1
|
Li Y, Xu J, Xu M, Yang Y, Cheng Y, Shang Z, Kang E. ICE1 (Inducer of CBF Expression 1) Is Essential for the Jasmonate-Regulated Development of Stamen in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2025; 48:3810-3826. [PMID: 39829208 DOI: 10.1111/pce.15389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Floral organ development, pollen germination and pollen tube growth are crucial for plant sexual reproduction. Phytohormones maintain these processes by regulating the expression and activity of various transcription factors. ICE1, a MYC-like bHLH transcription factor, has been revealed to be involved in cold acclimatisation of Arabidopsis. This study shows that ICE1 regulates multiple aspects of sexual reproduction, including stamen development, pollen development and germination. Loss-of-function mutants of ICE1 exhibit floral organs with shorter filaments, defective anther dehiscence and lower pollen viability compared to the wild type. These abnormalities result in disrupted fertilisation, leading to short siliques, a high rate of seed abortion, and dark, shriveled mature seeds. JAZ proteins (JAZ1 and JAZ9) interact with ICE1, inhibiting its transcriptional activity on jasmonic acid (JA)-responsive genes, including MYB21, MYB24 and MYB108. This study highlights the essential role of ICE1 as a signalling agent in the JA-regulated maintenance of sexual reproduction in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Yuke Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jinfeng Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Man Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yunxiao Yang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ying Cheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhonglin Shang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Erfang Kang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
2
|
Li L, Cao L, Li J, Zhang Z, Liu J, Ren Z, Zhang J, Wang R, Miao Y, Yu S, Li W. Identification and functional analysis of Wall-Associated Kinase genes in Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2025; 16:1543437. [PMID: 39974729 PMCID: PMC11835679 DOI: 10.3389/fpls.2025.1543437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
Introduction Wall-associated kinases (WAKs) are pivotal in linking plant cell walls to intracellular signaling networks, thereby playing essential roles in plant growth, development, and stress responses. Methods The bioinformatics analysis was employed to identify WAK genes in tobacco. The expression levels of NtWAK genes were assessed by qRT-PCR. The subcellular localization of WAK proteins was observed in tobacco cells and Arabidopsis protoplasts. Kinase activity of the WAK proteins was evaluated through in vitro assays. Results We conducted a comprehensive genome-wide identification and analysis of the WAK gene family in tobacco (Nicotiana tabacum). A total of 44 WAK genes were identified in the tobacco genome, which were further classified into three distinct groups. Phylogenetic analysis comparing tobacco WAKs (NtWAKs) with Arabidopsis WAKs (AtWAKs) revealed species-specific expansion of these genes. The WAK proteins within each group displayed similar gene structures and conserved motif distributions. Promoter region analysis indicated that cis-elements of NtWAK genes are primarily involved in regulating plant growth and development, phytohormone signaling, and stress responses. Expression profiling under NaCl, PEG, and ABA treatments suggested that certain NtWAK genes may play key roles in modulating responses to abiotic stress. Three-dimensional structural predictions and subcellular localization analysis showed that NtWAK proteins from the three subgroups exhibit high cytoplasmic similarity and are primarily located to the plasma membrane. Kinase activity assay confirmed that they possess phosphorylation activity. Discussion This study represents the first genome-wide analysis of the WAK gene family in N. tabacum, laying the groundwork for future functional investigations.
Collapse
Affiliation(s)
- Ling Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Linggai Cao
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Jintao Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhiqiang Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jie Liu
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Zhongying Ren
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jie Zhang
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Rengang Wang
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Yangfan Miao
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shizhou Yu
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Wei Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
3
|
Kumar P, Chugh P, Ali SS, Chawla W, Sushmita S, Kumar R, Raval AV, Shamim S, Bhatia A, Kumar R. Trends of Nanobiosensors in Modern Agriculture Systems. Appl Biochem Biotechnol 2025; 197:667-690. [PMID: 39136915 DOI: 10.1007/s12010-024-05039-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 01/19/2025]
Abstract
Sustainable agriculture and the provision of food for all become dependent on the availability of efficient diagnostic techniques for the prompt identification of plant diseases. Current scientific findings suggest that nanotechnology can positively affect the agrifood industry by reducing the adverse effects of agricultural practices on human health and the environment, increasing food security and productivity, and fostering social and economic justice. Nanomaterials' unique physical and chemical characteristics have made it possible to employ them as cutting-edge, effective diagnostic instruments for various plant infections and other significant disease biomarkers. By creating diagnostic instruments and methods, nanobiosensors significantly contribute to the revolution of farming. In real time, nanobiosensors can detect infections, metabolites, pesticides, nutrient levels, soil moisture, and temperature. This helps with precision farming techniques and maximises resource use. To better address agricultural concerns, we have included the most recent research on the concept, types, applications, commercial aspects, and future scope of nanobiosensors in this review.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India.
| | - Priya Chugh
- School of Agriculture, Graphic Era Hill University, Dehradun, 248002, Uttarakhand, India
| | - Syed Salman Ali
- Lloyd Institute of Management and Technology, Greater Noida, 201306, Uttar Pradesh, India
| | - Wineet Chawla
- School of Agriculture Sciences and Engineering, Maharaja Ranjit Singh Punjab Technical University, Bathind, 151001, Punjab, India
| | - Sushmita Sushmita
- Department of Commerce, Punjabi University, Patiala, 147002, Punjab, India
| | - Ram Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | | | - Shamim Shamim
- IIMT College of Medical Sciences, IIMT University, Meerut, 250001, Uttar Pradesh, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara, 144411, Punjab, India
| |
Collapse
|
4
|
Zhang S, Wang G, Yu W, Wei L, Gao C, Li D, Guo L, Yang J, Jian S, Liu N. Multi-omics analyses reveal the mechanisms underlying the responses of Casuarina equisetifolia ssp. incana to seawater atomization and encroachment stress. BMC PLANT BIOLOGY 2024; 24:854. [PMID: 39266948 PMCID: PMC11391710 DOI: 10.1186/s12870-024-05561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Casuarina equisetifolia trees are used as windbreaks in subtropical and tropical coastal zones, while C. equisetifolia windbreak forests can be degraded by seawater atomization (SA) and seawater encroachment (SE). To investigate the mechanisms underlying the response of C. equisetifolia to SA and SE stress, the transcriptome and metabolome of C. equisetifolia seedlings treated with control, SA, and SE treatments were analyzed. We identified 737, 3232, 3138, and 3899 differentially expressed genes (SA and SE for 2 and 24 h), and 46, 66, 62, and 65 differentially accumulated metabolites (SA and SE for 12 and 24 h). The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that SA and SE stress significantly altered the expression of genes related to plant hormone signal transduction, plant-pathogen interaction, and starch and sucrose metabolism pathways. The accumulation of metabolites associated with the biosynthetic pathways of phenylpropanoid and amino acids, as well as starch and sucrose metabolism, and glycolysis/gluconeogenesis were significantly altered in C. equisetifolia subjected to SA and SE stress. In conclusion, C. equisetifolia responds to SA and SE stress by regulating plant hormone signal transduction, plant-pathogen interaction, biosynthesis of phenylpropanoid and amino acids, starch and sucrose metabolism, and glycolysis/gluconeogenesis pathways. Compared with SA stress, C. equisetifolia had a stronger perception and response to SE stress, which required more genes and metabolites to be regulated. This study enhances our understandings of how C. equisetifolia responds to two types of seawater stresses at transcriptional and metabolic levels. It also offers a theoretical framework for effective coastal vegetation management in tropical and subtropical regions.
Collapse
Affiliation(s)
- Shike Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Guobing Wang
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Weiwei Yu
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Long Wei
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Coastal Shelterbelt Ecosystem National Observation and Research Station, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Chao Gao
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Di Li
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Lili Guo
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Jianbo Yang
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Shuguang Jian
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Nan Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
5
|
Wu X, Yan J, Qin M, Li R, Jia T, Liu Z, Ahmad P, El-Sheikh MA, Yadav KK, Rodríguez-Díaz JM, Zhang L, Liu P. Comprehensive transcriptome, physiological and biochemical analyses reveal that key role of transcription factor WRKY and plant hormone in responding cadmium stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121979. [PMID: 39088904 DOI: 10.1016/j.jenvman.2024.121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024]
Abstract
Cadmium (Cd) is readily absorbed by tobacco and accumulates in the human body through smoke inhalation, posing threat to human health. While there have been many studies on the negative impact of cadmium in tobacco on human health, the specific adaptive mechanism of tobacco roots to cadmium stress is not well understood. In order to comprehensively investigate the effects of Cd stress on the root system of tobacco, the combination of transcriptomic, biochemical, and physiological methods was utilized. In this study, tobacco growth was significantly inhibited by 50 μM of Cd, which was mainly attributed to the destruction of root cellular structure. By comparing the transcriptome between CK and Cd treatment, there were 3232 up-regulated deferentially expressed genes (DEGs) and 3278 down-regulated DEGs. The obvious differential expression of genes related to the nitrogen metabolism, metal transporters and the transcription factors families. In order to mitigate the harmful effects of Cd, the root system enhances Cd accumulation in the cell wall, thereby reducing the Cd content in the cytoplasm. This result may be mediated by plant hormones and transcription factor (TF). Correlational statistical analysis revealed significant negative correlations between IAA and GA with cadmium accumulation, indicated by correlation coefficients of -0.91 and -0.93, respectively. Conversely, ABA exhibited a positive correlation with a coefficient of 0.96. In addition, it was anticipated that 3 WRKY TFs would lead to a reduction in Cd accumulation. Our research provides a theoretical basis for the systematic study of the specific physiological processes of plant roots under Cd stress.
Collapse
Affiliation(s)
- Xiuzhe Wu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Jiyuan Yan
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Mengzhan Qin
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Runze Li
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Tao Jia
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama-192301, Jammu and Kashmir, India
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China.
| |
Collapse
|
6
|
Xu H, Wang F, Rebecca Njeri Damari, Chen X, Lin Z. Molecular mechanisms underlying the signal perception and transduction during seed germination. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:27. [PMID: 38525006 PMCID: PMC10954596 DOI: 10.1007/s11032-024-01465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
QuerySeed germination is a vital step in the life cycle of a plant, playing a significant role in seedling establishment and crop yield potential. It is also an important factor in the conservation of plant germplasm resources. This complex process is influenced by a myriad of factors, including environmental conditions, the genetic makeup of the seed, and endogenous hormones. The perception of these environmental signals triggers a cascade of intricate signal transduction events that determine whether a seed germinates or remains dormant. Despite considerable progress in uncovering the molecular mechanisms governing these processes, many questions remain unanswered. In this review, we summarize the current progress in the molecular mechanisms underlying the perception of environmental signals and consequent signal transduction during seed germination, and discuss questions that need to be addressed to better understand the process of seed germination and develop novel strategies for germplasm improvement.
