1
|
Xia B, Li Z, Liu X, Yang Y, Chen S, Chen B, Xu N, Han J, Zhou Y, He M. Functional characterization of CiHY5 in salt tolerance of Chrysanthemum indicum and conserved role of HY5 under stress in chrysanthemum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109797. [PMID: 40138817 DOI: 10.1016/j.plaphy.2025.109797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/03/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Among various abiotic stresses, secondary soil salinization poses a significant threat to plant productivity and survival. Cultivated chrysanthemums (Chrysanthemum morifolium), widely grown as ornamental crops, are highly susceptible to salt stress, and their complex polyploid genome complicates the identification of stress resistance genes. In contrast, C. indicum, a native diploid species with robust stress tolerance, serves as a valuable genetic resource for uncovering stress-responsive genes and improving the resilience of ornamental chrysanthemum cultivars. In this study, we cloned, overexpressed (OE-CiHY5), and silenced (RNAi-CiHY5) the CiHY5 gene in C. indicum. OE-CiHY5 plants exhibited larger leaves, sturdier stalks, and higher chlorophyll content compared to wild-type plants, while RNAi-CiHY5 plants displayed weaker growth. Under salt stress, OE-CiHY5 plants demonstrated significantly improved growth, enhanced osmotic adjustment, and effective ROS scavenging. In contrast, RNAi-CiHY5 plants were more sensitive to salinity, showing higher electrolyte leakage and impaired osmotic regulation. Transcriptomic analyses revealed that CiHY5 regulates key hormonal pathways such as zeatin (one of cytokinins), abscisic acid and jasmonic acid, as well as metabolic pathways, including photosynthesis, carbohydrate metabolism, which collectively contribute to the enhanced stress resilience of OE-CiHY5 plants. Promoter-binding assays further confirmed that CiHY5 directly interacts with the CiABF3 promoter, highlighting its critical role in ABA signaling. Evolutionary analyses showed that HY5 is conserved across plant lineages, from early algae to advanced angiosperms, with consistent responsiveness to salt and other abiotic stresses in multiple Chrysanthemum species. These findings establish CiHY5 as a key regulator of salt tolerance in C. indicum, orchestrating a complex network of hormonal and metabolic pathways to mitigate salinity-induced damage. Given the conserved nature of HY5 and its responsiveness to various stresses, HY5 gene provides valuable insights into the molecular mechanisms underlying stress adaptation and represents a promising genetic target for enhancing salt stress resilience in chrysanthemums.
Collapse
Affiliation(s)
- Bin Xia
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China.
| | - Ziwei Li
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China.
| | - Xiaowei Liu
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Yujia Yang
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Shengyan Chen
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Bin Chen
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Ning Xu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Jinxiu Han
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Yunwei Zhou
- College of Horticulture, Jilin Agricultural University, Changchun, 130118, China.
| | - Miao He
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
2
|
Babu MA, Jyothi S R, Kaur I, Kumar S, Sharma N, Kumar MR, Rajput P, Ali H, Gupta G, Subramaniyan V, Wong LS, Kumarasamy V. The role of GATA4 in mesenchymal stem cell senescence: A new frontier in regenerative medicine. Regen Ther 2025; 28:214-226. [PMID: 39811069 PMCID: PMC11731776 DOI: 10.1016/j.reth.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
The Mesenchymal Stem Cell (MSC) is a multipotent progenitor cell with known differentiation potential towards various cell lineage, making it an appealing candidate for regenerative medicine. One major contributing factor to age-related MSC dysfunction is cellular senescence, which is the hallmark of relatively irreversible growth arrest and changes in functional properties. GATA4, a zinc-finger transcription factor, emerges as a critical regulator in MSC biology. Originally identified as a key regulator of heart development and specification, GATA4 has since been connected to several aspects of cellular processes, including stem cell proliferation and differentiation. Accumulating evidence suggests that the involvement of GATA4-nuclear signalizing in the process of MSC senescence-related traits may contribute to age-induced alterations in MSC behavior. GATA4 emerged as the central player in MSC senescence, interacting with several signaling pathways. Studies have shown that GATA4 expression is reduced with age in MSCs, which is associated with increased expression levels of senescence markers and impaired regenerative potential. At the mechanistic level, GATA4 regulates the expression of genes involved in cell cycle regulation, DNA repair, and oxidative stress response, thereby influencing the senescence phenotype in MSCs. The findings underscore the critical function of GATA4 in MSC homeostasis and suggest a promising new target to restore stem cell function during aging and disease. A better understanding of the molecular mechanisms that underlie GATA4 mediated modulation of MSC senescence would provide an opportunity to develop new therapies to revitalize old MSCs to increase their regenerative function for therapeutic purposes in regenerative medicine.
Collapse
Affiliation(s)
- M. Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, 140307, Punjab, India
| | - M. Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Pranchal Rajput
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Leto L, Guarrasi V, Agosti A, Nironi M, Chiancone B, Juan Vicedo J. Effects of Cytokinins on Morphogenesis, Total (Poly)Phenolic Content and Antioxidant Capacity of In Vitro-Cultured Hop Plantlets, cvs. Cascade and Columbus. PLANTS (BASEL, SWITZERLAND) 2025; 14:418. [PMID: 39942980 PMCID: PMC11820385 DOI: 10.3390/plants14030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025]
Abstract
(1) Background: Humulus lupulus L. plants constitute a rich source of bioactive compounds. The synthesis of bioactive compounds in plants is often triggered by the activation of secondary metabolism, which can be induced by biotic or abiotic elicitors. In vitro, the effect of the elicitors can be studied in a controlled environment and in a small space, independently of seasonal variations. Cytokinins are frequently used in plant tissue culture for bud regeneration, branching and shoot elongation due to their role in cell division enhancement. This study aimed to investigate the effects of different cytokinins on the growth parameters, total (poly)phenolic content and antioxidant capacity of in vitro-grown hop plants to evaluate hop vitro-derived biomass as a potential source of bioactive compounds. (2) Methods: unimodal hop (cvs. Cascade and Columbus) explants were cultured on media enriched with four cytokinins (kinetin, 6-benzylaminopurine, meta-topolin and 6-(γ,γ-dimethylallylamino)-purine) at four concentrations. (3) Results: A genotype-dependent response to different cytokinins was encountered. (4) Conclusions Columbus explants could root in culture media auxin-free, providing valuable opportunities for commercial nurseries. Moreover, cytokinins were confirmed to be valuable elicitors to stimulate the bioactive compound biosynthesis in micropropagated hop plants, making them a precious source for various industries.
Collapse
Affiliation(s)
- Leandra Leto
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (A.A.); (M.N.)
| | - Valeria Guarrasi
- Institute of Biophysics, National Research Council (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Anna Agosti
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (A.A.); (M.N.)
| | - Martina Nironi
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (A.A.); (M.N.)
| | - Benedetta Chiancone
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (A.A.); (M.N.)
- Institute of Biophysics, National Research Council (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Jorge Juan Vicedo
- Instituto de Investigación en Medio Ambiente y Ciencia Marina IMEDMAR, Universidad Católica de Valencia San Vicente Mártir, Carrer Guillem de Castro, 94, 46001 València, Spain;
| |
Collapse
|
4
|
Jin W, Gong F, Zhang Y, Wang R, Liu H, Wei Y, Tang K, Jiang Y, Gao J, Sun X. Cytokinin-responsive RhRR1-RhSCL28 transcription factor module positively regulates petal size by promoting cell division in rose. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:381-392. [PMID: 39230685 DOI: 10.1093/jxb/erae331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024]
Abstract
Petal size, a crucial trait in the economically important ornamental rose (Rosa hybrida), is synergistically regulated by cell division and cell expansion. Cell division primarily occurs during the early development of petals. However, the molecular mechanism underlying the regulation of petal size is far from clear. In this study, we isolated the transcription factor gene RhSCL28, which is highly expressed at the early stage of rose petal development and is induced by cytokinin. Silencing RhSCL28 resulted in a reduced final petal size and reduced cell number in rose petals. Further analysis showed that RhSCL28 participates in the regulation of cell division by positively regulating the expression of the cyclin genes RhCYCA1;1 and RhCYCB1;2. To explore the potential mechanism for cytokinin-mediated regulation of RhSCL28 expression, we investigated the cytokinin response factor RhRR1 and determined that it positively regulates RhSCL28 expression. Like RhSCL28, silencing RhRR1 also resulted in smaller petals by decreasing cell number. Taken together, these results reveal that the RhRR1-RhSCL28 module positively regulates petal size by promoting cell division in rose.
Collapse
Affiliation(s)
- Weichan Jin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Feifei Gong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yuanfei Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Rui Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Huwei Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yinghao Wei
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Kaiyang Tang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yunhe Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaoming Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Marasco R, Mosqueira MJ, Seferji KA, Al Romaih SM, Michoud G, Xu J, Bez C, Castillo Hernandez T, Venturi V, Blilou I, Daffonchio D. Desert-adapted plant growth-promoting pseudomonads modulate plant auxin homeostasis and mitigate salinity stress. Microb Biotechnol 2024; 17:e70043. [PMID: 39692704 PMCID: PMC11653947 DOI: 10.1111/1751-7915.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/17/2024] [Indexed: 12/19/2024] Open
Abstract
By providing adaptive advantages to plants, desert microorganisms are emerging as promising solutions to mitigate the negative and abrupt effects of climate change in agriculture. Among these, pseudomonads, commonly found in soil and in association with plants' root system, have been shown to enhance plant tolerance to salinity and drought, primarily affecting root system architecture in various hosts. However, a comprehensive understanding of how these bacteria affect plant responses at the cellular, physiological and molecular levels is still lacking. In this study, we investigated the effects of two Pseudomonas spp. strains, E102 and E141, which were previously isolated from date palm roots and have demonstrated efficacy in promoting drought tolerance in their hosts. These strains colonize plant roots, influencing root architecture by inhibiting primary root growth while promoting root hair elongation and lateral root formation. Strains E102 and E141 increased auxin levels in Arabidopsis, whereas this effect was diminished in IAA-defective mutant strains, which exhibited reduced IAA production. In all cases, the effectiveness of the bacteria relies on the functioning of the plant auxin response and transport machinery. Notably, such physiological and morphological changes provide an adaptive advantage to the plant, specifically under stress conditions such as salinity. Collectively, this study demonstrates that by leveraging the host's auxin signalling machinery, strains E102 and E141 significantly improve plant resilience to abiotic stresses, positioning them as potential biopromoters/bioprotectors for crop production and ecosystem restoration in alignment with Nature-based Solution approaches.
Collapse
Affiliation(s)
- Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Maria J. Mosqueira
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Kholoud A. Seferji
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Sarah M. Al Romaih
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Grégoire Michoud
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Jian Xu
- Plant Systems PhysiologyRadboud UniversityNijmegenThe Netherlands
| | - Cristina Bez
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Tatiana Castillo Hernandez
- Laboratory of Plant Cell and Developmental Biology, Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Vittorio Venturi
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
- African Genome CenterUniversity Mohammed VI PolytechnicBen GuerirMorocco
| | - Ikram Blilou
- Laboratory of Plant Cell and Developmental Biology, Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| |
Collapse
|
6
|
Rybin DA, Sukhova AA, Syomin AA, Zdobnova TA, Berezina EV, Brilkina AA. Characteristics of Callus and Cell Suspension Cultures of Highbush Blueberry ( Vaccinium corymbosum L.) Cultivated in the Presence of Different Concentrations of 2,4-D and BAP in a Nutrient Medium. PLANTS (BASEL, SWITZERLAND) 2024; 13:3279. [PMID: 39683072 DOI: 10.3390/plants13233279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
In this work, cultures of callus and suspension cells originating from leaves of sterile highbush blueberry (Vaccinium corymbosum L.) plants were obtained and characterized. For their active growth and production of phenolic compounds, a combination of 2,4-D at a concentration of 0.34-2.25 µM and BAP at a concentration of 0.45-2.25 µM is effective. An increase in the phytohormone concentration leads to a slowdown in culture formation and reduces their ability to synthesize phenolic compounds. When cultivating V. corymbosum suspension cells over a year (12 passages), they not only retain the ability to synthesize phenolic compounds but also enhance it. By the 12th passage, the content of TSPC in suspension cells reaches 150 mg/g DW, the content of flavonoids reaches 100 mg/g DW, the content of flavans reaches 40 mg/g DW, and the content of proanthocyanidins reaches 30 mg/g DW. The high content of phenolic compounds may be due to the high expression of genes in flavonoid biosynthesis enzymes. V. corymbosum suspension cells accumulate a high level of phenolic compounds during a passage. The ability of V. corymbosum callus and cell suspension cultures in the presence of low concentrations of phytohormones to grow and accumulate biologically active phenolic compounds determines their high economic significance and prospects for organizing a biotechnological method for obtaining phenolic compounds.
