to clinical diagnosis, treatment and prognosis of osteoporosis.
Collapse
Affiliation(s)
- Ying Li
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinglan Li
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Leilei Chen
- Department of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liangliang Xu
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
In Response to Abiotic Stress, DNA Methylation Confers EpiGenetic Changes in Plants. PLANTS 2021; 10:plants10061096. [PMID: 34070712 PMCID: PMC8227271 DOI: 10.3390/plants10061096] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Epigenetics involves the heritable changes in patterns of gene expression determined by developmental and abiotic stresses, i.e., drought, cold, salinity, trace metals, and heat. Gene expression is driven by changes in DNA bases, histone proteins, the biogenesis of ncRNA, and changes in the nucleotide sequence. To cope with abiotic stresses, plants adopt certain changes driven by a sophisticated biological system. DNA methylation is a primary mechanism for epigenetic variation, which can induce phenotypic alterations in plants under stress. Some of the stress-driven changes in plants are temporary, while some modifications may be stable and inheritable to the next generations to allow them to cope with such extreme stress challenges in the future. In this review, we discuss the pivotal role of epigenetically developed phenotypic characteristics in plants as an evolutionary process participating in adaptation and tolerance responses to abiotic and biotic stresses that alter their growth and development. We emphasize the molecular process underlying changes in DNA methylation, differential variation for different species, the roles of non-coding RNAs in epigenetic modification, techniques for studying DNA methylation, and its role in crop improvement in tolerance to abiotic stress (drought, salinity, and heat). We summarize DNA methylation as a significant future research priority for tailoring crops according to various challenging environmental issues.
Collapse
|
17
|
Oelmüller R. Threat at One End of the Plant: What Travels to Inform the Other Parts? Int J Mol Sci 2021; 22:3152. [PMID: 33808792 PMCID: PMC8003533 DOI: 10.3390/ijms22063152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Adaptation and response to environmental changes require dynamic and fast information distribution within the plant body. If one part of a plant is exposed to stress, attacked by other organisms or exposed to any other kind of threat, the information travels to neighboring organs and even neighboring plants and activates appropriate responses. The information flow is mediated by fast-traveling small metabolites, hormones, proteins/peptides, RNAs or volatiles. Electric and hydraulic waves also participate in signal propagation. The signaling molecules move from one cell to the neighboring cell, via the plasmodesmata, through the apoplast, within the vascular tissue or-as volatiles-through the air. A threat-specific response in a systemic tissue probably requires a combination of different traveling compounds. The propagating signals must travel over long distances and multiple barriers, and the signal intensity declines with increasing distance. This requires permanent amplification processes, feedback loops and cross-talks among the different traveling molecules and probably a short-term memory, to refresh the propagation process. Recent studies show that volatiles activate defense responses in systemic tissues but also play important roles in the maintenance of the propagation of traveling signals within the plant. The distal organs can respond immediately to the systemic signals or memorize the threat information and respond faster and stronger when they are exposed again to the same or even another threat. Transmission and storage of information is accompanied by loss of specificity about the threat that activated the process. I summarize our knowledge about the proposed long-distance traveling compounds and discuss their possible connections.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
18
|
Quantitative Epigenetics: A New Avenue for Crop Improvement. EPIGENOMES 2020; 4:epigenomes4040025. [PMID: 34968304 PMCID: PMC8594725 DOI: 10.3390/epigenomes4040025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/24/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
Plant breeding conventionally depends on genetic variability available in a species to improve a particular trait in the crop. However, epigenetic diversity may provide an additional tier of variation. The recent advent of epigenome technologies has elucidated the role of epigenetic variation in shaping phenotype. Furthermore, the development of epigenetic recombinant inbred lines (epi-RILs) in model species such as Arabidopsis has enabled accurate genetic analysis of epigenetic variation. Subsequently, mapping of epigenetic quantitative trait loci (epiQTL) allowed association between epialleles and phenotypic traits. Likewise, epigenome-wide association study (EWAS) and epi-genotyping by sequencing (epi-GBS) have revolutionized the field of epigenetics research in plants. Thus, quantitative epigenetics provides ample opportunities to dissect the role of epigenetic variation in trait regulation, which can be eventually utilized in crop improvement programs. Moreover, locus-specific manipulation of DNA methylation by epigenome-editing tools such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) can potentially facilitate epigenetic based molecular breeding of important crop plants.
Collapse
|
19
|
Abstract
Epigenetic mechanisms play fundamental roles in regulating numerous biological processes in various developmental and environmental contexts. Three highly interconnected epigenetic control mechanisms, including small noncoding RNAs, DNA methylation, and histone modifications, contribute to the establishment of plant epigenetic profiles. During the past decade, a growing body of experimental work has revealed the intricate, diverse, and dynamic roles that epigenetic modifications play in plant-nematode interactions. In this review, I summarize recent progress regarding the functions of small RNAs in mediating plant responses to infection by cyst and root-knot nematodes, with a focus on the functions of microRNAs. I also recapitulate recent advances in genome-wide DNA methylation analysis and discuss how cyst nematodes induce extensive and dynamic changes in the plant methylome that impact the transcriptional activity of genes and transposable elements. Finally, the potential role of nematode effector proteins in triggering such epigenome changes is discussed.
Collapse
Affiliation(s)
- Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA;
| |
Collapse
|
20
|
Sun T, Wang Y, Anwar M, Lou S, Zeng Y, Li H, Hu Z. Short tandem target mimics inhibit Chlamydomonas reinhardtii microRNAs. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Jannesar M, Seyedi SM, Moazzam Jazi M, Niknam V, Ebrahimzadeh H, Botanga C. A genome-wide identification, characterization and functional analysis of salt-related long non-coding RNAs in non-model plant Pistacia vera L. using transcriptome high throughput sequencing. Sci Rep 2020; 10:5585. [PMID: 32221354 PMCID: PMC7101358 DOI: 10.1038/s41598-020-62108-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/09/2020] [Indexed: 11/09/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play crucial roles in regulating gene expression in response to plant stresses. Given the importance regulatory roles of lncRNAs, providing methods for predicting the function of these molecules, especially in non-model plants, is strongly demanded by researchers. Here, we constructed a reference sequence for lncRNAs in P. vera (Pistacia vera L.) with 53220 transcripts. In total, we identified 1909 and 2802 salt responsive lncRNAs in Ghazvini, a salt tolerant cultivar, after 6 and 24 h salt treatment, respectively and 1820 lncRNAs in Sarakhs, a salt sensitive cultivar, after 6 h salt treatment. Functional analysis of these lncRNAs by several hybrid methods, revealed that salt responsive NAT-related lncRNAs associated with transcription factors, CERK1, LEA, Laccase genes and several genes involved in the hormone signaling pathways. Moreover, gene ontology (GO) enrichment analysis of salt responsive target genes related to top five selected lncRNAs showed their involvement in the regulation of ATPase, cation transporter, kinase and UDP-glycosyltransferases genes. Quantitative real-time PCR (qRT-PCR) experiment results of lncRNAs, pre-miRNAs and mature miRNAs were in accordance with our RNA-seq analysis. In the present study, a comparative analysis of differentially expressed lncRNAs and microRNA precursors between salt tolerant and sensitive pistachio cultivars provides valuable knowledge on gene expression regulation under salt stress condition.