Collapse
Affiliation(s)
- Huibin Xu
- Marine and Agricultural Biotechnology Laboratory, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108 China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Minjiang University, Fuzhou, 350108 China
| | - Fuxiang Wang
- National Rice Engineering Laboratory of China, Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003 China
| | | | - Xiaofeng Chen
- Marine and Agricultural Biotechnology Laboratory, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108 China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Minjiang University, Fuzhou, 350108 China
| | - Zhongyuan Lin
- Marine and Agricultural Biotechnology Laboratory, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108 China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Minjiang University, Fuzhou, 350108 China
| |
Collapse
|
7
|
Ma J, Li C, Sun L, Ma X, Qiao H, Zhao W, Yang R, Song S, Wang S, Huang H. The SlWRKY57-SlVQ21/SlVQ16 module regulates salt stress in tomato. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2437-2455. [PMID: 37665103 DOI: 10.1111/jipb.13562] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Salt stress is a major abiotic stress which severely hinders crop production. However, the regulatory network controlling tomato resistance to salt remains unclear. Here, we found that the tomato WRKY transcription factor WRKY57 acted as a negative regulator in salt stress response by directly attenuating the transcription of salt-responsive genes (SlRD29B and SlDREB2) and an ion homeostasis gene (SlSOS1). We further identified two VQ-motif containing proteins SlVQ16 and SlVQ21 as SlWRKY57-interacting proteins. SlVQ16 positively, while SlVQ21 negatively modulated tomato resistance to salt stress. SlVQ16 and SlVQ21 competitively interacted with SlWRKY57 and antagonistically regulated the transcriptional repression activity of SlWRKY57. Additionally, the SlWRKY57-SlVQ21/SlVQ16 module was involved in the pathway of phytohormone jasmonates (JAs) by interacting with JA repressors JA-ZIM domain (JAZ) proteins. These results provide new insights into how the SlWRKY57-SlVQ21/SlVQ16 module finely tunes tomato salt tolerance.
Collapse
Affiliation(s)
- Jilin Ma
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Chonghua Li
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Lulu Sun
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Xuechun Ma
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Hui Qiao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Wenchao Zhao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Susheng Song
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Shaohui Wang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Huang Huang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
8
|
Zaharieva A, Rusanov K, Rusanova M, Paunov M, Yordanova Z, Mantovska D, Tsacheva I, Petrova D, Mishev K, Dobrev PI, Lacek J, Filepová R, Zehirov G, Vassileva V, Mišić D, Motyka V, Chaneva G, Zhiponova M. Uncovering the Interrelation between Metabolite Profiles and Bioactivity of In Vitro- and Wild-Grown Catmint ( Nepeta nuda L.). Metabolites 2023; 13:1099. [PMID: 37887424 PMCID: PMC10609352 DOI: 10.3390/metabo13101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Nepeta nuda L. is a medicinal plant enriched with secondary metabolites serving to attract pollinators and deter herbivores. Phenolics and iridoids of N. nuda have been extensively investigated because of their beneficial impacts on human health. This study explores the chemical profiles of in vitro shoots and wild-grown N. nuda plants (flowers and leaves) through metabolomic analysis utilizing gas chromatography and mass spectrometry (GC-MS). Initially, we examined the differences in the volatiles' composition in in vitro-cultivated shoots comparing them with flowers and leaves from plants growing in natural environment. The characteristic iridoid 4a-α,7-β,7a-α-nepetalactone was highly represented in shoots of in vitro plants and in flowers of plants from nature populations, whereas most of the monoterpenes were abundant in leaves of wild-grown plants. The known in vitro biological activities encompassing antioxidant, antiviral, antibacterial potentials alongside the newly assessed anti-inflammatory effects exhibited consistent associations with the total content of phenolics, reducing sugars, and the identified metabolic profiles in polar (organic acids, amino acids, alcohols, sugars, phenolics) and non-polar (fatty acids, alkanes, sterols) fractions. Phytohormonal levels were also quantified to infer the regulatory pathways governing phytochemical production. The overall dataset highlighted compounds with the potential to contribute to N. nuda bioactivity.
Collapse
Affiliation(s)
- Anna Zaharieva
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| | - Krasimir Rusanov
- Department of Agrobiotechnology, Agrobioinstitute, Agricultural Academy, 1164 Sofia, Bulgaria; (K.R.)
| | - Mila Rusanova
- Department of Agrobiotechnology, Agrobioinstitute, Agricultural Academy, 1164 Sofia, Bulgaria; (K.R.)
| | - Momchil Paunov
- Department of Biophysics and Radiobiology, Faculty of Biology, Sofia University, 1164 Sofia, Bulgaria;
| | - Zhenya Yordanova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| | - Desislava Mantovska
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| | - Ivanka Tsacheva
- Department of Biochemistry, Faculty of Biology, Sofia University, 1164 Sofia, Bulgaria;
| | - Detelina Petrova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| | - Kiril Mishev
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.M.); (G.Z.); (V.V.)
| | - Petre I. Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Praha, Czech Republic; (P.I.D.); (J.L.); (R.F.); (V.M.)
| | - Jozef Lacek
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Praha, Czech Republic; (P.I.D.); (J.L.); (R.F.); (V.M.)
| | - Roberta Filepová
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Praha, Czech Republic; (P.I.D.); (J.L.); (R.F.); (V.M.)
| | - Grigor Zehirov
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.M.); (G.Z.); (V.V.)
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.M.); (G.Z.); (V.V.)
| | - Danijela Mišić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia;
| | - Václav Motyka
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Praha, Czech Republic; (P.I.D.); (J.L.); (R.F.); (V.M.)
| | - Ganka Chaneva
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| | - Miroslava Zhiponova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| |
Collapse
|
9
|
Ahkami AH. Systems biology of root development in Populus: Review and perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111818. [PMID: 37567482 DOI: 10.1016/j.plantsci.2023.111818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/28/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
The root system of plants consists of primary, lateral, and adventitious roots (ARs) (aka shoot-born roots). ARs arise from stem- or leaf-derived cells during post-embryonic development. Adventitious root development (ARD) through stem cuttings is the first requirement for successful establishment and growth of planted trees; however, the details of the molecular mechanisms underlying ARD are poorly understood. This knowledge is important to both basic plant biology and because of its necessary role in the successful propagation of superior cultivars of commercial woody bioenergy crops, like poplar. In this review article, the molecular mechanisms that control both endogenous (auxin) and environmentally (nutrients and microbes) regulated ARD and how these systems interact to control the rooting efficiency of poplar trees are described. Then, potential future studies in employing integrated systems biology approaches at cellular resolutions are proposed to more precisely identify the molecular mechanisms that cause AR. Using genetic transformation and genome editing approaches, this information can be used for improving ARD in economically important plants for which clonal propagation is a requirement.
Collapse
Affiliation(s)
- Amir H Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, USA.
| |
Collapse
|
10
|
Luo C, Qiu J, Zhang Y, Li M, Liu P. Jasmonates Coordinate Secondary with Primary Metabolism. Metabolites 2023; 13:1008. [PMID: 37755288 PMCID: PMC10648981 DOI: 10.3390/metabo13091008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Jasmonates (JAs), including jasmonic acid (JA), its precursor 12-oxo-phytodienoic acid (OPDA) and its derivatives jasmonoyl-isoleucine (JA-Ile), methyl jasmonate (MeJA), cis-jasmone (CJ) and other oxylipins, are important in the regulation of a range of ecological interactions of plants with their abiotic and particularly their biotic environments. Plant secondary/specialized metabolites play critical roles in implementing these ecological functions of JAs. Pathway and transcriptional regulation analyses have established a central role of JA-Ile-mediated core signaling in promoting the biosynthesis of a great diversity of secondary metabolites. Here, we summarized the advances in JAs-induced secondary metabolites, particularly in secondary metabolites induced by OPDA and volatile organic compounds (VOCs) induced by CJ through signaling independent of JA-Ile. The roles of JAs in integrating and coordinating the primary and secondary metabolism, thereby orchestrating plant growth-defense tradeoffs, were highlighted and discussed. Finally, we provided perspectives on the improvement of the adaptability and resilience of plants to changing environments and the production of valuable phytochemicals by exploiting JAs-regulated secondary metabolites.
Collapse
Affiliation(s)
- Chen Luo
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jianfang Qiu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mengya Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Pei Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Silva RM, Peres ANA, Peres LEP, Olivares FL, Sangi S, Canellas NA, Spaccini R, Cangemi S, Canellas LP. Humic Substances Isolated from Recycled Biomass Trigger Jasmonic Acid Biosynthesis and Signalling. PLANTS (BASEL, SWITZERLAND) 2023; 12:3148. [PMID: 37687394 PMCID: PMC10490330 DOI: 10.3390/plants12173148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Intensive agriculture maintains high crop yields through chemical inputs, which are well known for their adverse effects on environmental quality and human health. Innovative technologies are required to reduce the risk generated by the extensive and harmful use of pesticides. The plant biostimulants made from humic substances isolated from recyclable biomass offer an alternative approach to address the need for replacing conventional agrochemicals without compromising the crop yield. The stimulatory effects of humic substances are commonly associated with plant hormones, particularly auxins. However, jasmonic acid (JA) is crucial metabolite in mediating the defence responses and governing plant growth and development. This work aimed to evaluate the changes in the biosynthesis and signalling pathway of JA in tomato seedlings treated with humic acids (HA) isolated from vermicompost. We use the tomato model system cultivar Micro-Tom (MT) harbouring a reporter gene fused to a synthetic promoter that responds to jasmonic acid (JERE::GUS). The transcript levels of genes involved in JA generation and activity were also determined using qRT-PCR. The application of HA promoted plant growth and altered the JA status, as revealed by both GUS and qRT-PCR assays. Both JA enzymatic synthesis (LOX, OPR3) and JA signalling genes (JAZ and JAR) were found in higher transcription levels in plants treated with HA. In addition, ethylene (ETR4) and auxin (ARF6) signalling components were positively modulated by HA, revealing a hormonal cross-talk. Our results prove that the plant defence system linked to JA can be emulated by HA application without growth inhibition.
Collapse
Affiliation(s)
- Rakiely M. Silva
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Ave Alberto Lamego 2000, Campos dos Goytacazes 28013-602, Brazil
| | - Alice N. A. Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura ‘‘Luiz de Queiroz’’ (ESALQ), Universidade de São Paulo (USP), Piracicaba 05508-090, Brazil
| | - Lázaro E. P. Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura ‘‘Luiz de Queiroz’’ (ESALQ), Universidade de São Paulo (USP), Piracicaba 05508-090, Brazil
| | - Fábio L. Olivares
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Ave Alberto Lamego 2000, Campos dos Goytacazes 28013-602, Brazil
| | - Sara Sangi
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Ave Alberto Lamego 2000, Campos dos Goytacazes 28013-602, Brazil
| | - Natália A. Canellas
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Ave Alberto Lamego 2000, Campos dos Goytacazes 28013-602, Brazil
| | - Riccardo Spaccini
- Centro Interdipartimentale di Ricerca CERMANU, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Silvana Cangemi
- Centro Interdipartimentale di Ricerca CERMANU, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Luciano P. Canellas
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Ave Alberto Lamego 2000, Campos dos Goytacazes 28013-602, Brazil
| |
Collapse
|
12
|
Bajguz A, Piotrowska-Niczyporuk A. Biosynthetic Pathways of Hormones in Plants. Metabolites 2023; 13:884. [PMID: 37623827 PMCID: PMC10456939 DOI: 10.3390/metabo13080884] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Phytohormones exhibit a wide range of chemical structures, though they primarily originate from three key metabolic precursors: amino acids, isoprenoids, and lipids. Specific amino acids, such as tryptophan, methionine, phenylalanine, and arginine, contribute to the production of various phytohormones, including auxins, melatonin, ethylene, salicylic acid, and polyamines. Isoprenoids are the foundation of five phytohormone categories: cytokinins, brassinosteroids, gibberellins, abscisic acid, and strigolactones. Furthermore, lipids, i.e., α-linolenic acid, function as a precursor for jasmonic acid. The biosynthesis routes of these different plant hormones are intricately complex. Understanding of these processes can greatly enhance our knowledge of how these hormones regulate plant growth, development, and physiology. This review focuses on detailing the biosynthetic pathways of phytohormones.
