1
|
Kumbhakar R, Mondal M, Thakro V, Tripathi S, Parida SK. Shaping the future: Unravelling regulators modulating plant architecture for next-generation crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025:112534. [PMID: 40324726 DOI: 10.1016/j.plantsci.2025.112534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/20/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Plant architecture traits in crops are modulated through intricate interactions of various genetic pathways, which helps them to adapt to diverse environmental conditions. Key developmental pathways involved in forming plant architecture include the LAZY-TAC (Tiller Angle Control) module regulating branch and tiller angle, the CLAVATA-WUSCHEL pathway controlling shoot apical meristem fate and the GID1-DELLA pathway governing plant height and tillering in major food crops. These pathways function in concert to shape the overall architecture of plants, which is essential for optimizing light capture, resource allocation, reproductive success and eventual crop yield enhancement. Presently, plant architecture of modern crops has been shaped especially by artificial selection of natural alleles that target yield traits. Recent advances in CRISPR-Cas-based genome editing and genomics-assisted breeding strategies have enabled precise genetic manipulation of natural alleles in the functionally relevant genes regulating plant architecture traits in crops. This will assist researchers to select and introgress superior natural alleles in popular cultivars strategically for restructuring their desirable plant-types suitable for mechanical harvesting as well as enhancing the crop yield potential.
Collapse
Affiliation(s)
- Rajib Kumbhakar
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Mayulika Mondal
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Virevol Thakro
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shailesh Tripathi
- Indian Institute of Pulses Research (IIPR), Kanpur, Uttar Pradesh 208024, India
| | - Swarup K Parida
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
2
|
Yun C, Ma W, Feng J, Li L. Branching angles in the modulation of plant architecture: Molecular mechanisms, dynamic regulation, and evolution. PLANT COMMUNICATIONS 2025; 6:101292. [PMID: 40007121 PMCID: PMC12010374 DOI: 10.1016/j.xplc.2025.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/22/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Plants develop branches to expand areas for assimilation and reproduction. Branching angles coordinate with branching types, creating diverse plant shapes that are adapted to various environments. Two types of branching angle-the angle between shoots and the angle in relation to gravity or the gravitropic set-point angle (GSA) along shoots-determine the spacing between shoots and the shape of the aboveground plant parts. However, it remains unclear how these branching angles are modulated throughout shoot development and how they interact with other factors that contribute to plant architecture. In this review, we systematically focus on the molecular mechanisms that regulate branching angles across various species, including gravitropism, anti-gravitropic offset, phototropism, and other regulatory factors, which collectively highlight comprehensive mechanisms centered on auxin. We also discuss the dynamics of branching angles during development and their relationships with branching number, stress resistance, and crop yield. Finally, we provide an evolutionary perspective on the conserved role of auxin in the regulation of branching angles.
Collapse
Affiliation(s)
- Chen Yun
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China; Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Wanzhuang Ma
- College of Biological Science and Technology, Taiyuan Normal University, Jinzhong, China
| | - Jun Feng
- College of Biological Science and Technology, Taiyuan Normal University, Jinzhong, China
| | - Lanxin Li
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China; Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Hu Y, Xue D, Wang S, Zhang Q, Zhang X, Yang J, Lv Y, Yan B, Yin Y, Cui Z, Li T, Chen W, Wang X. An auxin response factor regulates tiller angle and shoot gravitropism by directly activating related gene expression in rice. J Adv Res 2025:S2090-1232(25)00124-9. [PMID: 40015454 DOI: 10.1016/j.jare.2025.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025] Open
Abstract
INTRODUCTION The angle of tillers is crucial for shaping plant architecture, which in turn affects grain yield of rice. The formation of tiller angle is associated with the asymmetrical distribution and polar transport of auxin. However, the roles of auxin signaling in regulating tiller angle in rice remain unclear. OBJECTIVE This study identifies Oryza sativa Auxin Response Factor 5 (OsARF5) as a key regulator of tiller angle development in rice. METHODS The osarf5-1 mutant was obtained through using chemical mutagenesis. The differentially expressed genes were identified through quantitative RT-PCR and high-throughput mRNA sequencing. The interactions between OsARF5 protein and its targeted-DNAs was analyzed by chromatin immunoprecipitation and dual-luciferase reporter assays. Protein-protein interactions were assessed using yeast two-hybrid and bimolecular fluorescence complementation methods. RESULTS The osarf5-1 mutation enlarges the tiller angle, weakens shoot gravitropism, and diminishes the response to auxin in rice. OsARF5 binds to the cis-acting elements in the promoters of genes related to tiller angle development and activates their expression. Genome-wide studies identify thousands of differentially expressed genes (DEGs), including auxin response genes, between wild-type and osarf5-1. Under gravistimulation, the number of DEGs in osarf5-1 decreases, indicating the involvement of OsARF5 in shoot gravitropism. The OsARF5 physically interact with three rice Indole Acetic Acid (OsIAA) repressors, forming complexes that facilitate their functions. Mutations in OsIAAs lead to a more compact plant architecture, and the expression of OsARF5-target genes is elevated in osiaa mutants, suggesting that the OsIAAs counteract OsARF5's effects on tiller angle control. CONCLUSION OsARF5 is associated with three OsIAAs to bind to the promoter of the target genes, regulating their expression to modulate shoot gravitropism and tiller angle in rice. These findings offer new insights into the principles governing tiller angle control in rice.
Collapse
Affiliation(s)
- Yanjuan Hu
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Dan Xue
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Shiyu Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Institute of Saline-Alkali and Utilization, Panjin 124010, China.
| | - Qi Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xinfeng Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jingyan Yang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yanpeng Lv
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Bowen Yan
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Academy of Agricultural Sciences, Shenyang 110161, China.
| | - Yanbin Yin
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; College of Agriculture, Northeast Agricultural University, Harbin 150038, China.
| | - Zhibo Cui
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Tong Li
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| | - Wenfu Chen
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xiaoxue Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
4
|
Yan Y, Chen Y, Zhu X, Wang Y, Qi H, Gui J, Zhang H, He J. The TCP transcription factor TAC8 positively regulates the tiller angle in rice (Oryza sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:39. [PMID: 39885061 DOI: 10.1007/s00122-024-04812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/27/2024] [Indexed: 02/01/2025]
Abstract
The tiller angle, one of the critical factors that determine the rice plant type, is closely related to rice yield. An appropriate rice tiller angle can improve rice photosynthetic efficiency and increase yields. In this study, we identified a transcription factor, TILLRE ANGLE CONTROL 8 (TAC8), that is highly expressed in the rice tiller base and positively regulates the tiller angle by regulating cell length and endogenous auxin content; TAC8 encodes a TEOSINTE BRANCHED1/CYCLOIDEA/PCF transcriptional activator that is highly expressed in the nucleus. RNA-seq revealed that TAC8 is involved mainly in the photoperiod and abiotic stress response in rice. Yeast two-hybrid assays verified that TAC8 interacts with CHLOROPHYLL A/B-BINDING PROTEIN 1, which responds to photoperiod, and haplotype analysis revealed that a 34-bp deletion at position 1516 in the promoter region and a 9-bp deletion at position 153 in the coding region can result in impaired function or loss of function of TAC8. This study provides a new genetic resource for designing ideal plant types with appropriate rice tiller angle.
Collapse
Affiliation(s)
- Yuntao Yan
- College of Agronomy, Hunan Agricultural University, Changsha, 420128, China
| | - Ya Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 420128, China
| | - Xiaoya Zhu
- College of Agronomy, Hunan Agricultural University, Changsha, 420128, China
| | - Yan Wang
- College of Agronomy, Hunan Agricultural University, Changsha, 420128, China
| | - Hui Qi
- College of Agronomy, Hunan Agricultural University, Changsha, 420128, China
- Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Jinxin Gui
- College of Agronomy, Hunan Agricultural University, Changsha, 420128, China
| | - Haiqing Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, 420128, China.
| | - Jiwai He
- College of Agronomy, Hunan Agricultural University, Changsha, 420128, China.
| |
Collapse
|
5
|
Smith AG, Malinowska M, Ruud AK, Janss L, Krusell L, Jensen JD, Asp T. Automated seminal root angle measurement with corrective annotation. AOB PLANTS 2024; 16:plae046. [PMID: 39465185 PMCID: PMC11512109 DOI: 10.1093/aobpla/plae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/15/2024] [Accepted: 09/05/2024] [Indexed: 10/29/2024]
Abstract
Measuring seminal root angle is an important aspect of root phenotyping, yet automated methods are lacking. We introduce SeminalRootAngle, a novel open-source automated method that measures seminal root angles from images. To ensure our method is flexible and user-friendly we build on an established corrective annotation training method for image segmentation. We tested SeminalRootAngle on a heterogeneous dataset of 662 spring barley rhizobox images, which presented challenges in terms of image clarity and root obstruction. Validation of our new automated pipeline against manual measurements yielded a Pearson correlation coefficient of 0.71. We also measure inter-annotator agreement, obtaining a Pearson correlation coefficient of 0.68, indicating that our new pipeline provides similar root angle measurement accuracy to manual approaches. We use our new SeminalRootAngle tool to identify single nucleotide polymorphisms (SNPs) significantly associated with angle and length, shedding light on the genetic basis of root architecture.
Collapse
Affiliation(s)
- Abraham George Smith
- Department of Computer Science, University of Copenhagen, Copenhagen 2100, Denmark
- Center for Quantitative Genetics and Genomics, Aarhus University, Slagelse 4200, Denmark
| | - Marta Malinowska
- Center for Quantitative Genetics and Genomics, Aarhus University, Slagelse 4200, Denmark
| | - Anja Karine Ruud
- Center for Quantitative Genetics and Genomics, Aarhus University, Slagelse 4200, Denmark
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås 1433, Norway
| | - Luc Janss
- Center for Quantitative Genetics and Genomics, Aarhus University, Slagelse 4200, Denmark
| | | | | | - Torben Asp
- Center for Quantitative Genetics and Genomics, Aarhus University, Slagelse 4200, Denmark
| |
Collapse
|
6
|
Kohler AR, Scheil A, Hill JL, Allen JR, Al-Haddad JM, Goeckeritz CZ, Strader LC, Telewski FW, Hollender CA. Defying gravity: WEEP promotes negative gravitropism in peach trees by establishing asymmetric auxin gradients. PLANT PHYSIOLOGY 2024; 195:1229-1255. [PMID: 38366651 PMCID: PMC11142379 DOI: 10.1093/plphys/kiae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 02/18/2024]
Abstract
Trees with weeping shoot architectures are valued for their beauty and are a resource for understanding how plants regulate posture control. The peach (Prunus persica) weeping phenotype, which has elliptical downward arching branches, is caused by a homozygous mutation in the WEEP gene. Little is known about the function of WEEP despite its high conservation throughout Plantae. Here, we present the results of anatomical, biochemical, biomechanical, physiological, and molecular experiments that provide insight into WEEP function. Our data suggest that weeping peach trees do not have defects in branch structure. Rather, transcriptomes from the adaxial (upper) and abaxial (lower) sides of standard and weeping branch shoot tips revealed flipped expression patterns for genes associated with early auxin response, tissue patterning, cell elongation, and tension wood development. This suggests that WEEP promotes polar auxin transport toward the lower side during shoot gravitropic response, leading to cell elongation and tension wood development. In addition, weeping peach trees exhibited steeper root systems and faster lateral root gravitropic response. This suggests that WEEP moderates root gravitropism and is essential to establishing the set-point angle of lateral roots from the gravity vector. Additionally, size exclusion chromatography indicated that WEEP proteins self-oligomerize, like other proteins with sterile alpha motif domains. Collectively, our results from weeping peach provide insight into polar auxin transport mechanisms associated with gravitropism and lateral shoot and root orientation.