Collapse
Affiliation(s)
- Dmitry A Rybin
- Department of Biochemistry and Biotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, 603022 Nizhny Novgorod, Russia
| | - Alina A Sukhova
- Department of Biochemistry and Biotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, 603022 Nizhny Novgorod, Russia
| | - Andrey A Syomin
- Department of Biochemistry and Biotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, 603022 Nizhny Novgorod, Russia
| | - Tatiana A Zdobnova
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, 603022 Nizhny Novgorod, Russia
| | - Ekaterina V Berezina
- Department of Biochemistry and Biotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, 603022 Nizhny Novgorod, Russia
| | - Anna A Brilkina
- Department of Biochemistry and Biotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
7
|
Liu B, Yang J, Lu W, Wang H, Song X, Yu S, Liu Q, Sun Y, Jiang X. Altitudinal variation in rhizosphere microbial communities of the endangered plant Lilium tsingtauense and the environmental factors driving this variation. Microbiol Spectr 2024; 12:e0096624. [PMID: 39382299 PMCID: PMC11536999 DOI: 10.1128/spectrum.00966-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/28/2024] [Indexed: 10/10/2024] Open
Abstract
The rhizosphere soil properties and microbial communities of Lilium tsingtauense, an endangered wild plant, have not been examined in previous studies. Here, we characterized spatial variation in soil properties and microbial communities in the rhizosphere of L. tsingtauense. We measured the abundance of L. tsingtauense at different altitudes and collected rhizosphere and bulk soils at three representative altitudes. The results showed that L. tsingtauense was more abundant, and the rhizosphere soil was richer in nitrogen, phosphorus, potassium, water content, and organic matter and more acidic at high altitudes than at lower altitudes. The diversity and richness of rhizosphere bacteria and fungi increased with altitude and were higher in rhizosphere soil than in bulk soil. In addition, ectomycorrhizal fungi, endophytic fungi, and nitrogen-fixing bacteria were more abundant, and plant-pathogenic fungi were less abundant at high altitudes. Co-occurrence network analysis identified four key phyla (Bacteroidota, Proteobacteria, Ascomycota, and Basidiomycota) in the microbial communities. We identified a series of microbial taxa (Acidobacteriales, Xanthobacteraceae, and Chaetomiaceae) and rhizosphere soil metabolites (phosphatidylcholine and phosphatidylserine) that are crucial for the survival of L. tsingtauense. Correlation analysis and random forest analysis showed that some environmental factors were closely related to the rhizosphere soil microbial community and played an important role in predicting the distribution and growth status of L. tsingtauense. In sum, the results of this study revealed altitudinal variation in the rhizosphere microbial communities of L. tsingtauense and the factors driving this variation. Our findings also have implications for habitat restoration and the conservation of this species. IMPORTANCE Our study highlighted the importance of the rhizosphere microbial community of the endangered plant L. tsingtauense. We found that soil pH plays an important role in the survival of L. tsingtauense. Our results demonstrated that a series of microbial taxa (Acidobacteriales, Xanthobacteraceae, Aspergillaceae, and Chaetomiaceae) and soil metabolites (phosphatidylcholine and phosphatidylserine) could be essential indicators for L. tsingtauense habitat. We also found that some environmental factors play an important role in shaping rhizosphere microbial community structure. Collectively, these results provided new insights into the altitudinal distribution of L. tsingtauense and highlight the importance of microbial communities in their growth.
Collapse
Affiliation(s)
- Boda Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jinming Yang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wanpei Lu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hai Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xuebin Song
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shaobo Yu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Qingchao Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yingkun Sun
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xinqiang Jiang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
8
|
Wang Z, Zhang W, Ding C, Xia Y, Yuan Z, Guo J, Yu J, Zhang B, Su X. RNA-seq reveals the gene expression in patterns in Populus × euramericana 'Neva' plantation under different precision water and fertilizer-intensive management. BMC PLANT BIOLOGY 2024; 24:759. [PMID: 39118015 PMCID: PMC11312740 DOI: 10.1186/s12870-024-05427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Populus spp. is a crucial fast-growing and productive tree species extensively cultivated in the mid-latitude plains of the world. However, the impact of intensive cultivation management on gene expression in plantation remains largely unexplored. RESULTS Precision water and fertilizer-intensive management substantially increased key enzyme activities of nitrogen transport, assimilation, and photosynthesis (1.12-2.63 times than CK) in Populus × euramericana 'Neva' plantation. Meanwhile, this management approach had a significant regulatory effect on the gene expression of poplar plantations. 1554 differential expression genes (DEGs)were identified in drip irrigation (ND) compared with conventional irrigation. Relative to ND, 2761-4116 DEGs, predominantly up-regulated, were identified under three drip fertilization combinations, among which 202 DEGs were mainly regulated by fertilization. Moreover, drip irrigation reduced the expression of cell wall synthesis-related genes to reduce unnecessary water transport. Precision drip and fertilizer-intensive management promotes the synergistic regulation of carbon and nitrogen metabolism and up-regulates the expression of major genes in nitrogen transport and assimilation processes (5 DEGs), photosynthesis (15 DEGs), and plant hormone signal transduction (11 DEGs). The incorporation of trace elements further enhanced the up-regulation of secondary metabolic process genes. In addition, the co-expression network identified nine hub genes regulated by precision water and fertilizer-intensive management, suggesting a pivotal role in regulating the growth of poplar. CONCLUSION Precision water and fertilizer-intensive management demonstrated the ability to regulate the expression of key genes and transcription factor genes involved in carbon and nitrogen metabolism pathways, plant hormone signal transduction, and enhance the activity of key enzymes involved in related processes. This regulation facilitated nitrogen absorption and utilization, and photosynthetic abilities such as light capture, light transport, and electron transport, which faintly synergistically regulate the growth of poplar plantations. These results provide a reference for proposing highly efficient precision intensive management to optimize the expression of target genes.
Collapse
Affiliation(s)
- Zhou Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yongxiu Xia
- Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing, 100023, P.R. China
| | - Zhengsai Yuan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jiangtao Guo
- Heibei Agricultural University, Baoding, 071001, P.R. China
| | - Jinjin Yu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Bingyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
9
|
Sánchez-Gerschon V, Martínez-Fernández I, González-Bermúdez MR, de la Hoz-Rodríguez S, González FV, Lozano-Juste J, Ferrándiz C, Balanzà V. Transcription factors HB21/40/53 trigger inflorescence arrest through abscisic acid accumulation at the end of flowering. PLANT PHYSIOLOGY 2024; 195:2743-2756. [PMID: 38669447 PMCID: PMC11288733 DOI: 10.1093/plphys/kiae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Flowers, and hence, fruits and seeds, are produced by the activity of the inflorescence meristem after the floral transition. In plants with indeterminate inflorescences, the final number of flowers produced by the inflorescence meristem is determined by the length of the flowering period, which ends with inflorescence arrest. Inflorescence arrest depends on many different factors, such as the presence of seeds, the influence of the environment, or endogenous factors such as phytohormone levels and age, which modulate inflorescence meristem activity. The FRUITFULL-APETALA2 (FUL-AP2) pathway plays a major role in regulating the end of flowering, likely integrating both endogenous cues and those related to seed formation. Among AP2 targets, HOMEOBOX PROTEIN21 (HB21) has been identified as a putative mediator of AP2 function in the control of inflorescence arrest. HB21 is a homeodomain leucine zipper transcription factor involved in establishing axillary bud dormancy. Here, we characterized the role of HB21 in the control of the inflorescence arrest at the end of flowering in Arabidopsis (Arabidopsis thaliana). HB21, together with HB40 and HB53, are upregulated in the inflorescence apex at the end of flowering, promoting floral bud arrest. We also show that abscisic acid (ABA) accumulation occurs in the inflorescence apex in an HB-dependent manner. Our work suggests a physiological role of ABA in floral bud arrest at the end of flowering, pointing to ABA as a regulator of inflorescence arrest downstream of the HB21/40/53 genes.
Collapse
Affiliation(s)
- Verónica Sánchez-Gerschon
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de Valencia, 46022 Valencia, Spain
| | - Irene Martínez-Fernández
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de Valencia, 46022 Valencia, Spain
| | - María R González-Bermúdez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de Valencia, 46022 Valencia, Spain
| | | | - Florenci V González
- Departament de química inorgànica i orgànica, Universitat Jaume I, 12071 Castelló, Spain
| | - Jorge Lozano-Juste
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de Valencia, 46022 Valencia, Spain
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de Valencia, 46022 Valencia, Spain
| | - Vicente Balanzà
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de Valencia, 46022 Valencia, Spain
| |
Collapse
|
10
|
Cerbantez-Bueno VE, Serwatowska J, Rodríguez-Ramos C, Cruz-Valderrama JE, de Folter S. The role of D3-type cyclins is related to cytokinin and the bHLH transcription factor SPATULA in Arabidopsis gynoecium development. PLANTA 2024; 260:48. [PMID: 38980389 PMCID: PMC11233295 DOI: 10.1007/s00425-024-04481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
MAIN CONCLUSION We studied the D3-type cyclin function during gynoecium development in Arabidopsis and how they are related to the hormone cytokinin and the transcription factor SPATULA. Growth throughout the life of plants is sustained by cell division and differentiation processes in meristematic tissues. In Arabidopsis, gynoecium development implies a multiphasic process where the tissues required for pollination, fertilization, and seed development form. The Carpel Margin Meristem (CMM) is a mass of undifferentiated cells that gives rise to the gynoecium internal tissues, such as septum, ovules, placenta, funiculus, transmitting tract, style, and stigma. Different genetic and hormonal factors, including cytokinin, control the CMM function. Cytokinin regulates the cell cycle transitions through the activation of cell cycle regulators as cyclin genes. D3-type cyclins are expressed in proliferative tissues, favoring the mitotic cell cycle over the endoreduplication. Though the role of cytokinin in CMM and gynoecium development is highly studied, its specific role in regulating the cell cycle in this tissue remains unclear. Additionally, despite extensive research on the relationship between CYCD3 genes and cytokinin, the regulatory mechanism that connects them remains elusive. Here, we found that D3-type cyclins are expressed in proliferative medial and lateral tissues. Conversely, the depletion of the three CYCD3 genes showed that they are not essential for gynoecium development. However, the addition of exogenous cytokinin showed that they could control the division/differentiation balance in gynoecium internal tissues and outgrowths. Finally, we found that SPATULA can be a mechanistic link between cytokinin and the D3-type cyclins. The data suggest that the role of D3-type cyclins in gynoecium development is related to the cytokinin response, and they might be activated by the transcription factor SPATULA.
Collapse
Affiliation(s)
- Vincent E Cerbantez-Bueno
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Joanna Serwatowska
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
| | - Carolina Rodríguez-Ramos
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
| | - J Erik Cruz-Valderrama
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México.
| |
Collapse
|
11
|
Argueso CT, Kieber JJ. Cytokinin: From autoclaved DNA to two-component signaling. THE PLANT CELL 2024; 36:1429-1450. [PMID: 38163638 PMCID: PMC11062471 DOI: 10.1093/plcell/koad327] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 01/03/2024]
Abstract
Since its first identification in the 1950s as a regulator of cell division, cytokinin has been linked to many physiological processes in plants, spanning growth and development and various responses to the environment. Studies from the last two and one-half decades have revealed the pathways underlying the biosynthesis and metabolism of cytokinin and have elucidated the mechanisms of its perception and signaling, which reflects an ancient signaling system evolved from two-component elements in bacteria. Mutants in the genes encoding elements involved in these processes have helped refine our understanding of cytokinin functions in plants. Further, recent advances have provided insight into the mechanisms of intracellular and long-distance cytokinin transport and the identification of several proteins that operate downstream of cytokinin signaling. Here, we review these processes through a historical lens, providing an overview of cytokinin metabolism, transport, signaling, and functions in higher plants.