Collapse
Affiliation(s)
- Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| | | |
Collapse
|
13
|
Zhang P, Ni Y, Jiao Z, Li J, Wang T, Yao Z, Jiang Y, Yang X, Sun Y, Li H, He D, Niu J. The wheat leaf delayed virescence of mutant dv4 is associated with the abnormal photosynthetic and antioxidant systems. Gene X 2023; 856:147134. [PMID: 36586497 DOI: 10.1016/j.gene.2022.147134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Chlorophyll (Chl) is a key pigment for wheat (Triticum aestivum L.) photosynthesis, consequently impacts grain yield. A wheat mutant named as delayed virescence 4 (dv4) was obtained from cultivar Guomai 301 (wild type, WT) treated with ethyl methane sulfonate (EMS). The seedling leaves of dv4 were shallow yellow, apparently were chlorophyll deficient. They started to turn green at the jointing stage and returned to almost ordinary green at the heading stage. Leaf transcriptome comparison of Guomai 301 and dv4 at the jointing stage showed that most differentially expressed genes (DEGs) of transcription and translation were highly expressed in dv4, one key gene nicotianamine aminotransferase A (NAAT-A) involved in the synthesis and metabolism pathways of tyrosine, methionine and phenylalanine was significantly lowly expressed. The expression levels of the most photosynthesis related genes, such as photosystem I (PS I), ATPase and light-harvesting chlorophyll protein complex-related homeotypic genes, and protochlorophyllide reductase A (PORA) were lower; but macromolecule degradation and hypersensitivity response (HR) related gene heat shock protein 82 (HSP82) was highly expressed. Compared to WT, the contents of macromolecules such as proteins and sugars were reduced; the contents of Chl a, Chl b, total Chl, and carotenoids in leaves of dv4 were significantly less at the jointing stage, while the ratio of Chl a / Chl b was the same as that of WT. The net photosynthetic rate, stomatal conductance and transpiration rate of dv4 were significantly lower. The H2O2 content were higher, while the contents of total phenol and malondialdehyde (MDA), antioxidant enzyme activities were lower in leaves of dv4. In conclusion, the reduced contents of macromolecules and photosynthetic pigments, the abnormal photosynthetic and antioxidant systems were closely related to the phenotype of dv4.
Collapse
Affiliation(s)
- Peipei Zhang
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yongjing Ni
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu 476000, Henan, China
| | - Zhixin Jiao
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Junchang Li
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Ting Wang
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Ziping Yao
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yumei Jiang
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Xiwen Yang
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yulong Sun
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Huijuan Li
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Dexian He
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Jishan Niu
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| |
Collapse
|
14
|
Chen W, Ye T, Sun Q, Niu T, Zhang J. Arbuscular mycorrhizal fungus alleviates anthracnose disease in tea seedlings. FRONTIERS IN PLANT SCIENCE 2023; 13:1058092. [PMID: 36726674 PMCID: PMC9886063 DOI: 10.3389/fpls.2022.1058092] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Tea has been gaining increasing popularity all over the world in recent years, and its yield and quality depend on the growth and development of tea plants [Camellia sinensis (L.) Kuntze] in various environments. Nowadays, biotic stress and extreme weather, such as high temperature, drought, waterlogging, pests, and diseases, bring about much pressure on the production of tea with high quality. Wherein anthracnose, which is the most common and serious disease of tea plants, has earned more and more attention, as its control mainly relies on chemical pesticides. Arbuscular mycorrhizal fungi (AMF), forming symbiosis with most terrestrial plants, participate in plant resistance against the anthracnose disease, which was found by previous studies in a few herbaceous plants. However, there are a few studies about arbuscular mycorrhizal (AM) fungal regulation of the resistance to the anthracnose pathogen in woody plants so far. In this paper, we investigated the effect of AMF on the development of anthracnose caused by Colletotrichum camelliae and tried to decipher the pertinent mechanism through transcriptome analysis. Results showed that inoculating AMF significantly reduced the damage of anthracnose on tea seedlings by reducing the lesion area by 35.29% compared to that of the control. The content of superoxide anion and activities of catalase and peroxidase significantly increased (P < 0.05) in mycorrhizal treatment in response to the pathogen with 1.23, 2.00, and 1.39 times higher, respectively, than those in the control. Pathways of plant hormone signal transduction, mitogen-activated protein kinase (MAPK) signaling, and phenylpropanoid biosynthesis might play roles in this regulation according to the transcriptomic results. Further redundancy analysis (RDA) and partial least squares structural equation modeling (PLS-SEM) analysis found that plant hormones, such as auxin and ethylene, and the antioxidant system (especially peroxidase) were of great importance in the AM fungal alleviation of anthracnose. Our results preliminarily indicated the mechanisms of enhanced resistance in mycorrhizal tea seedlings to the anthracnose pathogen and provided a theoretical foundation for the application of AMF as one of the biological control methods in tea plantations.
Collapse
Affiliation(s)
| | | | | | | | - Jiaxia Zhang
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan, China
| |
Collapse
|
15
|
Hu S, Yu K, Yan J, Shan X, Xie D. Jasmonate perception: Ligand-receptor interaction, regulation, and evolution. MOLECULAR PLANT 2023; 16:23-42. [PMID: 36056561 DOI: 10.1016/j.molp.2022.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/10/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Phytohormones integrate external environmental and developmental signals with internal cellular responses for plant survival and multiplication in changing surroundings. Jasmonate (JA), which might originate from prokaryotes and benefit plant terrestrial adaptation, is a vital phytohormone that regulates diverse developmental processes and defense responses against various environmental stresses. In this review, we first provide an overview of ligand-receptor binding techniques used for the characterization of phytohormone-receptor interactions, then introduce the identification of the receptor COI1 and active JA molecules, and finally summarize recent advances on the regulation of JA perception and its evolution.
Collapse
Affiliation(s)
- Shuai Hu
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kaiming Yu
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528200, China.
| | - Xiaoyi Shan
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Daoxin Xie
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
16
|
Zhang M, Liu N, Teixeira da Silva JA, Liu X, Deng R, Yao Y, Duan J, He C. Physiological and transcriptomic analysis uncovers salinity stress mechanisms in a facultative crassulacean acid metabolism plant Dendrobium officinale. FRONTIERS IN PLANT SCIENCE 2022; 13:1028245. [PMID: 36275597 PMCID: PMC9582936 DOI: 10.3389/fpls.2022.1028245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Dendrobium officinale is a precious medicinal Chinese herb that employs facultative crassulacean acid metabolism (CAM) and has a high degree of abiotic stress tolerance, but the molecular mechanism underlying the response of this orchid to abiotic stresses is poorly understood. In this study, we analyzed the root microstructure of D. officinale plantlets and verified the presence of chloroplasts by transmission electron microscopy. To obtain a more comprehensive overview of the molecular mechanism underlying their tolerance to abiotic stress, we performed whole-transcriptome sequencing of the roots of 10-month-old plantlets exposed to salt (NaCl) treatment in a time-course experiment (0, 4 and 12 h). The total of 7376 differentially expressed genes that were identified were grouped into three clusters (P < 0.05). Metabolic pathway analysis revealed that the expression of genes related to hormone (such as auxins, cytokinins, abscisic acid, ethylene and jasmonic acid) biosynthesis and response, as well as the expression of genes related to photosynthesis, amino acid and flavonoid metabolism, and the SOS pathway, were either up- or down-regulated after salt treatment. Additionally, we identified an up-regulated WRKY transcription factor, DoWRKY69, whose ectopic expression in Arabidopsis promoted seed germination under salt tress. Collectively, our findings provide a greater understanding of the salt stress response mechanisms in the roots of a facultative CAM plant. A number of candidate genes that were discovered may help plants to cope with salt stress when introduced via genetic engineering.
Collapse
Affiliation(s)
- Mingze Zhang
- The Department of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Nan Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | | | - Xuncheng Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Rufang Deng
- Opening Public Laboratory, Chinese Academy of Sciences, Guangzhou, China
| | - Yuxian Yao
- The Department of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
17
|
Xing Z, Huang T, Zhao K, Meng L, Song H, Zhang Z, Xu X, Liu S. Silencing of Sly-miR171d increased the expression of GRAS24 and enhanced postharvest chilling tolerance of tomato fruit. FRONTIERS IN PLANT SCIENCE 2022; 13:1006940. [PMID: 36161008 PMCID: PMC9500411 DOI: 10.3389/fpls.2022.1006940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
The role of Sly-miR171d on tomato fruit chilling injury (CI) was investigated. The results showed that silencing the endogenous Sly-miR171d effectively delayed the increase of CI and electrolyte leakage (EL) in tomato fruit, and maintained fruit firmness and quality. After low temperature storage, the expression of target gene GRAS24 increased in STTM-miR171d tomato fruit, the level of GA3 anabolism and the expression of CBF1, an important regulator of cold resistance, both increased in STTM-miR171d tomato fruit, indicated that silencing the Sly-miR171d can improve the resistance ability of postharvest tomato fruit to chilling tolerance.
