1
|
Fernandez JC, Azim MF, Adams N, Strong M, Piya S, Xu M, Brunkard JO, Hewezi T, Sams CE, Burch-Smith TM. Glucosinolates can act as signals to modulate intercellular trafficking via plasmodesmata. THE NEW PHYTOLOGIST 2025; 246:1163-1182. [PMID: 40095529 DOI: 10.1111/nph.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/18/2025] [Indexed: 03/19/2025]
Abstract
Plasmodesmata (PD) allow direct communication across the cellulosic plant cell wall, facilitating the intercellular movement of metabolites and signaling molecules within the symplast. In Arabidopsis thaliana embryos with reduced levels of the chloroplast RNA helicase ISE2, intercellular trafficking and the number of branched PD were increased. We therefore investigated the relationship between altered ISE2 expression and intercellular trafficking. Gene expression analyses in Arabidopsis tissues where ISE2 expression was increased or decreased identified genes associated with the metabolism of glucosinolates (GLSs) as highly affected. Concomitant with changes in the expression of GLS-related genes, plants with abnormal ISE2 expression contained altered GLS metabolic profiles compared with wild-type (WT) counterparts. Indeed, changes in the expression of GLS-associated genes led to altered intercellular trafficking in Arabidopsis leaves. Exogenous application of GLSs but not their breakdown products also resulted in altered intercellular trafficking. These changes in trafficking may be mediated by callose levels at PD as exogenous GLS treatment was sufficient to modulate plasmodesmal callose in WT plants. Furthermore, auxin metabolism was perturbed in plants with increased indole-type GLS levels. These findings suggest that GLSs, which are themselves transported between cells via PD, can act on PD to regulate plasmodesmal trafficking capacity.
Collapse
Affiliation(s)
- Jessica C Fernandez
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Mohammad F Azim
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Nicole Adams
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Morgan Strong
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Min Xu
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720, USA
| | - Jacob O Brunkard
- Laboratory of Genetics, University of Wisconsin, Madison, WI, 53706, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Carl E Sams
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| |
Collapse
|
2
|
Li Y, Cao T, Guo Y, Grimm B, Li X, Duanmu D, Lin R. Regulatory and retrograde signaling networks in the chlorophyll biosynthetic pathway. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:887-911. [PMID: 39853950 PMCID: PMC12016751 DOI: 10.1111/jipb.13837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/08/2024] [Indexed: 01/26/2025]
Abstract
Plants, algae and photosynthetic bacteria convert light into chemical energy by means of photosynthesis, thus providing food and energy for most organisms on Earth. Photosynthetic pigments, including chlorophylls (Chls) and carotenoids, are essential components that absorb the light energy necessary to drive electron transport in photosynthesis. The biosynthesis of Chl shares several steps in common with the biosynthesis of other tetrapyrroles, including siroheme, heme and phycobilins. Given that many tetrapyrrole precursors possess photo-oxidative properties that are deleterious to macromolecules and can lead to cell death, tetrapyrrole biosynthesis (TBS) requires stringent regulation under various developmental and environmental conditions. Thanks to decades of research on model plants and algae, we now have a deeper understanding of the regulatory mechanisms that underlie Chl synthesis, including (i) the many factors that control the activity and stability of TBS enzymes, (ii) the transcriptional and post-translational regulation of the TBS pathway, and (iii) the complex roles of tetrapyrrole-mediated retrograde signaling from chloroplasts to the cytoplasm and the nucleus. Based on these new findings, Chls and their derivatives will find broad applications in synthetic biology and agriculture in the future.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Photobiology, Institute of Botanythe Chinese Academy of SciencesBeijing100093China
| | - Tianjun Cao
- School of Life SciencesWestlake UniversityHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced StudyHangzhou310024China
| | - Yunling Guo
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Bernhard Grimm
- Institute of Biology/Plant PhysiologyHumboldt‐Universität zu BerlinBerlin10115Germany
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifeng475004China
| | - Xiaobo Li
- School of Life SciencesWestlake UniversityHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced StudyHangzhou310024China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botanythe Chinese Academy of SciencesBeijing100093China
- Institute of Biotechnology, Xianghu LaboratoryHangzhou311231China
| |
Collapse
|
3
|
Liu H, Huang Z, Wang X, Hu K, Jiang Q, Chen F, Ma Y, Cheng Z, Pan Y, Weng Y. Regreening mechanisms in cucumber: insights from a CsSIG2 mutation affecting chloroplast development. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:82. [PMID: 40121605 DOI: 10.1007/s00122-025-04854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/14/2025] [Indexed: 03/25/2025]
Abstract
KEY MESSAGE CsSIG2 is essential for cucumber chloroplast development, and mutations in CsSIG2 reveal mechanisms that restore chloroplast functionality and drive the regreening phenotype in the mutant. Chloroplast development and leaf color are essential traits that significantly influence plant photosynthesis and overall vigor. This study investigates a natural mutation in the cucumber that leads to a virescent leaf-color (Csvl-6) phenotype characterized by an initial yellow color in cotyledons and young leaves, which gradually transition to green as the plant matures. We utilized bulked segregant analysis and genetic linkage mapping to locate the best candidate gene sigma factor 2 (CsSIG2) on chromosome 6, identifying a single nonsynonymous SNP resulting in an arginine to glycine substitution in the CsSIG2 protein. Comparative transcriptome analysis highlighted that this mutation disrupts early chloroplast biogenesis and delays chlorophyll accumulation, but the chloroplasts can recover, leading to greening during later stages of leaf development. Our findings reveal that the recovery phenomenon involves upregulation of chloroplast-encoded genes responsible for thylakoid membrane formation and photosystem function, alongside altered expression of transcription factors linked to chlorophyll metabolism. This study elucidates the genetic and molecular basis of chloroplast development in cucumber, providing valuable insights into the mechanisms underlying leaf greening, which could inform future breeding efforts focused on manipulating leaf color traits for enhanced crop performance.