Collapse
Affiliation(s)
- Andrea R Kohler
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Andrew Scheil
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Joseph L Hill
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Jeffrey R Allen
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jameel M Al-Haddad
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Charity Z Goeckeritz
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Frank W Telewski
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Courtney A Hollender
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Kangben F, Kumar S, Li Z, Sreedasyam A, Dardick C, Jones D, Saski CA. Phylogenetic and functional analysis of tiller angle control homeologs in allotetraploid cotton. FRONTIERS IN PLANT SCIENCE 2024; 14:1320638. [PMID: 38356867 PMCID: PMC10864623 DOI: 10.3389/fpls.2023.1320638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Introduction Plants can adapt their growth to optimize light capture in competitive environments, with branch angle being a crucial factor influencing plant phenotype and physiology. Decreased branch angles in cereal crops have been shown to enhance productivity in high-density plantings. The Tiller Angle Control (TAC1) gene, known for regulating tiller inclination in rice and corn, has been found to control branch angle in eudicots. Manipulating TAC1 in field crops like cotton offers the potential for improving crop productivity. Methods Using a homolog-based methodology, we examined the distribution of TAC1-related genes in cotton compared to other angiosperms. Furthermore, tissue-specific qPCR analysis unveiled distinct expression patterns of TAC1 genes in various cotton tissues. To silence highly expressed specific TAC1 homeologs in the stem, we applied CRISPR-Cas9 gene editing and Agrobacterium-mediated transformation, followed by genotyping and subsequent phenotypic validation of the mutants. Results Gene duplication events of TAC1 specific to the Gossypium lineage were identified, with 3 copies in diploid progenitors and 6 copies in allotetraploid cottons. Sequence analysis of the TAC1 homeologs in Gossypium hirsutum revealed divergence from other angiosperms with 1-2 copies, suggesting possible neo- or sub-functionalization for the duplicated copies. These TAC1 homeologs exhibited distinct gene expression patterns in various tissues over developmental time, with elevated expression of A11G109300 and D11G112200, specifically in flowers and stems, respectively. CRISPR-mediated loss of these TAC1 homeologous genes resulted in a reduction in branch angle and altered petiole angles, and a 5 to 10-fold reduction in TAC1 expression in the mutants, confirming their role in controlling branch and petiole angles. This research provides a promising strategy for genetically engineering branch and petiole angles in commercial cotton varieties, potentially leading to increased productivity.
Collapse
Affiliation(s)
- Foster Kangben
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Sonika Kumar
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Zhigang Li
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Chris Dardick
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Don Jones
- Department of Agricultural Research, Cotton Incorporated, Cary, NC, United States
| | - Christopher A. Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
8
|
Tokuyama Y, Omachi M, Kushida S, Hikichi K, Okada S, Onishi K, Ishii T, Kishima Y, Koide Y. Different contributions of PROG1 and TAC1 to the angular kinematics of the main culm and tillers of wild rice (Oryza rufipogon). PLANTA 2023; 259:19. [PMID: 38085356 DOI: 10.1007/s00425-023-04300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION PROG1 is necessary but insufficient for the main culm inclination while TAC1 partially takes part in it, and both genes promote tiller inclination in Asian wild rice. Asian wild rice (Oryza rufipogon), the ancestor of cultivated rice (O. sativa), has a prostrate architecture, with tillers branching from near the ground. The main culm of each plant grows upward and then tilts during the vegetative stage. Genes controlling tiller angle have been reported; however, their genetic contributions to the culm movement have not been quantified. Here, we quantified their genetic contributions to angular kinematics in the main culm and tillers. For the main culm inclination, one major QTL surrounding the PROG1 region was found. In cultivated rice, tillers firstly inclined and lately rose, while it kept inclining in wild rice. It was suggested that PROG1 affected the tiller elevation angle in the later kinematics, whereas TAC1 was weakly associated with the tiller angle in the whole vegetative stage. Micro-computed tomography (micro-CT) suggested that these angular changes are produced by the bending of culm bases. Because near-isogenic lines (NILs) of wild rice-type Prog1 and Tac1 alleles in the genetic background of cultivated rice did not show the prostrate architecture, the involvement of another gene(s) for inclination of the main culm was suggested. Our findings will not only contribute to the understanding of the morphological transition during domestication but also be used in plant breeding to precisely reproduce the ideal plant architecture by combining the effects of multiple genes.
Collapse
Affiliation(s)
- Yoshiki Tokuyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo-Shi, Hokkaido, 060-8589, Japan
| | - Miku Omachi
- Research Faculty of Agriculture, Hokkaido University, Sapporo-Shi, Hokkaido, 060-8589, Japan
| | - Shiori Kushida
- Research Faculty of Agriculture, Hokkaido University, Sapporo-Shi, Hokkaido, 060-8589, Japan
| | - Kiwamu Hikichi
- Research Faculty of Agriculture, Hokkaido University, Sapporo-Shi, Hokkaido, 060-8589, Japan
| | - Shuhei Okada
- Research Faculty of Agriculture, Hokkaido University, Sapporo-Shi, Hokkaido, 060-8589, Japan
| | - Kazumitsu Onishi
- Research Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro-Shi, Hokkaido, 080-8555, Japan
| | - Takashige Ishii
- Graduate School of Agricultural Science, Kobe University, Kobe-Shi, Hyogo, 657-8501, Japan
| | - Yuji Kishima
- Research Faculty of Agriculture, Hokkaido University, Sapporo-Shi, Hokkaido, 060-8589, Japan
| | - Yohei Koide
- Research Faculty of Agriculture, Hokkaido University, Sapporo-Shi, Hokkaido, 060-8589, Japan.
| |
Collapse
|
9
|
Benitez-Alfonso Y, Soanes BK, Zimba S, Sinanaj B, German L, Sharma V, Bohra A, Kolesnikova A, Dunn JA, Martin AC, Khashi U Rahman M, Saati-Santamaría Z, García-Fraile P, Ferreira EA, Frazão LA, Cowling WA, Siddique KHM, Pandey MK, Farooq M, Varshney RK, Chapman MA, Boesch C, Daszkowska-Golec A, Foyer CH. Enhancing climate change resilience in agricultural crops. Curr Biol 2023; 33:R1246-R1261. [PMID: 38052178 DOI: 10.1016/j.cub.2023.10.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Climate change threatens global food and nutritional security through negative effects on crop growth and agricultural productivity. Many countries have adopted ambitious climate change mitigation and adaptation targets that will exacerbate the problem, as they require significant changes in current agri-food systems. In this review, we provide a roadmap for improved crop production that encompasses the effective transfer of current knowledge into plant breeding and crop management strategies that will underpin sustainable agriculture intensification and climate resilience. We identify the main problem areas and highlight outstanding questions and potential solutions that can be applied to mitigate the impacts of climate change on crop growth and productivity. Although translation of scientific advances into crop production lags far behind current scientific knowledge and technology, we consider that a holistic approach, combining disciplines in collaborative efforts, can drive better connections between research, policy, and the needs of society.
Collapse
Affiliation(s)
| | - Beth K Soanes
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sibongile Zimba
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK; Horticulture Department, Lilongwe University of Agriculture and Natural Resources, P.O. Box 219, Lilongwe, Malawi
| | - Besiana Sinanaj
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Liam German
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Abhishek Bohra
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Anastasia Kolesnikova
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton SO17 1BJ, UK
| | - Jessica A Dunn
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; Institute for Sustainable Food, University of Sheffield, Sheffield S10 2TN, UK
| | - Azahara C Martin
- Institute for Sustainable Agriculture (IAS-CSIC), Córdoba 14004, Spain
| | - Muhammad Khashi U Rahman
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca 37007, Spain; Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor de la Armuña 37185, Spain
| | - Zaki Saati-Santamaría
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca 37007, Spain; Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor de la Armuña 37185, Spain; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Prague, Czech Republic
| | - Paula García-Fraile
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca 37007, Spain; Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor de la Armuña 37185, Spain
| | - Evander A Ferreira
- Institute of Agrarian Sciences, Federal University of Minas Gerais, Avenida Universitária 1000, 39404547, Montes Claros, Minas Gerais, Brazil
| | - Leidivan A Frazão
- Institute of Agrarian Sciences, Federal University of Minas Gerais, Avenida Universitária 1000, 39404547, Montes Claros, Minas Gerais, Brazil
| | - Wallace A Cowling
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Muhammad Farooq
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia; Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton SO17 1BJ, UK
| | - Christine Boesch
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Guo L, Chen T, Chu X, Sun K, Yu F, Que F, Ahmad Z, Wei Q, Ramakrishnan M. Anatomical and Transcriptome Analyses of Moso Bamboo Culm Neck Growth: Unveiling Key Insights. PLANTS (BASEL, SWITZERLAND) 2023; 12:3478. [PMID: 37836218 PMCID: PMC10574802 DOI: 10.3390/plants12193478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
The Moso bamboo culm neck, connected with the rhizome and the shoot bud, is an important hub for connecting and transporting the aboveground and belowground systems of bamboo for the shoot bud development and rapid growth. Our previous study revealed that the culm neck generally undergoes six different developmental stages (CNS1-CNS6), according to the primary thickening growth of the underground shoot bud. However, the molecular mechanism of the culm neck development remains unknown. The present study focused on the developmental process of the CNS3-CNS5 stages, representing the early, middle, and late elongation stages, respectively. These stages are densely packed with vascular tissues and consist of epidermis, hypodermis, cortex, and ground tissue. Unlike the hollow structure of the culms, the culm necks are solid structures. As the culm neck continues to grow, the lignin deposition increases noticeably, contributing to its progressive strengthening. For the transcriptome analysis, a total of 161,160 transcripts with an average length of 2373 were obtained from these stages using both PacBio and Illumina sequencing. A total of 92.2% of the reads mapped to the Moso bamboo reference genome. Further analysis identified a total of 5524 novel genes and revealed a dynamic transcriptome. Secondary-metabolism- and transport-related genes were upregulated particularly with the growth of the culm neck. Further analysis revealed the molecular processes of lignin accumulation in the culm neck, which include differentially expressed genes (DEGs) related to cell wall loosening and remodeling and secondary metabolism. Moreover, the upregulations of transcription factors such as MYBH and RSM in the MYB family play crucial roles during critical transitions in the culm neck development, such as changes in the angle between the rhizome and the culm neck. Our new findings provide essential insights into the cellular roadmaps, transcriptional networks, and key genes involved in the culm neck development.
Collapse
Affiliation(s)
- Lin Guo
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Tianguo Chen
- Changzhou Agricultural Technology Extension Center, Changzhou 213000, China
| | - Xue Chu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Sun
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Fen Yu
- Changzhou Agricultural Technology Extension Center, Changzhou 213000, China
| | - Feng Que
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Zishan Ahmad
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, Nanchang 330045, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
11
|
Li J, Sheng Y, Xu H, Li Q, Lin X, Zhou Y, Zhao Y, Song X, Wang J. Transcriptome and hormone metabolome reveal the mechanism of stem bending in water lily ( Nymphaea tetragona) cut-flowers. FRONTIERS IN PLANT SCIENCE 2023; 14:1195389. [PMID: 37746018 PMCID: PMC10515221 DOI: 10.3389/fpls.2023.1195389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023]
Abstract
Water lilies are popular ornamental cut-flowers with significant economic and cultural value. However, stem bending affects the preservation of cut-flowers during their vase life. To gain further insights into the molecular mechanisms of stem bending, transcriptome profiling, hormone measurement, and morphological analysis were performed using the stems of the 'Blue Bird' water lily. Transcriptome analysis revealed that 607 differentially expressed genes (DEGs) were associated with the dorsal and ventral stems of the water lily, of which 247 were up-regulated and 360 were down-regulated. Significant differences in genes associated with plant hormones, calcium ions, glucose metabolism, and photosynthesis pathways genes involved in the dorsal and ventral areas of the curved stem. In particular, DEGs were associated with the hormone synthesis, gravity response, starch granules, Ca2+ ions, and photosynthesis. The results of qRT-PCR were consistent with that of the transcriptome sequence analysis. A total of 12 hormones were detected, of which abscisic acid, indole-3-carboxaldehyde, indole-3-carboxaldehyde and jasmonic acid were significantly differentially expressed in the dorsal and ventral stems, and were significantly higher in the dorsal stem than in the ventral stem. The cell morphology in the dorsal and ventral areas of the curved stem clearly changed during vase life. The direction of starch granule settlement was consistent with the bending direction of the water lily stem, as well as the direction of gravity. In conclusion, stem bending in water lily cut-flowers is regulated by multiple factors and genes. This study provides an important theoretical basis for understanding the complex regulatory mechanism of water lily stem bending.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
| | - Yuhui Sheng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
- College of Agricultural, Hengxing University, Qingdao, Shandong, China
| | - Huixian Xu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
| | - Qinxue Li
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
| | - Xiuya Lin
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
| | - Yang Zhou
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
| | - Ying Zhao
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
| | - Xiqiang Song
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
| | - Jian Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
| |
Collapse
|
12
|
Roychoudhry S, Sageman-Furnas K, Wolverton C, Grones P, Tan S, Molnár G, De Angelis M, Goodman HL, Capstaff N, Lloyd JPB, Mullen J, Hangarter R, Friml J, Kepinski S. Antigravitropic PIN polarization maintains non-vertical growth in lateral roots. NATURE PLANTS 2023; 9:1500-1513. [PMID: 37666965 PMCID: PMC10505559 DOI: 10.1038/s41477-023-01478-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/04/2023] [Indexed: 09/06/2023]
Abstract
Lateral roots are typically maintained at non-vertical angles with respect to gravity. These gravitropic setpoint angles are intriguing because their maintenance requires that roots are able to effect growth response both with and against the gravity vector, a phenomenon previously attributed to gravitropism acting against an antigravitropic offset mechanism. Here we show how the components mediating gravitropism in the vertical primary root-PINs and phosphatases acting upon them-are reconfigured in their regulation such that lateral root growth at a range of angles can be maintained. We show that the ability of Arabidopsis lateral roots to bend both downward and upward requires the generation of auxin asymmetries and is driven by angle-dependent variation in downward gravitropic auxin flux acting against angle-independent upward, antigravitropic flux. Further, we demonstrate a symmetry in auxin distribution in lateral roots at gravitropic setpoint angle that can be traced back to a net, balanced polarization of PIN3 and PIN7 auxin transporters in the columella. These auxin fluxes are shifted by altering PIN protein phosphoregulation in the columella, either by introducing PIN3 phosphovariant versions or via manipulation of levels of the phosphatase subunit PP2A/RCN1. Finally, we show that auxin, in addition to driving lateral root directional growth, acts within the lateral root columella to induce more vertical growth by increasing RCN1 levels, causing a downward shift in PIN3 localization, thereby diminishing the magnitude of the upward, antigravitropic auxin flux.