Collapse
Affiliation(s)
- Zengting Xing
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Taishan Huang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Keyan Zhao
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Lanhuan Meng
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Hongmiao Song
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Zhengke Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Xiangbin Xu
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Songbai Liu
- School of Food Science and Engineering, Hainan University, Haikou, China
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| |
Collapse
|
18
|
Wang J, Lv P, Yan D, Zhang Z, Xu X, Wang T, Wang Y, Peng Z, Yu C, Gao Y, Duan L, Li R. Exogenous Melatonin Improves Seed Germination of Wheat ( Triticum aestivum L.) under Salt Stress. Int J Mol Sci 2022; 23:8436. [PMID: 35955571 PMCID: PMC9368970 DOI: 10.3390/ijms23158436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 01/27/2023] Open
Abstract
Melatonin (MT) can effectively reduce oxidative damage induced by abiotic stresses such as salt in plants. However, the effects of MT on physiological responses and molecular regulation during wheat germination remains largely elusive. In this study, the response of wheat seeds to MT under salt stress during germination was investigated at physiological and transcriptome levels. Our results revealed that application of MT significantly reduced the negative influence of salt stress on wheat seed germination. The oxidative load was reduced by inducing high activities of antioxidant enzymes. In parallel, the content of gibberellin A3 (GA3) and jasmonic acid (JA) increased in MT-treated seedling. RNA-seq analysis demonstrated that MT alters oxidoreductase activity and phytohormone-dependent signal transduction pathways under salt stress. Weighted correlation network analysis (WGCNA) revealed that MT participates in enhanced energy metabolism and protected seeds via maintained cell morphology under salt stress during wheat seed germination. Our findings provide a conceptual basis of the MT-mediated regulatory mechanism in plant adaptation to salt stress, and identify the potential candidate genes for salt-tolerant wheat molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Liusheng Duan
- Beijing Key Laboratory of New Technology in Agricultural Application, National Experimental Teaching Demonstration Center for Plant Production, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (P.L.); (D.Y.); (Z.Z.); (X.X.); (T.W.); (Y.W.); (Z.P.); (C.Y.); (Y.G.)
| | - Runzhi Li
- Beijing Key Laboratory of New Technology in Agricultural Application, National Experimental Teaching Demonstration Center for Plant Production, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (P.L.); (D.Y.); (Z.Z.); (X.X.); (T.W.); (Y.W.); (Z.P.); (C.Y.); (Y.G.)
| |
Collapse
|
19
|
Liu R, Niimi H, Ueda M, Takaoka Y. Coordinately regulated transcription factors EIN3/EIL1 and MYCs in ethylene and jasmonate signaling interact with the same domain of MED25. Biosci Biotechnol Biochem 2022; 86:1405-1412. [PMID: 35876657 DOI: 10.1093/bbb/zbac119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/05/2022] [Indexed: 11/15/2022]
Abstract
Ethylene (ET) and jasmonate (JA) are plant hormones that act synergistically to regulate plant development and defense against necrotrophic fungi infections, and antagonistically in response to wounds and apical hook formation. Previous studies revealed that the coordination of these responses is due to dynamic protein-protein interactions (PPI) between their master transcription factors (TFs) EIN3/EIL1 and MYC in ET and JA signaling, respectively. In addition, both TFs are activated via interactions with the same transcriptional mediator MED25, which upregulates downstream gene expression. Herein, we analyzed the PPI between EIN3/EIL1 and MED25, and as with the PPI between MYC3 and MED25, found that the short binding domain of MED25 (CMIDM) is also responsible for the interaction with EIN3/EIL1 - a finding which suggests that both TFs compete for binding with MED25. These results further inform our understanding of the coordination between the ET and JA regulatory systems.
Collapse
Affiliation(s)
- Ruiqi Liu
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Hikaru Niimi
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Minoru Ueda
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yousuke Takaoka
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
| |
Collapse
|
20
|
Hui Z, Xu J, Jian Y, Bian C, Duan S, Hu J, Li G, Jin L. Identification of Long-Distance Transport Signal Molecules Associated with Plant Maturity in Tetraploid Cultivated Potatoes (Solanum tuberosum L.). PLANTS 2022; 11:plants11131707. [PMID: 35807658 PMCID: PMC9268856 DOI: 10.3390/plants11131707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022]
Abstract
Maturity is a key trait for breeders to identify potato cultivars suitable to grow in different latitudes. However, the molecular mechanism regulating maturity remains unclear. In this study, we performed a grafting experiment using the early-maturing cultivar Zhongshu 5 (Z5) and the late-maturing cultivar Zhongshu 18 (Z18) and found that abscisic acid (ABA) and salicylic acid (SA) positively regulate the early maturity of potato, while indole-3-acetic acid (IAA) negatively regulated early maturity. A total of 43 long-distance transport mRNAs are observed to be involved in early maturity, and 292 long-distance transport mRNAs involved in late maturity were identified using RNA sequencing. Specifically, StMADS18, StSWEET10C, and StSWEET11 are detected to be candidate genes for their association with potato early maturity. Metabolomic data analysis shows a significant increase in phenolic acid and flavonoid contents increased in the scion of the early-maturing cultivar Z5, but a significant decrease in amino acid, phenolic acid, and alkaloid contents increased in the scion of the late-maturing cultivar Z18. This work reveals a significant association between the maturity of tetraploid cultivated potato and long-distance transport signal molecules and provides useful data for assessing the molecular mechanisms underlying the maturity of potato plants and for breeding early-maturing potato cultivars.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guangcun Li
- Correspondence: (G.L.); (L.J.); Tel.: +86-010-82105955 (G.L.); +86-010-82109543 (L.J.)
| | - Liping Jin
- Correspondence: (G.L.); (L.J.); Tel.: +86-010-82105955 (G.L.); +86-010-82109543 (L.J.)
| |
Collapse
|
21
|
Shrestha K, Huang Y. Genome-wide characterization of the sorghum JAZ gene family and their responses to phytohormone treatments and aphid infestation. Sci Rep 2022; 12:3238. [PMID: 35217668 PMCID: PMC8881510 DOI: 10.1038/s41598-022-07181-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/04/2022] [Indexed: 11/18/2022] Open
Abstract
Jasmonate ZIM-domain (JAZ) proteins are the key repressors of the jasmonic acid (JA) signal transduction pathway and play a crucial role in stress-related defense, phytohormone crosstalk and modulation of the growth-defense tradeoff. In this study, the sorghum genome was analyzed through genome-wide comparison and domain scan analysis, which led to the identification of 18 sorghum JAZ (SbJAZ) genes. All SbJAZ proteins possess the conserved TIFY and Jas domains and they formed a phylogenetic tree with five clusters related to the orthologs of other plant species. Similarly, evolutionary analysis indicated the duplication events as a major force of expansion of the SbJAZ genes and there was strong neutral and purifying selection going on. In silico analysis of the promoter region of the SbJAZ genes indicates that SbJAZ5, SbJAZ6, SbJAZ13, SbJAZ16 and SbJAZ17 are rich in stress-related cis-elements. In addition, expression profiling of the SbJAZ genes in response to phytohormones treatment (JA, ET, ABA, GA) and sugarcane aphid (SCA) was performed in two recombinant inbred lines (RILs) of sorghum, resistant (RIL 521) and susceptible (RIL 609) to SCA. Taken together, data generated from phytohormone expression and in silico analysis suggests the putative role of SbJAZ9 in JA-ABA crosstalk and SbJAZ16 in JA-ABA and JA-GA crosstalk to regulate certain physiological processes. Notably, upregulation of SbJAZ1, SbJAZ5, SbJAZ13 and SbJAZ16 in resistant RIL during JA treatment and SCA infestation suggests putative functions in stress-related defense and to balance the plant defense to promote growth. Overall, this report provides valuable insight into the organization and functional characterization of the sorghum JAZ gene family.
Collapse
Affiliation(s)
- Kumar Shrestha
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yinghua Huang
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, 74078, USA. .,Plant Science Research Laboratory, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Stillwater, OK, 74075, USA.
| |
Collapse
|
22
|
Zheng XB, Wu Y, Wang H, Song SW, Bai TH, Jiao J, Song CH, Pang HG, Wang MM. Genome-Wide Investigation of the Zinc Finger-Homeodomain Family Genes Reveals Potential Roles in Apple Fruit Ripening. Front Genet 2022; 12:783482. [PMID: 35111199 PMCID: PMC8802310 DOI: 10.3389/fgene.2021.783482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
Zinc finger-homeodomain (ZF-HD) transcription factors play an important role in the regulation of plant growth and development, as well as the regulation of stress responses. Studies on the ZF-HD family genes have been conducted in many plants, however, the characteristics of this family in apple (Malus domestica) fruit remains to be poorly understood. In this study, we identified nineteen ZF-HD family genes in apple at the whole-genome scale, which were unevenly located on ten chromosomes. These MdZF-HD genes were phylogenetically divided into two subfamilies: zinc finger-homeodomain (ZHD) and MINI ZINC FINGER (MIF), and the ZHD subfamily was further classified into five groups (ZHDI–ZHDV). Analysis of the gene structures showed that most MdZF-HD genes lack introns. Gene expression analysis indicated that nine selected MdZF-HD genes were differentially responsive to 1-MCP (1-methylcyclopropene) treatment during the postharvest storage of “Qinguan” apple fruit. Moreover, the transcripts of six genes were further validated in “Golden Delicious” apple fruit, and five genes (MdZHD1/2/6/10/11) were significantly repressed and one gene (MdZHD7) was slightly induced by ethylene treatment. These results indicated that these six MdZF-HD genes may involve in the regulation of ethylene induced ripening process of postharvest apple fruit. These findings provide new clues for further functional investigation of ZF-HD genes, such as their roles in the regulation of fruit ripening.
Collapse
|
23
|
Ali F, Qanmber G, Li F, Wang Z. Updated role of ABA in seed maturation, dormancy, and germination. J Adv Res 2022; 35:199-214. [PMID: 35003801 PMCID: PMC8721241 DOI: 10.1016/j.jare.2021.03.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/03/2021] [Accepted: 03/27/2021] [Indexed: 12/17/2022] Open
Abstract
Functional ABA biosynthesis genes show specific roles for ABA accumulation at different stages of seed development and seedling establishment. De novo ABA biosynthesis during embryogenesis is required for late seed development, maturation, and induction of primary dormancy. ABA plays multiple roles with the key LAFL hub to regulate various downstream signaling genes in seed and seedling development. Key ABA signaling genes ABI3, ABI4, and ABI5 play important multiple functions with various cofactors during seed development such as de-greening, desiccation tolerance, maturation, dormancy, and seed vigor. The crosstalk between ABA and other phytohormones are complicated and important for seed development and seedling establishment.
Background Seed is vital for plant survival and dispersion, however, its development and germination are influenced by various internal and external factors. Abscisic acid (ABA) is one of the most important phytohormones that influence seed development and germination. Until now, impressive progresses in ABA metabolism and signaling pathways during seed development and germination have been achieved. At the molecular level, ABA biosynthesis, degradation, and signaling genes were identified to play important roles in seed development and germination. Additionally, the crosstalk between ABA and other hormones such as gibberellins (GA), ethylene (ET), Brassinolide (BR), and auxin also play critical roles. Although these studies explored some actions and mechanisms by which ABA-related factors regulate seed morphogenesis, dormancy, and germination, the complete network of ABA in seed traits is still unclear. Aim of review Presently, seed faces challenges in survival and viability. Due to the vital positive roles in dormancy induction and maintenance, as well as a vibrant negative role in the seed germination of ABA, there is a need to understand the mechanisms of various ABA regulators that are involved in seed dormancy and germination with the updated knowledge and draw a better network for the underlying mechanisms of the ABA, which would advance the understanding and artificial modification of the seed vigor and longevity regulation. Key scientific concept of review Here, we review functions and mechanisms of ABA in different seed development stages and seed germination, discuss the current progresses especially on the crosstalk between ABA and other hormones and signaling molecules, address novel points and key challenges (e.g., exploring more regulators, more cofactors involved in the crosstalk between ABA and other phytohormones, and visualization of active ABA in the plant), and outline future perspectives for ABA regulating seed associated traits.