Collapse
Affiliation(s)
- Hanqiang Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Plant and Agroecosystem Sciences, University of Wisconsin, Madison, WI, 53706, USA
| | - Zeqiang Huang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinyue Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kaihong Hu
- Department of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Qinqin Jiang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Feifan Chen
- Department of Plant and Agroecosystem Sciences, University of Wisconsin, Madison, WI, 53706, USA
| | - Yuxuan Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yupeng Pan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yiqun Weng
- Department of Plant and Agroecosystem Sciences, University of Wisconsin, Madison, WI, 53706, USA.
- USDA-ARS Vegetable Crops Research Unit, Madison, WI, 53705, USA.
| |
Collapse
|
4
|
Li Q, An W, Ma J, Zhang H, Luo M, Qi Y, Meurer J, Ji D, Chi W. The thylakoid protein BCM1 sequesters antennae protein CP24 and CP29 within the grana cores thereby reducing their exposure to degradation under heat stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70060. [PMID: 40026239 DOI: 10.1111/tpj.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/07/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
Photosystem II (PSII) is one of the most thermosensitive components of photosynthetic apparatus in higher plants. Heat-inactivation of PSII may be followed by dissociation of antenna proteins, however, the fate and regulation mechanism of detached antenna proteins during this process remains unclear. Here, we investigate the regulation mechanism of two minor antenna proteins CP24 and CP29 during heat acclimation via the study on a thylakoid protein BCM1. BCM1 is distributed in both grana cores (GC) and stroma lamellae of thylakoids. However, heat stress induced its accumulation in grana cores but not stroma lamellae. Deficiency of BCM1 leads to the decline of plant resilience to heat stress, which results from the accelerated degradation of CP24 and CP29 in vivo. Heat stress induces a redistribution of CP24 and CP29 from the grana cores to the stroma lamellae, a shift that is exacerbated in bcm1 mutants, suggesting that migration of detached antennae proteins between thylakoid subcompartments may contribute to their degradation during heat acclimation. As an integral thylakoid protein, BCM1 physically interacts with CP24 and CP29. We propose that BCM1 serves as a stabilizing "anchor", effectively sequestering CP24 and CP29 within the grana cores thereby reducing their exposure to degradation in the stroma lamellae.
Collapse
Affiliation(s)
- Qiuxin Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjing An
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfang Ma
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hongmei Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Manfei Luo
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yafei Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Munich, D-82152, Planegg-Martinsried, Germany
| | - Daili Ji
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wei Chi
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
5
|
Wang X, Ji D, Ma J, Chi W. Function of plastid translation in plant temperature acclimation: Retrograde signalling or extraribosomal 'moonlighting' functions? PLANT, CELL & ENVIRONMENT 2024; 47:4908-4916. [PMID: 39101459 DOI: 10.1111/pce.15074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/06/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Summary StatementSpecific components of the plastid ribosome could act as pivotal limiting factors in plant temperature acclimation. We endeavour to elucidate the molecular nexus between plastid translation and temperature acclimation by incorporating the concept of extraribosomal ‘moonlighting’ functions of plastid ribosome proteins.
Collapse
Affiliation(s)
- Xiushun Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Daili Ji
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jinfang Ma
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wei Chi
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
6
|
Muino JM, Großmann C, Kleine T, Kaufmann K. Natural genetic variation in GLK1-mediated photosynthetic acclimation in response to light. BMC PLANT BIOLOGY 2024; 24:87. [PMID: 38311744 PMCID: PMC10840168 DOI: 10.1186/s12870-024-04741-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND GOLDEN-like (GLK) transcription factors are central regulators of chloroplast biogenesis in Arabidopsis and other species. Findings from Arabidopsis show that these factors also contribute to photosynthetic acclimation, e.g. to variation in light intensity, and are controlled by retrograde signals emanating from the chloroplast. However, the natural variation of GLK1-centered gene-regulatory networks in Arabidopsis is largely unexplored. RESULTS By evaluating the activities of GLK1 target genes and GLK1 itself in vegetative leaves of natural Arabidopsis accessions grown under standard conditions, we uncovered variation in the activity of GLK1 centered regulatory networks. This is linked with the ecogeographic origin of the accessions, and can be associated with a complex genetic variation across loci acting in different functional pathways, including photosynthesis, ROS and brassinosteroid pathways. Our results identify candidate upstream regulators that contribute to a basal level of GLK1 activity in rosette leaves, which can then impact the capacity to acclimate to different environmental conditions. Indeed, accessions with higher GLK1 activity, arising from habitats with a high monthly variation in solar radiation levels, may show lower levels of photoinhibition at higher light intensities. CONCLUSIONS Our results provide evidence for natural variation in GLK1 regulatory activities in vegetative leaves. This variation is associated with ecogeographic origin and can contribute to acclimation to high light conditions.
Collapse
Affiliation(s)
- Jose M Muino
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany.