Collapse
Affiliation(s)
| | - Katelyn Sageman-Furnas
- School of Biology, University of Leeds, Leeds, UK
- Department of Biology, Duke University, Durham, NC, USA
| | | | - Peter Grones
- Institute of Science and Technology, Vienna, Austria
- Umeå Plant Science Centre, Umeå, Sweden
| | - Shutang Tan
- Institute of Science and Technology, Vienna, Austria
| | - Gergely Molnár
- Institute of Science and Technology, Vienna, Austria
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | | | - Heather L Goodman
- School of Biology, University of Leeds, Leeds, UK
- Tropic Biosciences Ltd, Norwich Research Park Innovation Centre, Norwich, UK
| | - Nicola Capstaff
- School of Biology, University of Leeds, Leeds, UK
- Department of Science, Innovation and Technology, UK Government, London, UK
| | - James P B Lloyd
- University of Western Australia, Perth, Western Australia, Australia
| | - Jack Mullen
- Department of Bioagricultural Sciences & Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Roger Hangarter
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Jiří Friml
- Institute of Science and Technology, Vienna, Austria
| | | |
Collapse
|
13
|
Wang H, Tu R, Ruan Z, Chen C, Peng Z, Zhou X, Sun L, Hong Y, Chen D, Liu Q, Wu W, Zhan X, Shen X, Zhou Z, Cao L, Zhang Y, Cheng S. Photoperiod and gravistimulation-associated Tiller Angle Control 1 modulates dynamic changes in rice plant architecture. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:160. [PMID: 37347301 DOI: 10.1007/s00122-023-04404-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/11/2023] [Indexed: 06/23/2023]
Abstract
KEY MESSAGE TAC1 is involved in photoperiodic and gravitropic responses to modulate rice dynamic plant architecture likely by affecting endogenous auxin distribution, which could explain TAC1 widespread distribution in indica rice. Plants experience a changing environment throughout their growth, which requires dynamic adjustments of plant architecture in response to these environmental cues. Our previous study demonstrated that Tiller Angle Control 1 (TAC1) modulates dynamic changes in plant architecture in rice; however, the underlying regulatory mechanisms remain largely unknown. In this study, we show that TAC1 regulates plant architecture in an expression dose-dependent manner, is highly expressed in stems, and exhibits dynamic expression in tiller bases during the growth period. Photoperiodic treatments revealed that TAC1 expression shows circadian rhythm and is more abundant during the dark period than during the light period and under short-day conditions than under long-day conditions. Therefore, it contributes to dynamic plant architecture under long-day conditions and loose plant architecture under short-day conditions. Gravity treatments showed that TAC1 is induced by gravistimulation and negatively regulates shoot gravitropism, likely by affecting auxin distribution. Notably, the tested indica rice containing TAC1 displayed dynamic plant architecture under natural long-day conditions, likely explaining the widespread distribution of TAC1 in indica rice. Our results provide new insights into TAC1-mediated regulatory mechanisms for dynamic changes in rice plant architecture.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Ranran Tu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Zheyan Ruan
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Chi Chen
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Zequn Peng
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Xingpeng Zhou
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Lianping Sun
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Yongbo Hong
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Daibo Chen
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Qunen Liu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Weixun Wu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Xiaodeng Zhan
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Xihong Shen
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Zhengping Zhou
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Liyong Cao
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China.
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China.
| | - Shihua Cheng
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China.
| |
Collapse
|
14
|
Basu U, Parida SK. Restructuring plant types for developing tailor-made crops. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1106-1122. [PMID: 34260135 PMCID: PMC10214764 DOI: 10.1111/pbi.13666] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 05/27/2023]
Abstract
Plants have adapted to different environmental niches by fine-tuning the developmental factors working together to regulate traits. Variations in the developmental factors result in a wide range of quantitative variations in these traits that helped plants survive better. The major developmental pathways affecting plant architecture are also under the control of such pathways. Most notable are the CLAVATA-WUSCHEL pathway regulating shoot apical meristem fate, GID1-DELLA module influencing plant height and tillering, LAZY1-TAC1 module controlling branch/tiller angle and the TFL1-FT determining the floral fate in plants. Allelic variants of these key regulators selected during domestication shaped the crops the way we know them today. There is immense yield potential in the 'ideal plant architecture' of a crop. With the available genome-editing techniques, possibilities are not restricted to naturally occurring variations. Using a transient reprogramming system, one can screen the effect of several developmental gene expressions in novel ecosystems to identify the best targets. We can use the plant's fine-tuning mechanism for customizing crops to specific environments. The process of crop domestication can be accelerated with a proper understanding of these developmental pathways. It is time to step forward towards the next-generation molecular breeding for restructuring plant types in crops ensuring yield stability.
Collapse
Affiliation(s)
- Udita Basu
- Genomics‐Assisted Breeding and Crop Improvement LaboratoryNational Institute of Plant Genome Research (NIPGR)New DelhiIndia
| | - Swarup K. Parida
- Genomics‐Assisted Breeding and Crop Improvement LaboratoryNational Institute of Plant Genome Research (NIPGR)New DelhiIndia
| |
Collapse
|
15
|
Yu X, Li Y, Cui X, Wang X, Li J, Guo R, Yan F, Zhang S, Zhao R, Song D, Si T, Zou X, Wang Y, Zhang X. Simultaneously mapping loci related to two plant architecture traits by phenotypic recombination BSA/BSR in peanut (Arachis hypogaea L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:144. [PMID: 37249697 DOI: 10.1007/s00122-023-04385-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
KEY MESSAGE We developed a new method phenotypic recombination BSA/BSR (PR-BSA/BSR), which could simultaneously identify the candidate genomic regions associated with two traits in a segregating population. Bulked segregant analysis sequencing (BSA-seq) has been widely used for identifying the genomic regions affecting a certain trait. In this study, we developed a modified BSA/bulked segregant RNA-sequencing (BSR-seq) method, which we named phenotypic recombination BSA/BSR (PR-BSA/BSR), to simultaneously identify candidate genomic regions associated with two traits in a segregating population. Lateral branch angle (LBA) and flower-branch pattern (FBP) are two important traits associated with the peanut plant architecture because they affect the planting density and light use efficiency. We generated an F6 population (with two segregating traits) derived from a cross between the inbred lines Pingdu9616 (erect and sequential; ES-type) and Florunner (spreading and alternating; SA-type). The selection of bulks with extreme phenotypes was a key step in this study. Specifically, 30 individuals with recombinant phenotypes [i.e., spreading and sequential (SS-type) and erect and alternating (EA-type)] were selected to generate two bulks. The transcriptomes of individuals were sequenced and then the loci related to LBA and FBP were simultaneously detected via a ΔSNP-index strategy, which involved the direction of positive and negative peaks in the ∆SNP-index plot. The LBA-related locus was mapped to a 6.82 Mb region (101,743,223-108,564,267 bp) on chromosome 15, whereas the FBP-related locus was mapped to a 2.16 Mb region (117,682,534-119,846,824 bp) on chromosome 12. Furthermore, the marker-based classical QTL mapping method was used to analyze the PF-F6 population, which confirmed our PR-BSA/BSR results. Therefore, the PR-BSA/BSR method produces accurate and reliable data.
Collapse
Affiliation(s)
- Xiaona Yu
- Dry Farming Technology Key Laboratory of Shandong Province/College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China
| | - Yaoyao Li
- Dry Farming Technology Key Laboratory of Shandong Province/College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China
| | - Xinyuan Cui
- Dry Farming Technology Key Laboratory of Shandong Province/College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China
| | - Xianheng Wang
- Dry Farming Technology Key Laboratory of Shandong Province/College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China
| | - Jihua Li
- Dry Farming Technology Key Laboratory of Shandong Province/College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China
| | - Rui Guo
- Dry Farming Technology Key Laboratory of Shandong Province/College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China
| | - Fanzhuang Yan
- Dry Farming Technology Key Laboratory of Shandong Province/College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China
| | - Shaojing Zhang
- Dry Farming Technology Key Laboratory of Shandong Province/College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China
| | - Ruihua Zhao
- Dry Farming Technology Key Laboratory of Shandong Province/College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China
| | - Danlei Song
- Dry Farming Technology Key Laboratory of Shandong Province/College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China
| | - Tong Si
- Dry Farming Technology Key Laboratory of Shandong Province/College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China
| | - Xiaoxia Zou
- Dry Farming Technology Key Laboratory of Shandong Province/College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China
| | - Yuefu Wang
- Dry Farming Technology Key Laboratory of Shandong Province/College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China
| | - Xiaojun Zhang
- Dry Farming Technology Key Laboratory of Shandong Province/College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China.
| |
Collapse
|
16
|
Kohler AR, Scheil A, Hill JL, Allen JR, Al-Haddad JM, Goeckeritz CZ, Strader LC, Telewski FW, Hollender CA. Defying Gravity: WEEP promotes negative gravitropism in Prunus persica (peach) shoots and roots by establishing asymmetric auxin gradients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542472. [PMID: 37292987 PMCID: PMC10245973 DOI: 10.1101/2023.05.26.542472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trees with weeping shoot architectures are valued for their beauty and serve as tremendous resources for understanding how plants regulate posture control. The Prunus persica (peach) weeping phenotype, which has elliptical downward arching branches, is caused by a homozygous mutation in the WEEP gene. Until now, little was known about the function of WEEP protein despite its high conservation throughout Plantae. Here, we present the results of anatomical, biochemical, biomechanical, physiological, and molecular experiments that provide insight into WEEP function. Our data suggest that weeping peach does not have defects in branch structure. Rather, transcriptomes from the adaxial (upper) and abaxial (lower) sides of standard and weeping branch shoot tips revealed flipped expression patterns for genes associated with early auxin response, tissue patterning, cell elongation, and tension wood development. This suggests that WEEP promotes polar auxin transport toward the lower side during shoot gravitropic response, leading to cell elongation and tension wood development. In addition, weeping peach trees exhibited steeper root systems and faster root gravitropic response, just as barley and wheat with mutations in their WEEP homolog EGT2. This suggests that the role of WEEP in regulating lateral organ angles and orientations during gravitropism may be conserved. Additionally, size-exclusion chromatography indicated that WEEP proteins self-oligomerize, like other SAM-domain proteins. This oligomerization may be required for WEEP to function in formation of protein complexes during auxin transport. Collectively, our results from weeping peach provide new insight into polar auxin transport mechanisms associated with gravitropism and lateral shoot and root orientation.
Collapse
Affiliation(s)
- Andrea R. Kohler
- Department of Horticulture, Michigan State University, East Lansing, MI 48824
| | - Andrew Scheil
- Department of Horticulture, Michigan State University, East Lansing, MI 48824
| | - Joseph L. Hill
- Department of Horticulture, Michigan State University, East Lansing, MI 48824
| | | | - Jameel M. Al-Haddad
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| | | | | | - Frank W. Telewski
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| | | |
Collapse
|
17
|
Gill RA, Helal MMU, Tang M, Hu M, Tong C, Liu S. High-Throughput Association Mapping in Brassica napus L.: Methods and Applications. Methods Mol Biol 2023; 2638:67-91. [PMID: 36781636 DOI: 10.1007/978-1-0716-3024-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Oil seed rape (Braasica napus L.) is ranked second among oil seed crops cultivated globally for edible oil for human, and seed cake for animal consumption. Recent genetic and genomics advancements highlighted the diversity that exists within B. napus, which is largely discovered using the most promising genetic markers called single nucleotide polymorphism (SNP). Their calling rate is also enhanced to ~100 folds after the continuous advancements in the next generation sequencing (NGS) technologies. As the high throughput of NGS resulted in multi-Giga bases data, the detailed quality control (QC) prior to downstream analyses is a pre-requisite. It mainly involved the removal of false positives, missing proportions, filtering of low-quality SNPs, and adjustments of minor-allele frequency and heterozygosity. After marker-trait association, for conformation of target SNPs, validations of SNPs can be performed using various methods, especially allele-specific PCR assay-based methods have been utilized for SNP genotyping of genes targeting agronomic traits and somaclonal variations occurred during transgenic studies. In the present study, the authors mainly argue on the genotypic progress, and pipelines/methods that are being used for detection, calling, filtering, and validation of SNPs. Also, insight is provided into the application of SNPs in linkage and association mapping, including QTL mapping and genome-wide association studies targeting mainly developmental traits related to the root system and plant architecture, flowering time, silique, and oil quality. Briefly, the present study provides the recent information and recommendations on the SNP genotyping methods and its applications, which can be useful for marker-assisted breeding in B. napus and other crops.