Collapse
Affiliation(s)
- Faiza Ali
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Ghulam Qanmber
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
24
|
Cao L, Tian J, Liu Y, Chen X, Li S, Persson S, Lu D, Chen M, Luo Z, Zhang D, Yuan Z. Ectopic expression of OsJAZ6, which interacts with OsJAZ1, alters JA signaling and spikelet development in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1083-1096. [PMID: 34538009 DOI: 10.1111/tpj.15496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Jasmonates (JAs) are key phytohormones that regulate plant responses and development. JASMONATE-ZIM DOMAIN (JAZ) proteins safeguard JA signaling by repressing JA-responsive gene expression in the absence of JA. However, the interaction and cooperative roles of JAZ repressors remain unclear during plant development. Here, we found that OsJAZ6 interacts with OsJAZ1 depending on a single amino acid in the so-called ZIM domain of OsJAZ6 in rice JA signaling transduction and JA-regulated rice spikelet development. In vivo protein distribution analysis revealed that the OsJAZ6 content is efficiently regulated during spikelet development, and biochemical and genetic evidence showed that OsJAZ6 is more sensitive to JA-mediated degradation than OsJAZ1. Through over- and mis-expression experiments, we further showed that the protein stability and levels of OsJAZ6 orchestrate the output of JA signaling during rice spikelet development. A possible mechanism, which outlines how OsJAZ repressors interact and function synergistically in specifying JA signaling output through degradation titration, is also discussed.
Collapse
Affiliation(s)
- Lichun Cao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiaqi Tian
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yilin Liu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofei Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Siqi Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Staffan Persson
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Dan Lu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhijing Luo
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Zheng Yuan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
25
|
Ma C, Li Q, Jia W, Shang H, Zhao J, Hao Y, Li C, Tomko M, Zuverza-Mena N, Elmer W, White JC, Xing B. Role of Nanoscale Hydroxyapatite in Disease Suppression of Fusarium-Infected Tomato. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13465-13476. [PMID: 34078076 DOI: 10.1021/acs.est.1c00901] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The present study investigated the mechanisms by which large- and small-sized nanoscale hydroxyapatite (nHA) suppressed Fusarium-induced wilt disease in tomato. Both nHA sizes at 9.3 mg/L (low) and 46.5 mg/L (high dose) phosphorus (P) were foliar-sprayed on Fusarium-infected tomato leaf surfaces three times. Diseased shoot mass was increased by 40% upon exposure to the low dose of large-sized nHA compared to disease controls. Exposure to both nHA sizes significantly elevated phenylalanine ammonialyase activity and total phenolic content in Fusarium-infected shoots by 30-80% and 40-68%, respectively. Shoot salicylic acid content was also increased by 10-45%, suggesting the potential relationship between antioxidant and phytohormone pathways in nHA-promoted defense against fungal infection. Exposure to the high dose of both nHA sizes increased the root P content by 27-46%. A constrained analysis of principal coordinates suggests that high dose of both nHA sizes significantly altered the fatty acid profile in diseased tomato. Particularly, the diseased root C18:3 content was increased by 28-31% in the large-sized nHA treatments, indicating that nHA remodeled the cell membrane as part of defense against Fusarium infection. Taken together, our findings demonstrate the important role of nHA in promoting disease suppression for the sustainable use of nHA in nanoenabled agriculture.
Collapse
Affiliation(s)
- Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Qingqing Li
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Weili Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Heping Shang
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Yi Hao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chunyang Li
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Mason Tomko
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Nubia Zuverza-Mena
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Wade Elmer
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
26
|
Yu Q, Hua X, Yao H, Zhang Q, He J, Peng L, Li D, Yang Y, Li X. Abscisic acid receptors are involves in the Jasmonate signaling in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2021; 16:1948243. [PMID: 34224307 PMCID: PMC8331031 DOI: 10.1080/15592324.2021.1948243] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 05/31/2023]
Abstract
The phytohormones jasmonates (JAs) act as important molecules of elicitors for the chlorophyll degradation and anthocyanin biosynthesis. JAs do usually not act independently but integrate in complex networks linking to other hormonal signaling transduction. Here, the crosstalk was detected between the JAs (jasmonic acid) and abscisic acid (ABA) signaling pathways in the mediation of chlorophyll degradation and anthocyanin biosynthesis. In this study, we found that the ABA receptor mutants, pyr1pyl1pyl2pyl4 (1124) and pyr1pyl1ply2pyl4pyl5pyl8 (112458) showed less level of chlorophyll and anthocyanin than the wild-type plants, while gain-of-function of RCAR13 transgenic lines inhibited chlorophyll degradation and enhanced anthocyanin accumulation after MeJA treatment. The amidohydrolases, including ILL6 and IAR3 and cytochrome P450 (CYP94B3), encoding JA-Ile catabolism were markedly depressed by ABA receptors. While transcripts of the enzymes for activation of anthocyanin biosynthesis pathway were analyzed, the results indicating that JA biosynthetic genes, including allene oxide synthase (AOS), LOX3 and LOX4 were enhanced by the link of JAs and ABA receptors. Moreover, the ABA receptors are also involved in JAs signal transduction through the regulation of COI, JAZ and MYC2 transcripts. These findings elucidate a connection between a core component of the ABA signaling pathway and JA responses.
Collapse
Affiliation(s)
- Qin Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinyue Hua
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Huan Yao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qian Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Juan He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lu Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Dan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Sichuan University Jinjiang College, School of Liquor-making Engineering, Meishan, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Li M, Yu G, Cao C, Liu P. Metabolism, signaling, and transport of jasmonates. PLANT COMMUNICATIONS 2021; 2:100231. [PMID: 34746762 PMCID: PMC8555440 DOI: 10.1016/j.xplc.2021.100231] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/22/2021] [Accepted: 08/09/2021] [Indexed: 05/16/2023]
Abstract
Biosynthesis/metabolism, perception/signaling, and transport are three essential aspects of the actions of phytohormones. Jasmonates (JAs), including jasmonic acid (JA) and related oxylipins, are implicated in the regulation of a range of ecological interactions, as well as developmental programs to integrate these interactions. Jasmonoyl-isoleucine (JA-Ile) is the most bioactive JAs, and perception of JA-Ile by its coreceptor, the Skp1-Cullin1-F-box-type (SCF) protein ubiquitin ligase complex SCFCOI1-JAZ, in the nucleus derepresses the transcriptional repression of target genes. The biosynthesis and metabolism of JAs occur in the plastid, peroxisome, cytosol, endoplasmic reticulum, and vacuole, whereas sensing of JA-Ile levels occurs in the nucleus. It is increasingly apparent that a number of transporters, particularly members of the jasmonates transporter (JAT) family, located at endomembranes as well as the plasma membrane, constitute a network for modulating and coordinating the metabolic flux and signaling of JAs. In this review, we discuss recent advances in the metabolism, signaling, and especially the transport of JAs, focusing on intracellular compartmentation of these processes. The roles of transporter-mediated cell-cell transport in driving long-distance transport and signaling of JAs are also discussed.
Collapse
Affiliation(s)
- Mengya Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Guanghui Yu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Congli Cao
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Pei Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
- Corresponding author
| |
Collapse
|
28
|
Liu S, Wang C, Liu X, Navas-Castillo J, Zang L, Fan Z, Zhu X, Zhou T. Tomato chlorosis virus-encoded p22 suppresses auxin signalling to promote infection via interference with SKP1-Cullin-F-box TIR1 complex assembly. PLANT, CELL & ENVIRONMENT 2021; 44:3155-3172. [PMID: 34105183 DOI: 10.1111/pce.14125] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 05/20/2023]
Abstract
Phytohormone auxin plays a fundamental role in plant growth and defense against pathogens. However, how auxin signalling is regulated during virus infection in plants remains largely unknown. Auxin/indole-3-acetic acid (Aux/IAA) is the repressor of auxin signalling and can be recognized by an F-box protein transport inhibitor response 1 (TIR1). Ubiquitination and degradation of Aux/IAA by SKP1-Cullin-F-boxTIR1 (SCFTIR1 ) complex can trigger auxin signalling. Here, with an emerging important plant virus worldwide, we showed that tomato chlorosis virus (ToCV) infection or stable transgenic overexpression of its p22 protein does not alter auxin accumulation level but significantly decreases the expression of auxin signalling-responsive genes, suggesting that p22 can attenuate host auxin signalling. Further, p22 could bind the C-terminal of SKP1.1 and compete with TIR1 to interfere with the SCFTIR1 complex assembly, leading to a suppression of Aux/IAA degradation. Silencing and over-expression assays suggested that both NbSKP1.1 and NbTIR1 suppress ToCV accumulation and disease symptoms. Altogether, ToCV p22 disrupts the auxin signalling through destabilizing SCFTIR1 by interacting with the C-terminal of NbSKP1.1 to promote ToCV infection. Our findings uncovered a previously unknown molecular mechanism employed by a plant virus to manipulate SCF complex-mediated ubiquitin pathway and to reprogram auxin signalling for efficient infection.
Collapse
Affiliation(s)
- Sijia Liu
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Cuilin Wang
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Xuedong Liu
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas - Universidad de Málaga (IHSM-CSIC-UMA), Málaga, Spain
| | - Lianyi Zang
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Zaifeng Fan
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xiaoping Zhu
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Tao Zhou
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
Jogawat A, Yadav B, Lakra N, Singh AK, Narayan OP. Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: A review. PHYSIOLOGIA PLANTARUM 2021; 172:1106-1132. [PMID: 33421146 DOI: 10.1111/ppl.13328] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/08/2020] [Accepted: 01/01/2021] [Indexed: 05/21/2023]
Abstract
Drought stress negatively affects crop performance and weakens global food security. It triggers the activation of downstream pathways, mainly through phytohormones homeostasis and their signaling networks, which further initiate the biosynthesis of secondary metabolites (SMs). Roots sense drought stress, the signal travels to the above-ground tissues to induce systemic phytohormones signaling. The systemic signals further trigger the biosynthesis of SMs and stomatal closure to prevent water loss. SMs primarily scavenge reactive oxygen species (ROS) to protect plants from lipid peroxidation and also perform additional defense-related functions. Moreover, drought-induced volatile SMs can alert the plant tissues to perform drought stress mitigating functions in plants. Other phytohormone-induced stress responses include cell wall and cuticle thickening, root and leaf morphology alteration, and anatomical changes of roots, stems, and leaves, which in turn minimize the oxidative stress, water loss, and other adverse effects of drought. Exogenous applications of phytohormones and genetic engineering of phytohormones signaling and biosynthesis pathways mitigate the drought stress effects. Direct modulation of the SMs biosynthetic pathway genes or indirect via phytohormones' regulation provides drought tolerance. Thus, phytohormones and SMs play key roles in plant development under the drought stress environment in crop plants.