Collapse
Affiliation(s)
- Masoomeh Jannesar
- Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyed Mahdi Seyedi
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Maryam Moazzam Jazi
- Research Institute for Endocrine Science (RIES), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Niknam
- Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Hassan Ebrahimzadeh
- Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Christopher Botanga
- Department of Biological Sciences, Chicago State University, Chicago, Illinois, United States of America
| |
Collapse
|
22
|
Yang F, Zhao D, Fan H, Zhu X, Wang Y, Liu X, Duan Y, Xuan Y, Chen L. Functional Analysis of Long Non-Coding RNAs Reveal Their Novel Roles in Biocontrol of Bacteria-Induced Tomato Resistance to Meloidogyne incognita. Int J Mol Sci 2020; 21:ijms21030911. [PMID: 32019153 PMCID: PMC7037896 DOI: 10.3390/ijms21030911] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Root-knot nematodes (RKNs) severely affect plants growth and productivity, and several commercial biocontrol bacteria can improve plants resistance to RKNs. Pseudomonas putida Sneb821 isolate was found to induce tomatoes resistance against Meloidogyne incognita. However, the molecular functions behind induced resistance remains unclear. Long non-coding RNA (lncRNA) is considered to be a new component that regulates the molecular functions of plant immunity. We found lncRNA was involved in Sneb821-induced tomato resistance to M. incognita. Compared with tomato inoculated with M. incognita, high-throughput sequencing showed that 43 lncRNAs were upregulated, while 35 lncRNAs were downregulated in tomatoes previously inoculated with Sneb821. A regulation network of lncRNAs was constructed, and the results indicated that 12 lncRNAs were found to act as sponges of their corresponding miRNAs. By using qRT-PCR and the overexpression vector pBI121, we found the expression of lncRNA44664 correlated with miR396/GRFs (growth-regulating factors) and lncRNA48734 was correlated with miR156/SPL (squamosal promoter-binding protein-like) transcription factors. These observations provided a novel molecular model in biocontrol bacteria-induced tomato resistance to M. incognita.
Collapse
Affiliation(s)
- Fan Yang
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China; (F.Y.); (H.F.); (X.Z.); (Y.D.); (Y.X.)
| | - Dan Zhao
- College of Plant Protection, Jilin Agricultural University, Xincheng Road 2888, Jilin 130118, China;
| | - Haiyan Fan
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China; (F.Y.); (H.F.); (X.Z.); (Y.D.); (Y.X.)
| | - Xiaofeng Zhu
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China; (F.Y.); (H.F.); (X.Z.); (Y.D.); (Y.X.)
| | - Yuanyuan Wang
- College of Biotechnology, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China;
| | - Xiaoyu Liu
- College of Science, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China;
| | - Yuxi Duan
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China; (F.Y.); (H.F.); (X.Z.); (Y.D.); (Y.X.)
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China; (F.Y.); (H.F.); (X.Z.); (Y.D.); (Y.X.)
| | - Lijie Chen
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China; (F.Y.); (H.F.); (X.Z.); (Y.D.); (Y.X.)
- Correspondence: ; Tel.: +86-24-8848-7148
| |
Collapse
|
23
|
Singh S, Singh A, Singh A, Yadav S, Bajaj I, Kumar S, Jain A, Sarkar AK. Role of chromatin modification and remodeling in stem cell regulation and meristem maintenance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:778-792. [PMID: 31793642 DOI: 10.1093/jxb/erz459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
In higher plants, pluripotent stem cells reside in the specialized microenvironment called stem cell niches (SCNs) harbored at the shoot apical meristem (SAM) and root apical meristem (RAM), which give rise to the aerial and underground parts of a plant, respectively. The model plant Arabidopsis thaliana (Arabidopsis) has been extensively studied to decipher the intricate regulatory mechanisms involving some key transcriptions factors and phytohormones that play pivotal roles in stem cell homeostasis, meristem maintenance, and organ formation. However, there is increasing evidence to show the epigenetic regulation of the chromatin architecture, gene expression exerting an influence on an innate balance between the self-renewal of stem cells, and differentiation of the progeny cells to a specific tissue type or organ. Post-translational histone modifications, ATP-dependent chromatin remodeling, and chromatin assembly/disassembly are some of the key features involved in the modulation of chromatin architecture. Here, we discuss the major epigenetic regulators and illustrate their roles in the regulation of stem cell activity, meristem maintenance, and related organ patterning in Arabidopsis.
Collapse
Affiliation(s)
- Sharmila Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Alka Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Archita Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Sandeep Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ishita Bajaj
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Shailendra Kumar
- Amity School of Architecture and Planning, Amity University, Kant Kalwar, Rajasthan, India
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University, Kant Kalwar, Rajasthan, India
| | - Ananda K Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
24
|
Technologies to Address Plant microRNA Functions. CONCEPTS AND STRATEGIES IN PLANT SCIENCES 2020. [DOI: 10.1007/978-3-030-35772-6_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Cavé-Radet A, Giraud D, Lima O, El Amrani A, Aïnouche M, Salmon A. Evolution of small RNA expression following hybridization and allopolyploidization: insights from Spartina species (Poaceae, Chloridoideae). PLANT MOLECULAR BIOLOGY 2020; 102:55-72. [PMID: 31748889 DOI: 10.1007/s11103-019-00931-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
Differential expression of mi-RNAs targeting developmental processes and progressive downregulation of repeat-associated siRNAs following genome merger and genome duplication in the context of allopolyploid speciation in Spartina. The role of small RNAs on gene expression regulation and genome stability is arousing increased interest and is being explored in various plant systems. In spite of prominence of reticulate evolution and polyploidy that affects the evolutionary history of all plant lineages, very few studies analysed RNAi mechanisms with this respect. Here, we explored small RNAs diversity and expression in the context of recent allopolyploid speciation, using the Spartina system, which offers a unique opportunity to explore the immediate changes following hybridization and genome duplication. Small RNA-Seq analyses were conducted on hexaploid parental species (S. alterniflora and S. maritima), their F1 hybrid S. x townsendii, and the neoallododecaploid S. anglica. We identified 594 miRNAs, 2197 miRNA-target genes, and 3730 repeat-associated siRNAs (mostly targeting Class I/Copia-Ivana- Copia-SIRE and LINEs elements). For both mi- and ra-siRNAs, we detected differential expression patterns following genome merger and genome duplication. These misregulations include non-additive expression of miRNAs in the F1 hybrid and additional changes in the allopolyploid targeting developmental processes. Expression of repeat-associated siRNAs indicates a strengthen of transposable element repression during the allopolyploidization process. Altogether, these results confirm the central role small RNAs play in shaping regulatory changes in naturally formed recent allopolyploids.
Collapse
Affiliation(s)
- Armand Cavé-Radet
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR CNRS 6553 ECOBIO, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Delphine Giraud
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR CNRS 6553 ECOBIO, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Oscar Lima
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR CNRS 6553 ECOBIO, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Abdelhak El Amrani
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR CNRS 6553 ECOBIO, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Malika Aïnouche
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR CNRS 6553 ECOBIO, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Armel Salmon
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR CNRS 6553 ECOBIO, Campus de Beaulieu, 35042, Rennes Cedex, France.
| |
Collapse
|
26
|
Sabbione A, Daurelio L, Vegetti A, Talón M, Tadeo F, Dotto M. Genome-wide analysis of AGO, DCL and RDR gene families reveals RNA-directed DNA methylation is involved in fruit abscission in Citrus sinensis. BMC PLANT BIOLOGY 2019; 19:401. [PMID: 31510935 PMCID: PMC6739940 DOI: 10.1186/s12870-019-1998-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/29/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Small RNAs regulate a wide variety of processes in plants, from organ development to both biotic and abiotic stress response. Being master regulators in genetic networks, their biogenesis and action is a fundamental aspect to characterize in order to understand plant growth and development. Three main gene families are critical components of RNA silencing: DICER-LIKE (DCL), ARGONAUTE (AGO) and RNA-DEPENDENT RNA POLYMERASE (RDR). Even though they have been characterized in other plant species, there is no information about these gene families in Citrus sinensis, one of the most important fruit species from both economical and nutritional reasons. While small RNAs have been implicated in the regulation of multiple aspects of plant growth and development, their role in the abscission process has not been characterized yet. RESULTS Using genome-wide analysis and a phylogenetic approach, we identified a total of 13 AGO, 5 DCL and 7 RDR genes. We characterized their expression patterns in root, leaf, flesh, peel and embryo samples using RNA-seq data. Moreover, we studied their role in fruit abscission through gene expression analysis in fruit rind compared to abscission zone from samples obtained by laser capture microdissection. Interestingly, we determined that the expression of several RNA silencing factors are down-regulated in fruit abscission zone, being particularly represented gene components of the RNA-dependent DNA Methylation pathway, indicating that repression of this process is necessary for fruit abscission to take place in Citrus sinensis. CONCLUSIONS The members of these 3 families present characteristic conserved domains and distinct expression patterns. We provide a detailed analysis of the members of these families and improved the annotation of some of these genes based on RNA-seq data. Our data suggests that the RNA-dependent DNA Methylation pathway is involved in the important fruit abscission process in C. sinensis.