Collapse
Affiliation(s)
- Rafaqat Ali Gill
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China.
| | - Md Mostofa Uddin Helal
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Minqiang Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Ming Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chaobo Tong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
18
|
Yang Y, Wang W, Hu Q, Raman H, Liu J. Genome-wide association and RNA-seq analyses identify loci for pod orientation in rapeseed ( Brassica napus). FRONTIERS IN PLANT SCIENCE 2023; 13:1097534. [PMID: 36714779 PMCID: PMC9880488 DOI: 10.3389/fpls.2022.1097534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Spatial distribution and orientation of pods on the main raceme (stem) and branches could affect rapeseed yield. However, genomic regions underlying the pod orientation were not described in Brassica species. Here, we determined the extent of genetic variation in pod orientation, described as the angles of pedicel on raceme (APR) and angles of the pod on pedicel (APP) among 136 rapeseed accessions grown across three environments of the upper, middle and lower Yangtze River in China. The APR ranged from 59° to 109°, while the APP varied from 142° to 178°. Statistical analysis showed that phenotypic variation was due to genotypic (G) and environmental (E) effects. Using the genome-wide association analysis (GWAS) approach, two QTLs for APR (qBnAPR.A02 and qBnAPR.C02) and two for APP (qBnAPP.A05 and qBnAPP.C05), having minor to moderate allelic effects (4.30% to 19.47%) were identified. RNA-seq analysis revealed 606 differentially expressed genes (DEGs) in two rapeseed accessions representing the extreme phenotypes for pod orientation and different alleles at the QTLs of APR. Three DEGs (BnLAZY4.A02, BnSAUR32.A02, and BnSAUR32.C02) were identified as the most likely candidates responsible for variation in pod orientation (APR). This study elucidates the genomic regions and putative candidate genes underlying pod orientation in B. napus.
Collapse
Affiliation(s)
- Yuting Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
- Shenzhen Graduate School, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Wenxiang Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Qiong Hu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Harsh Raman
- New South Wales (NSW) Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Jia Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
19
|
Kawamoto N, Morita MT. Gravity sensing and responses in the coordination of the shoot gravitropic setpoint angle. THE NEW PHYTOLOGIST 2022; 236:1637-1654. [PMID: 36089891 PMCID: PMC9828789 DOI: 10.1111/nph.18474] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Gravity is one of the fundamental environmental cues that affect plant development. Indeed, the plant architecture in the shoots and roots is modulated by gravity. Stems grow vertically upward, whereas lateral organs, such as the lateral branches in shoots, tend to grow at a specific angle according to a gravity vector known as the gravitropic setpoint angle (GSA). During this process, gravity is sensed in specialised gravity-sensing cells named statocytes, which convert gravity information into biochemical signals, leading to asymmetric auxin distribution and driving asymmetric cell division/expansion in the organs to achieve gravitropism. As a hypothetical offset mechanism against gravitropism to determine the GSA, the anti-gravitropic offset (AGO) has been proposed. According to this concept, the GSA is a balance of two antagonistic growth components, that is gravitropism and the AGO. Although the nature of the AGO has not been clarified, studies have suggested that gravitropism and the AGO share a common gravity-sensing mechanism in statocytes. This review discusses the molecular mechanisms underlying gravitropism as well as the hypothetical AGO in the control of the GSA.
Collapse
Affiliation(s)
- Nozomi Kawamoto
- Division of Plant Environmental ResponsesNational Institute for Basic BiologyMyodaijiOkazaki444‐8556Japan
| | - Miyo Terao Morita
- Division of Plant Environmental ResponsesNational Institute for Basic BiologyMyodaijiOkazaki444‐8556Japan
| |
Collapse
|
20
|
Pan J, Zhou X, Ahmad N, Zhang K, Tang R, Zhao H, Jiang J, Tian M, Li C, Li A, Zhang X, He L, Ma J, Li X, Tian R, Ma C, Pandey MK, Varshney RK, Wang X, Zhao C. BSA‑seq and genetic mapping identified candidate genes for branching habit in peanut. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4457-4468. [PMID: 36181525 DOI: 10.1007/s00122-022-04231-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The candidate gene AhLBA1 controlling lateral branch angel of peanut was fine-mapped to a 136.65-kb physical region on chromosome 15 using the BSA-seq and QTL mapping. Lateral branch angel (LBA) is an important plant architecture trait of peanut, which plays key role in lodging, peg soil penetration and pod yield. However, there are few reports of fine mapping and quantitative trait loci (QTLs)/cloned genes for LBA in peanut. In this project, a mapping population was constructed using a spreading variety Tifrunner and the erect variety Fuhuasheng. Through bulked segregant analysis sequencing (BSA-seq), a major gene related to LBA, named as AhLBA1, was preliminarily mapped at the region of Chr.15: 150-160 Mb. Then, using traditional QTL approach, AhLBA1 was narrowed to a 1.12 cM region, corresponding to a 136.65-kb physical interval of the reference genome. Of the nine genes housed in this region, three of them were involved in hormone metabolism and regulation, including one "F-box protein" and two "2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase (2OG oxygenase)" encoding genes. In addition, we found that the level of some classes of cytokinin (CK), auxin and ethylene showed significant differences between spreading and erect peanuts at the junction of main stem and lateral branch. These findings will aid further elucidation of the genetic mechanism of LBA in peanut and facilitating marker-assisted selection (MAS) in the future breeding program.
Collapse
Affiliation(s)
- Jiaowen Pan
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Ximeng Zhou
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Naveed Ahmad
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Kun Zhang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan, 250100, People's Republic of China
| | - Ronghua Tang
- Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Huiling Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Jing Jiang
- Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Mengdi Tian
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, People's Republic of China
| | - Changsheng Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Aiqin Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Xianying Zhang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Liangqiong He
- Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Jing Ma
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xiaojie Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Ruizheng Tian
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Manish K Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Xingjun Wang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
21
|
Baba AI, Mir MY, Riyazuddin R, Cséplő Á, Rigó G, Fehér A. Plants in Microgravity: Molecular and Technological Perspectives. Int J Mol Sci 2022; 23:10548. [PMID: 36142459 PMCID: PMC9505700 DOI: 10.3390/ijms231810548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 01/19/2023] Open
Abstract
Plants are vital components of our ecosystem for a balanced life here on Earth, as a source of both food and oxygen for survival. Recent space exploration has extended the field of plant biology, allowing for future studies on life support farming on distant planets. This exploration will utilize life support technologies for long-term human space flights and settlements. Such longer space missions will depend on the supply of clean air, food, and proper waste management. The ubiquitous force of gravity is known to impact plant growth and development. Despite this, we still have limited knowledge about how plants can sense and adapt to microgravity in space. Thus, the ability of plants to survive in microgravity in space settings becomes an intriguing topic to be investigated in detail. The new knowledge could be applied to provide food for astronaut missions to space and could also teach us more about how plants can adapt to unique environments. Here, we briefly review and discuss the current knowledge about plant gravity-sensing mechanisms and the experimental possibilities to research microgravity-effects on plants either on the Earth or in orbit.
Collapse
Affiliation(s)
- Abu Imran Baba
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Mohd Yaqub Mir
- Doctoral School of Neuroscience, Semmelweis University, H-1083 Budapest, Hungary
- Theoretical Neuroscience and Complex Systems Group, Department of Computational Sciences, Wigner Research Centre for Physics, H-1121 Budapest, Hungary
| | - Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary
| | - Ágnes Cséplő
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary
| | - Gábor Rigó
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary
| | - Attila Fehér
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary
| |
Collapse
|
22
|
Bai S, Hong J, Su S, Li Z, Wang W, Shi J, Liang W, Zhang D. Genetic basis underlying tiller angle in rice (Oryza sativa L.) by genome-wide association study. PLANT CELL REPORTS 2022; 41:1707-1720. [PMID: 35776138 DOI: 10.1007/s00299-022-02873-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/09/2022] [Indexed: 06/15/2023]
Abstract
Novel alleles of two reported tiller angle genes and eleven candidate genes for rice tiller angle were identified by combining GWAS with transcriptomic, qRT-PCR and haplotype analysis. Rice tiller angle is a key agronomic trait determining rice grain yield. Several quantitative trait loci (QTLs) affecting rice tiller angle have been mapped in the past decades. Little is known about the genetic base of tiller angle in rice, because rice tiller angle is a complex polygenic trait. In this study, we performed genome-wide association study (GWAS) on tiller angle in rice using a population of 164 japonica varieties derived from the 3 K Rice Genomes Project (3 K RGP). We detected a total of 18 QTLs using 1135519 single-nucleotide polymorphisms (SNP) based on three GWAS models (GLM, FastLMM and FarmCPU). Among them, two identified QTLs, qTA8.3 and qTA8.4, overlapped with PAY1 and TIG1, respectively, and additional 16 QTLs were identified for the first time. Combined with haplotype and expression analyses, we further revealed that PAY1 harbors one non-synonymous variation at its coding region, likely leading to variable tiller angle in the population, and that nature variations in the promoter of TIG1 significantly affect its expression, closely correlating with tiller angle phenotypes observed. Similarly, using qRT-PCR and haplotype analysis, we identified 1 and 7 candidate genes in qTA6.1 and qTA8.1 that were commonly detected by two GWAS models, respectively. In addition, we identified 3 more candidate genes in the remaining 14 novel QTLs after filtering by transcriptome analysis and qRT-PCR. In summary, this study provides new insights into the genetic architecture of rice tiller angle and candidate genes for rice breeding.
Collapse
Affiliation(s)
- Shaoxing Bai
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Hong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Su Su
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhikang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Institute for Innovative Breeding, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- School of Agriculture, Food, and Wine, University of Adelaide, Adelaide, SA, 5064, Australia.
| |
Collapse
|
23
|
Li L, Cui S, Dang P, Yang X, Wei X, Chen K, Liu L, Chen CY. GWAS and bulked segregant analysis reveal the Loci controlling growth habit-related traits in cultivated Peanut (Arachis hypogaea L.). BMC Genomics 2022; 23:403. [PMID: 35624420 PMCID: PMC9145184 DOI: 10.1186/s12864-022-08640-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Peanut (Arachis hypogaea L.) is a grain legume crop that originated from South America and is now grown around the world. Peanut growth habit affects the variety’s adaptability, planting patterns, mechanized harvesting, disease resistance, and yield. The objective of this study was to map the quantitative trait locus (QTL) associated with peanut growth habit-related traits by combining the genome-wide association analysis (GWAS) and bulked segregant analysis sequencing (BSA-seq) methods. Results GWAS was performed with 17,223 single nucleotide polymorphisms (SNPs) in 103 accessions of the U.S. mini core collection genotyped using an Affymetrix version 2.0 SNP array. With a total of 12,342 high-quality polymorphic SNPs, the 90 suggestive and significant SNPs associated with lateral branch angle (LBA), main stem height (MSH), lateral branch height (LBL), extent radius (ER), and the index of plant type (IOPT) were identified. These SNPs were distributed among 15 chromosomes. A total of 597 associated candidate genes may have important roles in biological processes, hormone signaling, growth, and development. BSA-seq coupled with specific length amplified fragment sequencing (SLAF-seq) method was used to find the association with LBA, an important trait of the peanut growth habit. A 4.08 Mb genomic region on B05 was associated with LBA. Based on the linkage disequilibrium (LD) decay distance, we narrowed down and confirmed the region within the 160 kb region (144,193,467–144,513,467) on B05. Four candidate genes in this region were involved in plant growth. The expression levels of Araip.E64SW detected by qRT-PCR showed significant difference between ‘Jihua 5’ and ‘M130’. Conclusions In this study, the SNP (AX-147,251,085 and AX-144,353,467) associated with LBA by GWAS was overlapped with the results in BSA-seq through combined analysis of GWAS and BSA-seq. Based on LD decay distance, the genome range related to LBA on B05 was shortened to 144,193,467–144,513,467. Three candidate genes related to F-box family proteins (Araip.E64SW, Araip.YG1LK, and Araip.JJ6RA) and one candidate gene related to PPP family proteins (Araip.YU281) may be involved in plant growth and development in this genome region. The expression analysis revealed that Araip.E64SW was involved in peanut growth habits. These candidate genes will provide molecular targets in marker-assisted selection for peanut growth habits. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08640-3.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory for Crop Improvement and Regulation in North China, College of Agronomy, Hebei Agricultural University, Baoding, 071001, The People's Republic of China.,Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, 36948, USA.,School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038, The People's Republic of China
| | - Shunli Cui
- State Key Laboratory for Crop Improvement and Regulation in North China, College of Agronomy, Hebei Agricultural University, Baoding, 071001, The People's Republic of China
| | - Phat Dang
- USDA-ARS National Peanut Research Laboratory, Dawson, GA, 39842, USA
| | - Xinlei Yang
- State Key Laboratory for Crop Improvement and Regulation in North China, College of Agronomy, Hebei Agricultural University, Baoding, 071001, The People's Republic of China
| | - Xuejun Wei
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038, The People's Republic of China
| | - Kai Chen
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038, The People's Republic of China
| | - Lifeng Liu
- State Key Laboratory for Crop Improvement and Regulation in North China, College of Agronomy, Hebei Agricultural University, Baoding, 071001, The People's Republic of China.