Collapse
Affiliation(s)
| | - Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nita Lakra
- Department of Biotechnology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Amit Kumar Singh
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Om Prakash Narayan
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
30
|
Lew TTS, Sarojam R, Jang IC, Park BS, Naqvi NI, Wong MH, Singh GP, Ram RJ, Shoseyov O, Saito K, Chua NH, Strano MS. Species-independent analytical tools for next-generation agriculture. NATURE PLANTS 2020; 6:1408-1417. [PMID: 33257857 DOI: 10.1038/s41477-020-00808-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/16/2020] [Indexed: 05/26/2023]
Abstract
Innovative approaches are urgently required to alleviate the growing pressure on agriculture to meet the rising demand for food. A key challenge for plant biology is to bridge the notable knowledge gap between our detailed understanding of model plants grown under laboratory conditions and the agriculturally important crops cultivated in fields or production facilities. This Perspective highlights the recent development of new analytical tools that are rapid and non-destructive and provide tissue-, cell- or organelle-specific information on living plants in real time, with the potential to extend across multiple species in field applications. We evaluate the utility of engineered plant nanosensors and portable Raman spectroscopy to detect biotic and abiotic stresses, monitor plant hormonal signalling as well as characterize the soil, phytobiome and crop health in a non- or minimally invasive manner. We propose leveraging these tools to bridge the aforementioned fundamental gap with new synthesis and integration of expertise from plant biology, engineering and data science. Lastly, we assess the economic potential and discuss implementation strategies that will ensure the acceptance and successful integration of these modern tools in future farming practices in traditional as well as urban agriculture.
Collapse
Affiliation(s)
| | - Rajani Sarojam
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Bong Soo Park
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Naweed I Naqvi
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
| | - Min Hao Wong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gajendra P Singh
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Rajeev J Ram
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Oded Shoseyov
- The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Kazuki Saito
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore.
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.
| |
Collapse
|
31
|
Zhang R, Wang Y, Li S, Yang L, Liang Z. ABA signaling pathway genes and function during abiotic stress and berry ripening in Vitis vinifera. Gene 2020; 769:145226. [PMID: 33059024 DOI: 10.1016/j.gene.2020.145226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/04/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022]
Abstract
Abscisic acid (ABA) plays important roles in plant development and tolerance to abiotic stresses. Limited information is available regarding ABA signaling pathway genes in grape. In this study, 9 VvPYR/PYLs, 85 VvPP2Cs, 7 VvABIs, 7 VvSnRK2s, and 8 VvABFs were identified in the grape genome. Duplication analysis indicated that whole genome duplication might contribute to the expansion of these gene families. The comprehensive transcriptome analysis in various organs/tissues implied that most of these genes were tissue-specific, and few were environment-specific genes. Exogenous ABA treatment reduced the grape maturation period. VvPP2C59, VvPP2C60, VvPP2C66, and VvABF8 were all involved in tolerance to cold, heat, and drought stresses, revealing their crucial roles in regulating environmental stress responses. This work provides detailed information of ABA signaling pathway genes and new insights regarding their expression patterns during grape development and abiotic stress treatment.
Collapse
Affiliation(s)
- Rui Zhang
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, the Chinese Academy of Science, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, the Chinese Academy of Science, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Yang
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian 271018, China.
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, the Chinese Academy of Science, Beijing 100093, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
32
|
Zheng J, Duan S, Armstrong MR, Duan Y, Xu J, Chen X, Hein I, Jin L, Li G. New Findings on the Resistance Mechanism of an Elite Diploid Wild Potato Species JAM1-4 in Response to a Super Race Strain of Phytophthora infestans. PHYTOPATHOLOGY 2020; 110:1375-1387. [PMID: 32248746 DOI: 10.1094/phyto-09-19-0331-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Late blight is a devastating potato disease worldwide, caused by Phytophthora infestans. The P. infestans strain 2013-18-306 from Yunnan is a "supervirulent race" that overcomes all 11 known late blight resistance genes (R1 to R11) from Solanum demissum. In a previous study, we identified a diploid wild-type potato JAM1-4 (S. jamesii) with high resistance to 2013-18-306. dRenSeq analysis indicated the presence of novel R genes in JAM1-4. RNA-Seq was used to analyze the late blight resistance response genes and defense regulatory mechanisms of JAM1-4 against 2013-18-306. Gene ontology enrichment and KEGG pathway analysis showed that many disease-resistant pathways were significantly enriched. Analysis of differentially expressed genes (DEGs) revealed an active disease resistance mechanism of JAM1-4, and the essential role of multiple signal transduction pathways and secondary metabolic pathways comprised of SA-JA-ET in plant immunity. We also found that photosynthesis in JAM1-4 was inhibited to promote the immune response. Our study reveals the pattern of resistance-related gene expression in response to a super race strain of potato late blight and provides a theoretical basis for further exploration of potato disease resistance mechanisms, discovery of new late blight resistance genes, and disease resistance breeding.
Collapse
Affiliation(s)
- Jiayi Zheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shaoguang Duan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Miles R Armstrong
- The University of Dundee, Division of Plant Sciences at the James Hutton Institute, DD2 5DA, U.K
| | - Yanfeng Duan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianfei Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xinwei Chen
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, U.K
| | - Ingo Hein
- The University of Dundee, Division of Plant Sciences at the James Hutton Institute, DD2 5DA, U.K
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, U.K
| | - Liping Jin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Guangcun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
33
|
Maurya R, Srivastava D, Singh M, Sawant SV. Envisioning the immune interactome in Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:486-507. [PMID: 32345431 DOI: 10.1071/fp19188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/13/2020] [Indexed: 06/11/2023]
Abstract
During plant-pathogen interaction, immune targets were regulated by protein-protein interaction events such as ligand-receptor/co-receptor, kinase-substrate, protein sequestration, activation or repression via post-translational modification and homo/oligo/hetro-dimerisation of proteins. A judicious use of molecular machinery requires coordinated protein interaction among defence components. Immune signalling in Arabidopsis can be broadly represented in successive or simultaneous steps; pathogen recognition at cell surface, Ca2+ and reactive oxygen species signalling, MAPK signalling, post-translational modification, transcriptional regulation and phyto-hormone signalling. Proteome wide interaction studies have shown the existence of interaction hubs associated with physiological function. So far, a number of protein interaction events regulating immune targets have been identified, but their understanding in an interactome view is lacking. We focussed specifically on the integration of protein interaction signalling in context to plant-pathogenesis and identified the key targets. The present review focuses towards a comprehensive view of the plant immune interactome including signal perception, progression, integration and physiological response during plant pathogen interaction.
Collapse
Affiliation(s)
- Rashmi Maurya
- Plant Molecular Biology Lab, National Botanical Research Institute, Lucknow. 226001; and Department of Botany, Lucknow University, Lucknow. 226007
| | - Deepti Srivastava
- Integral Institute of Agricultural Science and Technology (IIAST) Integral University, Kursi Road, Dashauli, Uttar Pradesh. 226026
| | - Munna Singh
- Department of Botany, Lucknow University, Lucknow. 226007
| | - Samir V Sawant
- Plant Molecular Biology Lab, National Botanical Research Institute, Lucknow. 226001; and Corresponding author.
| |
Collapse
|
34
|
Recent Advances in Plant Chemical Biology of Jasmonates. Int J Mol Sci 2020; 21:ijms21031124. [PMID: 32046227 PMCID: PMC7036767 DOI: 10.3390/ijms21031124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 11/29/2022] Open
Abstract
Lipid-derived plant hormone jasmonates are implicated in plant growth, reproductive performance, senescence, secondary metabolite productions, and defense against both necrotrophic pathogens and feeding insects. A major jasmonate is (+)-7-iso-jasmonoyl-l-isoleucine (JA-Ile), which is perceived by the unique COI1-JAZ coreceptor system. Recent advances in plant chemical biology have greatly informed the bioscience of jasmonate, including the development of chemical tools such as the antagonist COR-MO; the agonist NOPh; and newly developed jasmonates, including JA-Ile-macrolactone and 12-OH-JA-Ile. This review article summarizes the current status of plant chemical biology as it pertains to jasmonates, and offers some perspectives for the future.
Collapse
|
35
|
Chen JH, Wei D, Lim PE. Enhanced coproduction of astaxanthin and lipids by the green microalga Chromochloris zofingiensis: Selected phytohormones as positive stimulators. BIORESOURCE TECHNOLOGY 2020; 295:122242. [PMID: 31629282 DOI: 10.1016/j.biortech.2019.122242] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 05/03/2023]
Abstract
Phytohormones comprise a variety of trace bioactive compounds that can stimulate cell growth and promote metabolic shifts. In the present work, a two-stage screening strategy was innovatively established to identify positive phytohormones for enhancement of astaxanthin and lipid coproduction in microplate-based cultures of mixotrophic Chromochloris zofingiensis. The results showed that auxins were the most efficient stimulators for astaxanthin accumulation. The maximum content of 13.1 mg/g and yield of 89.9 mg/L were obtained using indole propionic acid (10 mg/L) and indoleacetic acid (7.8 mg/L), representing the highest levels of astaxanthin in this microalga reported to date. Total lipids with the highest content (64.5% DW) and productivity (445.7 mg/L/d) were coproduced with astaxanthin using indoleacetic acid. Statistical analysis revealed close relations between phytohormones and astaxanthin and lipid biosynthesis. This study provides a novel original strategy for improving astaxanthin and lipid coproduction in C. zofingiensis using the selected phytohormones as positive stimulators.
Collapse
Affiliation(s)
- Jun-Hui Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Dong Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; Research Institute for Food Nutrition and Human Health, Guangzhou, China.
| | - Phaik-Eem Lim
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Phytohormones as stimulators to improve arachidonic acid biosynthesis in Mortierella alpina. Enzyme Microb Technol 2019; 131:109381. [DOI: 10.1016/j.enzmictec.2019.109381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022]
|
37
|
Zhu J, He Y, Yan X, Liu L, Guo R, Xia X, Cheng D, Mi X, Samarina L, Liu S, Xia E, Wei C. Duplication and transcriptional divergence of three Kunitz protease inhibitor genes that modulate insect and pathogen defenses in tea plant ( Camellia sinensis). HORTICULTURE RESEARCH 2019; 6:126. [PMID: 31754433 PMCID: PMC6856355 DOI: 10.1038/s41438-019-0208-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 05/30/2023]
Abstract
Kunitz protease inhibitors (KPIs) are ubiquitous in plants and act as crucial compounds in defense responses against insect attack and pathogen infection. However, the influence of gene duplication on the postdivergence of the CsKPI genes involved in biotic stresses in tea plant is not well known. Here, we identified three CsKPI genes from tea plant (Camellia sinensis) and characterized their expression and evolutionary patterns among plant species. We found that CsKPI1, CsKPI2, and CsKPI3 diverged from their common ancestor 72.94 million years ago (MYA), and the tandem duplication of CsKPI2 and CsKPI3 occurred 26.78 MYA. An in vitro protein assay showed that the three CsKPI proteins were functional and inhibited the production of p-nitroanilide (PNA) from an artificial substrate. The three CsKPI-GFP fusion proteins localized to the cytoplasm. We showed that salicylic acid (SA) and transcripts of CsKPI2 and CsKPI3 significantly accumulated after infection with Glomerella cingulata. The application of exogenous SA stimulated the high expression of both CsKPI2 and CsKPI3 by activating cis-elements within their promoters. Under Ectropis oblique attack, CsKPI1 expression and jasmonic acid (JA) levels were more abundant in both insect-damaged leaf tissues and undamaged neighboring leaves. The application of jasmonic acid methyl ester elicited high expression levels of CsKPI1, suggesting that CsKPI1 accumulation requires JA production in tea plant. The overall findings suggest that the transcriptional divergence of KPI genes after duplication led to the specialized role of CsKPI1 in the physiological response to insect stress; the functional conservation between CsKPI2 and CsKPI3 confers resistance to pathogen infection in tea plant.