Collapse
Affiliation(s)
- Cristiana T Argueso
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Zhang Y, Xuan S, Zhao J, Li H, Lu Y, Li R, Wang Y, Shen S, Sun X, Feng D. Transcriptional Regulation and Gene Mapping of Internode Elongation and Late Budding in the Chinese Cabbage Mutant lcc. PLANTS (BASEL, SWITZERLAND) 2024; 13:1083. [PMID: 38674492 PMCID: PMC11053886 DOI: 10.3390/plants13081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Two important traits of Chinese cabbage, internode length and budding time, destroy the maintenance of rosette leaves in the vegetative growth stage and affect flowering in the reproductive growth stage. Internodes have received much attention and research in rice due to their effect on lodging resistance, but they are rarely studied in Chinese cabbage. In Chinese cabbage, internode elongation affects not only the maintenance of rosette leaves but also bolting and yield. Budding is also an important characteristic of Chinese cabbage entering reproductive growth. Although many studies have reported on flowering and bolting, studies on bud emergence and the timing of budding are scarce. In this study, the mutant lcc induced by EMS (Ethyl Methane Sulfonate) was used to study internode elongation in the seedling stage and late budding in the budding stage. By comparing the gene expression patterns of mutant lcc and wild-type A03, 2280 differentially expressed genes were identified in the seedling stage, 714 differentially expressed genes were identified in the early budding stage, and 1052 differentially expressed genes were identified in the budding stage. Here, the transcript expression patterns of genes in the plant hormone signaling and clock rhythm pathways were investigated in relation to the regulation of internode elongation and budding in Chinese cabbage. In addition, an F2 population was constructed with the mutants lcc and R500. A high-density genetic map with 1602 marker loci was created, and QTLs for internode length and budding time were identified. Specifically, five QTLs for internode length and five QTLs for budding time were obtained. According to transcriptome data analysis, the internode length candidate gene BraA02g005840.3C (PIN8) and budding time candidate genes BraA02g003870.3C (HY5-1) and BraA02g005190.3C (CHS-1) were identified. These findings provide insight into the regulation of internode length and budding time in Chinese cabbage.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, College of Life Science, Hebei Agricultural University, Baoding 071000, China; (Y.Z.); (R.L.)
| | - Shuxin Xuan
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (S.X.); (J.Z.); (H.L.); (Y.L.); (Y.W.); (S.S.)
| | - Jiaojiao Zhao
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (S.X.); (J.Z.); (H.L.); (Y.L.); (Y.W.); (S.S.)
| | - Hui Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (S.X.); (J.Z.); (H.L.); (Y.L.); (Y.W.); (S.S.)
| | - Yin Lu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (S.X.); (J.Z.); (H.L.); (Y.L.); (Y.W.); (S.S.)
| | - Rui Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, College of Life Science, Hebei Agricultural University, Baoding 071000, China; (Y.Z.); (R.L.)
| | - Yanhua Wang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (S.X.); (J.Z.); (H.L.); (Y.L.); (Y.W.); (S.S.)
| | - Shuxing Shen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (S.X.); (J.Z.); (H.L.); (Y.L.); (Y.W.); (S.S.)
| | - Xiaoxue Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Daling Feng
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, College of Life Science, Hebei Agricultural University, Baoding 071000, China; (Y.Z.); (R.L.)
| |
Collapse
|
13
|
Wang Y, Qin M, Zhang G, Lu J, Zhang C, Ma N, Sun X, Gao J. Transcription factor RhRAP2.4L orchestrates cell proliferation and expansion to control petal size in rose. PLANT PHYSIOLOGY 2024; 194:2338-2353. [PMID: 38084893 DOI: 10.1093/plphys/kiad657] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 04/02/2024]
Abstract
Maintaining proper flower size is vital for plant reproduction and adaption to the environment. Petal size is determined by spatiotemporally regulated cell proliferation and expansion. However, the mechanisms underlying the orchestration of cell proliferation and expansion during petal growth remains elusive. Here, we determined that the transition from cell proliferation to expansion involves a series of distinct and overlapping processes during rose (Rosa hybrida) petal growth. Changes in cytokinin content were associated with the transition from cell proliferation to expansion during petal growth. RNA sequencing identified the AP2/ERF transcription factor gene RELATED TO AP2 4-LIKE (RhRAP2.4L), whose expression pattern positively associated with cytokinin levels during rose petal development. Silencing RhRAP2.4L promoted the transition from cell proliferation to expansion and decreased petal size. RhRAP2.4L regulates cell proliferation by directly repressing the expression of KIP RELATED PROTEIN 2 (RhKRP2), encoding a cell cycle inhibitor. In addition, we also identified BIG PETALub (RhBPEub) as another direct target gene of RhRAP2.4L. Silencing RhBPEub decreased cell size, leading to reduced petal size. Furthermore, the cytokinin signaling protein ARABIDOPSIS RESPONSE REGULATOR 14 (RhARR14) activated RhRAP2.4L expression to inhibit the transition from cell proliferation to expansion, thereby regulating petal size. Our results demonstrate that RhRAP2.4L performs dual functions in orchestrating cell proliferation and expansion during petal growth.
Collapse
Affiliation(s)
- Yaru Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Meizhu Qin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Guifang Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jingyun Lu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chengkun Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaoming Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
14
|
Zhang X, Li J, Xing X, Li H, Zhang S, Chang J, Wei F, Zhang Y, Huang J, Zhang X, Wang Z. Transcriptome disclosure of hormones inducing stigma exsertion in Nicotiana tabacum by corolla shortening. BMC Genomics 2024; 25:320. [PMID: 38549066 PMCID: PMC10976690 DOI: 10.1186/s12864-024-10195-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/06/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Stigma exsertion is an essential agricultural trait that can promote cross-pollination to improve hybrid seed production efficiency. However, the molecular mechanism controlling stigma exsertion remains unknown. RESULTS In this study, the Nicotiana tabacum cv. K326 and its two homonuclear-heteroplasmic lines, MSK326 (male-sterile) and MSK326SE (male-sterile and stigma exserted), were used to investigate the mechanism of tobacco stigma exsertion. A comparison of the flowers between the three lines showed that the stigma exsertion of MSK326SE was mainly due to corolla shortening. Therefore, the corollas of the three lines were sampled and presented for RNA-seq analysis, which found 338 candidate genes that may cause corolla shortening. These genes were equally expressed in K326 and MSK326, but differentially expressed in MSK326SE. Among these 338 genes, 15 were involved in hormone synthesis or signal transduction pathways. Consistently, the content of auxin, dihydrozeatin, gibberellin, and jasmonic acid was significantly decreased in the MSK326SE corolla, whereas abscisic acid levels were significantly increased. Additionally, seven genes involved in cell division, cell cycle, or cell expansion were identified. Protein-protein interaction network analysis identified 45 nodes and 79 protein interactions, and the largest module contained 20 nodes and 52 protein interactions, mainly involved in the hormone signal transduction and pathogen defensive pathways. Furthermore, a putative hub gene coding a serine/threonine-protein kinase was identified for the network. CONCLUSIONS Our results suggest that hormones may play a key role in regulating tobacco stigma exsertion induced by corolla shortening.
Collapse
Affiliation(s)
- Xiaoquan Zhang
- College of Tobacco Science, Henan Agricultural University, 450046, Zhengzhou, China
| | - Juxu Li
- College of Tobacco Science, Henan Agricultural University, 450046, Zhengzhou, China
| | - Xuexia Xing
- Henan Provincial Branch of China National Tobacco Corporation, 450018, Zhengzhou, China
| | - Hongchen Li
- Sanmenxia Branch of Henan Provincial Tobacco Corporation, 472000, Sanmenxia, China
| | - Songtao Zhang
- College of Tobacco Science, Henan Agricultural University, 450046, Zhengzhou, China
| | - Jianbo Chang
- Sanmenxia Branch of Henan Provincial Tobacco Corporation, 472000, Sanmenxia, China
| | - Fengjie Wei
- Henan Provincial Branch of China National Tobacco Corporation, 450018, Zhengzhou, China
| | - Yongfeng Zhang
- Shangluo Branch of Shanxi provincial Tobacco Company, 726000, Shangluo, China
| | - Jinhui Huang
- Shangluo Branch of Shanxi provincial Tobacco Company, 726000, Shangluo, China.
| | - Xuelin Zhang
- College of Agronomy, Henan Agricultural University, 450046, Zhengzhou, China.
| | - Zhaojun Wang
- College of Tobacco Science, Henan Agricultural University, 450046, Zhengzhou, China.
| |
Collapse
|
15
|
Iqbal A, Bocian J, Przyborowski M, Orczyk W, Nadolska-Orczyk A. Are TaNAC Transcription Factors Involved in Promoting Wheat Yield by cis-Regulation of TaCKX Gene Family? Int J Mol Sci 2024; 25:2027. [PMID: 38396706 PMCID: PMC10889182 DOI: 10.3390/ijms25042027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
NAC transcription factors (TFs) are one of the largest TF families in plants, and TaNACs have been known to participate in the regulation of the transcription of many yield-regulating genes in bread wheat. The TaCKX gene family members (GFMs) have already been shown to regulate yield-related traits, including grain mass and number, leaf senescence, and root growth. The genes encode cytokinin (CK) degrading enzymes (CKXs) and are specifically expressed in different parts of developing wheat plants. The aim of the study was to identify and characterize TaNACs involved in the cis-regulation of TaCKX GFMs. After analysis of the initial transcription factor data in 1.5 Kb cis-regulatory sequences of a total of 35 homologues of TaCKX GFMs, we selected five of them, namely TaCKX1-3A, TaCKX22.1-3B, TaCKX5-3D, TaCKX9-1B, and TaCKX10, and identified five TaNAC genes: TaNACJ-1, TaNAC13a, TaNAC94, TaNACBr-1, and TaNAC6D, which are potentially involved in the cis-regulation of selected TaCKX genes, respectively. Protein feature analysis revealed that all of the selected TaNACs have a conserved NAC domain and showed a stable tertiary structure model. The expression profile of the selected TaNACs was studied in 5 day-old seedling roots, 5-6 cm inflorescences, 0, 4, 7, and 14 days-after-pollination (DAP) spikes, and the accompanying flag leaves. The expression pattern showed that all of the selected TaNACs were preferentially expressed in seedling roots, 7 and 14 DAP spikes, and flag leaves compared to 5-6 cm inflorescence and 0 and 4 DAP spikes and flag leaves in Kontesa and Ostka spring wheat cultivars (cvs.). In conclusion, the results of this study highlight the potential role of the selected TaNACs in the regulation of grain productivity, leaf senescence, root growth, and response to various stresses.
Collapse
Affiliation(s)
- Adnan Iqbal
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland
| | | | | | | | - Anna Nadolska-Orczyk
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland
| |
Collapse
|
16
|
Li Y, Zhao L, Guo C, Tang M, Lian W, Chen S, Pan Y, Xu X, Luo C, Yi Y, Cui Y, Chen L. OsNAC103, an NAC transcription factor negatively regulates plant height in rice. PLANTA 2024; 259:35. [PMID: 38193994 PMCID: PMC10776745 DOI: 10.1007/s00425-023-04309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
MAIN CONCLUSION OsNAC103 negatively regulates rice plant height by influencing the cell cycle and crosstalk of phytohormones. Plant height is an important characteristic of rice farming and is directly related to agricultural yield. Although there has been great progress in research on plant growth regulation, numerous genes remain to be elucidated. NAC transcription factors are widespread in plants and have a vital function in plant growth. Here, we observed that the overexpression of OsNAC103 resulted in a dwarf phenotype, whereas RNA interference (RNAi) plants and osnac103 mutants showed no significant difference. Further investigation revealed that the cell length did not change, indicating that the dwarfing of plants was caused by a decrease in cell number due to cell cycle arrest. The content of the bioactive cytokinin N6-Δ2-isopentenyladenine (iP) decreased as a result of the cytokinin synthesis gene being downregulated and the enhanced degradation of cytokinin oxidase. OsNAC103 overexpression also inhibited cell cycle progression and regulated the activity of the cell cyclin OsCYCP2;1 to arrest the cell cycle. We propose that OsNAC103 may further influence rice development and gibberellin-cytokinin crosstalk by regulating the Oryza sativa homeobox 71 (OSH71). Collectively, these results offer novel perspectives on the role of OsNAC103 in controlling plant architecture.