Collapse
Affiliation(s)
- Agustín Sabbione
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Argentina
- Laboratorio de Investigaciones en Fisiología y Biología Molecular Vegetal (LIFiBVe), Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucas Daurelio
- Laboratorio de Investigaciones en Fisiología y Biología Molecular Vegetal (LIFiBVe), Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Abelardo Vegetti
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Manuel Talón
- Centre de Genómica, Institut Valencià d’Investigacions Agràries (IVIA), Montcada, València, Spain
| | - Francisco Tadeo
- Centre de Genómica, Institut Valencià d’Investigacions Agràries (IVIA), Montcada, València, Spain
| | - Marcela Dotto
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
27
|
Wang B, Liu J, Chu L, Jing X, Wang H, Guo J, Yi B. Exogenous Promoter Triggers APETALA3 Silencing through RNA-Directed DNA Methylation Pathway in Arabidopsis. Int J Mol Sci 2019; 20:ijms20184478. [PMID: 31514282 PMCID: PMC6770043 DOI: 10.3390/ijms20184478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/16/2022] Open
Abstract
The development of floral organs plays a vital role in plant reproduction. In our research, the APETALA3 (AP3) promoter-transgenic lines showed abnormal developmental phenotypes in stamens and petals. The aim of this study is to understand the molecular mechanisms of the morphological defects in transgenic plants. By performing transgenic analysis, it was found that the AP3-promoted genes and the vector had no relation to the morphological defects. Then, we performed the expression analysis of the class A, B, and C genes. A dramatic reduction of transcript levels of class B genes (AP3 and PISTILLATA) was observed. Additionally, we also analyzed the methylation of the promoters of class B genes and found that the promoter of AP3 was hypermethylated. Furthermore, combining mutations in rdr2-2, drm1/2, and nrpd1b-11 with the AP3-silencing lines rescued the abnormal development of stamens and petals. The expression of AP3 was reactivated and the methylation level of AP3 promoter was also reduced in RdDM-defective AP3-silencing lines. Our results showed that the RdDM pathway contributed to the transcriptional silencing in the transgenic AP3-silencing lines. Moreover, the results revealed that fact that the exogenous fragment of a promoter could trigger the methylation of homologous endogenous sequences, which may be ubiquitous in transgenic plants.
Collapse
Affiliation(s)
- Benqi Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Chu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xue Jing
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Huadong Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Guo
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
28
|
Prakash V, Chakraborty S. Identification of transcription factor binding sites on promoter of RNA dependent RNA polymerases ( RDRs) and interacting partners of RDR proteins through in silico analysis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1055-1071. [PMID: 31402824 PMCID: PMC6656839 DOI: 10.1007/s12298-019-00660-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 12/20/2018] [Accepted: 03/25/2019] [Indexed: 05/14/2023]
Abstract
RNA silencing phenomenon in plants provides resistance to various pathogens and also, it maintains genome integrity. The process of RNA silencing is regulated by diverse proteins, among which RNA dependent RNA polymerases (RDRs) are very crucial for the amplification of small RNAs (sRNAs). Out of various RDR proteins present in plants, role of RDR1, RDR2 and RDR6 for providing resistance against various biotic stresses have been well documented. In contrast, very few information is available regarding the role of RDR3, RDR4 and RDR5 proteins in plant biology and stress response. Furthermore, the regulation of RDRs is not yet known. Here, we have carried out in silico studies for identification of the transcription factor (TF) binding sites on the promoter of RDR1-6 genes of various plant species. Among the TFs predicted to bind on the promoter of RDRs, MYB44, AS1/AS2, WRKY1 are the major one. Furthermore, putative interacting protein partners of RDRs proteins of tomato and rice were also predicted by STRING database which suggests that DCL (Dicer-like) proteins are strong candidate proteins as the interacting partners of RDRs. The knowledge of regulation of RDRs and its interacting protein partners might help in developing resistant plants to biotic stresses.
Collapse
Affiliation(s)
- Ved Prakash
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
29
|
Martinez Palacios P, Jacquemot MP, Tapie M, Rousselet A, Diop M, Remoué C, Falque M, Lloyd A, Jenczewski E, Lassalle G, Chévre AM, Lelandais C, Crespi M, Brabant P, Joets J, Alix K. Assessing the Response of Small RNA Populations to Allopolyploidy Using Resynthesized Brassica napus Allotetraploids. Mol Biol Evol 2019; 36:709-726. [PMID: 30657939 PMCID: PMC6445299 DOI: 10.1093/molbev/msz007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Allopolyploidy, combining interspecific hybridization with whole genome duplication, has had significant impact on plant evolution. Its evolutionary success is related to the rapid and profound genome reorganizations that allow neoallopolyploids to form and adapt. Nevertheless, how neoallopolyploid genomes adapt to regulate their expression remains poorly understood. The hypothesis of a major role for small noncoding RNAs (sRNAs) in mediating the transcriptional response of neoallopolyploid genomes has progressively emerged. Generally, 21-nt sRNAs mediate posttranscriptional gene silencing by mRNA cleavage, whereas 24-nt sRNAs repress transcription (transcriptional gene silencing) through epigenetic modifications. Here, we characterize the global response of sRNAs to allopolyploidy in Brassica, using three independently resynthesized Brassica napus allotetraploids originating from crosses between diploid Brassica oleracea and Brassica rapa accessions, surveyed at two different generations in comparison with their diploid progenitors. Our results suggest an immediate but transient response of specific sRNA populations to allopolyploidy. These sRNA populations mainly target noncoding components of the genome but also target the transcriptional regulation of genes involved in response to stresses and in metabolism; this suggests a broad role in adapting to allopolyploidy. We finally identify the early accumulation of both 21- and 24-nt sRNAs involved in regulating the same targets, supporting a posttranscriptional gene silencing to transcriptional gene silencing shift at the first stages of the neoallopolyploid formation. We propose that reorganization of sRNA production is an early response to allopolyploidy in order to control the transcriptional reactivation of various noncoding elements and stress-related genes, thus ensuring genome stability during the first steps of neoallopolyploid formation.