- Current Address: German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | - Christopher Großmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Munich, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany.
| |
Collapse
|
7
|
Mahapatra K, Mukherjee A, Suyal S, Dar MA, Bhagavatula L, Datta S. Regulation of chloroplast biogenesis, development, and signaling by endogenous and exogenous cues. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:167-183. [PMID: 38623168 PMCID: PMC11016055 DOI: 10.1007/s12298-024-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
Chloroplasts are one of the defining features in most plants, primarily known for their unique property to carry out photosynthesis. Besides this, chloroplasts are also associated with hormone and metabolite productions. For this, biogenesis and development of chloroplast are required to be synchronized with the seedling growth to corroborate the maximum rate of photosynthesis following the emergence of seedlings. Chloroplast biogenesis and development are dependent on the signaling to and from the chloroplast, which are in turn regulated by several endogenous and exogenous cues. Light and hormones play a crucial role in chloroplast maturation and development. Chloroplast signaling involves a coordinated two-way connection between the chloroplast and nucleus, termed retrograde and anterograde signaling, respectively. Anterograde and retrograde signaling are involved in regulation at the transcriptional level and downstream modifications and are modulated by several metabolic and external cues. The communication between chloroplast and nucleus is essential for plants to develop strategies to cope with various stresses including high light or high heat. In this review, we have summarized several aspects of chloroplast development and its regulation through the interplay of various external and internal factors. We have also discussed the involvement of chloroplasts as sensors of various external environment stress factors including high light and temperature, and communicate via a series of retrograde signals to the nucleus, thus playing an essential role in plants' abiotic stress response.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| | - Arpan Mukherjee
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| | - Shikha Suyal
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| | - Mansoor Ali Dar
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| | | | - Sourav Datta
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| |
Collapse
|
8
|
Sun M, Shen Y. Integrating the multiple functions of CHLH into chloroplast-derived signaling fundamental to plant development and adaptation as well as fruit ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111892. [PMID: 37821024 DOI: 10.1016/j.plantsci.2023.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Chlorophyll (Chl)-mediated oxygenic photosynthesis sustains life on Earth. Greening leaves play fundamental roles in plant growth and crop yield, correlating with the idea that more Chls lead to better adaptation. However, they face significant challenges from various unfavorable environments. Chl biosynthesis hinges on the first committed step, which involves inserting Mg2+ into protoporphyrin. This step is facilitated by the H subunit of magnesium chelatase (CHLH) and features a conserved mechanism from cyanobacteria to plants. For better adaptation to fluctuating land environments, especially drought, CHLH evolves multiple biological functions, including Chl biosynthesis, retrograde signaling, and abscisic acid (ABA) responses. Additionally, it integrates into various chloroplast-derived signaling pathways, encompassing both retrograde signaling and hormonal signaling. The former comprises ROS (reactive oxygen species), heme, GUN (genomes uncoupled), MEcPP (methylerythritol cyclodiphosphate), β-CC (β-cyclocitral), and PAP (3'-phosphoadenosine-5'-phosphate). The latter involves phytohormones like ABA, ethylene, auxin, cytokinin, gibberellin, strigolactone, brassinolide, salicylic acid, and jasmonic acid. Together, these elements create a coordinated regulatory network tailored to plant development and adaptation. An intriguing example is how drought-mediated improvement of fruit quality provides insights into chloroplast-derived signaling, aiding the shift from vegetative to reproductive growth. In this context, we explore the integration of CHLH's multifaceted roles into chloroplast-derived signaling, which lays the foundation for plant development and adaptation, as well as fruit ripening and quality. In the future, manipulating chloroplast-derived signaling may offer a promising avenue to enhance crop yield and quality through the homeostasis, function, and regulation of Chls.
Collapse
Affiliation(s)
- Mimi Sun
- College of Horticulture, China Agricultural University, Beijing 100193, China; College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China.
| |
Collapse
|
9
|
Cao K, Cui Y, Sun F, Zhang H, Fan J, Ge B, Cao Y, Wang X, Zhu X, Wei Z, Yao Q, Ma J, Wang Y, Meng C, Gao Z. Metabolic engineering and synthetic biology strategies for producing high-value natural pigments in Microalgae. Biotechnol Adv 2023; 68:108236. [PMID: 37586543 DOI: 10.1016/j.biotechadv.2023.108236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/16/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Microalgae are microorganisms capable of producing bioactive compounds using photosynthesis. Microalgae contain a variety of high value-added natural pigments such as carotenoids, phycobilins, and chlorophylls. These pigments play an important role in many areas such as food, pharmaceuticals, and cosmetics. Natural pigments have a health value that is unmatched by synthetic pigments. However, the current commercial production of natural pigments from microalgae is not able to meet the growing market demand. The use of metabolic engineering and synthetic biological strategies to improve the production performance of microalgal cell factories is essential to promote the large-scale production of high-value pigments from microalgae. This paper reviews the health and economic values, the applications, and the synthesis pathways of microalgal pigments. Overall, this review aims to highlight the latest research progress in metabolic engineering and synthetic biology in constructing engineered strains of microalgae with high-value pigments and the application of CRISPR technology and multi-omics in this context. Finally, we conclude with a discussion on the bottlenecks and challenges of microalgal pigment production and their future development prospects.