Collapse
Affiliation(s)
- Yan Li
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Liming Zhao
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Chiming Guo
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, 361006, China
| | - Ming Tang
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Karst Mountainous Areas of Southwestern, School of Life Science, Guizhou Normal University, Guiyang, 550025, China
| | - Wenli Lian
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Siyu Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yuehan Pan
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiaorong Xu
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Karst Mountainous Areas of Southwestern, School of Life Science, Guizhou Normal University, Guiyang, 550025, China
| | - Chengke Luo
- Agricultural College, Ningxia University, Yinchuan, 750021, China
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Karst Mountainous Areas of Southwestern, School of Life Science, Guizhou Normal University, Guiyang, 550025, China
| | - Yuchao Cui
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| | - Liang Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
17
|
Aoki MM, Kisiala AB, Mathavarajah S, Schincaglia A, Treverton J, Habib E, Dellaire G, Emery RJN, Brunetti CR, Huber RJ. From biosynthesis and beyond-Loss or overexpression of the cytokinin synthesis gene, iptA, alters cytokinesis and mitochondrial and amino acid metabolism in Dictyostelium discoideum. FASEB J 2024; 38:e23366. [PMID: 38102957 DOI: 10.1096/fj.202301936rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Cytokinins (CKs) are a class of growth-promoting signaling molecules that affect multiple cellular and developmental processes. These phytohormones are well studied in plants, but their presence continues to be uncovered in organisms spanning all kingdoms, which poses new questions about their roles and functions outside of plant systems. Cytokinin production can be initiated by one of two different biosynthetic enzymes, adenylate isopentenyltransfases (IPTs) or tRNA isopentenyltransferases (tRNA-IPTs). In this study, the social amoeba, Dictyostelium discoideum, was used to study the role of CKs by generating deletion and overexpression strains of its single adenylate-IPT gene, iptA. The life cycle of D. discoideum is unique and possesses both single- and multicellular stages. Vegetative amoebae grow and divide while food resources are plentiful, and multicellular development is initiated upon starvation, which includes distinct life cycle stages. CKs are produced in D. discoideum throughout its life cycle and their functions have been well studied during the later stages of multicellular development of D. discoideum. To investigate potential expanded roles of CKs, this study focused on vegetative growth and early developmental stages. We found that iptA-deficiency results in cytokinesis defects, and both iptA-deficiency and overexpression results in dysregulated tricarboxylic acid (TCA) cycle and amino acid metabolism, as well as increased levels of adenosine monophosphate (AMP). Collectively, these findings extend our understanding of CK function in amoebae, indicating that iptA loss and overexpression alter biological processes during vegetative growth that are distinct from those reported during later development.
Collapse
Affiliation(s)
- Megan M Aoki
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Anna B Kisiala
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | | | | | - Jared Treverton
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Elias Habib
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - R J Neil Emery
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Craig R Brunetti
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
18
|
Ding X, Miao C, Li R, He L, Zhang H, Jin H, Cui J, Wang H, Zhang Y, Lu P, Zou J, Yu J, Jiang Y, Zhou Q. Artificial Light for Improving Tomato Recovery Following Grafting: Transcriptome and Physiological Analyses. Int J Mol Sci 2023; 24:15928. [PMID: 37958910 PMCID: PMC10650788 DOI: 10.3390/ijms242115928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Grafting is widely used to enhance the phenotypic traits of tomatoes, alleviate biotic and abiotic stresses, and control soil-borne diseases of the scion in greenhouse production. There are many factors that affect the healing and acclimatization stages of seedlings after grafting. However, the role of light has rarely been studied. In this study, we compared the effects of artificial light and traditional shading (under shaded plastic-covered tunnels) on the recovery of grafted tomato seedlings. The results show that the grafted tomato seedlings recovered using artificial light had a higher healthy index, leaf chlorophyll content, shoot dry weight, and net photosynthetic rate (Pn) and water use efficiency (WUE) compared with grafted seedling recovered using the traditional shading method. Transcriptome analysis showed that the differentially expressed genes (DEGs) of grafted seedlings restored using artificial light were mainly enriched in the pathways corresponding to plant hormone signal transduction. In addition, we measured the endogenous hormone content of grafted tomato seedlings. The results show that the contents of salicylic acid (SA) and kinetin (Kin) were significantly increased, and the contents of indoleacetic acid (IAA) and jasmonic acid (JA) were decreased in artificial-light-restored grafted tomato seedlings compared with those under shading treatments. Therefore, we suggest that artificial light affects the morphogenesis and photosynthetic efficiency of grafted tomato seedlings, and it can improve the performance of tomato seedlings during grafting recovery by regulating endogenous hormone levels.
Collapse
Affiliation(s)
- Xiaotao Ding
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Chen Miao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Rongguang Li
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Lizhong He
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Hongmei Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Haijun Jin
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Jiawei Cui
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Hong Wang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Yongxue Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Panling Lu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Jun Zou
- College of Sciences, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Jizhu Yu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Yuping Jiang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Qiang Zhou
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| |
Collapse
|
19
|
Ramos-Pulido J, de Folter S. Organogenic events during gynoecium and fruit development in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102440. [PMID: 37633079 DOI: 10.1016/j.pbi.2023.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/22/2023] [Accepted: 08/04/2023] [Indexed: 08/28/2023]
Abstract
Angiosperms are the most successful group of land plants. This success is mainly due to the gynoecium, the innermost whorl of the flower. In Arabidopsis, the gynoecium is a syncarpic structure formed by two congenitally fused carpels. At the fusion edges of the carpels, the carpel margin meristem forms. This quasi-meristem is important for medial-tissue development, including the ovules. After the double fertilization, both the seeds and fruit begin to develop. Due to the importance of seeds and fruits as major food sources worldwide, it has been an important task for the scientific community to study gynoecium development. In this review, we present the most recent advances in Arabidopsis gynoecium patterning, as well as some questions that remain unanswered.
Collapse
Affiliation(s)
- Juan Ramos-Pulido
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato CP 36824, Guanajuato, Mexico
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato CP 36824, Guanajuato, Mexico.
| |
Collapse
|
20
|
Wang F, Cai X, Wei H, Zhang L, Dong A, Su W. Histone methylation readers MRG1/MRG2 interact with the transcription factor TCP14 to positively modulate cytokinin sensitivity in Arabidopsis. J Genet Genomics 2023; 50:589-599. [PMID: 36870415 DOI: 10.1016/j.jgg.2023.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023]
Abstract
Cytokinins influence many aspects of plant growth and development. Although cytokinin biosynthesis and signaling have been well studied in planta, little is known about the regulatory effects of epigenetic modifications on the cytokinin response. Here, we reveal that mutations to Morf Related Gene (MRG) proteins MRG1/MRG2, which are readers of trimethylated histone H3 lysine 4 and lysine 36 (H3K4me3 and H3K36me3), result in cytokinin hyposensitivity during various developmental processes, including callus induction and root and seedling growth inhibition. Similar to the mrg1 mrg2 mutant, plants with a defective AtTCP14, which belongs to the TEOSINTE BRANCHED, CYCLOIDEA, AND PROLIFERATING CELL FACTOR (TCP) transcription factor family, are insensitive to cytokinin. Furthermore, the transcription of several genes related to cytokinin signaling pathway is altered. Specifically, the expression of Arabidopsis thalianaHISTIDINE-CONTAINING PHOSPHOTRANSMITTER PROTEIN 2 (AHP2) decreases significantly in the mrg1 mrg2 and tcp14-2 mutants. We also confirm the interaction between MRG2 and TCP14 in vitro and in vivo. Thus, MRG2 and TCP14 can be recruited to AHP2 after recognizing H3K4me3/H3K36me3 markers and promote the histone-4 lysine-5 acetylation to further enhance AHP2 expression. In summary, our research elucidate a previously unknown mechanism mediating the effects of MRG proteins on the magnitude of the cytokinin response.
Collapse
Affiliation(s)
- Fan Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xixi Cai
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Huizhe Wei
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Linghao Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wei Su
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
21
|
Lu L, Yang H, Xu Y, Zhang L, Wu J, Yi H. Laser capture microdissection-based spatiotemporal transcriptomes uncover regulatory networks during seed abortion in seedless Ponkan (Citrus reticulata). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:642-661. [PMID: 37077034 DOI: 10.1111/tpj.16251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Seed abortion is an important process in the formation of seedless characteristics in citrus fruits. However, the molecular regulatory mechanism underlying citrus seed abortion is poorly understood. Laser capture microdissection-based RNA-seq combined with Pacbio-seq was used to profile seed development in the Ponkan cultivars 'Huagan No. 4' (seedless Ponkan) (Citrus reticulata) and 'E'gan No. 1' (seeded Ponkan) (C. reticulata) in two types of seed tissue across three developmental stages. Through comparative transcriptome and dynamic phytohormone analyses, plant hormone signal, cell division and nutrient metabolism-related processes were revealed to play critical roles in the seed abortion of 'Huagan No. 4'. Moreover, several genes may play indispensable roles in seed abortion of 'Huagan No. 4', such as CrWRKY74, CrWRKY48 and CrMYB3R4. Overexpression of CrWRKY74 in Arabidopsis resulted in severe seed abortion. By analyzing the downstream regulatory network, we further determined that CrWRKY74 participated in seed abortion regulation by inducing abnormal programmed cell death. Of particular importance is that a preliminary model was proposed to depict the regulatory networks underlying seed abortion in citrus. The results of this study provide novel insights into the molecular mechanism across citrus seed development, and reveal the master role of CrWRKY74 in seed abortion of 'Huagan No. 4'.
Collapse
Affiliation(s)
- Liqing Lu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Haijian Yang
- Fruit Tree Research Institute of Chongqing Academy of Agricultural Sciences, Chongqing, 401329, P.R. China
| | - Yanhui Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Li Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Juxun Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hualin Yi
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
22
|
Wu B, Meng J, Liu H, Mao D, Yin H, Zhang Z, Zhou X, Zhang B, Sherif A, Liu H, Li X, Xiao J, Yan W, Wang L, Li X, Chen W, Xie W, Yin P, Zhang Q, Xing Y. Suppressing a phosphohydrolase of cytokinin nucleotide enhances grain yield in rice. Nat Genet 2023; 55:1381-1389. [PMID: 37500729 DOI: 10.1038/s41588-023-01454-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
One-step and two-step pathways are proposed to synthesize cytokinin in plants. The one-step pathway is mediated by LONELY GUY (LOG) proteins. However, the enzyme for the two-step pathway remains to be identified. Here, we show that quantitative trait locus GY3 may boost grain yield by more than 20% through manipulating a two-step pathway. Locus GY3 encodes a LOG protein that acts as a 5'-ribonucleotide phosphohydrolase by excessively consuming the cytokinin precursors, which contrasts with the activity of canonical LOG members as phosphoribohydrolases in a one-step pathway. The residue S41 of GY3 is crucial for the dephosphorylation of iPRMP to produce iPR. A solo-LTR insertion within the promoter of GY3 suppressed its expression and resulted in a higher content of active cytokinins in young panicles. Introgression of GY302428 increased grain yield per plot by 7.4% to 16.3% in all investigated indica backgrounds, which demonstrates the great value of GY302428 in indica rice production.