Collapse
Affiliation(s)
- Paulina Martinez Palacios
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marie-Pierre Jacquemot
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France.,Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Marion Tapie
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Agnès Rousselet
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Mamoudou Diop
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Carine Remoué
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Matthieu Falque
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Andrew Lloyd
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Eric Jenczewski
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Gilles Lassalle
- IGEPP, INRA, Agrocampus Ouest, Univ. Rennes I, Le Rheu, France.,ESE, INRA, Agrocampus Ouest, Rennes, France
| | | | - Christine Lelandais
- IPS2, Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Universités Paris Diderot, Paris Sud and Evry, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Martin Crespi
- IPS2, Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Universités Paris Diderot, Paris Sud and Evry, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Brabant
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Johann Joets
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Karine Alix
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
30
|
New clues into the mechanisms of rice domestication. J Biosci 2019. [DOI: 10.1007/s12038-019-9844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Lloyd JP, Tsai ZTY, Sowers RP, Panchy NL, Shiu SH. A Model-Based Approach for Identifying Functional Intergenic Transcribed Regions and Noncoding RNAs. Mol Biol Evol 2019; 35:1422-1436. [PMID: 29554332 DOI: 10.1093/molbev/msy035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
With advances in transcript profiling, the presence of transcriptional activities in intergenic regions has been well established. However, whether intergenic expression reflects transcriptional noise or activity of novel genes remains unclear. We identified intergenic transcribed regions (ITRs) in 15 diverse flowering plant species and found that the amount of intergenic expression correlates with genome size, a pattern that could be expected if intergenic expression is largely nonfunctional. To further assess the functionality of ITRs, we first built machine learning models using Arabidopsis thaliana as a model that accurately distinguish functional sequences (benchmark protein-coding and RNA genes) and likely nonfunctional ones (pseudogenes and unexpressed intergenic regions) by integrating 93 biochemical, evolutionary, and sequence-structure features. Next, by applying the models genome-wide, we found that 4,427 ITRs (38%) and 796 annotated ncRNAs (44%) had features significantly similar to benchmark protein-coding or RNA genes and thus were likely parts of functional genes. Approximately 60% of ITRs and ncRNAs were more similar to nonfunctional sequences and were likely transcriptional noise. The predictive framework established here provides not only a comprehensive look at how functional, genic sequences are distinct from likely nonfunctional ones, but also a new way to differentiate novel genes from genomic regions with noisy transcriptional activities.
Collapse
Affiliation(s)
- John P Lloyd
- Department of Plant Biology, Michigan State University, East Lansing, MI
| | - Zing Tsung-Yeh Tsai
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Rosalie P Sowers
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA
| | | | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI.,Genetics Program, Michigan State University, East Lansing, MI.,Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI
| |
Collapse
|
32
|
Liu X, Zhao J, Guo HS. IBM1-dependent H3K9 demethylation enables self-silencing of an exogenous silencer for the non-cell autonomous silencing of an endogenous target gene. J Genet Genomics 2019; 46:149-153. [PMID: 30935857 DOI: 10.1016/j.jgg.2019.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/19/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Xiaolan Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
33
|
Rishishwar R, Dasgupta I. Suppressors of RNA silencing encoded by geminiviruses and associated DNA satellites. Virusdisease 2019; 30:58-65. [PMID: 31143832 PMCID: PMC6517462 DOI: 10.1007/s13337-018-0418-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/05/2018] [Indexed: 12/31/2022] Open
Abstract
In plants, RNA silencing provides a major line of defence against viruses. This antiviral immunity involves production of virus-derived small interfering RNAs (vsiRNAs) and results in specific silencing of viruses by vsiRNAs-guided effector complexes. As a counterattack against RNA silencing, many plant viruses encode suppressors of RNA silencing called viral suppressors of RNA silencing (VSRs), which interfere with the silencing pathway by various mechanisms. This review describes various methods that are being used to characterize viral proteins for suppressor function, VSRs found in geminiviruses and associated DNA satellites and their mechanisms of action.
Collapse
Affiliation(s)
- Rashmi Rishishwar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| |
Collapse
|
34
|
Radosavljević I, Bogdanović S, Celep F, Filipović M, Satovic Z, Surina B, Liber Z. Morphological, genetic and epigenetic aspects of homoploid hybridization between Salvia officinalis L. and Salvia fruticosa Mill. Sci Rep 2019; 9:3276. [PMID: 30824783 PMCID: PMC6397195 DOI: 10.1038/s41598-019-40080-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/04/2019] [Indexed: 12/23/2022] Open
Abstract
The inheritance of phenotypic, genetic and epigenetic traits in hybridization events is difficult to predict, as numerous evolutionary, ecological, and genetic factors can play a crucial role in the process of hybridization. In the middle Adriatic island of Vis, we investigated hybridization between Salvia officinalis and S. fruticosa at morphological, genetic and epigenetic levels. SSR results revealed that hybrid individuals were characterized by diploid set of chromosomes suggesting homoploid hybridization. A well-defined group that mostly comprised of F1 generation individuals was detected. For the majority of analysed morphological characteristics, hybrids were placed in-between parental taxa, while at the same time, values of different genetic parameters were mostly higher in hybrids than in parental species. The results revealed a high contrast in the levels of phenotypic variability and epigenetic excitation between parental taxa. Environmental niche modelling confirmed that in the studied location S. officinalis experiences optimal climatological conditions, while S. fruticosa struggles with unsuitable conditions. Very low levels of gene flow between the parental species were detected. In addition, contrasting levels of epigenetic excitation in the studied groups clearly demonstrated the importance of an epigenetic response to an altered environment and confirmed the trans-generational nature of the epigenetic changes.
Collapse
Affiliation(s)
- Ivan Radosavljević
- University of Zagreb, Faculty of Science, Department of Biology, Division of Botany, Marulićev trg 9A, HR, 10000, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, HR, 10000, Zagreb, Croatia
| | - Sandro Bogdanović
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, HR, 10000, Zagreb, Croatia
- University of Zagreb, Faculty of Agriculture, Department of Agricultural Botany, Svetošimunska cesta 25, HR, 10000, Zagreb, Croatia
| | - Ferhat Celep
- Department of Biology, Faculty of Arts and Sciences, Kırıkkale University, Kırıkkale, Turkey
| | - Maja Filipović
- University of Zagreb, Faculty of Science, Department of Biology, Division of Botany, Marulićev trg 9A, HR, 10000, Zagreb, Croatia
| | - Zlatko Satovic
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, HR, 10000, Zagreb, Croatia
- University of Zagreb, Faculty of Agriculture, Department of Seed Science and Technology, Svetošimunska cesta 25, HR, 10000, Zagreb, Croatia
| | - Boštjan Surina
- Natural History Museum Rijeka, Lorenzov prolaz 1, HR, 51000, Rijeka, Croatia
- University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Glagoljaška 8, SI, 6000, Koper, Slovenia
| | - Zlatko Liber
- University of Zagreb, Faculty of Science, Department of Biology, Division of Botany, Marulićev trg 9A, HR, 10000, Zagreb, Croatia.
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, HR, 10000, Zagreb, Croatia.
| |
Collapse
|
35
|
Wang J, Yang Y, Jin L, Ling X, Liu T, Chen T, Ji Y, Yu W, Zhang B. Re-analysis of long non-coding RNAs and prediction of circRNAs reveal their novel roles in susceptible tomato following TYLCV infection. BMC PLANT BIOLOGY 2018; 18:104. [PMID: 29866032 PMCID: PMC5987537 DOI: 10.1186/s12870-018-1332-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 05/24/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Long Noncoding-RNAs (LncRNAs) are known to be involved in some biological processes, but their roles in plant-virus interactions remain largely unexplored. While circular RNAs (circRNAs) have been studied in animals, there has yet to be extensive research on them in a plant system, especially in tomato-tomato yellow leaf curl virus (TYLCV) interaction. RESULTS In this study, RNA transcripts from the susceptible tomato line JS-CT-9210 either infected with TYLCV or untreated, were sequenced in a pair-end strand-specific manner using ribo-zero rRNA removal library method. A total of 2056 lncRNAs including 1767 long intergenic non-coding RNA (lincRNAs) and 289 long non-coding natural antisense transcripts (lncNATs) were obtained. The expression patterns in lncRNAs were similar in susceptible tomato plants between control check (CK) and TYLCV infected samples. Our analysis suggested that lncRNAs likely played a role in a variety of functions, including plant hormone signaling, protein processing in the endoplasmic reticulum, RNA transport, ribosome function, photosynthesis, glulathione metabolism, and plant-pathogen interactions. Using virus-induced gene silencing (VIGS) analysis, we found that reduced expression of the lncRNA S-slylnc0957 resulted in enhanced resistance to TYLCV in susceptible tomato plants. Moreover, we identified 184 circRNAs candidates using the CircRNA Identifier (CIRI) software, of which 32 circRNAs were specifically expressed in untreated samples and 83 circRNAs in TYLCV samples. Approximately 62% of these circRNAs were derived from exons. We validated the circRNAs by both PCR and Sanger sequencing using divergent primers, and found that most of circRNAs were derived from the exons of protein coding genes. The silencing of these circRNAs parent genes resulted in decreased TYLCV virus accumulation. CONCLUSION In this study, we identified novel lncRNAs and circRNAs using bioinformatic approaches and showed that these RNAs function as negative regulators of TYLCV infection. Moreover, the expression patterns of lncRNAs in susceptible tomato plants were different from that of resistant tomato plants, while exonic circRNAs expression positively associated with their respective protein coding genes. This work provides a foundation for elaborating the novel roles of lncRNAs and circRNAs in susceptible tomatoes following TYLCV infection.