| | - Charles Y Chen
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, 36948, USA.
| |
Collapse
|
24
|
Discovery of Genomic Regions and Candidate Genes Controlling Root Development Using a Recombinant Inbred Line Population in Rapeseed ( Brassica napus L.). Int J Mol Sci 2022; 23:ijms23094781. [PMID: 35563170 PMCID: PMC9102059 DOI: 10.3390/ijms23094781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Marker-assisted selection enables breeders to quickly select excellent root architectural variations, which play an essential role in plant productivity. Here, ten root-related and shoot biomass traits of a new F6 recombinant inbred line (RIL) population were investigated under hydroponics and resulted in high heritabilities from 0.61 to 0.83. A high-density linkage map of the RIL population was constructed using a Brassica napus 50k Illumina single nucleotide polymorphism (SNP) array. A total of 86 quantitative trait loci (QTLs) explaining 4.16–14.1% of the phenotypic variances were detected and integrated into eight stable QTL clusters, which were repeatedly detected in different experiments. The codominant markers were developed to be tightly linked with three major QTL clusters, qcA09-2, qcC08-2, and qcC08-3, which controlled both root-related and shoot biomass traits and had phenotypic contributions greater than 10%. Among these, qcA09-2, renamed RT.A09, was further fine-mapped to a 129-kb interval with 19 annotated genes in the B. napus reference genome. By integrating the results of real-time PCR and comparative sequencing, five genes with expression differences and/or amino acid differences were identified as important candidate genes for RT.A09. Our findings laid the foundation for revealing the molecular mechanism of root development and developed valuable markers for root genetic improvement in rapeseed.
Collapse
|
25
|
Moulia B, Badel E, Bastien R, Duchemin L, Eloy C. The shaping of plant axes and crowns through tropisms and elasticity: an example of morphogenetic plasticity beyond the shoot apical meristem. THE NEW PHYTOLOGIST 2022; 233:2354-2379. [PMID: 34890051 DOI: 10.1111/nph.17913] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Shoot morphogenetic plasticity is crucial to the adaptation of plants to their fluctuating environments. Major insights into shoot morphogenesis have been compiled studying meristems, especially the shoot apical meristem (SAM), through a methodological effort in multiscale systems biology and biophysics. However, morphogenesis at the SAM is robust to environmental changes. Plasticity emerges later on during post-SAM development. The purpose of this review is to show that multiscale systems biology and biophysics is insightful for the shaping of the whole plant as well. More specifically, we review the shaping of axes and crowns through tropisms and elasticity, combining the recent advances in morphogenetic control using physical cues and by genes. We focus mostly on land angiosperms, but with growth habits ranging from small herbs to big trees. We show that generic (universal) morphogenetic processes have been identified, revealing feedforward and feedback effects of global shape on the local morphogenetic process. In parallel, major advances have been made in the analysis of the major genes involved in shaping axes and crowns, revealing conserved genic networks among angiosperms. Then, we show that these two approaches are now starting to converge, revealing exciting perspectives.
Collapse
Affiliation(s)
- Bruno Moulia
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
| | - Eric Badel
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
| | - Renaud Bastien
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
- INSERM U1284, Center for Research and Interdisciplinarity (CRI), Université de Paris, F-75004, Paris, France
| | - Laurent Duchemin
- Physique et Mécanique des Milieux Hétérogenes, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, F-75005, Paris, France
| | - Christophe Eloy
- Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, F-13013, Marseille, France
| |
Collapse
|
26
|
Ding C, Lin X, Zuo Y, Yu Z, Baerson SR, Pan Z, Zeng R, Song Y. Transcription factor OsbZIP49 controls tiller angle and plant architecture through the induction of indole-3-acetic acid-amido synthetases in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1346-1364. [PMID: 34582078 DOI: 10.1111/tpj.15515] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Tiller angle is an important determinant of plant architecture in rice (Oryza sativa L.). Auxins play a critical role in determining plant architecture; however, the underlying metabolic and signaling mechanisms are still largely unknown. In this study, we have identified a member of the bZIP family of TGA class transcription factors, OsbZIP49, that participates in the regulation of plant architecture and is specifically expressed in gravity-sensing tissues, including the shoot base, nodes and lamina joints. Transgenic rice plants overexpressing OsbZIP49 displayed a tiller-spreading phenotype with reduced plant height and internode lengths. In contrast, CRISPR/Cas9-mediated knockout of OsbZIP49 resulted in a compact architecture. Follow-up studies indicated that the effects of OsbZIP49 on tiller angles are mediated through changes in shoot gravitropic responses. Additionally, we provide evidence that OsbZIP49 activates the expression of indole-3-acetic acid-amido synthetases OsGH3-2 and OsGH3-13 by directly binding to TGACG motifs located within the promoters of both genes. Increased GH3-catalyzed conjugation of indole-3-acetic acid (IAA) in rice transformants overexpressing OsbZIP49 resulted in the increased accumulation of IAA-Asp and IAA-Glu, and a reduction in local free auxin, tryptamine and IAA-Glc levels. Exogenous IAA or naphthylacetic acid (NAA) partially restored shoot gravitropic responses in OsbZIP49-overexpressing plants. Knockout of OsbZIP49 led to reduced expression of both OsGH3-2 and OsGH3-13 within the shoot base, and increased accumulation of IAA and increased OsIAA20 expression levels were observed in transformants following gravistimulation. Taken together, the present results reveal the role transcription factor OsbZIP49 plays in determining plant architecture, primarily due to its influence on local auxin homeostasis.
Collapse
Affiliation(s)
- Chaohui Ding
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xianhui Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ying Zuo
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhilin Yu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Scott R Baerson
- United States Department of Agriculture-Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi, 38677, USA
| | - Zhiqiang Pan
- United States Department of Agriculture-Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi, 38677, USA
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
27
|
Furutani M, Morita MT. LAZY1-LIKE-mediated gravity signaling pathway in root gravitropic set-point angle control. PLANT PHYSIOLOGY 2021; 187:1087-1095. [PMID: 34734273 PMCID: PMC8566294 DOI: 10.1093/plphys/kiab219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/10/2021] [Indexed: 06/13/2023]
Abstract
Gravity signaling components contribute to the control of root gravitropic set-point angle through protein polarization relay within columella.
Collapse
Affiliation(s)
- Masahiko Furutani
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Myodaiji, Okazaki 444-8556, Japan
| |
Collapse
|
28
|
The Analysis of Gravitropic Setpoint Angle Control in Plants. Methods Mol Biol 2021. [PMID: 34647254 DOI: 10.1007/978-1-0716-1677-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The history of research on gravitropism has been largely confined to the primary root-shoot axis and to understanding how the typically vertical orientation observed there is maintained. Many lateral organs are gravitropic too and are often held at specific non-vertical angles relative to gravity. These so-called gravitropic setpoint angles (GSAs) are intriguing because their maintenance requires that root and shoot lateral organs are able to effect tropic growth both with and against the gravity vector. This chapter describes methods and considerations relevant to the investigation of mechanisms underlying GSA control.
Collapse
|
29
|
Han H, Adamowski M, Qi L, Alotaibi SS, Friml J. PIN-mediated polar auxin transport regulations in plant tropic responses. THE NEW PHYTOLOGIST 2021; 232:510-522. [PMID: 34254313 DOI: 10.1111/nph.17617] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/03/2021] [Indexed: 05/27/2023]
Abstract
Tropisms, growth responses to environmental stimuli such as light or gravity, are spectacular examples of adaptive plant development. The plant hormone auxin serves as a major coordinative signal. The PIN auxin exporters, through their dynamic polar subcellular localizations, redirect auxin fluxes in response to environmental stimuli and the resulting auxin gradients across organs underlie differential cell elongation and bending. In this review, we discuss recent advances concerning regulations of PIN polarity during tropisms, focusing on PIN phosphorylation and trafficking. We also cover how environmental cues regulate PIN actions during tropisms, as well as the crucial role of auxin feedback on PIN polarity during bending termination. Finally, the interactions between different tropisms are reviewed to understand plant adaptive growth in the natural environment.
Collapse
Affiliation(s)
- Huibin Han
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
- Research Center for Plant Functional Genes and Tissue Culture Technology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Maciek Adamowski
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| | - Linlin Qi
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| | - Saqer S Alotaibi
- Department of Biotechnology, Taif University, PO Box 11099, Taif, 21944, Kingdom of Saudi Arabia
| | - Jiří Friml
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| |
Collapse
|
30
|
Duan X, Wang X, Jin K, Wang W, Liu H, Liu L, Zhang Y, Hammond JP, White PJ, Ding G, Xu F, Shi L. Genetic Dissection of Root Angle of Brassica napus in Response to Low Phosphorus. FRONTIERS IN PLANT SCIENCE 2021; 12:697872. [PMID: 34394150 PMCID: PMC8358456 DOI: 10.3389/fpls.2021.697872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Plant root angle determines the vertical and horizontal distribution of roots in the soil layer, which further influences the acquisition of phosphorus (P) in topsoil. Large genetic variability for the lateral root angle (root angle) was observed in a linkage mapping population (BnaTNDH population) and an association panel of Brassica napus whether at a low P (LP) or at an optimal P (OP). At LP, the average root angle of both populations became smaller. Nine quantitative trait loci (QTLs) at LP and three QTLs at OP for the root angle and five QTLs for the relative root angle (RRA) were identified by the linkage mapping analysis in the BnaTNDH population. Genome-wide association studies (GWASs) revealed 11 single-nucleotide polymorphisms (SNPs) significantly associated with the root angle at LP (LPRA). The interval of a QTL for LPRA on A06 (qLPRA-A06c) overlapped with the confidence region of the leading SNP (Bn-A06-p14439400) significantly associated with LPRA. In addition, a QTL cluster on chromosome C01 associated with the root angle and the primary root length (PRL) in the "pouch and wick" high-throughput phenotyping (HTP) system, the root P concentration in the agar system, and the seed yield in the field was identified in the BnaTNDH population at LP. A total of 87 genes on A06 and 192 genes on C01 were identified within the confidence interval, and 14 genes related to auxin asymmetric redistribution and root developmental process were predicted to be candidate genes. The identification and functional analyses of these genes affecting LPRA are of benefit to the cultivar selection with optimal root system architecture (RSA) under P deficiency in Brassica napus.
Collapse
Affiliation(s)
- Xianjie Duan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Xiaohua Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Kemo Jin
- Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Ministry of Education, China Agricultural University, Beijing, China
| | - Wei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Haijiang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Ling Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Ying Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - John P. Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Philip J. White
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- The James Hutton Institute, Dundee, United Kingdom
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
31
|
Zhu M, Hu Y, Tong A, Yan B, Lv Y, Wang S, Ma W, Cui Z, Wang X. LAZY1 Controls Tiller Angle and Shoot Gravitropism by Regulating the Expression of Auxin Transporters and Signaling Factors in Rice. PLANT & CELL PHYSIOLOGY 2021; 61:2111-2125. [PMID: 33067639 DOI: 10.1093/pcp/pcaa131] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/02/2020] [Indexed: 05/17/2023]
Abstract
Tiller angle is a key factor determining rice plant architecture, planting density, light interception, photosynthetic efficiency, disease resistance and grain yield. However, the mechanisms underlying tiller angle control are far from clear. In this study, we identified a mutant, termed bta1-1, with an enlarged tiller angle throughout its life cycle. A detailed analysis reveals that BTA1 has multiple functions because tiller angle, shoot gravitropism and tolerance to drought stress are changed in bta1-1 plants. Moreover, BTA1 is a positive regulator of shoot gravitropism in rice. Shoot responses to gravistimulation are disrupted in bta1-1 under both light and dark conditions. Gene cloning reveals that bta1-1 is a novel mutant allele of LA1 renamed la1-SN. LA1 is able to rescue the tiller angle and shoot gravitropism defects observed in la1-SN. The nuclear localization signal of LA1 is disrupted by la1-SN, causing changes in its subcellular localization. LA1 is required to regulate the expression of auxin transporters and signaling factors that control shoot gravitropism and tiller angle. High-throughput mRNA sequencing is performed to elucidate the molecular and cellular functions of LA1. The results show that LA1 may be involved in the nucleosome and chromatin assembly, and protein-DNA interactions to control gene expression, shoot gravitropism and tiller angle. Our results provide new insight into the mechanisms whereby LA1 controls shoot gravitropism and tiller angle in rice.