Collapse
Affiliation(s)
- Kai Cao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Yulin Cui
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Hao Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Yujiao Cao
- School of Foreign Languages, Shandong University of Technology, Zibo 255090, China
| | - Xiaodong Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiangyu Zhu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Zuoxi Wei
- School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Qingshou Yao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jinju Ma
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yu Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Chunxiao Meng
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
10
|
Eren B, Türkoğlu A, Haliloğlu K, Demirel F, Nowosad K, Özkan G, Niedbała G, Pour-Aboughadareh A, Bujak H, Bocianowski J. Investigation of the Influence of Polyamines on Mature Embryo Culture and DNA Methylation of Wheat ( Triticum aestivum L.) Using the Machine Learning Algorithm Method. PLANTS (BASEL, SWITZERLAND) 2023; 12:3261. [PMID: 37765424 PMCID: PMC10536335 DOI: 10.3390/plants12183261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Numerous factors can impact the efficiency of callus formation and in vitro regeneration in wheat cultures through the introduction of exogenous polyamines (PAs). The present study aimed to investigate in vitro plant regeneration and DNA methylation patterns utilizing the inter-primer binding site (iPBS) retrotransposon and coupled restriction enzyme digestion-iPBS (CRED-iPBS) methods in wheat. This investigation involved the application of distinct types of PAs (Put: putrescine, Spd: spermidine, and Spm: spermine) at varying concentrations (0, 0.5, 1, and 1.5 mM). The subsequent outcomes were subjected to predictive modeling using diverse machine learning (ML) algorithms. Based on the specific polyamine type and concentration utilized, the results indicated that 1 mM Put and Spd were the most favorable PAs for supporting endosperm-associated mature embryos. Employing an epigenetic approach, Put at concentrations of 0.5 and 1.5 mM exhibited the highest levels of genomic template stability (GTS) (73.9%). Elevated Spd levels correlated with DNA hypermethylation while reduced Spm levels were linked to DNA hypomethylation. The in vitro and epigenetic characteristics were predicted using ML techniques such as the support vector machine (SVM), extreme gradient boosting (XGBoost), and random forest (RF) models. These models were employed to establish relationships between input variables (PAs, concentration, GTS rates, Msp I polymorphism, and Hpa II polymorphism) and output parameters (in vitro measurements). This comparative analysis aimed to evaluate the performance of the models and interpret the generated data. The outcomes demonstrated that the XGBoost method exhibited the highest performance scores for callus induction (CI%), regeneration efficiency (RE), and the number of plantlets (NP), with R2 scores explaining 38.3%, 73.8%, and 85.3% of the variances, respectively. Additionally, the RF algorithm explained 41.5% of the total variance and showcased superior efficacy in terms of embryogenic callus induction (ECI%). Furthermore, the SVM model, which provided the most robust statistics for responding embryogenic calluses (RECs%), yielded an R2 value of 84.1%, signifying its ability to account for a substantial portion of the total variance present in the data. In summary, this study exemplifies the application of diverse ML models to the cultivation of mature wheat embryos in the presence of various exogenous PAs and concentrations. Additionally, it explores the impact of polymorphic variations in the CRED-iPBS profile and DNA methylation on epigenetic changes, thereby contributing to a comprehensive understanding of these regulatory mechanisms.
Collapse
Affiliation(s)
- Barış Eren
- Department of Agricultural Biotechnology, Faculty of Agriculture, Igdır University, Igdir 76000, Türkiye; (B.E.); (F.D.)
| | - Aras Türkoğlu
- Department of Field Crops, Faculty of Agriculture, Necmettin Erbakan University, Konya 42310, Türkiye
| | - Kamil Haliloğlu
- Department of Field Crops, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye;
| | - Fatih Demirel
- Department of Agricultural Biotechnology, Faculty of Agriculture, Igdır University, Igdir 76000, Türkiye; (B.E.); (F.D.)
| | - Kamila Nowosad
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Grunwaldzki 24A, 53-363 Wrocław, Poland;
| | - Güller Özkan
- Department of Biology, Faculty of Science, Ankara University, Ankara 06100, Türkiye;
| | - Gniewko Niedbała
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznan University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland;
| | - Alireza Pour-Aboughadareh
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj P.O. Box 3158854119, Iran;
| | - Henryk Bujak
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Grunwaldzki 24A, 53-363 Wrocław, Poland;
- Research Centre for Cultivar Testing (COBORU), Słupia Wielka 34, 63-022 Słupia Wielka, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
| |
Collapse
|
11
|
Zhang C, Ma C, Zhu L, Yao M. Simultaneous determination of protoporphyrin IX and magnesium protoporphyrin IX in Arabidopsis thaliana and Camellia sinensis using UPLC-MS/MS. PLANT METHODS 2023; 19:34. [PMID: 36998023 PMCID: PMC10061815 DOI: 10.1186/s13007-023-01008-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUNDS Insertion of Mg2+ into protoporphyrin IX (PPIX) to produce magnesium-protoporphyrin IX (Mg-PPIX) was the first step toward chlorophyll biosynthesis, which not only imparts plants green pigmentation but underpins photosynthesis. Plants that blocked the conversion of PPIX to Mg-PPIX displayed yellowish or albino-lethal phenotypes. However, the lack of systematic study of the detection method and the metabolic difference between species have caused the research on chloroplast retrograde signaling controversial for a long time. RESULTS An advanced and sensitive UPLC-MS/MS strategy for determining PPIX and Mg-PPIX was established in two metabolic different plants, Arabidopsis thaliana (Columbia-0) and Camellia sinensis var. sinensis. Two metabolites could be extracted by 80% acetone (v/v) and 20% 0.1 M NH4OH (v/v) without hexane washing. Since the Mg-PPIX could be substantially de-metalized into PPIX in acidic conditions, analysis was carried out by UPLC-MS/MS with 0.1% ammonia (v/v) and 0.1% ammonium acetonitrile (v/v) as mobile phases using negative ion multiple reaction monitoring modes. Interestingly, it could be easier to monitor these two compounds in dehydrated samples rather than in fresh samples. Validation was performed in spiked samples and mean recoveries ranged from 70.5 to 916%, and the intra-day and inter-day variations were less than 7.5 and 10.9%, respectively. The limit of detection was 0.01 mg·kg- 1 and the limit of quantification was 0.05 mg·kg- 1. The contents of PPIX (1.67 ± 0.12 mg·kg- 1) and Mg-PPIX (3.37 ± 0.10 mg·kg- 1) in tea were significantly higher than in Arabidopsis (PPIX: 0.05 ± 0.02 mg·kg- 1; Mg-PPIX: 0.08 ± 0.01 mg·kg- 1) and they were only detected in the leaf. CONCLUSIONS Our study establishes a universal and reliable method for determining PPIX and Mg-PPIX in two plants using UPLC-MS/MS. This procedure will facilitate studying chlorophyll metabolism and natural chlorophyll production.