Collapse
Affiliation(s)
- Bi Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jianghu Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Donghai Mao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Huanran Yin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhanyi Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiangchun Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Bo Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ahmed Sherif
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Haiyang Liu
- Hubei collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Lei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
23
|
Cullen E, Wang Q, Glover BJ. How do you build a nectar spur? A transcriptomic comparison of nectar spur development in Linaria vulgaris and gibba development in Antirrhinum majus. FRONTIERS IN PLANT SCIENCE 2023; 14:1190373. [PMID: 37426957 PMCID: PMC10328749 DOI: 10.3389/fpls.2023.1190373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023]
Abstract
Nectar spurs (tubular outgrowths of floral organs) have long fascinated biologists. However, given that no model species possess nectar spurs, there is still much to learn about their development. In this study we combined morphological analysis with comparative transcriptomics to gain a global insight into the morphological and molecular basis of spur outgrowth in Linaria. Whole transcriptome sequencing was performed on two related species at three key developmental stages (identified by our morphological analysis), one with a spur (Linaria vulgaris), and one without a spur (Antirrhinum majus). A list of spur-specific genes was selected, on which we performed a gene enrichment analysis. Results from our RNA-seq analysis agreed with our morphological observations. We describe gene activity during spur development and provide a catalogue of spur-specific genes. Our list of spur-specific genes was enriched for genes connected to the plant hormones cytokinin, auxin and gibberellin. We present a global view of the genes involved in spur development in L. vulgaris, and define a suite of genes which are specific to spur development. This work provides candidate genes for spur outgrowth and development in L. vulgaris which can be investigated in future studies.
Collapse
Affiliation(s)
- Erin Cullen
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Qi Wang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Beverley J. Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Li Y, Wang W, Hu C, Yang S, Ma C, Wu J, Wang Y, Xu Z, Li L, Huang Z, Zhu J, Jia X, Ye X, Yang Z, Sun Y, Liu H, Chen R. Ectopic Expression of a Maize Gene ZmDUF1645 in Rice Increases Grain Length and Yield, but Reduces Drought Stress Tolerance. Int J Mol Sci 2023; 24:9794. [PMID: 37372942 DOI: 10.3390/ijms24129794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
As the human population grows rapidly, food shortages will become an even greater problem; therefore, increasing crop yield has become a focus of rice breeding programs. The maize gene, ZmDUF1645, encoding a putative member of the DUF1645 protein family with an unknown function, was transformed into rice. Phenotypic analysis showed that enhanced ZmDUF1645 expression significantly altered various traits in transgenic rice plants, including increased grain length, width, weight, and number per panicle, resulting in a significant increase in yield, but a decrease in rice tolerance to drought stress. qRT-PCR results showed that the expression of the related genes regulating meristem activity, such as MPKA, CDKA, a novel crop grain filling gene (GIF1), and GS3, was significantly changed in the ZmDUF1645-overexpression lines. Subcellular colocalization showed that ZmDUF1645 was primarily localized on cell membrane systems. Based on these findings, we speculate that ZmDUF1645, like the OsSGL gene in the same protein family, may regulate grain size and affect yield through the cytokinin signaling pathway. This research provides further knowledge and understanding of the unknown functions of the DUF1645 protein family and may serve as a reference for biological breeding engineering to increase maize crop yield.
Collapse
Affiliation(s)
- Yaqi Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Changqiong Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Songjin Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Chuan Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Jiacheng Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Yuwei Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengjun Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Lihua Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengjian Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Jianqing Zhu
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaomei Jia
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoying Ye
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiyuang Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Yongjian Sun
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Huainian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Rongjun Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
25
|
Hönig M, Roeber VM, Schmülling T, Cortleven A. Chemical priming of plant defense responses to pathogen attacks. FRONTIERS IN PLANT SCIENCE 2023; 14:1146577. [PMID: 37223806 PMCID: PMC10200928 DOI: 10.3389/fpls.2023.1146577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
Plants can acquire an improved resistance against pathogen attacks by exogenous application of natural or artificial compounds. In a process called chemical priming, application of these compounds causes earlier, faster and/or stronger responses to pathogen attacks. The primed defense may persist over a stress-free time (lag phase) and may be expressed also in plant organs that have not been directly treated with the compound. This review summarizes the current knowledge on the signaling pathways involved in chemical priming of plant defense responses to pathogen attacks. Chemical priming in induced systemic resistance (ISR) and systemic acquired resistance (SAR) is highlighted. The roles of the transcriptional coactivator NONEXPRESSOR OF PR1 (NPR1), a key regulator of plant immunity, induced resistance (IR) and salicylic acid signaling during chemical priming are underlined. Finally, we consider the potential usage of chemical priming to enhance plant resistance to pathogens in agriculture.
Collapse
Affiliation(s)
- Martin Hönig
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Venja M. Roeber
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
26
|
Zhang M, Sun Y, Di P, Han M, Yang L. Combining Metabolomics and Transcriptomics to Reveal the Regulatory Mechanism of Taproot Enlargement in Panax ginseng. Int J Mol Sci 2023; 24:5590. [PMID: 36982666 PMCID: PMC10058914 DOI: 10.3390/ijms24065590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Ginseng is regarded as the "king of herbs" in China, with its roots and rhizomes used as medicine, and it has a high medicinal value. In order to meet the market demand, the artificial cultivation of ginseng emerged, but different growth environments significantly affect the root morphology of garden ginseng. In this study, we used ginseng cultivated in deforested land (CF-CG) and ginseng cultivated in farmland (F-CG) as experimental materials. These two phenotypes were explored at the transcriptomic and metabolomic levels so as to understand the regulatory mechanism of taproot enlargement in garden ginseng. The results show that, compared with those of F-CG, the thickness of the main roots in CF-CG was increased by 70.5%, and the fresh weight of the taproots was increased by 305.4%. Sucrose, fructose and ginsenoside were significantly accumulated in CF-CG. During the enlargement of the taproots of CF-CG, genes related to starch and sucrose metabolism were significantly up-regulated, while genes related to lignin biosynthesis were significantly down-regulated. Auxin, gibberellin and abscisic acid synergistically regulated the enlargement of the taproots of the garden ginseng. In addition, as a sugar signaling molecule, T6P might act on the auxin synthesis gene ALDH2 to promote the synthesis of auxin and, thus, participate in the growth and development of garden ginseng roots. In summary, our study is conducive to clarifying the molecular regulation mechanism of taproot enlargement in garden ginseng, and it provides new insights for the further exploration of the morphogenesis of ginseng roots.
Collapse
Affiliation(s)
| | | | | | - Mei Han
- Co-Constructing Key Laboratory by Province and the Ministry of Science and Technology of Ecological Restoration and Ecosystem Management, College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, China; (M.Z.)
| | - Limin Yang
- Co-Constructing Key Laboratory by Province and the Ministry of Science and Technology of Ecological Restoration and Ecosystem Management, College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, China; (M.Z.)
| |
Collapse
|
27
|
Gupta A, Bhardwaj M, Tran LSP. Integration of Auxin, Brassinosteroid and Cytokinin in the Regulation of Rice Yield. PLANT & CELL PHYSIOLOGY 2023; 63:1848-1856. [PMID: 36255097 DOI: 10.1093/pcp/pcac149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Crop varieties with a high yield are most desirable in the present context of the ever-growing human population. Mostly, the yield traits are governed by a complex of numerous molecular and genetic facets modulated by various quantitative trait loci (QTLs). With the identification and molecular characterizations of yield-associated QTLs over recent years, the central role of phytohormones in regulating plant yield is becoming more apparent. Most often, different groups of phytohormones work in close association to orchestrate yield attributes. Understanding this cross talk would thus provide new venues for phytohormone pyramiding by editing a single gene or QTL(s) for yield improvement. Here, we review a few important findings to integrate the knowledge on the roles of auxin, brassinosteroid and cytokinin and how a single gene or a QTL could govern cross talk among multiple phytohormones to determine the yield traits.
Collapse
Affiliation(s)
- Aarti Gupta
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Namgu, Pohang-si 37673, South Korea
| | - Mamta Bhardwaj
- Department of Botany, Hindu Girls College, Maharshi Dayanand University, Sonipat 131001, India
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, TX 79409, Vietnam
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
28
|
Roh S, Lee T, Cheong DY, Kim Y, Oh S, Lee G. Direct observation of surface charge and stiffness of human metaphase chromosomes. NANOSCALE ADVANCES 2023; 5:368-377. [PMID: 36756276 PMCID: PMC9846444 DOI: 10.1039/d2na00620k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/17/2022] [Indexed: 06/18/2023]
Abstract
Metaphase chromosomes in which both polynucleotides and proteins are condensed with hierarchies are closely related to life phenomena such as cell division, cancer development, and cellular senescence. Nevertheless, their nature is rarely revealed, owing to their structural complexity and technical limitations in analytical methods. In this study, we used surface potential and nanomechanics mapping technology based on atomic force microscopy to measure the surface charge and intrinsic stiffness of metaphase chromosomes. We found that extra materials covering the chromosomes after the extraction process were positively charged. With the covering materials, the chromosomes were positively charged (ca. 44.9 ± 16.48 mV) and showed uniform stiffness (ca. 6.23 ± 1.98 MPa). In contrast, after getting rid of the extra materials through treatment with RNase and protease, the chromosomes were strongly negatively charged (ca. -197.4 ± 77.87 mV) and showed relatively non-uniform and augmented stiffness (ca. 36.87 ± 17.56 MPa). The results suggested undulating but compact coordination of condensed chromosomes. Additionally, excessive treatment with RNase and protease could destroy the chromosomal structure, providing an exceptional opportunity for multiscale stiffness mapping of polynucleotides, nucleosomes, chromatin fibers, and chromosomes in a single image. Our approach offers a new horizon in terms of an analytical technique for studying chromosome-related diseases.
Collapse
Affiliation(s)
- Seokbeom Roh
- Department of Biotechnology and Bioinformatics, Korea University Sejong 30019 Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University Sejong 30019 Korea
| | - Taeha Lee
- Department of Biotechnology and Bioinformatics, Korea University Sejong 30019 Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University Sejong 30019 Korea
| | - Da Yeon Cheong
- Department of Biotechnology and Bioinformatics, Korea University Sejong 30019 Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University Sejong 30019 Korea
| | - Yeonjin Kim
- Department of Biotechnology and Bioinformatics, Korea University Sejong 30019 Korea
| | - Soohwan Oh
- College of Pharmacy, Korea University Sejong 30019 Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University Sejong 30019 Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University Sejong 30019 Korea
| |
Collapse
|
29
|
Breygina M, Voronkov A, Galin I, Akhiyarova G, Polevova S, Klimenko E, Ivanov I, Kudoyarova G. Dynamics of endogenous levels and subcellular localization of ABA and cytokinins during pollen germination in spruce and tobacco. PROTOPLASMA 2023; 260:237-248. [PMID: 35579760 DOI: 10.1007/s00709-022-01766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
We used the enzyme-linked immunosorbent assay (ELISA) to assess the level of endogenous hormones in spruce pollen, and immunolocalization and confocal microscopy to study hormone localization in spruce and tobacco pollen. During pollen activation, the levels of ABA, zeatin, and its riboside significantly decreased. After the initiation of polar growth, the levels of all cytokinins increased sharply; ABA level also increased. In dormant spruce pollen grains, zeatin and ABA were localized uniformly throughout the cytoplasm. Zeatin was not detected in the nuclei, and the antheridial cell showed higher levels than the vegetative cell; ABA signal was detected in the cytoplasm and the nuclei. In germinating pollen, both hormones were detected mainly in plastids. The similar pattern was found in growing pollen tubes; signal from ABA also had a noticeable level in the cytosol of the tube cell, and was weaker in the antheridial cell. Zeatin fluorescence, on the other hand, was more pronounced in the antheridial cell. In non-germinated grains of tobacco, zeatin was localized mainly in organelles. ABA in dormant pollen grains demonstrated uniform localization, including the nuclei and cytoplasm of both cells. After germination, zeatin was accumulated in the plasmalemma or cell wall. ABA signal in the cytoplasm decreased; in the nuclei, it remained high. In growing tubes, the strongest zeatin and ABA signals were observed at the plasma membrane. The differences in ABA and cytokinin localization between species and dynamic changes in their level in spruce pollen highlight the key spatial and temporal parameters of hormonal regulation of gymnosperm pollen germination.