Collapse
Affiliation(s)
- Mo Zhu
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang 110866, China
| | - Yanjuan Hu
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang 110866, China
| | - Aizi Tong
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang 110866, China
| | - Bowen Yan
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang 110866, China
| | - Yanpeng Lv
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang 110866, China
| | - Shiyu Wang
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang 110866, China
| | - Wenhong Ma
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang 110866, China
- Department of Foreign Language, Shenyang Agricultural University
| | - Zhibo Cui
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang 110866, China
| | - Xiaoxue Wang
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang 110866, China
| |
Collapse
|
32
|
Zhao X, Li C, Zhang H, Yan C, Sun Q, Wang J, Yuan C, Shan S. Alternative splicing profiling provides insights into the molecular mechanisms of peanut peg development. BMC PLANT BIOLOGY 2020; 20:488. [PMID: 33096983 PMCID: PMC7585205 DOI: 10.1186/s12870-020-02702-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/14/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND The cultivated peanut (Arachis hypogaea) is one of the most important oilseed crops worldwide, and the generation of pegs and formation of subterranean pods are essential processes in peanut reproductive development. However, little information has been reported about alternative splicing (AS) in peanut peg formation and development. RESULTS Herein, we presented a comprehensive full-length (FL) transcriptome profiling of AS isoforms during peanut peg and early pod development. We identified 1448, 1102, 832, and 902 specific spliced transcripts in aerial pegs, subterranean pegs, subterranean unswollen pegs, and early swelling pods, respectively. A total of 184 spliced transcripts related to gravity stimulation, light and mechanical response, hormone mediated signaling pathways, and calcium-dependent proteins were identified as possibly involved in peanut peg development. For aerial pegs, spliced transcripts we got were mainly involved in gravity stimulation and cell wall morphogenetic processes. The genes undergoing AS in subterranean peg were possibly involved in gravity stimulation, cell wall morphogenetic processes, and abiotic response. For subterranean unswollen pegs, spliced transcripts were predominantly related to the embryo development and root formation. The genes undergoing splice in early swelling pods were mainly related to ovule development, root hair cells enlargement, root apex division, and seed germination. CONCLUSION This study provides evidence that multiple genes are related to gravity stimulation, light and mechanical response, hormone mediated signaling pathways, and calcium-dependent proteins undergoing AS express development-specific spliced isoforms or exhibit an obvious isoform switch during the peanut peg development. AS isoforms in subterranean pegs and pods provides valuable sources to further understand post-transcriptional regulatory mechanisms of AS in the generation of pegs and formation of subterranean pods.
Collapse
Affiliation(s)
- Xiaobo Zhao
- Shandong Peanut Research Institute, Qingdao, China
| | - Chunjuan Li
- Shandong Peanut Research Institute, Qingdao, China
| | - Hao Zhang
- Shandong Peanut Research Institute, Qingdao, China
| | - Caixia Yan
- Shandong Peanut Research Institute, Qingdao, China
| | - Quanxi Sun
- Shandong Peanut Research Institute, Qingdao, China
| | - Juan Wang
- Shandong Peanut Research Institute, Qingdao, China
| | - Cuiling Yuan
- Shandong Peanut Research Institute, Qingdao, China
| | - Shihua Shan
- Shandong Peanut Research Institute, Qingdao, China
| |
Collapse
|
33
|
Root angle modifications by the DRO1 homolog improve rice yields in saline paddy fields. Proc Natl Acad Sci U S A 2020; 117:21242-21250. [PMID: 32817523 PMCID: PMC7474696 DOI: 10.1073/pnas.2005911117] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The root system architecture (RSA) of crops can affect their production, particularly in abiotic stress conditions, such as with drought, waterlogging, and salinity. Salinity is a growing problem worldwide that negatively impacts on crop productivity, and it is believed that yields could be improved if RSAs that enabled plants to avoid saline conditions were identified. Here, we have demonstrated, through the cloning and characterization of qSOR1 (quantitative trait locus for SOIL SURFACE ROOTING 1), that a shallower root growth angle (RGA) could enhance rice yields in saline paddies. qSOR1 is negatively regulated by auxin, predominantly expressed in root columella cells, and involved in the gravitropic responses of roots. qSOR1 was found to be a homolog of DRO1 (DEEPER ROOTING 1), which is known to control RGA. CRISPR-Cas9 assays revealed that other DRO1 homologs were also involved in RGA. Introgression lines with combinations of gain-of-function and loss-of-function alleles in qSOR1 and DRO1 demonstrated four different RSAs (ultra-shallow, shallow, intermediate, and deep rooting), suggesting that natural alleles of the DRO1 homologs could be utilized to control RSA variations in rice. In saline paddies, near-isogenic lines carrying the qSOR1 loss-of-function allele had soil-surface roots (SOR) that enabled rice to avoid the reducing stresses of saline soils, resulting in increased yields compared to the parental cultivars without SOR. Our findings suggest that DRO1 homologs are valuable targets for RSA breeding and could lead to improved rice production in environments characterized by abiotic stress.
Collapse
|
34
|
Chapman K, Ivanovici A, Taleski M, Sturrock CJ, Ng JLP, Mohd-Radzman NA, Frugier F, Bennett MJ, Mathesius U, Djordjevic MA. CEP receptor signalling controls root system architecture in Arabidopsis and Medicago. THE NEW PHYTOLOGIST 2020; 226:1809-1821. [PMID: 32048296 DOI: 10.1111/nph.16483] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Root system architecture (RSA) influences the effectiveness of resources acquisition from soils but the genetic networks that control RSA remain largely unclear. We used rhizoboxes, X-ray computed tomography, grafting, auxin transport measurements and hormone quantification to demonstrate that Arabidopsis and Medicago CEP (C-TERMINALLY ENCODED PEPTIDE)-CEP RECEPTOR signalling controls RSA, the gravitropic set-point angle (GSA) of lateral roots (LRs), auxin levels and auxin transport. We showed that soil-grown Arabidopsis and Medicago CEP receptor mutants have a narrower RSA, which results from a steeper LR GSA. Grafting showed that CEPR1 in the shoot controls GSA. CEP receptor mutants exhibited an increase in rootward auxin transport and elevated shoot auxin levels. Consistently, the application of auxin to wild-type shoots induced a steeper GSA and auxin transport inhibitors counteracted the CEP receptor mutant's steep GSA phenotype. Concordantly, CEP peptides increased GSA and inhibited rootward auxin transport in wild-type but not in CEP receptor mutants. The results indicated that CEP-CEP receptor-dependent signalling outputs in Arabidopsis and Medicago control overall RSA, LR GSA, shoot auxin levels and rootward auxin transport. We propose that manipulating CEP signalling strength or CEP receptor downstream targets may provide means to alter RSA.
Collapse
Affiliation(s)
- Kelly Chapman
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ariel Ivanovici
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Michael Taleski
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Craig J Sturrock
- The Hounsfield Facility, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Jason L P Ng
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Nadiatul A Mohd-Radzman
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Florian Frugier
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Université, Paris Sud, Université, Paris Diderot, INRA, Univ d'Evry, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Malcolm J Bennett
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Michael A Djordjevic
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
35
|
Kawamoto N, Kanbe Y, Nakamura M, Mori A, Terao Morita M. Gravity-Sensing Tissues for Gravitropism Are Required for "Anti-Gravitropic" Phenotypes of Lzy Multiple Mutants in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E615. [PMID: 32408582 PMCID: PMC7286026 DOI: 10.3390/plants9050615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023]
Abstract
Plant posture is controlled by various environmental cues, such as light, temperature, and gravity. The overall architecture is determined by the growth angles of lateral organs, such as roots and branches. The branch growth angle affected by gravity is known as the gravitropic setpoint angle (GSA), and it has been proposed that the GSA is determined by balancing two opposing growth components: gravitropism and anti-gravitropic offset (AGO). The molecular mechanisms underlying gravitropism have been studied extensively, but little is known about the nature of the AGO. Recent studies reported the importance of LAZY1-LIKE (LZY) family genes in the signaling process for gravitropism, such that loss-of-function mutants of LZY family genes resulted in reversed gravitropism, which we term it here as the "anti-gravitropic" phenotype. We assume that this peculiar phenotype manifests as the AGO due to the loss of gravitropism, we characterized the "anti-gravitropic" phenotype of Arabidopsis lzy multiple mutant genetically and physiologically. Our genetic interaction analyses strongly suggested that gravity-sensing cells are required for the "anti-gravitropic" phenotype in roots and lateral branches. We also show that starch-filled amyloplasts play a significant role in the "anti-gravitropic" phenotype, especially in the root of the lzy multiple mutant.
Collapse
Affiliation(s)
- Nozomi Kawamoto
- Division of Plant Environmental Responses, National Institute for Basic Biology, Myodaiji, Okazaki 444–8556, Japan; (N.K.); (M.N.)
| | - Yuta Kanbe
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464–8601, Japan; (Y.K.); (A.M.)
| | - Moritaka Nakamura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Myodaiji, Okazaki 444–8556, Japan; (N.K.); (M.N.)
| | - Akiko Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464–8601, Japan; (Y.K.); (A.M.)
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Myodaiji, Okazaki 444–8556, Japan; (N.K.); (M.N.)
| |
Collapse
|
36
|
Waite JM, Collum TD, Dardick C. AtDRO1 is nuclear localized in root tips under native conditions and impacts auxin localization. PLANT MOLECULAR BIOLOGY 2020; 103:197-210. [PMID: 32130643 PMCID: PMC7170825 DOI: 10.1007/s11103-020-00984-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/20/2020] [Indexed: 05/19/2023]
Abstract
DEEPER ROOTING 1 (DRO1) contributes to the downward gravitropic growth trajectory of roots upstream of lateral auxin transport in monocots and dicots. Loss of DRO1 function leads to horizontally oriented lateral roots and altered gravitropic set point angle, while loss of all three DRO family members results in upward, vertical root growth. Here, we attempt to dissect the roles of AtDRO1 by analyzing expression, protein localization, auxin gradient formation, and auxin responsiveness in the atdro1 mutant. Current evidence suggests AtDRO1 is predominantly a membrane-localized protein. Here we show that VENUS-tagged AtDRO1 driven by the native AtDRO1 promoter complemented an atdro1 Arabidopsis mutant and the protein was localized in root tips and detectable in nuclei. atdro1 primary and lateral roots showed impairment in establishing an auxin gradient upon gravistimulation as visualized with DII-VENUS, a sensor for auxin signaling and proxy for relative auxin distribution. Additionally, PIN3 domain localization was not significantly altered upon gravistimulation in atdro1 primary and lateral roots. RNA-sequencing revealed differential expression of known root development-related genes in atdro1 mutants. atdro1 lateral roots were able to respond to exogenous auxin and AtDRO1 gene expression levels in root tips were unaffected by the addition of auxin. Collectively, the data suggest that nuclear localization may be important for AtDRO1 function and suggests a more nuanced role for DRO1 in regulating auxin-mediated changes in lateral branch angle. KEY MESSAGE: DEEPER ROOTING 1 (DRO1) when expressed from its native promoter is predominately localized in Arabidopsis root tips, detectable in nuclei, and impacts auxin gradient formation.