Collapse
Affiliation(s)
- Chenyu Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| | - Chunlei Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| | - Li Zhu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| | - Mingzhe Yao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| |
Collapse
|
12
|
Lasorella C, Fortunato S, Dipierro N, Jeran N, Tadini L, Vita F, Pesaresi P, de Pinto MC. Chloroplast-localized GUN1 contributes to the acquisition of basal thermotolerance in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:1058831. [PMID: 36618674 PMCID: PMC9813751 DOI: 10.3389/fpls.2022.1058831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Heat stress (HS) severely affects different cellular compartments operating in metabolic processes and represents a critical threat to plant growth and yield. Chloroplasts are crucial for heat stress response (HSR), signaling to the nucleus the environmental challenge and adjusting metabolic and biosynthetic functions accordingly. GENOMES UNCOUPLED 1 (GUN1), a chloroplast-localized protein, has been recognized as one of the main players of chloroplast retrograde signaling. Here, we investigate HSR in Arabidopsis wild-type and gun1 plantlets subjected to 2 hours of HS at 45°C. In wild-type plants, Reactive Oxygen Species (ROS) accumulate promptly after HS, contributing to transiently oxidize the cellular environment and acting as signaling molecules. After 3 hours of physiological recovery at growth temperature (22°C), the induction of enzymatic and non-enzymatic antioxidants prevents oxidative damage. On the other hand, gun1 mutants fail to induce the oxidative burst immediately after HS and accumulate ROS and oxidative damage after 3 hours of recovery at 22°C, thus resulting in enhanced sensitivity to HS. These data suggest that GUN1 is required to oxidize the cellular environment, participating in the acquisition of basal thermotolerance through the redox-dependent plastid-to-nucleus communication.
Collapse
Affiliation(s)
- Cecilia Lasorella
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Stefania Fortunato
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Nunzio Dipierro
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Nicolaj Jeran
- Department of Biosciences, University of Milano, Milano, Italy
| | - Luca Tadini
- Department of Biosciences, University of Milano, Milano, Italy
| | - Federico Vita
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Paolo Pesaresi
- Department of Biosciences, University of Milano, Milano, Italy
| | - Maria Concetta de Pinto
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
13
|
Griffin JHC, Toledo-Ortiz G. Plant photoreceptors and their signalling components in chloroplastic anterograde and retrograde communication. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7126-7138. [PMID: 35640572 PMCID: PMC9675593 DOI: 10.1093/jxb/erac220] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/18/2022] [Indexed: 05/27/2023]
Abstract
The red phytochrome and blue cryptochrome plant photoreceptors play essential roles in promoting genome-wide changes in nuclear and chloroplastic gene expression for photomorphogenesis, plastid development, and greening. While their importance in anterograde signalling has been long recognized, the molecular mechanisms involved remain under active investigation. More recently, the intertwining of the light signalling cascades with the retrograde signals for the optimization of chloroplast functions has been acknowledged. Advances in the field support the participation of phytochromes, cryptochromes, and key light-modulated transcription factors, including HY5 and the PIFs, in the regulation of chloroplastic biochemical pathways that produce retrograde signals, including the tetrapyrroles and the chloroplastic MEP-isoprenoids. Interestingly, in a feedback loop, the photoreceptors and their signalling components are targets themselves of these retrograde signals, aimed at optimizing photomorphogenesis to the status of the chloroplasts, with GUN proteins functioning at the convergence points. High light and shade are also conditions where the photoreceptors tune growth responses to chloroplast functions. Interestingly, photoreceptors and retrograde signals also converge in the modulation of dual-localized proteins (chloroplastic/nuclear) including WHIRLY and HEMERA/pTAC12, whose functions are required for the optimization of photosynthetic activities in changing environments and are proposed to act themselves as retrograde signals.
Collapse
|
14
|
Ashykhmina N, Chan KX, Frerigmann H, Van Breusegem F, Kopriva S, Flügge UI, Gigolashvili T. Dissecting the Role of SAL1 in Metabolizing the Stress Signaling Molecule 3′-Phosphoadenosine 5′-Phosphate in Different Cell Compartments. Front Mol Biosci 2022; 8:763795. [PMID: 35127814 PMCID: PMC8815814 DOI: 10.3389/fmolb.2021.763795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/24/2021] [Indexed: 11/24/2022] Open
Abstract
Plants possess the most highly compartmentalized eukaryotic cells. To coordinate their intracellular functions, plastids and the mitochondria are dependent on the flow of information to and from the nuclei, known as retrograde and anterograde signals. One mobile retrograde signaling molecule is the monophosphate 3′-phosphoadenosine 5′-phosphate (PAP), which is mainly produced from 3′-phosphoadenosine 5′-phosphosulfate (PAPS) in the cytosol and regulates the expression of a set of nuclear genes that modulate plant growth in response to biotic and abiotic stresses. The adenosine bisphosphate phosphatase enzyme SAL1 dephosphorylates PAP to AMP in plastids and the mitochondria, but can also rescue sal1 Arabidopsis phenotypes (PAP accumulation, leaf morphology, growth, etc.) when expressed in the cytosol and the nucleus. To understand better the roles of the SAL1 protein in chloroplasts, the mitochondria, nuclei, and the cytosol, we have attempted to complement the sal1 mutant by specifically cargoing the transgenic SAL1 protein to these four cell compartments. Overexpression of SAL1 protein targeted to the nucleus or the mitochondria alone, or co-targeted to chloroplasts and the mitochondria, complemented most aspects of the sal1 phenotypes. Notably, targeting SAL1 to chloroplasts or the cytosol did not effectively rescue the sal1 phenotypes as these transgenic lines accumulated very low levels of SAL1 protein despite overexpressing SAL1 mRNA, suggesting a possibly lower stability of the SAL1 protein in these compartments. The diverse transgenic SAL1 lines exhibited a range of PAP levels. The latter needs to reach certain thresholds in the cell for its impacts on different processes such as leaf growth, regulation of rosette morphology, sulfate homeostasis, and glucosinolate biosynthesis. Collectively, these findings provide an initial platform for further dissection of the role of the SAL1–PAP pathway in different cellular processes under stress conditions.