Collapse
Affiliation(s)
- Jinyan Wang
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
| | - Yuwen Yang
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
| | - Lamei Jin
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
| | - Xitie Ling
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
| | - Tingli Liu
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
| | - Tianzi Chen
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
| | - Yinghua Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
| | - Wengui Yu
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
| | - Baolong Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
| |
Collapse
|
36
|
Huanca-Mamani W, Arias-Carrasco R, Cárdenas-Ninasivincha S, Rojas-Herrera M, Sepúlveda-Hermosilla G, Caris-Maldonado JC, Bastías E, Maracaja-Coutinho V. Long Non-Coding RNAs Responsive to Salt and Boron Stress in the Hyper-Arid Lluteño Maize from Atacama Desert. Genes (Basel) 2018; 9:genes9030170. [PMID: 29558449 PMCID: PMC5867891 DOI: 10.3390/genes9030170] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 12/18/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been defined as transcripts longer than 200 nucleotides, which lack significant protein coding potential and possess critical roles in diverse cellular processes. Long non-coding RNAs have recently been functionally characterized in plant stress-response mechanisms. In the present study, we perform a comprehensive identification of lncRNAs in response to combined stress induced by salinity and excess of boron in the Lluteño maize, a tolerant maize landrace from Atacama Desert, Chile. We use deep RNA sequencing to identify a set of 48,345 different lncRNAs, of which 28,012 (58.1%) are conserved with other maize (B73, Mo17 or Palomero), with the remaining 41.9% belonging to potentially Lluteño exclusive lncRNA transcripts. According to B73 maize reference genome sequence, most Lluteño lncRNAs correspond to intergenic transcripts. Interestingly, Lluteño lncRNAs presents an unusual overall higher expression compared to protein coding genes under exposure to stressed conditions. In total, we identified 1710 putatively responsive to the combined stressed conditions of salt and boron exposure. We also identified a set of 848 stress responsive potential trans natural antisense transcripts (trans-NAT) lncRNAs, which seems to be regulating genes associated with regulation of transcription, response to stress, response to abiotic stimulus and participating of the nicotianamine metabolic process. Reverse transcription-quantitative PCR (RT-qPCR) experiments were performed in a subset of lncRNAs, validating their existence and expression patterns. Our results suggest that a diverse set of maize lncRNAs from leaves and roots is responsive to combined salt and boron stress, being the first effort to identify lncRNAs from a maize landrace adapted to extreme conditions such as the Atacama Desert. The information generated is a starting point to understand the genomic adaptabilities suffered by this maize to surpass this extremely stressed environment.
Collapse
Affiliation(s)
- Wilson Huanca-Mamani
- Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Arica 1000000, Chile.
| | - Raúl Arias-Carrasco
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile.
| | | | - Marcelo Rojas-Herrera
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile.
| | | | - José Carlos Caris-Maldonado
- Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Arica 1000000, Chile.
- Departamento de Bioquímica y Biologia Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile.
| | - Elizabeth Bastías
- Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Arica 1000000, Chile.
| | - Vinicius Maracaja-Coutinho
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile.
- Departamento de Bioquímica y Biologia Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile.
- Instituto Vandique, João Pessoa 58000-000, Brazil.
- Beagle Bioinformatics, Santiago 7500554, Chile.
| |
Collapse
|
37
|
Liu KS, Li TP, Ton H, Mao XD, Chen YJ. Advances of Long Noncoding RNAs-mediated Regulation in Reproduction. Chin Med J (Engl) 2018; 131:226-234. [PMID: 29336373 PMCID: PMC5776855 DOI: 10.4103/0366-6999.222337] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE Advances in genomics and molecular biology have led to the discovery of a large group of uncharacterized long noncoding RNAs (lncRNAs). Emerging evidence indicated that many lncRNAs function in multiple biological processes and its dysregulation often causes diseases. Recent studies suggested that almost all regulatory lncRNAs interact with biological macromolecules such as DNA, RNA, and protein. LncRNAs regulate gene expression mainly on three levels, including epigenetic modification, transcription, and posttranscription, through DNA methylation, histone modification, and chromatin remodeling. LncRNAs can also affect the development of diseases and therefore be used to diagnose and treat diseases. With new sequencing and microarray techniques, hundreds of lncRNAs involved in reproductive disorders have been identified, but their functions in these disorders are undefined. DATA SOURCES This review was based on articles published in PubMed databases up to July 10, 2017, with the following keywords: "long noncoding RNAs", "LncRNA", "placentation", and "reproductive diseases". STUDY SELECTION Original articles and reviews on the topics were selected. RESULTS LncRNAs widely participate in various physiological and pathological processes as a new class of important regulatory factors. In spermatogenesis, spermatocytes divide and differentiate into mature spermatozoa. The whole process is elaborately regulated by the expression of phase-specific genes that involve many strains of lncRNAs. Literature showed that lncRNA in reproductive cumulus cells may contribute to the regulation of oocyte maturation, fertilization, and embryo development. CONCLUSIONS LncRNA has been found to play a role in the development of reproduction. Meanwhile, we reviewed the studies on how lncRNAs participate in reproductive disorders, which provides a basis for the study of lncRNA in reproduction regulation.
Collapse
Affiliation(s)
- Kang-Sheng Liu
- Department of Clinical Laboratory, State Key Laboratory of Reproductive Medicine, Nanjing Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tai-Ping Li
- Department of Pharmacy, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hua Ton
- Department of Obstetrics and Gynecology, State Key Laboratory of Reproductive Medicine, Nanjing Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiao-Dong Mao
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Ya-Jun Chen
- Department of Clinical Laboratory, State Key Laboratory of Reproductive Medicine, Nanjing Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
38
|
Yang J, Zhang TY, Liao QS, He L, Li J, Zhang HM, Chen X, Li J, Yang J, Li JB, Chen JP. Chinese Wheat Mosaic Virus-Induced Gene Silencing in Monocots and Dicots at Low Temperature. FRONTIERS IN PLANT SCIENCE 2018; 9:1627. [PMID: 30487803 PMCID: PMC6247046 DOI: 10.3389/fpls.2018.01627] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/18/2018] [Indexed: 05/21/2023]
Abstract
Virus-induced gene silencing (VIGS) is an important tool for functional genomics studies in plants. With this method, it is possible to target most endogenous genes and downregulate the messenger RNA (mRNA) in a sequence-specific manner. Chinese wheat mosaic virus (CWMV) has a bipartite, single-strand positive RNA genome, and can infect both wheat and Nicotiana benthamiana, and the optimal temperature for systemic infection in plants is 17°C. To assess the potential of the virus as a vector for gene silencing at low temperature, a fragment of the N. benthamiana or wheat phytoene desaturase (PDS) gene was expressed from a modified CWMV RNA2 clone and the resulting photo bleaching in infected plants was used as a reporter for silencing. Downregulation of PDS mRNA was also measured by quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR). In experiments using fragments of PDS ranging from 500 to 1500 nucleotides, insert length influenced the stability and the efficiency of VIGS. The CWMV induced silencing system was also used to suppress miR165/166 and miR3134a through expression of miRNA target mimics. The relative expression levels of mature miR165/166 and miR3134a decreased whereas the transcript levels of their target genes increased. Interestingly, we also found the CWMV-induced silencing system was more efficient compare with the vector based on Barley stripe mosaic virus (BSMV) or Foxtail mosaic virus (FoMV) in wheat or the vector based on TRV in N. benthamiana at 17°C. In summary, the CWMV vector is effective in silencing endogenous genes and miRNAs at 17°C, thereby providing a powerful tool for gene function analysis in both N. benthamiana and wheat at low temperature.