Collapse
Affiliation(s)
- Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Yaxian He
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Xiaomei Yan
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Lu Liu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Rui Guo
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Xiaobo Xia
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Daojie Cheng
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Xiaozeng Mi
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Lidiia Samarina
- Russian Research Institute of Floriculture and Subtropical Crops, 354002 Yana Fabritsiusa st. 2/28, Sochi, Russian Federation
| | - Shenrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| |
Collapse
|
38
|
Liu X, Afrin T, Pajerowska-Mukhtar KM. Arabidopsis GCN2 kinase contributes to ABA homeostasis and stomatal immunity. Commun Biol 2019; 2:302. [PMID: 31428690 PMCID: PMC6687712 DOI: 10.1038/s42003-019-0544-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/28/2019] [Indexed: 12/28/2022] Open
Abstract
General Control Non-derepressible 2 (GCN2) is an evolutionarily conserved serine/threonine kinase that modulates amino acid homeostasis in response to nutrient deprivation in yeast, human and other eukaryotes. However, the GCN2 signaling pathway in plants remains largely unknown. Here, we demonstrate that in Arabidopsis, bacterial infection activates AtGCN2-mediated phosphorylation of eIF2α and promotes TBF1 translational derepression. Consequently, TBF1 regulates a subset of abscisic acid signaling components to modulate pre-invasive immunity. We show that GCN2 fine-tunes abscisic acid accumulation and signaling during both pre-invasive and post-invasive stages of an infection event. Finally, we also demonstrate that AtGCN2 participates in signaling triggered by phytotoxin coronatine secreted by P. syringae. During the preinvasive phase, AtGCN2 regulates stomatal immunity by affecting pathogen-triggered stomatal closure and coronatine-mediated stomatal reopening. Our conclusions support a conserved role of GCN2 in various forms of immune responses across kingdoms, highlighting GCN2's importance in studies on both plant and mammalian immunology.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294 USA
- Present Address: Bayer Crop Science, 800 N Lindbergh Blvd., Creve Coeur, MO 63144 USA
| | - Taiaba Afrin
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294 USA
| | | |
Collapse
|
39
|
JA-Induced Endocytosis of AtRGS1 Is Involved in G-Protein Mediated JA Responses. Int J Mol Sci 2019; 20:ijms20153779. [PMID: 31382426 PMCID: PMC6695760 DOI: 10.3390/ijms20153779] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 12/17/2022] Open
Abstract
Arabidopsis heterotrimeric G proteins regulate diverse plant growth and defense processes by coupling to 7TM AtRGS1 proteins. Although G protein mutants display alterations in response to multiple plant hormones, the underlying mechanism by which G proteins participate in the regulation of hormone responses remains elusive. Here, we show that genetic disruption of Gα and Gβ subunits results in reduced sensitivity to JA treatment. Furthermore, using confocal microscopy, VA-TIRFM, and FRET-FLIM, we provide evidence that stimulation by JA induces phosphorylation- and C-terminus-dependent endocytosis of AtRGS1, which then promotes dissociation of AtRGS1 from AtGPA1. In addition, SPT analysis reveals that JA treatment affects the diffusion dynamics of AtRGS1 and AtRGS1-ΔCt. Taken together, these findings suggest that the JA signal activates heterotrimeric G proteins through the endocytosis of AtRGS1 and dissociation of AtRGS1 from AtGPA1, thus providing valuable insight into the mechanisms of how the G protein system perceives and transduces phytohormone signals.
Collapse
|
40
|
Wang J, Wu D, Wang Y, Xie D. Jasmonate action in plant defense against insects. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3391-3400. [PMID: 30976791 DOI: 10.1093/jxb/erz174] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/30/2019] [Indexed: 05/19/2023]
Abstract
Herbivorous insects represent one of the major threats to sessile plants. To cope with herbivore challenges, plants have evolved sophisticated defense systems, in which the lipid-derived phytohormone jasmonate plays a crucial role. Perception of insect attack locally and systemically elicits rapid synthesis of jasmonate, which is perceived by the F-box protein COI1 to further recruit JAZ repressors for ubiquitination and degradation, thereby releasing transcription factors that subsequently activate plant defense against insect attack. Here, we review recent progress in understanding the molecular basis of jasmonate action in plant defense against insects.
Collapse
Affiliation(s)
- Jiaojiao Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dewei Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Daoxin Xie
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
41
|
Almeida-Trapp M, Mithöfer A. Quantification of Phytohormones by HPLC-MS/MS Including Phytoplasma-Infected Plants. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2019; 1875:345-358. [PMID: 30362016 DOI: 10.1007/978-1-4939-8837-2_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
There is strong evidence that phytohormones such as abscisic acid, auxin, salicylic acid, and jasmonates might play a role in defense of the host plants during phytoplasma infections. However, these compounds are usually present at low concentration in complex matrixes, requiring a sensitive and selective method to analyze and quantify them. Here, we present a HPLC-MS/MS method to quantify phytohormones in different infected and noninfected plant tissues.
Collapse
Affiliation(s)
- Marilia Almeida-Trapp
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
42
|
Autophagy in Plant: A New Orchestrator in the Regulation of the Phytohormones Homeostasis. Int J Mol Sci 2019; 20:ijms20122900. [PMID: 31197094 PMCID: PMC6627538 DOI: 10.3390/ijms20122900] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a highly evolutionarily-conserved catabolic process facilitating the development and survival of organisms which have undergone favorable and/or stressful conditions, in particular the plant. Accumulating evidence has implicated that autophagy is involved in growth and development, as well as responses to various stresses in plant. Similarly, phytohormones also play a pivotal role in the response to various stresses in addition to the plant growth and development. However, the relationship between autophagy and phytohormones still remains poorly understood. Here, we review advances in the crosstalk between them upon various environmental stimuli. We also discuss how autophagy coordinates the phytohormones to regulate plant growth and development. We propose that unraveling the regulatory role(s) of autophagy in modulating the homeostasis of phytohormones would benefit crop breeding and improvement under variable environments, in particular under suboptimal conditions.
Collapse
|
43
|
Parveen S, Iqbal MA, Mutanda I, Rashid MHU, Inafuku M, Oku H. Plant hormone effects on isoprene emission from tropical tree in Ficus septica. PLANT, CELL & ENVIRONMENT 2019; 42:1715-1728. [PMID: 30610754 DOI: 10.1111/pce.13513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/23/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Plant hormones and the circadian rhythm have been implicated in coordinated control of isoprene emission in plants. To gain insights into the signalling networks, foliar application of plant hormones was conducted in a native emitter, Ficus septica. Spraying of 50 μM jasmonic acid (JA) gradually decreased isoprene emission by 88% compared with initial levels within 5 days, and emission increased after relief from JA application. We further explored the molecular regulatory mechanism of isoprene emission by analysing photosynthetic rate, gene expression of 2-C-methyl-D-erythrytol 4-phosphate (MEP) pathway, hormone signalling and circadian rhythm processes, and metabolite pool sizes of MEP pathway. Results show that isoprene emission strongly correlated with isoprene synthase (IspS) gene expression and IspS protein levels over the period of JA treatment, indicating transcriptional and possible translational modulation of IspS by JA. Application of JA coordinately modulated genes in the auxin, cytokinin (CK), and circadian rhythm signal transduction pathways. Among the transcriptional factors analysed, MYC2 (JA) and LHY (circadian clock) negatively correlated with isoprene emission. Putative cis-elements predicted on IspS promoter (G-box for MYC2 and circadian for LHY) supports our proposal that isoprene emission is regulated by coordinated transcriptional modulation of IspS gene by phytohormone and circadian rhythm signalling.
Collapse
Affiliation(s)
- Shahanaz Parveen
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
- Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Md Asif Iqbal
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
- Graduate School of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Ishmael Mutanda
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Md Harun-Ur- Rashid
- Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Masashi Inafuku
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Hirosuke Oku
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
44
|
Millar AH, Heazlewood JL, Giglione C, Holdsworth MJ, Bachmair A, Schulze WX. The Scope, Functions, and Dynamics of Posttranslational Protein Modifications. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:119-151. [PMID: 30786234 DOI: 10.1146/annurev-arplant-050718-100211] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Assessing posttranslational modification (PTM) patterns within protein molecules and reading their functional implications present grand challenges for plant biology. We combine four perspectives on PTMs and their roles by considering five classes of PTMs as examples of the broader context of PTMs. These include modifications of the N terminus, glycosylation, phosphorylation, oxidation, and N-terminal and protein modifiers linked to protein degradation. We consider the spatial distribution of PTMs, the subcellular distribution of modifying enzymes, and their targets throughout the cell, and we outline the complexity of compartmentation in understanding of PTM function. We also consider PTMs temporally in the context of the lifetime of a protein molecule and the need for different PTMs for assembly, localization, function, and degradation. Finally, we consider the combined action of PTMs on the same proteins, their interactions, and the challenge ahead of integrating PTMs into an understanding of protein function in plants.
Collapse
Affiliation(s)
- A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia;
| | - Joshua L Heazlewood
- School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia;
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell, CNRS UMR9198, F-91198 Gif-sur-Yvette Cedex, France;
| | - Michael J Holdsworth
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom;
| | - Andreas Bachmair
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria;
| | - Waltraud X Schulze
- Systembiologie der Pflanze, Universität Hohenheim, 70599 Stuttgart, Germany;
| |
Collapse
|
45
|
Vaishak KP, Yadukrishnan P, Bakshi S, Kushwaha AK, Ramachandran H, Job N, Babu D, Datta S. The B-box bridge between light and hormones in plants. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 191:164-174. [PMID: 30640143 DOI: 10.1016/j.jphotobiol.2018.12.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/23/2018] [Accepted: 12/27/2018] [Indexed: 11/29/2022]
Abstract
Plant development is meticulously modulated by interactions between the surrounding environment and the endogenous phytohormones. Light, as an external signal coordinates with the extensive networks of hormones inside the plant to execute its effects on growth and development. Several proteins in plants have been identified for their crucial roles in mediating light regulated development. Among these are the B-box (BBX) family of transcription factors characterized by the presence of zinc-finger B-box domain in their N-terminal region. In Arabidopsis there are 32 BBX proteins that are divided into five structural groups on the basis of the domains present. Several BBX proteins play important roles in seedling photomorphogenesis, neighbourhood detection and photoperiodic regulation of flowering. There is increasing evidence that besides light signaling BBX proteins also play integral roles in several hormone signaling pathways in plants. Here we attempt to comprehensively integrate the roles of multiple BBX proteins in various light and hormone signaling pathways. We further discuss the role of the BBX proteins in mediating crosstalk between the two signaling pathways to harmonize plant growth and development. Finally, we try to analyse the conservation of BBX genes across species and discuss the role of BBX proteins in regulating economically important traits in crop plants.