Collapse
Affiliation(s)
- Natallia Ashykhmina
- Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Kai Xun Chan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | | | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Ulf-Ingo Flügge
- Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Tamara Gigolashvili
- Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, Germany
- *Correspondence: Tamara Gigolashvili,
| |
Collapse
|
15
|
Wu R, Liu Z, Wang J, Guo C, Zhou Y, Bawa G, Rochaix JD, Sun X. COE2 Is Required for the Root Foraging Response to Nitrogen Limitation. Int J Mol Sci 2022; 23:ijms23020861. [PMID: 35055047 PMCID: PMC8778332 DOI: 10.3390/ijms23020861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 01/10/2023] Open
Abstract
There are numerous exchanges of signals and materials between leaves and roots, including nitrogen, which is one of the essential nutrients for plant growth and development. In this study we identified and characterized the Chlorophyll A/B-Binding Protein (CAB) (named coe2 for CAB overexpression 2) mutant, which is defective in the development of chloroplasts and roots under normal growth conditions. The phenotype of coe2 is caused by a mutation in the Nitric Oxide Associated (NOA1) gene that is implicated in a wide range of chloroplast functions including the regulation of metabolism and signaling of nitric oxide (NO). A transcriptome analysis reveals that expression of genes involved in metabolism and lateral root development are strongly altered in coe2 seedlings compared with WT. COE2 is expressed in hypocotyls, roots, root hairs, and root caps. Both the accumulation of NO and the growth of lateral roots are enhanced in WT but not in coe2 under nitrogen limitation. These new findings suggest that COE2-dependent signaling not only coordinates gene expression but also promotes chloroplast development and function by modulating root development and absorption of nitrogen compounds.
Collapse
Affiliation(s)
- Rui Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
| | - Zhixin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
| | - Jiajing Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
| | - Chenxi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
| | - Yaping Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
| | - George Bawa
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland;
| | - Xuwu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
- Correspondence:
| |
Collapse
|
16
|
Escobar-Tovar L, Sierra J, Hernández-Muñoz A, McQuinn RP, Mathioni S, Cordoba E, Colas des Francs-Small C, Meyers BC, Pogson B, León P. Deconvoluting apocarotenoid-mediated retrograde signaling networks regulating plastid translation and leaf development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1582-1599. [PMID: 33340183 DOI: 10.1111/tpj.15134] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Signals originating within plastids modulate organelle differentiation by transcriptionally regulating nuclear-encoded genes. These retrograde signals are also integral regulators of plant development, including leaf morphology. The clb5 mutant displays severe leaf morphology defects due to Apocarotenoid Signal 1 (ACS1) accumulation in the developmentally arrested plastid. Transcriptomic analysis of clb5 validates that ACS1 accumulation deregulates hundreds of nuclear genes, including the suppression of most genes encoding plastid ribosomal proteins. Herein, we order the molecular events causing the leaf phenotype associated with the accumulation of ACS1, which includes two consecutive retrograde signaling cascades. Firstly, ACS1 originating in the plastid drives inhibition of plastid translation (IPT) via nuclear transcriptome remodeling of chlororibosomal proteins, requiring light as an essential component. Subsequently, IPT results in leaf morphological defects via a GUN1-dependent pathway shared with seedlings undergoing chemical IPT treatments and is restricted to an early window of the leaf development. Collectively, this work advances our understanding of the complexity within plastid retrograde signaling exemplified by sequential signal exchange and consequences that in a particular temporal and spatial context contribute to the modulation of leaf development.
Collapse
Affiliation(s)
- Lina Escobar-Tovar
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Julio Sierra
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Arihel Hernández-Muñoz
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Ryan P McQuinn
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Sandra Mathioni
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO, 65211, USA
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 0200, Australia
| | - Elizabeth Cordoba
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Blake C Meyers
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO, 65211, USA
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 0200, Australia
| | - Barry Pogson
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Patricia León
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| |
Collapse
|
17
|
Anand A, Pandi G. Noncoding RNA: An Insight into Chloroplast and Mitochondrial Gene Expressions. Life (Basel) 2021; 11:life11010049. [PMID: 33450961 PMCID: PMC7828403 DOI: 10.3390/life11010049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Regulation of gene expression in any biological system is a complex process with many checkpoints at the transcriptional, post-transcriptional and translational levels. The control mechanism is mediated by various protein factors, secondary metabolites and a newly included regulatory member, i.e., noncoding RNAs (ncRNAs). It is known that ncRNAs modulate the mRNA or protein profiles of the cell depending on the degree of complementary and context of the microenvironment. In plants, ncRNAs are essential for growth and development in normal conditions by controlling various gene expressions and have emerged as a key player to guard plants during adverse conditions. In order to have smooth functioning of the plants under any environmental pressure, two very important DNA-harboring semi-autonomous organelles, namely, chloroplasts and mitochondria, are considered as main players. These organelles conduct the most crucial metabolic pathways that are required to maintain cell homeostasis. Thus, it is imperative to explore and envisage the molecular machineries responsible for gene regulation within the organelles and their coordination with nuclear transcripts. Therefore, the present review mainly focuses on ncRNAs origination and their gene regulation in chloroplasts and plant mitochondria.