Collapse
Affiliation(s)
- Jessica M Waite
- Washington State University Tree Fruit Research and Extension Center, Wenatchee, WA, 98801, USA
- USDA-ARS Appalachian Fruit Research Station, Kearneysville, WV, 25430, USA
| | - Tamara D Collum
- USDA-ARS Appalachian Fruit Research Station, Kearneysville, WV, 25430, USA
| | - Chris Dardick
- USDA-ARS Appalachian Fruit Research Station, Kearneysville, WV, 25430, USA.
| |
Collapse
|
37
|
Cao H, Wang F, Lin H, Ye Y, Zheng Y, Li J, Hao Z, Ye N, Yue C. Transcriptome and metabolite analyses provide insights into zigzag-shaped stem formation in tea plants (Camellia sinensis). BMC PLANT BIOLOGY 2020; 20:98. [PMID: 32131737 PMCID: PMC7057490 DOI: 10.1186/s12870-020-2311-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/26/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Shoot orientation is important for plant architecture formation, and zigzag-shaped shoots are a special trait found in many plants. Zigzag-shaped shoots have been selected and thoroughly studied in Arabidopsis; however, the regulatory mechanism underlying zigzag-shaped shoot development in other plants, especially woody plants, is largely unknown. RESULTS In this study, tea plants with zigzag-shaped shoots, namely, Qiqu (QQ) and Lianyuanqiqu (LYQQ), were investigated and compared with the erect-shoot tea plant Meizhan (MZ) in an attempt to reveal the regulation of zigzag-shaped shoot formation. Tissue section observation showed that the cell arrangement and shape of zigzag-shaped stems were aberrant compared with those of normal shoots. Moreover, a total of 2175 differentially expressed genes (DEGs) were identified from the zigzag-shaped shoots of the tea plants QQ and LYQQ compared to the shoots of MZ using transcriptome sequencing, and the DEGs involved in the "Plant-pathogen interaction", "Phenylpropanoid biosynthesis", "Flavonoid biosynthesis" and "Linoleic acid metabolism" pathways were significantly enriched. Additionally, the DEGs associated with cell expansion, vesicular trafficking, phytohormones, and transcription factors were identified and analysed. Metabolomic analysis showed that 13 metabolites overlapped and were significantly changed in the shoots of QQ and LYQQ compared to MZ. CONCLUSIONS Our results suggest that zigzag-shaped shoot formation might be associated with the gravitropism response and polar auxin transport in tea plants. This study provides a valuable foundation for further understanding the regulation of plant architecture formation and for the cultivation and application of horticultural plants in the future.
Collapse
Affiliation(s)
- Hongli Cao
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Feiquan Wang
- College of Tea and Food Science, Wuyi University, Wuyishan, 354300, China
| | - Hongzheng Lin
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Yijun Ye
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Yucheng Zheng
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Jiamin Li
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Zhilong Hao
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Naixing Ye
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Chuan Yue
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China.
| |
Collapse
|
38
|
Furutani M, Hirano Y, Nishimura T, Nakamura M, Taniguchi M, Suzuki K, Oshida R, Kondo C, Sun S, Kato K, Fukao Y, Hakoshima T, Morita MT. Polar recruitment of RLD by LAZY1-like protein during gravity signaling in root branch angle control. Nat Commun 2020; 11:76. [PMID: 31900388 PMCID: PMC6941992 DOI: 10.1038/s41467-019-13729-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 11/13/2019] [Indexed: 01/07/2023] Open
Abstract
In many plant species, roots maintain specific growth angles relative to the direction of gravity, known as gravitropic set point angles (GSAs). These contribute to the efficient acquisition of water and nutrients. AtLAZY1/LAZY1-LIKE (LZY) genes are involved in GSA control by regulating auxin flow toward the direction of gravity in Arabidopsis. Here, we demonstrate that RCC1-like domain (RLD) proteins, identified as LZY interactors, are essential regulators of polar auxin transport. We show that interaction of the CCL domain of LZY with the BRX domain of RLD is important for the recruitment of RLD from the cytoplasm to the plasma membrane by LZY. A structural analysis reveals the mode of the interaction as an intermolecular β-sheet in addition to the structure of the BRX domain. Our results offer a molecular framework in which gravity signal first emerges as polarized LZY3 localization in gravity-sensing cells, followed by polar RLD1 localization and PIN3 relocalization to modulate auxin flow.
Collapse
Affiliation(s)
- Masahiko Furutani
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- FAFU-UCR Joint Center, Fujian Provincial Key Laboratory of Haixia Applied Plant System Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Yoshinori Hirano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0101, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takeshi Nishimura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Myodaiji, Okazaki, 444-8556, Japan
| | - Moritaka Nakamura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Myodaiji, Okazaki, 444-8556, Japan
| | - Masatoshi Taniguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Kanako Suzuki
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Ryuichiro Oshida
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Chiemi Kondo
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Song Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- FAFU-UCR Joint Center, Fujian Provincial Key Laboratory of Haixia Applied Plant System Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Kagayaki Kato
- Laboratory of Biological Diversity, National Institute for Basic Biology, Myodaiji, Okazaki, 444-8556, Japan
- Bioimage Informatics Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Myodaiji, Okazaki, 444-8585, Japan
| | - Yoichiro Fukao
- Department of Bioinformatics, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Toshio Hakoshima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0101, Japan
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Myodaiji, Okazaki, 444-8556, Japan.
| |
Collapse
|
39
|
Ma L, Yi D, Gong W, Gong P, Wang Z. De novo transcriptome characterisation of two auxin-related genes associated with plant growth habit in Astragalus adsurgens Pall. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:3-12. [PMID: 31571396 DOI: 10.1111/plb.13052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Astragalus adsurgens Pall., a perennial legume native to China, is commonly used as a forage crop. And it has great value for sustainable development of grasslands in arid and semi arid regions. However, to date, little is known regarding the A. adsurgens genome, and no studies have determined whether it would be possible to improve the germplasm of A. adsurgens through genetic modification. In this study, we used an RNA-seq protocol to generate a de novo transcriptome including 151,516 unigenes of A. adsurgens. We compared the transcriptomes of A. adsurgens having different growth habits (prostrate/erect) and identified 14,133 single nucleotide polymorphism sites (SNP) in 8,139 unigenes. Differential expression gene (DEG) analysis suggested that 10,982 unigenes were up-regulated in the prostrate plant relative to the erect plant, while 10,607 unigenes were down-regulated. Of the 21,589 DEG, Unigene72782_All (LAX4) and CL12494.Contig3_All (TIR1), an auxin transporter gene and an auxin transport inhibitor gene, respectively, were predicted to influence the growth habit of A. adsurgens, which were verified by qRT-PCR in these phenotypes. These results suggest that auxin transport was more active in the prostrate plant than in the erect plant, resulting in asymmetric distribution of auxin that affects the growth habit of A. adsurgens. Overall, this study may provide a basis for future research on key genes in A. adsurgens and may deepen our understanding of the molecular mechanisms regulating plant growth habit.
Collapse
Affiliation(s)
- L Ma
- Institute of Animal Sciences, Chinese Academy of Agriculture Sciences, Beijing, China
| | - D Yi
- Institute of Animal Sciences, Chinese Academy of Agriculture Sciences, Beijing, China
| | - W Gong
- Institute of Animal Sciences, Chinese Academy of Agriculture Sciences, Beijing, China
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| | - P Gong
- Institute of Animal Sciences, Chinese Academy of Agriculture Sciences, Beijing, China
- Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Z Wang
- Institute of Animal Sciences, Chinese Academy of Agriculture Sciences, Beijing, China
| |
Collapse
|
40
|
Kumar R, Pandey MK, Roychoudhry S, Nayyar H, Kepinski S, Varshney RK. Peg Biology: Deciphering the Molecular Regulations Involved During Peanut Peg Development. FRONTIERS IN PLANT SCIENCE 2019; 10:1289. [PMID: 31681383 PMCID: PMC6813228 DOI: 10.3389/fpls.2019.01289] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/17/2019] [Indexed: 05/07/2023]
Abstract
Peanut or groundnut is one of the most important legume crops with high protein and oil content. The high nutritional qualities of peanut and its multiple usage have made it an indispensable component of our daily life, in both confectionary and therapeutic food industries. Given the socio-economic significance of peanut, understanding its developmental biology is important in providing a molecular framework to support breeding activities. In peanut, the formation and directional growth of a specialized reproductive organ called a peg, or gynophore, is especially relevant in genetic improvement. Several studies have indicated that peanut yield can be improved by improving reproductive traits including peg development. Therefore, we aim to identify unifying principles for the genetic control, underpinning molecular and physiological basis of peg development for devising appropriate strategy for peg improvement. This review discusses the current understanding of the molecular aspects of peanut peg development citing several studies explaining the key mechanisms. Deciphering and integrating recent transcriptomic, proteomic, and miRNA-regulomic studies provide a new perspective for understanding the regulatory events of peg development that participate in pod formation and thus control yield.
Collapse
Affiliation(s)
- Rakesh Kumar
- Center of Excellence in Genomics and Systems Biology, International Crops Research, Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Manish K. Pandey
- Center of Excellence in Genomics and Systems Biology, International Crops Research, Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| | - Stefan Kepinski
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Rajeev K. Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research, Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
41
|
Abstract
Roots provide the primary mechanism that plants use to absorb water and nutrients from their environment. These functions are dependent on developmental mechanisms that direct root growth and branching into regions of soil where these resources are relatively abundant. Water is the most limiting factor for plant growth, and its availability is determined by the weather, soil structure, and salinity. In this review, we define the developmental pathways that regulate the direction of growth and branching pattern of the root system, which together determine the expanse of soil from which a plant can access water. The ability of plants to regulate development in response to the spatial distribution of water is a focus of many recent studies and provides a model for understanding how biological systems utilize positional cues to affect signaling and morphogenesis. A better understanding of these processes will inform approaches to improve crop water use efficiency to more sustainably feed a growing population.
Collapse
Affiliation(s)
- José R. Dinneny
- Department of Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
42
|
Li Z, Liang Y, Yuan Y, Wang L, Meng X, Xiong G, Zhou J, Cai Y, Han N, Hua L, Liu G, Li J, Wang Y. OsBRXL4 Regulates Shoot Gravitropism and Rice Tiller Angle through Affecting LAZY1 Nuclear Localization. MOLECULAR PLANT 2019; 12:1143-1156. [PMID: 31200078 DOI: 10.1016/j.molp.2019.05.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/07/2019] [Accepted: 05/31/2019] [Indexed: 05/03/2023]
Abstract
Rice tiller angle is a key agronomic trait that contributes to ideal plant architecture and grain production. LAZY1 (LA1) was previously shown to control tiller angle via affecting shoot gravitropism, but the underlying molecular mechanism remains largely unknown. In this study, we identified an LA1-interacting protein named Brevis Radix Like 4 (OsBRXL4). We showed that the interaction between OsBRXL4 and LA1 occurs at the plasma membrane and that their interaction determines nuclear localization of LA1. We found that nuclear localization of LA1 is essential for its function, which is different from AtLA1, its Arabidopsis ortholog. Overexpression of OsBRXL4 leads to a prostrate growth phenotype, whereas OsBRXLs RNAi plants, in which the expression levels of OsBRXL1, OsBRXL4, and OsBRXL5 were decreased, display a compact phenotype. Further genetic analysis also supported that OsBRXL4 controls rice tiller angle by affecting nuclear localization of LA1. Consistently, we demonstrated that OsBRXL4 regulates the shoot gravitropism through affecting polar auxin transport as did LA1. Taken together, our study not only identifies OsBRXL4 as a regulatory component of rice tiller angle but also provides new insights into genetic regulation of rice plant architecture.
Collapse
Affiliation(s)
- Zhen Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Liang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yundong Yuan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guosheng Xiong
- Plant Phenomics Research Center, Nanjing Agriculture University, Nanjing 210095, China
| | - Jie Zhou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yueyue Cai
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ningpei Han
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lekai Hua
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
43
|
Zhang W, Tan L, Sun H, Zhao X, Liu F, Cai H, Fu Y, Sun X, Gu P, Zhu Z, Sun C. Natural Variations at TIG1 Encoding a TCP Transcription Factor Contribute to Plant Architecture Domestication in Rice. MOLECULAR PLANT 2019; 12:1075-1089. [PMID: 31002981 DOI: 10.1016/j.molp.2019.04.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 03/24/2019] [Accepted: 04/11/2019] [Indexed: 05/25/2023]
Abstract
The modification of plant architecture is a crucial target in rice domestication and modern genetic improvement. Although several genes regulating rice plant architecture have been characterized, the molecular mechanisms underlying rice plant architecture domestication remain largely unclear. Here we show that the inclined tiller growth in wild rice is controlled by a single dominant gene, TILLER INCLINED GROWTH 1 (TIG1), which is located on chromosome 8 and encodes a TCP transcriptional activator. TIG1 is primarily expressed in the adaxial side of the tiller base, promotes cell elongation, and enlarges the tiller angle in wild rice. Variations in the TIG1 promoter of indica cultivars (tig1 allele) resulted in decreased expression of TIG1 in the adaxial side of tiller base and reduced cell length and tiller angle, leading to the transition from inclined tiller growth in wild rice to erect tiller growth during rice domestication. TIG1 positively regulates the expression of EXPA3, EXPB5, and SAUR39 to promote cell elongation and increase the tiller angle. Selective sweep analysis revealed that the tig1 allele was selected in indica cultivars by human beings. The cloning and characterization of TIG1 supports a new scenario of plant architecture evolution in rice.