Collapse
Affiliation(s)
- K P Vaishak
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India; School of Biological Sciences, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, India
| | - Premachandran Yadukrishnan
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Souvika Bakshi
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Amit Kumar Kushwaha
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Harshil Ramachandran
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Nikhil Job
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Dion Babu
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Sourav Datta
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India.
| |
Collapse
|
46
|
Chefdor F, Héricourt F, Koudounas K, Carqueijeiro I, Courdavault V, Mascagni F, Bertheau L, Larcher M, Depierreux C, Lamblin F, Racchi ML, Carpin S. Highlighting type A RRs as potential regulators of the dkHK1 multi-step phosphorelay pathway in Populus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:68-78. [PMID: 30466602 DOI: 10.1016/j.plantsci.2018.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 06/09/2023]
Abstract
In previous studies, we highlighted a multistep phosphorelay (MSP) system in poplars composed of two hybrid-type Histidine aspartate Kinases, dkHK1a and dkHK1b, which interact with three Histidine Phosphotransfer proteins, dkHPt2, 7, and 9, which in turn interact with six type B Response Regulators. These interactions correspond to the dkHK1a-b/dkHPts/dkRRBs MSP. This MSP is putatively involved in an osmosensing pathway, as dkHK1a-b are orthologous to the Arabidopsis osmosensor AHK1, and able to complement a mutant yeast deleted for its osmosensors. Since type A RRs have been characterized as negative regulators in cytokinin MSP signaling due to their interaction with HPt proteins, we decided in this study to characterize poplar type A RRs and their implication in the MSP. For a global view of this MSP, we isolated 10 poplar type A RR cDNAs, and determined their subcellular localization to check the in silico prediction experimentally. For most of them, the in planta subcellular localization was as predicted, except for three RRAs, for which this experimental approach gave a more precise localization. Interaction studies using yeast two-hybrid and in planta BiFC assays, together with transcript expression analysis in poplar organs led to eight dkRRAs being singled out as partners which could interfere the dkHK1a-b/dkHPts/dkRRBs MSP identified in previous studies. Consequently, the results obtained in this study now provide an exhaustive view of dkHK1a-b partners belonging to a poplar MSP.
Collapse
Affiliation(s)
- F Chefdor
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France
| | - F Héricourt
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France
| | - K Koudounas
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - I Carqueijeiro
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - V Courdavault
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - F Mascagni
- Università di Pisa, Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Via del Borghetto 80, 56124 Pisa, Italy
| | - L Bertheau
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France
| | - M Larcher
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France
| | - C Depierreux
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France
| | - F Lamblin
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France
| | - M L Racchi
- Scienze delle Produzioni Agroalimentari e dell'Ambiente, sezione di Genetica agraria, via Maragliano, 75 50144 Firenze, Italy
| | - S Carpin
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France.
| |
Collapse
|
47
|
Shi T, Sun J, Wu X, Weng J, Wang P, Qie H, Huang Y, Wang H, Gao Z. Transcriptome analysis of Chinese bayberry (Myrica rubra Sieb. et Zucc.) fruit treated with heat and 1-MCP. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 133:40-49. [PMID: 30390430 DOI: 10.1016/j.plaphy.2018.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
Chinese bayberry (Myrica rubra Sieb. et Zucc.) is a typical fruit tree grown in the hilly region of Southern China. The fruit is sensitive to storage and transportation conditions and presents a major problem in its commercialization. The present study was conducted to investigate the regulation of gene expression involved in plant hormone signaling pathway in the Chinese bayberry with different treatments of heat and 1-methylcyclopene (1-MCP) during postharvest storage. In one treatment group (HM group), we exposed Chinese bayberry fruit to 48 °C for 10 min and then sealed them in a desiccator with 5 μl·L-1 of 1-MCP for 24 h at 20 °C, followed by storage at 10 °C. Another group (CK group) was directly stored at 10 °C without any prior treatment. Samples of fruit were collected every three days, at 3, 6, 9, 12 and 15 d (CK3, CK6, CK9, CK12 and CK15; and HM3, HM6, HM9, HM12, and HM15, respectively). The decay index of fruits in the CK group increased after six days of storage but did not increase until nine days of storage in the HM group. Superoxide dismutase (SOD) activity in the CK group was shown a downtrend during storage, and almost no fluctuation from six days. In the HM group, SOD activity increased after three days, but decreased sharply after six days storage. Besides, peroxidase (POD) and catalase (CAT) activities were shown the similar trend during the storage, both of them first increased and then decreased form the six days of storage. These physiological data indicated that the sixth day is a crucial time during the storage of Chinese bayberry treated with heat and 1-MCP. Therefore, the transcriptome libraries were constructed from CK0, CK6, HM6 group, respectively. The analysis of top 20 KEGG pathways showed that most differentially expressed genes were involved in the biosynthesis of secondary metabolites, particularly flavonoids and flavanols biosynthesis, in CK0 vs. CK6 and CK0 vs. HM6. However, the top three KEGG pathways in CK6 vs. HM6 were the ribosome, RNA transport and endocytosis during the storage. Expression of six ethylene receptor (ETR) genes and four ethylene-responsive transcription factor (ERF) genes were activated at transcriptional level during the postharvest stage and were decreased by heat and 1-MCP treatment, and serine/threonine-protein kinase 1 (CTR1) was also repressed by treatment. Abscisic acid (ABA) -responsive element binding factor (ABF) gene, auxin-responsive GH3 gene and transcription factor MYC2 gene also showed similar expression pattern with ethylene pathway genes. These results might improve our understanding of the mechanisms of heat and 1-MCP inhibition of fruit postharvest physiology and prolongation of fruit shelf life.
Collapse
Affiliation(s)
- Ting Shi
- Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, PR China
| | - Jie Sun
- Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, PR China; Taihu Extension Center for Evergreen Fruit of Jiangsu Province, Eastern Mountain Town, Suzhou, 215107, PR China
| | - Xinxin Wu
- Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, PR China
| | - Jinyang Weng
- Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, PR China
| | - Pengkai Wang
- Taihu Extension Center for Evergreen Fruit of Jiangsu Province, Eastern Mountain Town, Suzhou, 215107, PR China
| | - Hongli Qie
- Taihu Extension Center for Evergreen Fruit of Jiangsu Province, Eastern Mountain Town, Suzhou, 215107, PR China
| | - Yinghong Huang
- Taihu Extension Center for Evergreen Fruit of Jiangsu Province, Eastern Mountain Town, Suzhou, 215107, PR China
| | - Huakun Wang
- Taihu Extension Center for Evergreen Fruit of Jiangsu Province, Eastern Mountain Town, Suzhou, 215107, PR China
| | - Zhihong Gao
- Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, PR China.
| |
Collapse
|
48
|
Takaoka Y, Iwahashi M, Chini A, Saito H, Ishimaru Y, Egoshi S, Kato N, Tanaka M, Bashir K, Seki M, Solano R, Ueda M. A rationally designed JAZ subtype-selective agonist of jasmonate perception. Nat Commun 2018; 9:3654. [PMID: 30194307 PMCID: PMC6128907 DOI: 10.1038/s41467-018-06135-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 08/05/2018] [Indexed: 12/21/2022] Open
Abstract
The phytohormone 7-iso-(+)-jasmonoyl-L-isoleucine (JA-Ile) mediates plant defense responses against herbivore and pathogen attack, and thus increases plant resistance against foreign invaders. However, JA-Ile also causes growth inhibition; and therefore JA-Ile is not a practical chemical regulator of plant defense responses. Here, we describe the rational design and synthesis of a small molecule agonist that can upregulate defense-related gene expression and promote pathogen resistance at concentrations that do not cause growth inhibition in Arabidopsis. By stabilizing interactions between COI1 and JAZ9 and JAZ10 but no other JAZ isoforms, the agonist leads to formation of JA-Ile co-receptors that selectively activate the JAZ9-EIN3/EIL1-ORA59 signaling pathway. The design of a JA-Ile agonist with high selectivity for specific protein subtypes may help promote the development of chemical regulators that do not cause a tradeoff between growth and defense.
Collapse
Grants
- JPMJPR16Q4 Japan Science and Technology Agency (JST)
- JPMJCR13B4 JST | Core Research for Evolutional Science and Technology (CREST)
- 23102012 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 26282207 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 17H06407 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 17H00885 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
Collapse
Affiliation(s)
- Yousuke Takaoka
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
- Precursory Research for Embryonic Science and Technology (PREST), Japan Science and Technology Agency, Tokyo, 102-0076, Japan
| | - Mana Iwahashi
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Andrea Chini
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Cientificas (CSIC), Campus University Autonoma, 28049, Madrid, Spain
| | - Hiroaki Saito
- Center for Biosystems Dynamics Research, RIKEN, Suita, 565-0874, Japan
| | - Yasuhiro Ishimaru
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Syusuke Egoshi
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Nobuki Kato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Khurram Bashir
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Roberto Solano
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Cientificas (CSIC), Campus University Autonoma, 28049, Madrid, Spain
| | - Minoru Ueda
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan.
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
49
|
He R, Ni Y, Li J, Jiao Z, Zhu X, Jiang Y, Li Q, Niu J. Quantitative Changes in the Transcription of Phytohormone-Related Genes: Some Transcription Factors Are Major Causes of the Wheat Mutant dmc Not Tillering. Int J Mol Sci 2018; 19:ijms19051324. [PMID: 29710831 PMCID: PMC5983577 DOI: 10.3390/ijms19051324] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 01/17/2023] Open
Abstract
Tiller number is an important agronomic trait for grain yield of wheat (Triticum aestivum L.). A dwarf-monoculm wheat mutant (dmc) was obtained from cultivar Guomai 301 (wild type, WT). Here, we explored the molecular basis for the restrained tiller development of the mutant dmc. Two bulked samples of the mutant dmc (T1, T2 and T3) and WT (T4, T5 and T6) with three biological replicates were comparatively analyzed at the transcriptional level by bulked RNA sequencing (RNA-Seq). In total, 68.8 Gb data and 463 million reads were generated, 80% of which were mapped to the wheat reference genome of Chinese Spring. A total of 4904 differentially expressed genes (DEGs) were identified between the mutant dmc and WT. DEGs and their related major biological functions were characterized based on GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) categories. These results were confirmed by quantitatively analyzing the expression profiles of twelve selected DEGs via real-time qRT-PCR. The down-regulated gene expressions related to phytohormone syntheses of auxin, zeatin, cytokinin and some transcription factor (TF) families of TALE, and WOX might be the major causes of the mutant dmc, not tillering. Our work provides a foundation for subsequent tiller development research in the future.
Collapse
Affiliation(s)
- Ruishi He
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Yongjing Ni
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu 476000, Henan, China.
| | - Junchang Li
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Zhixin Jiao
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Xinxin Zhu
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Yumei Jiang
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Qiaoyun Li
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Jishan Niu
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| |
Collapse
|
50
|
Chagas FO, Pessotti RDC, Caraballo-Rodríguez AM, Pupo MT. Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 2018; 47:1652-1704. [PMID: 29218336 DOI: 10.1039/c7cs00343a] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.
Collapse
Affiliation(s)
- Fernanda Oliveira Chagas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903, Ribeirão Preto-SP, Brazil.
| | | | | | | |
Collapse
|