Collapse
Affiliation(s)
- Asha Anand
- Correspondence: (A.A.); (G.P.); Tel.: +91-452-245-8230 (G.P.)
| | - Gopal Pandi
- Correspondence: (A.A.); (G.P.); Tel.: +91-452-245-8230 (G.P.)
| |
Collapse
|
18
|
Rotasperti L, Sansoni F, Mizzotti C, Tadini L, Pesaresi P. Barley's Second Spring as A Model Organism for Chloroplast Research. PLANTS 2020; 9:plants9070803. [PMID: 32604986 PMCID: PMC7411767 DOI: 10.3390/plants9070803] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Barley (Hordeum vulgare) has been widely used as a model crop for studying molecular and physiological processes such as chloroplast development and photosynthesis. During the second half of the 20th century, mutants such as albostrians led to the discovery of the nuclear-encoded, plastid-localized RNA polymerase and the retrograde (chloroplast-to-nucleus) signalling communication pathway, while chlorina-f2 and xantha mutants helped to shed light on the chlorophyll biosynthetic pathway, on the light-harvesting proteins and on the organization of the photosynthetic apparatus. However, during the last 30 years, a large fraction of chloroplast research has switched to the more “user-friendly” model species Arabidopsis thaliana, the first plant species whose genome was sequenced and published at the end of 2000. Despite its many advantages, Arabidopsis has some important limitations compared to barley, including the lack of a real canopy and the absence of the proplastid-to-chloroplast developmental gradient across the leaf blade. These features, together with the availability of large collections of natural genetic diversity and mutant populations for barley, a complete genome assembly and protocols for genetic transformation and gene editing, have relaunched barley as an ideal model species for chloroplast research. In this review, we provide an update on the genomics tools now available for barley, and review the biotechnological strategies reported to increase photosynthesis efficiency in model species, which deserve to be validated in barley.
Collapse
|
19
|
Richardson LGL, Schnell DJ. Origins, function, and regulation of the TOC-TIC general protein import machinery of plastids. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1226-1238. [PMID: 31730153 PMCID: PMC7031061 DOI: 10.1093/jxb/erz517] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/14/2019] [Indexed: 05/11/2023]
Abstract
The evolution of chloroplasts from the original endosymbiont involved the transfer of thousands of genes from the ancestral bacterial genome to the host nucleus, thereby combining the two genetic systems to facilitate coordination of gene expression and achieve integration of host and organelle functions. A key element of successful endosymbiosis was the evolution of a unique protein import system to selectively and efficiently target nuclear-encoded proteins to their site of function within the chloroplast after synthesis in the cytoplasm. The chloroplast TOC-TIC (translocon at the outer chloroplast envelope-translocon at the inner chloroplast envelope) general protein import system is conserved across the plant kingdom, and is a system of hybrid origin, with core membrane transport components adapted from bacterial protein targeting systems, and additional components adapted from host genes to confer the specificity and directionality of import. In vascular plants, the TOC-TIC system has diversified to mediate the import of specific, functionally related classes of plastid proteins. This functional diversification occurred as the plastid family expanded to fulfill cell- and tissue-specific functions in terrestrial plants. In addition, there is growing evidence that direct regulation of TOC-TIC activities plays an essential role in the dynamic remodeling of the organelle proteome that is required to coordinate plastid biogenesis with developmental and physiological events.
Collapse
Affiliation(s)
- Lynn G L Richardson
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Danny J Schnell
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
20
|
Li P, Liu H, Yang H, Pu X, Li C, Huo H, Chu Z, Chang Y, Lin Y, Liu L. Translocation of Drought-Responsive Proteins from the Chloroplasts. Cells 2020; 9:E259. [PMID: 31968705 PMCID: PMC7017212 DOI: 10.3390/cells9010259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/19/2022] Open
Abstract
Some chloroplast proteins are known to serve as messengers to transmit retrograde signals from chloroplasts to the nuclei in response to environmental stresses. However, whether particular chloroplast proteins respond to drought stress and serve as messengers for retrograde signal transduction are unclear. Here, we used isobaric tags for relative and absolute quantitation (iTRAQ) to monitor the proteomic changes in tobacco (Nicotiana benthamiana) treated with drought stress/re-watering. We identified 3936 and 1087 differentially accumulated total leaf and chloroplast proteins, respectively, which were grouped into 16 categories. Among these, one particular category of proteins, that includes carbonic anhydrase 1 (CA1), exhibited a great decline in chloroplasts, but a remarkable increase in leaves under drought stress. The subcellular localizations of CA1 proteins from moss (Physcomitrella patens), Arabidopsis thaliana and rice (Oryza sativa) in P. patens protoplasts consistently showed that CA1 proteins gradually diminished within chloroplasts but increasingly accumulated in the cytosol under osmotic stress treatment, suggesting that they could be translocated from chloroplasts to the cytosol and act as a signal messenger from the chloroplast. Our results thus highlight the potential importance of chloroplast proteins in retrograde signaling pathways and provide a set of candidate proteins for further research.
Collapse
Affiliation(s)
- Ping Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (H.L.); (C.L.)