Collapse
Affiliation(s)
- Maria Breygina
- Biological Faculty, Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119991, Russia.
| | - Alexander Voronkov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, Moscow, 127276, Russia
| | - Ilshat Galin
- Institute of Biology, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054, Ufa, Russia
| | - Guzel Akhiyarova
- Institute of Biology, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054, Ufa, Russia
| | - Svetlana Polevova
- Biological Faculty, Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119991, Russia
| | - Ekaterina Klimenko
- Biological Faculty, Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119991, Russia
| | - Igor Ivanov
- Institute of Biology, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054, Ufa, Russia
| | - Guzel Kudoyarova
- Institute of Biology, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054, Ufa, Russia
| |
Collapse
|
30
|
Geng L, Li Q, Jiao L, Xiang Y, Deng Q, Zhou DX, Zhao Y. WOX11 and CRL1 act synergistically to promote crown root development by maintaining cytokinin homeostasis in rice. THE NEW PHYTOLOGIST 2023; 237:204-216. [PMID: 36208055 DOI: 10.1111/nph.18522] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Crown root (CR) morphogenesis is critical for normal growth and nutrition absorption in cereals. In rice, WUSCHEL-RELATED HOMEOBOX11 (WOX11) and CROWN ROOTLESS1 (CRL1) play vital roles in controlling CR development. Despite their importance, whether and how the two regulators coordinate CR formation remains unclear. Electrophoretic mobility shift assays, transient expression, and chromatin immunoprecipitation qPCR suggested that WOX11 and CRL1 directly bind to OsCKX4 to regulate its expression during CR development. CRL1 enhances OsCKX4 activation through direct interaction with WOX11 at root emergence and elongation stages. Genetic dissection showed that the wox11/crl1 double mutant exhibits a more severe root phenotype. OsCKX4 knockout plants generated by CRISPR/Cas9 exhibited fewer CRs and higher cytokinin levels in the root meristem. Increased expression of OsCKX4 could partially complement the CR phenotypes of both crl1 and wox11 mutants. Furthermore, cytokinin can promote WOX11 protein accumulation in the root meristem. Together, these findings show that cytokinin accumulation is tightly regulated by the WOX11-CRL1 complex during CR elongation by counteracting the negative regulatory effects of cytokinin on root development. Importantly, these results reveal an intrinsic link between WOX11 protein accumulation and cytokinin to maintain CR growth.
Collapse
Affiliation(s)
- Leping Geng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lele Jiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yimeng Xiang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiyu Deng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
31
|
Suzuki R, Kanno Y, Abril-Urias P, Seo M, Escobar C, Tsai AYL, Sawa S. Local auxin synthesis mediated by YUCCA4 induced during root-knot nematode infection positively regulates gall growth and nematode development. FRONTIERS IN PLANT SCIENCE 2022; 13:1019427. [PMID: 36466293 PMCID: PMC9709418 DOI: 10.3389/fpls.2022.1019427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Parasites and pathogens are known to manipulate the host's endogenous signaling pathways to facilitate the infection process. In particular, plant-parasitic root-knot nematodes (RKN) are known to elicit auxin response at the infection sites, to aid the development of root galls as feeding sites for the parasites. Here we describe the role of local auxin synthesis induced during RKN infection. Exogenous application of auxin synthesis inhibitors decreased RKN gall formation rates, gall size and auxin response in galls, while auxin and auxin analogues produced the opposite effects, re-enforcing the notion that auxin positively regulates RKN gall formation. Among the auxin biosynthesis enzymes, YUCCA4 (YUC4) was found to be dramatically up-regulated during RKN infection, suggesting it may be a major contributor to the auxin accumulation during gall formation. However, yuc4-1 showed only very transient decrease in gall auxin levels and did not show significant changes in RKN infection rates, implying the loss of YUC4 is likely compensated by other auxin sources. Nevertheless, yuc4-1 plants produced significantly smaller galls with fewer mature females and egg masses, confirming that auxin synthesized by YUC4 is required for proper gall formation and RKN development within. Interestingly, YUC4 promoter was also activated during cyst nematode infection. These lines of evidence imply auxin biosynthesis from multiple sources, one of them being YUC4, is induced upon plant endoparasitic nematode invasion and likely contribute to their infections. The coordination of these different auxins adds another layer of complexity of hormonal regulations during plant parasitic nematode interaction.
Collapse
Affiliation(s)
- Reira Suzuki
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| | - Yuri Kanno
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Patricia Abril-Urias
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Mitsunori Seo
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Carolina Escobar
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Allen Yi-Lun Tsai
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Center for Agricultural & Environmental Biology, Kumamoto University, Kumamoto, Japan
| | - Shinichiro Sawa
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
- International Research Center for Agricultural & Environmental Biology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
32
|
Ge Y, Gao Y, Jiao Y, Wang Y. A conserved module in the formation of moss midribs and seed plant axillary meristems. SCIENCE ADVANCES 2022; 8:eadd7275. [PMID: 36399581 PMCID: PMC9674282 DOI: 10.1126/sciadv.add7275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Different evolutionary lineages have evolved distinct characteristic body plans and anatomical structures, but their origins are largely elusive. For example, seed plants evolve axillary meristems to enable lateral branching. In moss, the phyllid (leaf) midrib containing specialized cells is responsible for water conduction and support. Midribs function like vascular tissues in flowering plants but may have risen from a different evolutionary path. Here, we demonstrate that midrib formation in the model moss Physcomitrium patens is regulated by orthologs of Arabidopsis LATERAL SUPPRESSOR (LAS), a key regulator of axillary meristem initiation. Midribs are missing in loss-of-function mutants, and ectopic formation of midrib-like structures is induced in overexpression lines. Furthermore, the PpLAS/AtLAS genes have conserved functions in the promotion of cell division in both lineages, which alleviates phenotypes in both Physcomitrium and Arabidopsis las mutants. Our results show that a conserved regulatory module is reused in divergent developmental programs, water-conducting and supporting tissues in moss, and axillary meristem initiation in seed plants.
Collapse
Affiliation(s)
- Yanhua Ge
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Sharma S, Kaur P, Gaikwad K. Role of cytokinins in seed development in pulses and oilseed crops: Current status and future perspective. Front Genet 2022; 13:940660. [PMID: 36313429 PMCID: PMC9597640 DOI: 10.3389/fgene.2022.940660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Cytokinins constitutes a vital group of plant hormones regulating several developmental processes, including growth and cell division, and have a strong influence on grain yield. Chemically, they are the derivatives of adenine and are the most complex and diverse group of hormones affecting plant physiology. In this review, we have provided a molecular understanding of the role of cytokinins in developing seeds, with special emphasis on pulses and oilseed crops. The importance of cytokinin-responsive genes including cytokinin oxidases and dehydrogenases (CKX), isopentenyl transferase (IPT), and cytokinin-mediated genetic regulation of seed size are described in detail. In addition, cytokinin expression in germinating seeds, its biosynthesis, source-sink dynamics, cytokinin signaling, and spatial expression of cytokinin family genes in oilseeds and pulses have been discussed in context to its impact on increasing economy yields. Recently, it has been shown that manipulation of the cytokinin-responsive genes by mutation, RNA interference, or genome editing has a significant effect on seed number and/or weight in several crops. Nevertheless, the usage of cytokinins in improving crop quality and yield remains significantly underutilized. This is primarily due to the multigene control of cytokinin expression. The information summarized in this review will help the researchers in innovating newer and more efficient ways of manipulating cytokinin expression including CKX genes with the aim to improve crop production, specifically of pulses and oilseed crops.
Collapse
Affiliation(s)
- Sandhya Sharma
- National Institute for Plant Biotechnology, Indian Council of Agricultural Research, New Delhi, India
| | | | - Kishor Gaikwad
- National Institute for Plant Biotechnology, Indian Council of Agricultural Research, New Delhi, India
- *Correspondence: Kishor Gaikwad,
| |
Collapse
|
34
|
Li L, Xie C, Zong J, Guo H, Li D, Liu J. Physiological and Comparative Transcriptome Analyses of the High-Tillering Mutant mtn1 Reveal Regulatory Mechanisms in the Tillering of Centipedegrass ( Eremochloa ophiuroides (Munro) Hack.). Int J Mol Sci 2022; 23:ijms231911580. [PMID: 36232880 PMCID: PMC9569434 DOI: 10.3390/ijms231911580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Tillering is a key factor that determines the reproductive yields of centipedegrass, which is an important perennial warm-season turfgrass. However, the regulatory mechanism of tillering in perennial plants is poorly understood, especially in perennial turfgrasses. In this study, we created and characterised a cold plasma-mutagenised centipedegrass mutant, mtn1 (more tillering number 1). Phenotypic analysis showed that the mtn1 mutant exhibited high tillering, short internodes, long seeds and a heavy 1000-seed weight. Then, a comparative transcriptomic analysis of the mtn1 mutant and wild-type was performed to explore the molecular mechanisms of centipedegrass tillering. The results revealed that plant hormone signalling pathways, as well as starch and sucrose metabolism, might play important roles in centipedegrass tillering. Hormone and soluble sugar content measurements and exogenous treatment results validated that plant hormones and sugars play important roles in centipedegrass tiller development. In particular, the overexpression of the auxin transporter ATP-binding cassette B 11 (EoABCB11) in Arabidopsis resulted in more branches. Single nucleotide polymorphisms (SNPs) were also identified, which will provide a useful resource for molecular marker-assisted breeding in centipedegrass. According to the physiological characteristics and transcriptional expression levels of the related genes, the regulatory mechanism of centipedegrass tillering was systematically revealed. This research provides a new breeding resource for further studies into the molecular mechanism that regulates tillering in perennial plants and for breeding high-tillering centipedegrass varieties.
Collapse
|
35
|
Chun Y, Kumar A, Li X. Genetic and molecular pathways controlling rice inflorescence architecture. FRONTIERS IN PLANT SCIENCE 2022; 13:1010138. [PMID: 36247571 PMCID: PMC9554555 DOI: 10.3389/fpls.2022.1010138] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Rice inflorescence is one of the major organs in determining grain yield. The genetic and molecular regulation on rice inflorescence architecture has been well investigated over the past years. In the present review, we described genes regulating rice inflorescence architecture based on their roles in meristem activity maintenance, meristem identity conversion and branch elongation. We also introduced the emerging regulatory pathways of phytohormones involved in rice inflorescence development. These studies show the intricacies and challenges of manipulating inflorescence architecture for rice yield improvement.