Collapse
Affiliation(s)
- Jian Yang
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Tian-Ye Zhang
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Qian-Sheng Liao
- College of Life Science, Zhejiang SCI-Tech University, Hangzhou, China
| | - Long He
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Juang Li
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Heng-Mu Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Plant Protection and Biotechnology, Ministry of Agriculture, Beijing, China
- Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Heng-Mu Zhang, Jian-Ping Chen,
| | - Xuan Chen
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jing Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Plant Protection and Biotechnology, Ministry of Agriculture, Beijing, China
- Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jin Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Plant Protection and Biotechnology, Ministry of Agriculture, Beijing, China
- Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jin-Bang Li
- Nanyang Academy of Agricultural Sciences, Nanyang, China
| | - Jian-Ping Chen
- Institute of Plant Virology, Ningbo University, Ningbo, China
- *Correspondence: Heng-Mu Zhang, Jian-Ping Chen,
| |
Collapse
|
39
|
Huang K, Doyle F, Wurz ZE, Tenenbaum SA, Hammond RK, Caplan JL, Meyers BC. FASTmiR: an RNA-based sensor for in vitro quantification and live-cell localization of small RNAs. Nucleic Acids Res 2017; 45:e130. [PMID: 28586459 PMCID: PMC5737440 DOI: 10.1093/nar/gkx504] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 05/27/2017] [Indexed: 01/19/2023] Open
Abstract
Small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), play a variety of important regulatory roles in many eukaryotes. Their small size has made it challenging to study them directly in live cells. Here we describe an RNA-based fluorescent sensor for small RNA detection both in vitro and in vivo, adaptable for any small RNA. It utilizes an sxRNA switch for detection of miRNA–mRNA interactions combined with a fluorophore-binding sequence ‘Spinach’, a GFP-like RNA aptamer for which the RNA–fluorophore complex exhibits strong and consistent fluorescence under an excitation wavelength. Two example sensors, FASTmiR171 and FASTmiR122, can rapidly detect and quantify the levels of miR171 and miR122 in vitro. The sensors can determine relative levels of miRNAs in total RNA extracts with sensitivity similar to small RNA sequencing and northern blots. FASTmiR sensors were also used to estimate the copy number range of miRNAs in total RNA extracts. To localize and analyze the spatial distribution of small RNAs in live, single cells, tandem copies of FASTmiR122 were expressed in different cell lines. FASTmiR122 was able to quantitatively detect the differences in miR122 levels in Huh7 and HEK293T cells demonstrating its potential for tracking miRNA expression and localization in vivo.
Collapse
Affiliation(s)
- Kun Huang
- Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA.,Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Francis Doyle
- Nanobioscience Constellation, State University of New York- Polytechnic Institute, College of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - Zachary E Wurz
- Nanobioscience Constellation, State University of New York- Polytechnic Institute, College of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - Scott A Tenenbaum
- Nanobioscience Constellation, State University of New York- Polytechnic Institute, College of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - Reza K Hammond
- Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711, USA
| | - Jeffrey L Caplan
- Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA.,Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Blake C Meyers
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA.,Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO 63132, USA.,University of Missouri-Columbia, Division of Plant Sciences, 52 Agriculture Lab, Columbia, MO 65211, USA
| |
Collapse
|
40
|
Yakovlev IA, Fossdal CG. In Silico Analysis of Small RNAs Suggest Roles for Novel and Conserved miRNAs in the Formation of Epigenetic Memory in Somatic Embryos of Norway Spruce. Front Physiol 2017; 8:674. [PMID: 28943851 PMCID: PMC5596105 DOI: 10.3389/fphys.2017.00674] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/23/2017] [Indexed: 12/27/2022] Open
Abstract
Epigenetic memory in Norway spruce affects the timing of bud burst and bud set, vitally important adaptive traits for this long-lived forest species. Epigenetic memory is established in response to the temperature conditions during embryogenesis. Somatic embryogenesis at different epitype inducing (EpI) temperatures closely mimics the natural processes of epigenetic memory formation in seeds, giving rise to epigenetically different clonal plants in a reproducible and predictable manner, with respect to altered bud phenology. MicroRNAs (miRNAs) and other small non-coding RNAs (sRNAs) play an essential role in the regulation of plant gene expression and may affect this epigenetic mechanism. We used NGS sequencing and computational in silico methods to identify and profile conserved and novel miRNAs among small RNAs in embryogenic tissues of Norway spruce at three EpI temperatures (18, 23 and 28°C). We detected three predominant classes of sRNAs related to a length of 24 nt, followed by a 21–22 nt class and a third 31 nt class of sRNAs. More than 2100 different miRNAs within the prevailing length 21–22 nt were identified. Profiling these putative miRNAs allowed identification of 1053 highly expressed miRNAs, including 523 conserved and 530 novels. 654 of these miRNAs were found to be differentially expressed (DEM) depending on EpI temperature. For most DEMs, we defined their putative mRNA targets. The targets represented mostly by transcripts of multiple-repeats proteins, like TIR, NBS-LRR, PPR and TPR repeat, Clathrin/VPS proteins, Myb-like, AP2, etc. Notably, 124 DE miRNAs targeted 203 differentially expressed epigenetic regulators. Developing Norway spruce embryos possess a more complex sRNA structure than that reported for somatic tissues. A variety of the predicted miRNAs showed distinct EpI temperature dependent expression patterns. These putative EpI miRNAs target spruce genes with a wide range of functions, including genes known to be involved in epigenetic regulation, which in turn could provide a feedback process leading to the formation of epigenetic marks. We suggest that TIR, NBS and LRR domain containing proteins could fulfill more general functions for signal transduction from external environmental stimuli and conversion them into molecular response. Fine-tuning of the miRNA production likely participates in both developmental regulation and epigenetic memory formation in Norway spruce.
Collapse
|
41
|
Tian B, Wang S, Todd TC, Johnson CD, Tang G, Trick HN. Genome-wide identification of soybean microRNA responsive to soybean cyst nematodes infection by deep sequencing. BMC Genomics 2017; 18:572. [PMID: 28768484 PMCID: PMC5541722 DOI: 10.1186/s12864-017-3963-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/25/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The soybean cyst nematode (SCN), Heterodera glycines, is one of the most devastating diseases limiting soybean production worldwide. It is known that small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), play important roles in regulating plant growth and development, defense against pathogens, and responses to environmental changes. RESULTS In order to understand the role of soybean miRNAs during SCN infection, we analyzed 24 small RNA libraries including three biological replicates from two soybean cultivars (SCN susceptible KS4607, and SCN HG Type 7 resistant KS4313N) that were grown under SCN-infested and -noninfested soil at two different time points (SCN feeding establishment and egg production). In total, 537 known and 70 putative novel miRNAs in soybean were identified from a total of 0.3 billion reads (average about 13.5 million reads for each sample) with the programs of Bowtie and miRDeep2 mapper. Differential expression analyses were carried out using edgeR to identify miRNAs involved in the soybean-SCN interaction. Comparative analysis of miRNA profiling indicated a total of 60 miRNAs belonging to 25 families that might be specifically related to cultivar responses to SCN. Quantitative RT-PCR validated similar miRNA interaction patterns as sequencing results. CONCLUSION These findings suggest that miRNAs are likely to play key roles in soybean response to SCN. The present work could provide a framework for miRNA functional identification and the development of novel approaches for improving soybean SCN resistance in future studies.