Collapse
Affiliation(s)
- Weifeng Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
| | - Lubin Tan
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
| | - Hongying Sun
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
| | - Xinhui Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
| | - Fengxia Liu
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
| | - Hongwei Cai
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
| | - Yongcai Fu
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
| | - Xianyou Sun
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
| | - Ping Gu
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
| | - Zuofeng Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China.
| | - Chuanqing Sun
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
44
|
Nakamura M, Nishimura T, Morita MT. Gravity sensing and signal conversion in plant gravitropism. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3495-3506. [PMID: 30976802 DOI: 10.1093/jxb/erz158] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/08/2019] [Indexed: 05/17/2023]
Abstract
Plant organs control their growth orientation in response to gravity. Within gravity-sensing cells, the input (gravity sensing) and signal conversion (gravity signalling) progress sequentially. The cells contain a number of high-density, starch-accumulating amyloplasts, which sense gravity when they reposition themselves by sedimentation to the bottom of the cell when the plant organ is re-orientated. This triggers the next step of gravity signalling, when the physical signal generated by the sedimentation of the amyloplasts is converted into a biochemical signal, which redirects auxin transport towards the lower flank of the plant organ. This review focuses on recent advances in our knowledge of the regulatory mechanisms that underlie amyloplast sedimentation and the system by which this is perceived, and on recent progress in characterising the factors that play significant roles in gravity signalling by which the sedimentation is linked to the regulation of directional auxin transport. Finally, we discuss the contribution of gravity signalling factors to the mechanisms that control the gravitropic set-point angle.
Collapse
Affiliation(s)
- Moritaka Nakamura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki, Japan
| | - Takeshi Nishimura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
45
|
Xie C, Zhang G, An L, Chen X, Fang R. Phytochrome-interacting factor-like protein OsPIL15 integrates light and gravitropism to regulate tiller angle in rice. PLANTA 2019; 250:105-114. [PMID: 30927053 DOI: 10.1007/s00425-019-03149-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/22/2019] [Indexed: 05/11/2023]
Abstract
Rice phytochrome-interacting factor-like protein OsPIL15 regulates tiller angle through light and gravity signals in rice. Tiller angle of cereal crops is a key agronomic trait that contributes to grain production. An understanding of how tiller angle is controlled is helpful for achieving ideal plant architecture to improve grain yield. Phytochrome-interacting factors (PIFs) are known to regulate seed germination, seedling skotomorphogenesis, shade avoidance, and flowering in Arabidopsis thaliana. Here, we report that OsPIL15 is, indeed, a rice PIF that negatively regulates tiller angle. Dominant-negative OsPIL15 plants displayed a larger tiller angle, which was associated with reduced shoot gravitropism. Phytochrome B (phyB) is the main photoreceptor perceiving the low red:far-red ratio of shade light. Compared with wild-type rice plants, loss-of-function phyB plants and OsPIL15-overexpressing plants showed smaller tiller angles and enhanced shoot gravitropism. In addition, more OsPIL15 protein accumulated in phyB plants than in wild-type plants. Light regulates the level of the OsPIL15 protein negatively, depending on phyB partially. We propose that OsPIL15 integrates light and gravity signals to regulate tiller angle in rice.
Collapse
Affiliation(s)
- Chuanmiao Xie
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- National Center for Plant Gene Research (Beijing), Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ge Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- National Center for Plant Gene Research (Beijing), Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin An
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- National Center for Plant Gene Research (Beijing), Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoying Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- National Center for Plant Gene Research (Beijing), Beijing, 100101, China.
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- National Center for Plant Gene Research (Beijing), Beijing, 100101, China.
| |
Collapse
|
46
|
Evolution of Deeper Rooting 1-like homoeologs in wheat entails the C-terminus mutations as well as gain and loss of auxin response elements. PLoS One 2019; 14:e0214145. [PMID: 30947257 PMCID: PMC6448822 DOI: 10.1371/journal.pone.0214145] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/07/2019] [Indexed: 11/19/2022] Open
Abstract
Root growth angle (RGA) in response to gravity controlled by auxin is a pertinent target trait for obtainment of higher yield in cereals. But molecular basis of this root architecture trait remain obscure in wheat and barley. We selected four cultivars two each for wheat and barley to unveil the molecular genetic mechanism of Deeper Rooting 1-like gene which controls RGA in rice leading to higher yield under drought imposition. Morphological analyses revealed a deeper and vertically oriented root growth in “NARC 2009” variety of wheat than “Galaxy” and two other barley cultivars “Scarlet” and “ISR42-8”. Three new homoeologs designated as TaANDRO1-like, TaBNDRO1-like and TaDNDRO1-like corresponding to A, B and D genomes of wheat could be isolated from “NARC 2009”. Due to frameshift and intronization/exonization events the gene structures of these paralogs exhibit variations in size. DRO1-like genes with five distinct domains prevail in diverse plant phyla from mosses to angiosperms but in lower plants their differentiation from LAZY, NGR and TAC1 (root and shoot angle genes) is enigmatic. Instead of IGT as denominator motif of this family, a new C-terminus motif WxxTD in the V-domain is proposed as family specific motif. The EAR-like motif IVLEM at the C-terminus of the TaADRO1-like and TaDDRO1-like that diverged to KLHTLIPNK in TaBDRO1-like and HvDRO1-like is the hallmark of these proteins. Split-YFP and yeast two hybrid assays complemented the interaction of TaDRO1-like with TOPLESS—a repressor of auxin regulated root promoting genes in plants—through IVLEM/KLHTLIPNK motif. Quantitative RT-PCR revealed abundance of DRO1-like RNA in root tips and spikelets while transcript signals were barely detectable in shoot and leaf tissues. Interestingly, wheat exhibited stronger expression of TaBDRO1-like than barley (HvDRO1-like), but TaBDRO1-like was the least expressing among three paralogs. The underlying cause of this expression divergence seems to be the presence of AuxRE motif TGTCTC and core TGTC with a coupling AuxRE-like motif ATTTTCTT proximal to the transcriptional start site in TaBDRO1-like and HvDRO1-like promoters. This is evident from binding of ARF1 to TGTCTC and TGTC motifs of TaBDRO1-like as revealed by yeast one-hybrid assay. Thus, evolution of DRO1-like wheat homoeologs might incorporate the C-terminus mutations as well as gain and loss of AuxREs and other cis-regulatory elements during expression divergence. Since root architecture is an important target trait for wheat crop improvement, therefore DRO1-like genes have potential applications in plant breeding for enhancement of plant productivity by the use of modern genome editing approaches.
Collapse
|
47
|
Li H, Li J, Song J, Zhao B, Guo C, Wang B, Zhang Q, Wang J, King GJ, Liu K. An auxin signaling gene BnaA3.IAA7 contributes to improved plant architecture and yield heterosis in rapeseed. THE NEW PHYTOLOGIST 2019; 222:837-851. [PMID: 30536633 DOI: 10.1111/nph.15632] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/03/2018] [Indexed: 05/04/2023]
Abstract
Plant architecture is the key factor affecting overall yield in many crops. The genetic basis underlying plant architecture in rapeseed (Brassica napus), a key global oil crop, is elusive. We characterized an ethyl methanesulfonate (EMS)-mutagenized rapeseed mutant, sca, which had multiple phenotypic alterations, including crinkled leaves, semi-dwarf stature, narrow branch angles and upward-standing siliques. We identified the underlying gene, which encodes an Aux/IAA protein (BnaA3.IAA7). A G-to-A mutation changed the glycine at the 84th position to glutamic acid (G84E), disrupting the conserved degron motif GWPPV and reducing the affinity between BnaA3.IAA7 and TIR1 (TRANSPORT INHIBITOR RESPONSE 1) in an auxin dosage-dependent manner. This change repressed the degradation of BnaA3.IAA7 and therefore repressed auxin signaling at low levels of auxin that reduced the length of internodes. The G84E mutation reduced branch angles by enhancing the gravitropic response. The heterozygote +/sca closely resembled a proposed ideal plant architecture, displaying strong yield heterosis through single-locus overdominance by improving multiple component traits. Our findings demonstrate that a weak gain-of-function mutation in BnaA3.IAA7 contributes to yield heterosis by improving plant architecture and would be valuable for breeding superior rapeseed hybrid cultivars and such a mutation may increase the yield in other Brassica crops.
Collapse
Affiliation(s)
- Haitao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juanjuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jurong Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaocheng Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
48
|
Del Bianco M, Kepinski S. Building a future with root architecture. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5319-5323. [PMID: 30445468 PMCID: PMC6255693 DOI: 10.1093/jxb/ery390] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Affiliation(s)
- Marta Del Bianco
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Stefan Kepinski
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
49
|
Huang G, Liang W, Sturrock CJ, Pandey BK, Giri J, Mairhofer S, Wang D, Muller L, Tan H, York LM, Yang J, Song Y, Kim YJ, Qiao Y, Xu J, Kepinski S, Bennett MJ, Zhang D. Rice actin binding protein RMD controls crown root angle in response to external phosphate. Nat Commun 2018; 9:2346. [PMID: 29892032 PMCID: PMC5995806 DOI: 10.1038/s41467-018-04710-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/01/2018] [Indexed: 11/12/2022] Open
Abstract
Root angle has a major impact on acquisition of nutrients like phosphate that accumulate in topsoil and in many species; low phosphate induces shallower root growth as an adaptive response. Identifying genes and mechanisms controlling root angle is therefore of paramount importance to plant breeding. Here we show that the actin-binding protein Rice Morphology Determinant (RMD) controls root growth angle by linking actin filaments and gravity-sensing organelles termed statoliths. RMD is upregulated in response to low external phosphate and mutants lacking of RMD have steeper crown root growth angles that are unresponsive to phosphate levels. RMD protein localizes to the surface of statoliths, and rmd mutants exhibit faster gravitropic response owing to more rapid statoliths movement. We conclude that adaptive changes to root angle in response to external phosphate availability are RMD dependent, providing a potential target for breeders.
Collapse
Affiliation(s)
- Guoqiang Huang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough Leicstershire, LE12 5RD, Nottingham, UK
| | - Craig J Sturrock
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough Leicstershire, LE12 5RD, Nottingham, UK
| | - Bipin K Pandey
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough Leicstershire, LE12 5RD, Nottingham, UK
- National Institute of Plant Genome Research (NIPGR), New Delhi, 110067, India
| | - Jitender Giri
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough Leicstershire, LE12 5RD, Nottingham, UK
- National Institute of Plant Genome Research (NIPGR), New Delhi, 110067, India
| | - Stefan Mairhofer
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough Leicstershire, LE12 5RD, Nottingham, UK
| | - Daoyang Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lukas Muller
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough Leicstershire, LE12 5RD, Nottingham, UK
| | - Hexin Tan
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Larry M York
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough Leicstershire, LE12 5RD, Nottingham, UK
| | - Jing Yang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough Leicstershire, LE12 5RD, Nottingham, UK
| | - Yu Song
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu-Jin Kim
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Qiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Xu
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Stefan Kepinski
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough Leicstershire, LE12 5RD, Nottingham, UK.
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- University of Adelaide-SJTU Joint Centre for Agriculture and Health, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, 5064, SA, Australia.
| |
Collapse
|
50
|
Cheng H, Hao M, Wang W, Mei D, Wells R, Liu J, Wang H, Sang S, Tang M, Zhou R, Chu W, Fu L, Hu Q. Integrative RNA- and miRNA-Profile Analysis Reveals a Likely Role of BR and Auxin Signaling in Branch Angle Regulation of B. napus. Int J Mol Sci 2017; 18:ijms18050887. [PMID: 28481299 PMCID: PMC5454811 DOI: 10.3390/ijms18050887] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/18/2017] [Indexed: 11/16/2022] Open
Abstract
Oilseed rape (Brassica napus L.) is the second largest oilseed crop worldwide and one of the most important oil crops in China. As a component of plant architecture, branch angle plays an important role in yield performance, especially under high-density planting conditions. However, the mechanisms underlying the regulation of branch angle are still largely not understood. Two oilseed rape lines with significantly different branch angles were used to conduct RNA- and miRNA-profiling at two developmental stages, identifying differential expression of a large number of genes involved in auxin- and brassinosteroid (BR)-related pathways. Many auxin response genes, including AUX1, IAA, GH3, and ARF, were enriched in the compact line. However, a number of genes involved in BR signaling transduction and biosynthesis were down-regulated. Differentially expressed miRNAs included those involved in auxin signaling transduction. Expression patterns of most target genes were fine-tuned by related miRNAs, such as miR156, miR172, and miR319. Some miRNAs were found to be differentially expressed at both developmental stages, including three miR827 members. Our results provide insight that auxin- and BR-signaling may play a pivotal role in branch angle regulation.
Collapse
Affiliation(s)
- Hongtao Cheng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Mengyu Hao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Wenxiang Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Desheng Mei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Rachel Wells
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Jia Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Hui Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Shifei Sang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Min Tang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Rijin Zhou
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Wen Chu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Li Fu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Qiong Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|