Collapse
Affiliation(s)
- Yan Chun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ashmit Kumar
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Fisheries and Forestry, Fiji National University, Nausori, Fiji
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
36
|
Singh P, Choudhary KK, Chaudhary N, Gupta S, Sahu M, Tejaswini B, Sarkar S. Salt stress resilience in plants mediated through osmolyte accumulation and its crosstalk mechanism with phytohormones. FRONTIERS IN PLANT SCIENCE 2022; 13:1006617. [PMID: 36237504 PMCID: PMC9552866 DOI: 10.3389/fpls.2022.1006617] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 06/01/2023]
Abstract
Salinity stress is one of the significant abiotic stresses that influence critical metabolic processes in the plant. Salinity stress limits plant growth and development by adversely affecting various physiological and biochemical processes. Enhanced generation of reactive oxygen species (ROS) induced via salinity stress subsequently alters macromolecules such as lipids, proteins, and nucleic acids, and thus constrains crop productivity. Due to which, a decreasing trend in cultivable land and a rising world population raises a question of global food security. In response to salt stress signals, plants adapt defensive mechanisms by orchestrating the synthesis, signaling, and regulation of various osmolytes and phytohormones. Under salinity stress, osmolytes have been investigated to stabilize the osmotic differences between the surrounding of cells and cytosol. They also help in the regulation of protein folding to facilitate protein functioning and stress signaling. Phytohormones play critical roles in eliciting a salinity stress adaptation response in plants. These responses enable the plants to acclimatize to adverse soil conditions. Phytohormones and osmolytes are helpful in minimizing salinity stress-related detrimental effects on plants. These phytohormones modulate the level of osmolytes through alteration in the gene expression pattern of key biosynthetic enzymes and antioxidative enzymes along with their role as signaling molecules. Thus, it becomes vital to understand the roles of these phytohormones on osmolyte accumulation and regulation to conclude the adaptive roles played by plants to avoid salinity stress.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
| | - Krishna Kumar Choudhary
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Nivedita Chaudhary
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Shweta Gupta
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Mamatamayee Sahu
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Boddu Tejaswini
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Subrata Sarkar
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
37
|
Savelieva EM, Zenchenko AA, Drenichev MS, Kozlova AA, Kurochkin NN, Arkhipov DV, Chizhov AO, Oslovsky VE, Romanov GA. In Planta, In Vitro and In Silico Studies of Chiral N6-Benzyladenine Derivatives: Discovery of Receptor-Specific S-Enantiomers with Cytokinin or Anticytokinin Activities. Int J Mol Sci 2022; 23:ijms231911334. [PMID: 36232653 PMCID: PMC9569578 DOI: 10.3390/ijms231911334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 01/12/2023] Open
Abstract
Cytokinins, classical phytohormones, affect all stages of plant ontogenesis, but their application in agriculture is limited because of the lack of appropriate ligands, including those specific for individual cytokinin receptors. In this work, a series of chiral N6-benzyladenine derivatives were studied as potential cytokinins or anticytokinins. All compounds contained a methyl group at the α-carbon atom of the benzyl moiety, making them R- or S-enantiomers. Four pairs of chiral nucleobases and corresponding ribonucleosides containing various substituents at the C2 position of adenine heterocycle were synthesized. A nucleophilic substitution reaction by secondary optically active amines was used. A strong influence of the chirality of studied compounds on their interaction with individual cytokinin receptors of Arabidopsis thaliana was uncovered in in vivo and in vitro assays. The AHK2 and CRE1/AHK4 receptors were shown to have low affinity for the studied S-nucleobases while the AHK3 receptor exhibited significant affinity for most of them. Thereby, three synthetic AHK3-specific cytokinins were discovered: N6-((S)-α-methylbenzyl)adenine (S-MBA), 2-fluoro,N6-((S)-α-methylbenzyl)adenine (S-FMBA) and 2-chloro,N6-((S)-α-methylbenzyl)adenine (S-CMBA). Interaction patterns between individual receptors and specific enantiomers were rationalized by structure analysis and molecular docking. Two other S-enantiomers (N6-((S)-α-methylbenzyl)adenosine, 2-amino,N6-((S)-α-methylbenzyl)adenosine) were found to exhibit receptor-specific and chirality-dependent anticytokinin properties.
Collapse
Affiliation(s)
- Ekaterina M. Savelieva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, 127276 Moscow, Russia
| | - Anastasia A. Zenchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Mikhail S. Drenichev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Anna A. Kozlova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Nikolay N. Kurochkin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Dmitry V. Arkhipov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, 127276 Moscow, Russia
| | - Alexander O. Chizhov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky pr. 47, 119991 Moscow, Russia
| | - Vladimir E. Oslovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Georgy A. Romanov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, 127276 Moscow, Russia
- Correspondence: or
| |
Collapse
|
38
|
Karami O, Rahimi A. The end of flowering: interactions between cytokinin and regulatory genes. TRENDS IN PLANT SCIENCE 2022; 27:840-842. [PMID: 35701292 DOI: 10.1016/j.tplants.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Although the molecular regulation of global proliferative arrest (GPA) in arabidopsis (Arabidopsis thaliana) has been studied extensively, the precise role of the different contributors and their interconnections requires further research. A recent contribution by Merelo et al. now provides evidence that repression of cytokinin (CK) signaling affects the promotion of GPA.
Collapse
Affiliation(s)
- Omid Karami
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands.
| | - Arezoo Rahimi
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands
| |
Collapse
|
39
|
Upadhyay SK, Srivastava AK, Rajput VD, Chauhan PK, Bhojiya AA, Jain D, Chaubey G, Dwivedi P, Sharma B, Minkina T. Root Exudates: Mechanistic Insight of Plant Growth Promoting Rhizobacteria for Sustainable Crop Production. Front Microbiol 2022; 13:916488. [PMID: 35910633 PMCID: PMC9329127 DOI: 10.3389/fmicb.2022.916488] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/09/2022] [Indexed: 12/18/2022] Open
Abstract
The breaking silence between the plant roots and microorganisms in the rhizosphere affects plant growth and physiology by impacting biochemical, molecular, nutritional, and edaphic factors. The components of the root exudates are associated with the microbial population, notably, plant growth-promoting rhizobacteria (PGPR). The information accessible to date demonstrates that PGPR is specific to the plant's roots. However, inadequate information is accessible for developing bio-inoculation/bio-fertilizers for the crop in concern, with satisfactory results at the field level. There is a need to explore the perfect candidate PGPR to meet the need for plant growth and yield. The functions of PGPR and their chemotaxis mobility toward the plant root are triggered by the cluster of genes induced by the components of root exudates. Some reports have indicated the benefit of root exudates in plant growth and productivity, yet a methodical examination of rhizosecretion and its consequences in phytoremediation have not been made. In the light of the afore-mentioned facts, in the present review, the mechanistic insight and recent updates on the specific PGPR recruitment to improve crop production at the field level are methodically addressed.
Collapse
Affiliation(s)
- Sudhir K. Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | | | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Prabhat K. Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | - Ali Asger Bhojiya
- Department of Agriculture and Veterinary Sciences, Mewar University, Chittorgarh, India
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Maharana Pratap University of Agriculture and Technology, Udaipur, India
| | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Bechan Sharma
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
40
|
Jardinaud MF, Fromentin J, Auriac MC, Moreau S, Pecrix Y, Taconnat L, Cottret L, Aubert G, Balzergue S, Burstin J, Carrere S, Gamas P. MtEFD and MtEFD2: Two transcription factors with distinct neofunctionalization in symbiotic nodule development. PLANT PHYSIOLOGY 2022; 189:1587-1607. [PMID: 35471237 PMCID: PMC9237690 DOI: 10.1093/plphys/kiac177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/21/2022] [Indexed: 05/31/2023]
Abstract
Rhizobium-legume nitrogen-fixing symbiosis involves the formation of a specific organ, the root nodule, which provides bacteria with the proper cellular environment for atmospheric nitrogen fixation. Coordinated differentiation of plant and bacterial cells is an essential step of nodule development, for which few transcriptional regulators have been characterized. Medicago truncatula ETHYLENE RESPONSE FACTOR REQUIRED FOR NODULE DIFFERENTIATION (MtEFD) encodes an APETALA2/ETHYLENE RESPONSIVE FACTOR (ERF) transcription factor, the mutation of which leads to both hypernodulation and severe defects in nodule development. MtEFD positively controls a negative regulator of cytokinin signaling, the RESPONSE REGULATOR 4 (MtRR4) gene. Here we showed that that the Mtefd-1 mutation affects both plant and bacterial endoreduplication in nodules, as well as the expression of hundreds of genes in young and mature nodules, upstream of known regulators of symbiotic differentiation. MtRR4 expressed with the MtEFD promoter complemented Mtefd-1 hypernodulation but not the nodule differentiation phenotype. Unexpectedly, a nonlegume homolog of MtEFD, AtERF003 in Arabidopsis (Arabidopsis thaliana), could efficiently complement both phenotypes of Mtefd-1, in contrast to the MtEFD paralog MtEFD2 expressed in the root and nodule meristematic zone. A domain swap experiment showed that MtEFD2 differs from MtEFD by its C-terminal fraction outside the DNA binding domain. Furthermore, clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 (CRISPR-Cas9) mutagenesis of MtEFD2 led to a reduction in the number of nodules formed in Mtefd-1, with downregulation of a set of genes, including notably NUCLEAR FACTOR-YA1 (MtNF-YA1) and MtNF-YB16, which are essential for nodule meristem establishment. We, therefore, conclude that nitrogen-fixing symbiosis recruited two proteins originally expressed in roots, MtEFD and MtEFD2, with distinct functions and neofunctionalization processes for each of them.
Collapse
Affiliation(s)
| | | | | | - Sandra Moreau
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | | | | - Ludovic Cottret
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Grégoire Aubert
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | | | - Judith Burstin
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Sébastien Carrere
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | |
Collapse
|
41
|
Ruan J, Yi P. Exogenous 6-benzylaminopurine inhibits tip growth and cytokinesis via regulating actin dynamics in the moss Physcomitrium patens. PLANTA 2022; 256:1. [PMID: 35616774 DOI: 10.1007/s00425-022-03914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Exogenous BAP but not 2iP disrupts actin structures and induces tip-growth retardation and cytokinesis failure in the moss Physcomitrium patens. Synthetic cytokinins have been widely used to address hormonal responses during plant development. However, exogenous cytokinins can cause a variety of cellular effects. A detailed characterization of such effects has not been well studied. Here, using Physcomitrium patens as a model, we show that the aromatic cytokinin 6-benzylaminopurine (BAP) inhibits tip growth at concentrations above 0.2 µM. At higher concentrations (0.6-1 µM), BAP can additionally block mitotic entry and induce cytokinesis defects and cell death. These effects are associated with altered actin dynamics and structures. By contrast, 2-isopentenyladenine (2iP) does not cause marked defects at various concentrations up to 10 µM, while t-zeatin (tZ) can moderately inhibit moss growth. Our results provide mechanistic insight into the inhibitory effects of BAP on cell growth and cell division and call for attention to the use of synthetic cytokinins for bioassays.
Collapse
Affiliation(s)
- Jingtong Ruan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Wuhou District, Chengdu, Sichuan, 610065, People's Republic of China
| | - Peishan Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Wuhou District, Chengdu, Sichuan, 610065, People's Republic of China.
| |
Collapse
|
42
|
Plant development: Unveiling cytokinin’s role in the end of flowering. Curr Biol 2022; 32:R168-R170. [DOI: 10.1016/j.cub.2022.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Gan L, Song M, Wang X, Yang N, Li H, Liu X, Li Y. Cytokinins is involved in regulation of tomato pericarp thickness and fruit size. HORTICULTURE RESEARCH 2022; 9:uhab041. [PMID: 35043193 PMCID: PMC8968492 DOI: 10.1093/hr/uhab041] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/23/2021] [Indexed: 06/14/2023]
Abstract
Although cytokinins (CKs) regulate fruit development, no direct genetic evidence supports the role of endogenous CKs in pericarp growth or development or fruit size. Here, we report that the reduction in endogenous active CKs level via overexpression of a CKs-inactivating enzyme gene AtCKX2 specifically in fruit tissues resulted in reduced pericarp thickness and smaller fruit size, compared to wild-type control fruits. The pericarp thickness and single fruit weight in transgenic plants were significantly reduced. Analysis of paraffin sections showed that the reduced pericarp thickness was due largely to a decreased number of cells, and thus decreased cell division. Transcriptome profiling showed that the expression of cell division- and expansion-related genes was reduced in AtCKX2-overexpressing fruits. In addition, the expression of auxin-signaling and gibberellin-biosynthetic genes was repressed, whereas that of gibberellin-inactivating genes was enhanced, in AtCKX2-overexpressing fruits. These results demonstrate that endogenous CKs regulate pericarp cell division and, subsequently, fruit size. They also suggest that CKs interact with auxin and gibberellins in regulating tomato pericarp thickness and fruit size.