Collapse
Affiliation(s)
- Bin Tian
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, 4024 Throckmorton Plant Sciences Center, Manhattan, KS 66506 USA
| | - Shichen Wang
- Genomics and Bioinformatics Service, Texas A&M AgriLife, College Station, TX 77845 USA
| | - Timothy C. Todd
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, 4024 Throckmorton Plant Sciences Center, Manhattan, KS 66506 USA
| | - Charles D. Johnson
- Genomics and Bioinformatics Service, Texas A&M AgriLife, College Station, TX 77845 USA
| | - Guiliang Tang
- Department of Biological Sciences, Michigan Technological University, Dow Environmental Sciences and Engineering Building - Room 406, 1400 Townsend Drive, Houghton, MI 49931-1295 USA
| | - Harold N. Trick
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, 4024 Throckmorton Plant Sciences Center, Manhattan, KS 66506 USA
| |
Collapse
|
42
|
|
43
|
A Multigenic Network of ARGONAUTE4 Clade Members Controls Early Megaspore Formation in Arabidopsis. Genetics 2016; 204:1045-1056. [PMID: 27591749 PMCID: PMC5105840 DOI: 10.1534/genetics.116.188151] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/17/2016] [Indexed: 01/01/2023] Open
Abstract
The development of gametophytes relies on the establishment of a haploid gametophytic generation that initiates with the specification of gametophytic precursors. The majority of flowering plants differentiate a single gametophytic precursor in the ovule: the megaspore mother cell. Here we show that, in addition to argonaute9 (ago9), mutations in other ARGONAUTE (AGO) genes such as ago4, ago6, and ago8, also show abnormal configurations containing supernumerary gametophytic precursors in Arabidopsis thaliana. Double homozygous ago4 ago9 individuals showed a suppressive effect on the frequency of ovules with multiple gametophytic precursors across three consecutive generations, indicating that genetic interactions result in compensatory mechanisms. Whereas overexpression of AGO6 in ago9 and ago4 ago9 confirms strong regulatory interactions among genes involved in RNA-directed DNA methylation, AGO8 is overexpressed in premeiotic ovules of ago4 ago9 individuals, suggesting that the regulation of this previously presumed pseudogene responds to the compensatory mechanism. The frequency of abnormal meiotic configurations found in ago4 ago9 individuals is dependent on their parental genotype, revealing a transgenerational effect. Our results indicate that members of the AGO4 clade cooperatively participate in preventing the abnormal specification of multiple premeiotic gametophytic precursors during early ovule development in A. thaliana.
Collapse
|
44
|
Ogawa T, Mori A, Igari K, Morita MT, Tasaka M, Uchida N. Efficient In Planta Detection and Dissection of De Novo Mutation Events in the Arabidopsis thaliana Disease Resistance Gene UNI. PLANT & CELL PHYSIOLOGY 2016; 57:1123-1132. [PMID: 27016096 DOI: 10.1093/pcp/pcw060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
Plants possess disease resistance (R) proteins encoded by R genes, and each R protein recognizes a specific pathogen factor(s) for immunity. Interestingly, a remarkably high degree of polymorphisms in R genes, which are traces of past mutation events during evolution, suggest the rapid diversification of R genes. However, little is known about molecular aspects that facilitate the rapid change of R genes because of the lack of tools that enable us to monitor de novo R gene mutations efficiently in an experimentally feasible time scale, especially in living plants. Here we introduce a model assay system that enables efficient in planta detection of de novo mutation events in the Arabidopsis thaliana R gene UNI in one generation. The uni-1D mutant harbors a gain-of-function allele of the UNI gene. uni-1D heterozygous individuals originally exhibit dwarfism with abnormally short stems. However, interestingly, morphologically normal stems sometimes emerge spontaneously from the uni-1D plants, and the morphologically reverted tissues carry additional de novo mutations in the UNI gene. Strikingly, under an extreme condition, almost half of the examined population shows the reversion phenomenon. By taking advantage of this phenomenon, we demonstrate that the reversion frequency is remarkably sensitive to a variety of fluctuations in DNA stability, underlying a mutable tendency of the UNI gene. We also reveal that activities of the salicylic acid pathway and DNA damage sensor pathway are involved in the reversion phenomenon. Thus, we provide an experimentally feasible model tool to explore factors and conditions that significantly affect the R gene mutation phenomenon.
Collapse
Affiliation(s)
- Tomohiko Ogawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| | - Akiko Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Kadunari Igari
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| | - Miyo Terao Morita
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Masao Tasaka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| | - Naoyuki Uchida
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| |
Collapse
|
45
|
Li R, Zhu H, Luo Y. Understanding the Functions of Long Non-Coding RNAs through Their Higher-Order Structures. Int J Mol Sci 2016; 17:ijms17050702. [PMID: 27196897 PMCID: PMC4881525 DOI: 10.3390/ijms17050702] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/28/2016] [Accepted: 05/04/2016] [Indexed: 02/08/2023] Open
Abstract
Although thousands of long non-coding RNAs (lncRNAs) have been discovered in eukaryotes, very few molecular mechanisms have been characterized due to an insufficient understanding of lncRNA structure. Therefore, investigations of lncRNA structure and subsequent elucidation of the regulatory mechanisms are urgently needed. However, since lncRNA are high molecular weight molecules, which makes their crystallization difficult, obtaining information about their structure is extremely challenging, and the structures of only several lncRNAs have been determined so far. Here, we review the structure-function relationships of the widely studied lncRNAs found in the animal and plant kingdoms, focusing on the principles and applications of both in vitro and in vivo technologies for the study of RNA structures, including dimethyl sulfate-sequencing (DMS-seq), selective 2'-hydroxyl acylation analyzed by primer extension-sequencing (SHAPE-seq), parallel analysis of RNA structure (PARS), and fragmentation sequencing (FragSeq). The aim of this review is to provide a better understanding of lncRNA biological functions by studying them at the structural level.
Collapse
Affiliation(s)
- Rui Li
- Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Hongliang Zhu
- Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yunbo Luo
- Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
46
|
Yakovlev IA, Carneros E, Lee Y, Olsen JE, Fossdal CG. Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce. PLANTA 2016; 243:1237-49. [PMID: 26895338 DOI: 10.1007/s00425-016-2484-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/04/2016] [Indexed: 05/04/2023]
Abstract
A significant number of epigenetic regulators were differentially expressed during embryogenesis at different epitype-inducing conditions. Our results support that methylation of DNA and histones, as well as sRNAs, are pivotal for the establishment of the epigenetic memory. As a forest tree species with long generation times, Norway spruce is remarkably well adapted to local environmental conditions despite having recently, from an evolutionary perspective, recolonized large areas following the last glaciation. In this species, there is an enigmatic epigenetic memory of the temperature conditions during embryogenesis that allows rapid adaptation to changing environment. We used a transcriptomic approach to investigate the molecular mechanisms underlying the formation of the epigenetic memory during somatic embryogenesis in Norway spruce. Nine mRNA libraries were prepared from three epitypes of the same genotype resulting from exposure to epitype-inducing temperatures of 18, 23 and 28 °C. RNA-Seq analysis revealed more than 10,000 differentially expressed genes (DEGs). The epitype-inducing conditions during SE were accompanied by marked transcriptomic changes for multiple gene models related to the epigenetic machinery. Out of 735 putative orthologs of epigenetic regulators, 329 were affected by the epitype-inducing temperatures and differentially expressed. The majority of DEGs among the epigenetic regulators was related to DNA and histone methylation, along with sRNA pathways and a range of putative thermosensing and signaling genes. These genes could be the main epigenetic regulators involved in formation of the epigenetic memory. We suggest considerable expansion of gene families of epigenetic regulators in Norway spruce compared to orthologous gene families in Populus and Arabidopsis. Obtained results provide a solid basis for further genome annotation and studies focusing on the importance of these candidate genes for the epigenetic memory formation.
Collapse
Affiliation(s)
- Igor A Yakovlev
- Norwegian Institute of Bioeconomy Research, 1431, Ås, Norway.
| | - Elena Carneros
- Norwegian Institute of Bioeconomy Research, 1431, Ås, Norway
| | - YeonKyeong Lee
- Department of Plant Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Jorunn E Olsen
- Department of Plant Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway
| | | |
Collapse
|
47
|
Li X, Shahid MQ, Wu J, Wang L, Liu X, Lu Y. Comparative Small RNA Analysis of Pollen Development in Autotetraploid and Diploid Rice. Int J Mol Sci 2016; 17:499. [PMID: 27077850 PMCID: PMC4848955 DOI: 10.3390/ijms17040499] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRNAs) play key roles in plant reproduction. However, knowledge on microRNAome analysis in autotetraploid rice is rather limited. Here, high-throughput sequencing technology was employed to analyze miRNAomes during pollen development in diploid and polyploid rice. A total of 172 differentially expressed miRNAs (DEM) were detected in autotetraploid rice compared to its diploid counterpart, and 57 miRNAs were specifically expressed in autotetraploid rice. Of the 172 DEM, 115 and 61 miRNAs exhibited up- and down-regulation, respectively. Gene Ontology analysis on the targets of up-regulated DEM showed that they were enriched in transport and membrane in pre-meiotic interphase, reproduction in meiosis, and nucleotide binding in single microspore stage. osa-miR5788 and osa-miR1432-5p_R+1 were up-regulated in meiosis and their targets revealed interaction with the meiosis-related genes, suggesting that they may involve in the genes regulation associated with the chromosome behavior. Abundant 24 nt siRNAs associated with transposable elements were found in autotetraploid rice during pollen development; however, they significantly declined in diploid rice, suggesting that 24 nt siRNAs may play a role in pollen development. These findings provide a foundation for understanding the effect of polyploidy on small RNA expression patterns during pollen development that cause pollen sterility in autotetraploid rice.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.
| | - Lan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.
| | - Yonggen Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
48
|
Šurbanovski N, Brilli M, Moser M, Si-Ammour A. A highly specific microRNA-mediated mechanism silences LTR retrotransposons of strawberry. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:70-82. [PMID: 26611654 DOI: 10.1111/tpj.13090] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/06/2015] [Accepted: 11/20/2015] [Indexed: 06/05/2023]
Abstract
Small RNAs are involved in a plethora of functions in plant genomes. In general, transcriptional gene silencing is mediated by 24-nucleotide siRNAs and is required for maintaining transposable elements in a silenced state. However, microRNAs are not commonly associated with transposon silencing. In this study, we performed small RNA transcriptome and degradome analyses of the Rosaceae model plant Fragaria vesca (the woodland strawberry) at the genome-wide level, and identified miRNA families and their targets. We report a highly specific mechanism of LTR retrotransposon silencing mediated by an abundant, ubiquitously expressed miRNA (fve-miR1511) generated from a single locus. This miRNA specifically targets LTR retroelements, silencing them post-transcriptionally by perfectly pairing to the highly conserved primer binding site for methionyl initiator tRNA that is essential for reverse transcription. We investigated the possible origins of this miRNA, and present evidence that the pre-miR1511 hairpin structure probably derived from a locus coding for tRNA(iM) (et) through a single microinversion event. Our study shows that this miRNA targets retrotransposons specifically and constitutively, and contributes to features such as genome stability, size and architecture in a far more direct way than previously thought.
Collapse
Affiliation(s)
- Nada Šurbanovski
- Functional Genomics, Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all' Adige, 38010, Italy
| | - Matteo Brilli
- Functional Genomics, Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all' Adige, 38010, Italy
| | - Mirko Moser
- Functional Genomics, Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all' Adige, 38010, Italy
| | - Azeddine Si-Ammour
- Functional Genomics, Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all' Adige, 38010, Italy
| |
Collapse
|
49
|
Autotetraploid rice methylome analysis reveals methylation variation of transposable elements and their effects on gene expression. Proc Natl Acad Sci U S A 2015; 112:E7022-9. [PMID: 26621743 DOI: 10.1073/pnas.1515170112] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Polyploidy, or whole-genome duplication (WGD), serves as a key innovation in plant evolution and is an important genomic feature for all eukaryotes. Neopolyploids have to overcome difficulties in meiosis, genomic alterations, changes of gene expression, and epigenomic reorganization. However, the underlying mechanisms for these processes are poorly understood. One of the most interesting aspects is that genome doubling events increase the dosage of all genes. Unlike allopolyploids entangled by both hybridization and polyploidization, autopolyploids, especially artificial lines, in relatively uniform genetic background offer a model system to understand mechanisms of genome-dosage effects. To investigate DNA methylation effects in response to WGD rather than hybridization, we produced autotetraploid rice with its diploid donor, Oryza sativa ssp. indica cv. Aijiaonante, both of which were independently self-pollinated over 48 generations, and generated and compared their comprehensive transcriptomes, base pair-resolution methylomes, and siRNAomes. DNA methylation variation of transposable elements (TEs) was observed as widespread in autotetraploid rice, in which hypermethylation of class II DNA transposons was predominantly noted in CHG and CHH contexts. This was accompanied by changes of 24-nt siRNA abundance, indicating the role of the RNA-directed DNA methylation pathway. Our results showed that the increased methylation state of class II TEs may suppress the expression of neighboring genes in autotetraploid rice that has obtained double alleles, leading to no significant differences in transcriptome alterations for most genes from its diploid donor. Collectively, our findings suggest that chromosome doubling induces methylation variation in TEs that affect gene expression and may become a "genome shock" response factor to help neoautopolyploids adapt to genome-dosage effects.
Collapse
|
50
|
King GJ. Crop epigenetics and the molecular hardware of genotype × environment interactions. FRONTIERS IN PLANT SCIENCE 2015; 6:968. [PMID: 26594221 PMCID: PMC4635209 DOI: 10.3389/fpls.2015.00968] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/22/2015] [Indexed: 05/04/2023]
Abstract
Crop plants encounter thermal environments which fluctuate on a diurnal and seasonal basis. Future climate resilient cultivars will need to respond to thermal profiles reflecting more variable conditions, and harness plasticity that involves regulation of epigenetic processes and complex genomic regulatory networks. Compartmentalization within plant cells insulates the genomic central processing unit within the interphase nucleus. This review addresses the properties of the chromatin hardware in which the genome is embedded, focusing on the biophysical and thermodynamic properties of DNA, histones and nucleosomes. It explores the consequences of thermal and ionic variation on the biophysical behavior of epigenetic marks such as DNA cytosine methylation (5mC), and histone variants such as H2A.Z, and how these contribute to maintenance of chromatin integrity in the nucleus, while enabling specific subsets of genes to be regulated. Information is drawn from theoretical molecular in vitro studies as well as model and crop plants and incorporates recent insights into the role epigenetic processes play in mediating between environmental signals and genomic regulation. A preliminary speculative framework is outlined, based on the evidence of what appears to be a cohesive set of interactions at molecular, biophysical and electrostatic level between the various components contributing to chromatin conformation and dynamics. It proposes that within plant nuclei, general and localized ionic homeostasis plays an important role in maintaining chromatin conformation, whilst maintaining complex genomic regulation that involves specific patterns of epigenetic marks. More generally, reversible changes in DNA methylation appear to be consistent with the ability of nuclear chromatin to manage variation in external ionic and temperature environment. Whilst tentative, this framework provides scope to develop experimental approaches to understand in greater detail the internal environment of plant nuclei. It is hoped that this will generate a deeper understanding of the molecular mechanisms underlying genotype × environment interactions that may be beneficial for long-term improvement of crop performance in less predictable climates.
Collapse
Affiliation(s)
- Graham J. King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
- National Key Laboratory for Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Crops for the Future, Biotechnology and Breeding Systems, Semenyih, Malaysia
| |
Collapse
|