Collapse
Affiliation(s)
- Lijun Gan
- College of Life Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Mengying Song
- College of Life Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Xuechun Wang
- College of Life Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Na Yang
- College of Life Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Hu Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and the College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Xuexia Liu
- College of Life Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
44
|
Zhou Z, Zhu Y, Zhang H, Zhang R, Gao Q, Ding T, Wang H, Yan Z, Yao JL. Transcriptome analysis of transgenic apple fruit overexpressing microRNA172 reveals candidate transcription factors regulating apple fruit development at early stages. PeerJ 2022; 9:e12675. [PMID: 35036153 PMCID: PMC8710058 DOI: 10.7717/peerj.12675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
Background MicroRNA172 (miR172) has been proven to be critical for fruit growth, since elevated miR172 activity blocks the growth of apple (Malus x domestica Borkh.) fruit. However, it is not clear how overexpression of miR172 affects apple fruit developmental processes. Methods To answer this question, the present study, analyzed global transcriptional changes in miR172-overexpressing (miR172OX) and nongenetically modified wild-type (WT) apple fruit at two developmental stages and in different fruit tissues via RNA-seq. In addition, two cultivars, ‘Hanfu’ and ‘M9’, which have naturally fruit size variation, were included to identify miR172-dependent DEGs. qRT–PCRwas used to verify the reliability of our RNA-seq data. Results Overexpression of miR172 altered the expression levels of many cell proliferation- and cell expansion-related genes. Twenty-four libraries were generated, and 10,338 differentially expressed genes (DEGs) were detected between miR172OX and WT fruit tissues. ‘Hanfu’ and ‘M9’ are two common cultivars that bear fruit of different sizes (250 g and 75 g, respectively). Six libraries were generated, and 3,627 DEGs were detected between ‘Hanfu’ and ‘M9’. After merging the two datasets, 6,888 candidate miR172-specific DEGs were identified. The potential networks associated with fruit size triggered traits were defined among genes belonging to the families of hormone synthesis, signaling pathways, and transcription factors. Our comparative transcriptome analysis provides insights into transcriptome responses to miR172 overexpression in apple fruit and a valuable database for future studies to validate functional genes and elucidate the fruit developmental mechanisms in apple.
Collapse
Affiliation(s)
- Zhe Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanmin Zhu
- Tree Fruit Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Wenatchee, WA, USA
| | - Hengtao Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ruiping Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Qiming Gao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Tiyu Ding
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Huan Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhenli Yan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jia-Long Yao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.,The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| |
Collapse
|
45
|
Merelo P, González-Cuadra I, Ferrándiz C. A cellular analysis of meristem activity at the end of flowering points to cytokinin as a major regulator of proliferative arrest in Arabidopsis. Curr Biol 2021; 32:749-762.e3. [PMID: 34963064 DOI: 10.1016/j.cub.2021.11.069] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 02/08/2023]
Abstract
In monocarpic plants, all reproductive meristem activity arrests and flower production ceases after the production of a certain number of fruits. This proliferative arrest (PA) is an evolutionary adaptation that ensures nutrient availability for seed production. Moreover, PA is a process of agronomic interest because it affects the duration of the flowering period and therefore fruit production. While our knowledge of the inputs and genetic factors controlling the initiation of the flowering period is extensive, little is known about the regulatory pathways and cellular events that participate in the end of flowering and trigger PA. Here, we characterize with high spatiotemporal resolution the cellular and molecular changes related to cell proliferation and meristem activity in the shoot apical meristem throughout the flowering period and PA. Our results suggest that cytokinin (CK) signaling repression precedes PA and that this hormone is sufficient to prevent and revert the process. We have also observed that repression of known CK downstream factors, such as type B cyclins and WUSCHEL (WUS), correlates with PA. These molecular changes are accompanied by changes in cell size and number likely caused by the cessation of cell division and WUS activity during PA. Parallel assays in fruitfull (ful) mutants, which do not undergo PA, have revealed that FUL may promote PA via repression of these CK-dependent pathways. Moreover, our data allow to define two phases, based on the relative contribution of FUL, that lead to PA: an early reduction of CK-related events and a late blocking of these events.
Collapse
Affiliation(s)
- Paz Merelo
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, 46022 Valencia, Spain.
| | - Irene González-Cuadra
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, 46022 Valencia, Spain
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, 46022 Valencia, Spain.
| |
Collapse
|
46
|
Li Y, Sun M, Wang X, Zhang YJ, Da XW, Jia LY, Pang HL, Feng HQ. Effects of plant growth regulators on transient expression of foreign gene in Nicotiana benthamiana L. leaves. BIORESOUR BIOPROCESS 2021; 8:124. [PMID: 38650281 PMCID: PMC10992099 DOI: 10.1186/s40643-021-00480-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the last decades, replicating expression vectors based on plant geminivirus have been widely used for enhancing the efficiency of plant transient expression. By using the replicating expression vector derived from bean yellow dwarf virus and green fluorescent protein as a reporter, we investigated the effects of α-naphthalene acetic acid, gibberellins3, and 6-benzyladenine, as three common plant growth regulators, on the plant biomass and efficiency of transient expression during the process of transient expression in Nicotiana benthamiana L. leaves. RESULTS With the increase of the concentration of α-naphthalene acetic acid, gibberellins3, and 6-benzyladenine (from 0.1 to 1.6 mg/L), the fresh weight, dry weight, and leaf area of the seedlings increased first and then returned to the levels similar to the controls (without chemical treatment). The treatment with α-naphthalene acetic acid at 0.2 and 0.4 mg/L can enhance the level of transient expression of green fluorescent protein, which peaked at 0.4 mg/L α-naphthalene acetic acid and was increased about by 19%, compared to the controls. Gibberellins3 at 0.1-0.4 mg/L can enhance the level of transient expression of green fluorescent protein, which peaked at 0.2 mg/L gibberellins3 and was increased by 25%. However, the application of 6-benzyladenine led to decrease in the level of transient expression of green fluorescent protein. CONCLUSIONS The appropriate plant growth regulators at moderate concentration could be beneficial to the expression of foreign genes from the Agrobacterium-mediated transient expression system in plants. Thus, appropriate plant growth regulators could be considered as exogenous components that are applied for the production of recombinant protein by plant-based transient expression systems.
Collapse
Affiliation(s)
- Ying Li
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Min Sun
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Xin Wang
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Yue-Jing Zhang
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Xiao-Wei Da
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Ling-Yun Jia
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Hai-Long Pang
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Han-Qing Feng
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
47
|
Cytokinin Perception in Ancient Plants beyond Angiospermae. Int J Mol Sci 2021; 22:ijms222313077. [PMID: 34884882 PMCID: PMC8657898 DOI: 10.3390/ijms222313077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Cytokinins (CKs) control many plant developmental processes and responses to environmental cues. Although the CK signaling is well understood, we are only beginning to decipher its evolution. Here, we investigated the CK perception apparatus in early-divergent plant species such as bryophyte Physcomitrium patens, lycophyte Selaginella moellendorffii, and gymnosperm Picea abies. Of the eight CHASE-domain containing histidine kinases (CHKs) examined, two CHKs, PpCHK3 and PpCHK4, did not bind CKs. All other CHK receptors showed high-affinity CK binding (KD of nM range), with a strong preference for isopentenyladenine over other CK nucleobases in the moss and for trans-zeatin over cis-zeatin in the gymnosperm. The pH dependences of CK binding for these six CHKs showed a wide range, which may indicate different subcellular localization of these receptors at either the plasma- or endoplasmic reticulum membrane. Thus, the properties of the whole CK perception apparatuses in early-divergent lineages were demonstrated. Data show that during land plant evolution there was a diversification of the ligand specificity of various CHKs, in particular, the rise in preference for trans-zeatin over cis-zeatin, which indicates a steadily increasing specialization of receptors to various CKs. Finally, this distinct preference of individual receptors to different CK versions culminated in vascular plants, especially angiosperms.
Collapse
|
48
|
The Papain-like Cysteine Protease HpXBCP3 from Haematococcus pluvialis Involved in the Regulation of Growth, Salt Stress Tolerance and Chlorophyll Synthesis in Microalgae. Int J Mol Sci 2021; 22:ijms222111539. [PMID: 34768970 PMCID: PMC8583958 DOI: 10.3390/ijms222111539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022] Open
Abstract
The papain-like cysteine proteases (PLCPs), the most important group of cysteine proteases, have been reported to participate in the regulation of growth, senescence, and abiotic stresses in plants. However, the functions of PLCPs and their roles in stress response in microalgae was rarely reported. The responses to different abiotic stresses in Haematococcus pluvialis were often observed, including growth regulation and astaxanthin accumulation. In this study, the cDNA of HpXBCP3 containing 1515 bp open reading frame (ORF) was firstly cloned from H. pluvialis by RT-PCR. The analysis of protein domains and molecular evolution showed that HpXBCP3 was closely related to AtXBCP3 from Arabidopsis. The expression pattern analysis revealed that it significantly responds to NaCl stress in H. pluvialis. Subsequently, transformants expressing HpXBCP3 in Chlamydomonas reinhardtii were obtained and subjected to transcriptomic analysis. Results showed that HpXBCP3 might affect the cell cycle regulation and DNA replication in transgenic Chlamydomonas, resulting in abnormal growth of transformants. Moreover, the expression of HpXBCP3 might increase the sensitivity to NaCl stress by regulating ubiquitin and the expression of WD40 proteins in microalgae. Furthermore, the expression of HpXBCP3 might improve chlorophyll content by up-regulating the expression of NADH-dependent glutamate synthases in C. reinhardtii. This study indicated for the first time that HpXBCP3 was involved in the regulation of cell growth, salt stress response, and chlorophyll synthesis in microalgae. Results in this study might enrich the understanding of PLCPs in microalgae and provide a novel perspective for studying the mechanism of environmental stress responses in H. pluvialis.
Collapse
|
49
|
Desvoyes B, Echevarría C, Gutierrez C. A perspective on cell proliferation kinetics in the root apical meristem. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6708-6715. [PMID: 34159378 PMCID: PMC8513163 DOI: 10.1093/jxb/erab303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Organogenesis in plants is primarily postembryonic and relies on a strict balance between cell division and cell expansion. The root is a particularly well-suited model to study cell proliferation in detail since the two processes are spatially and temporally separated for all the different tissues. In addition, the root is amenable to detailed microscopic analysis to identify cells progressing through the cell cycle. While it is clear that cell proliferation activity is restricted to the root apical meristem (RAM), understanding cell proliferation kinetics and identifying its parameters have required much effort over many years. Here, we review the main concepts, experimental settings, and findings aimed at obtaining a detailed knowledge of how cells proliferate within the RAM. The combination of novel tools, experimental strategies, and mathematical models has contributed to our current view of cell proliferation in the RAM. We also discuss several lines of research that need to be explored in the future.
Collapse
Affiliation(s)
- Bénédicte Desvoyes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Clara Echevarría
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
50
|
Fang L, Kong X, Wen Y, Li J, Yin Y, Li L, Ma G, Wu K, Zeng S. Characterization of embryo and protocorm development of Paphiopedilum spicerianum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:1024-1034. [PMID: 34598022 DOI: 10.1016/j.plaphy.2021.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Paphiopedilum spicerianum (P. spicerianum) is a rare orchid species with high ornamental value. Asymbiotic germination is the most efficient propagation method for conservation and commercial purposes because clonal propagation is very difficult and the separation of native species of Paphiopedilum through aseptic seeding is uncommon owing to their conservatism. However, a high protocorm developmental arresting rate during the asymbiotic germination is the major obstacle for seedling establishment. The fundamental understanding of embryo and protocorm developmental mechanisms will guide the development of an effective propagation method. The morphological and physiological characterization of the key developmental process of embryos and protocorms shows that the mature seeds of P. spicerianum consist of a spherical embryo without an endosperm. Seed coats become heavily lignified once the embryo is mature. Embryo cell size is relatively uniform, and significant structure polarity and cell size gradients occur at the early protocorm stage. The high level of auxin and cytokinin accumulation at the early stage of embryo development and protocorm stage may help to facilitate cell division. The transcriptome profiles of protocorms at three different developmental stages were compared to explore the regulatory mechanism of protocorm development. Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that differentially expressed genes were implicated in secondary metabolite metabolism, plant hormone signal transduction and photosynthesis. The temporal expression patterns of candidate genes related to embryo and shoot development were analyzed to reveal their roles in protocorm development: in the early stage of protocorm development, embryonic development related genes such as SERKs and BBM1 were active, while in the late stage of protocorm, shoot apical meristem related genes such as WOX8, CLAVATA2, CUC2, and SCR were active.
Collapse
Affiliation(s)
- Lin Fang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Xinping Kong
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yingting Wen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ji Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yuying Yin
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lin Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Guohua Ma
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Kunlin Wu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Songjun Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|