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China; (H.Y.); (X.P.)
| | - Haoju Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (H.L.); (C.L.)
| | - Hong Yang
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China; (H.Y.); (X.P.)
| | - Xiaojun Pu
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China; (H.Y.); (X.P.)
| | - Chuanhong Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (H.L.); (C.L.)
| | - Heqiang Huo
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, University of Florida, Miami, FL 32703, USA;
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Taian 271018, China;
| | - Yuxiao Chang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (H.L.); (C.L.)
| | - Li Liu
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China; (H.Y.); (X.P.)
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430070, China
| |
Collapse
|
21
|
Ascorbate and Thiamin: Metabolic Modulators in Plant Acclimation Responses. PLANTS 2020; 9:plants9010101. [PMID: 31941157 PMCID: PMC7020166 DOI: 10.3390/plants9010101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
Cell compartmentalization allows incompatible chemical reactions and localised responses to occur simultaneously, however, it also requires a complex system of communication between compartments in order to maintain the functionality of vital processes. It is clear that multiple such signals must exist, yet little is known about the identity of the key players orchestrating these interactions or about the role in the coordination of other processes. Mitochondria and chloroplasts have a considerable number of metabolites in common and are interdependent at multiple levels. Therefore, metabolites represent strong candidates as communicators between these organelles. In this context, vitamins and similar small molecules emerge as possible linkers to mediate metabolic crosstalk between compartments. This review focuses on two vitamins as potential metabolic signals within the plant cell, vitamin C (L-ascorbate) and vitamin B1 (thiamin). These two vitamins demonstrate the importance of metabolites in shaping cellular processes working as metabolic signals during acclimation processes. Inferences based on the combined studies of environment, genotype, and metabolite, in order to unravel signaling functions, are also highlighted.
Collapse
|
22
|
Liu L, Lin N, Liu X, Yang S, Wang W, Wan X. From Chloroplast Biogenesis to Chlorophyll Accumulation: The Interplay of Light and Hormones on Gene Expression in Camellia sinensis cv. Shuchazao Leaves. FRONTIERS IN PLANT SCIENCE 2020; 11:256. [PMID: 32218794 PMCID: PMC7078671 DOI: 10.3389/fpls.2020.00256] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/19/2020] [Indexed: 05/17/2023]
Abstract
Chloroplast development and chlorophyll metabolism have been well described in model plants but not in perennial woody crops. Of particular interest is the interplay between light and hormones under shade conditions. We report that the shade induced accumulation of chlorophylls in Camellia sinensis cv. Shuchazao leaves is at least as a result of (a) positive changes in chloroplast development and (b) light/hormonal regulation of genes and transcription factors involved in the chlorophyll biosynthesis pathway. Under shade conditions, leaves developed an abundance of enlarged chloroplasts encapsulating more prominent thylakoid membranes. Four major metabolites in the chlorophyll biosynthesis pathway namely Chl a, Chl b, DPP, and Mg-Proto IX increased under shade conditions while PBG decreased significantly. Significant changes were found at the transcription level of regulators of chloroplast biogenesis (GLK1 and LHCB), the structural genes in the chlorophyll biosynthesis pathway (HEMA1, CLH1, PORA, and CAO) and potential components involved in light signaling (PHYA, CRY1, HY5, and DELLAs). Two central signal integrators (GLK1 and LHCB) between the nucleus and chloroplast showed clear responses to shade, suggesting a crucial role of light in regulating chloroplast development in tea leaves. Concurrent with the changes in gene expression, the concentrations of endogenous phytohormones (auxin, cytokinin, and gibberellins) increased significantly in the later stages of shade conditions. Two key integrators involved in the hormone signal pathways, EIN3 and EBF1/2, increased under shade conditions suggesting that shade induced changes to hormone levels may play some role in modulating chlorophyll biosynthesis in the tea leaves. Overall, this data suggests that the light and hormone influence over chloroplast development and chlorophyll biosynthesis in Camellia is similar to that of Arabidopsis. This study provides new insights into the molecular mechanisms that regulate chlorophyll biosynthesis in response to light and hormones in a commercially important woody plant such as Camellia, which may facilitate the breeding of high-chlorophyll tea cultivars for the improvement of sensory features of the green tea product.
Collapse
|
23
|
Wang X, Zhao L, Man Y, Li X, Wang L, Xiao J. PDM4, a Pentatricopeptide Repeat Protein, Affects Chloroplast Gene Expression and Chloroplast Development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:1198. [PMID: 32849743 PMCID: PMC7432182 DOI: 10.3389/fpls.2020.01198] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 07/23/2020] [Indexed: 05/10/2023]
Abstract
Extensive studies have been carried out on chloroplast gene expression and chloroplast development; however, the regulatory mechanism is still largely unknown. Here, we characterized Pigment-Defective Mutant4 (PDM4), a P-type PPR protein localized in chloroplast. The pdm4 mutant showed seedling-lethal and albino phenotype under heterotrophic growth conditions. Transmission electron microscopic analysis revealed that thylakoid structure was totally disrupted in pdm4 mutant and eventually led to the breakdown of chloroplasts. The levels of several chloroplast- and nuclear-encoded proteins are strongly reduced in pdm4 mutant. Besides, transcript profile analysis detected that, in pdm4 mutant, the expression of plastid-encoded RNA polymerase-dependent genes was markedly affected, and deviant chloroplast rRNA processing was also observed. In addition, we found that PDM4 functions in the splicing of group II introns and may also be involved in the assembly of the 50S ribosomal particle. Our results demonstrate that PDM4 plays an important role in chloroplast gene expression and chloroplast development in Arabidopsis.
Collapse
Affiliation(s)
- Xinwei Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Lirong Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yi Man
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianwei Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- *Correspondence: Jianwei Xiao,
| |
Collapse
|
24
|
Testone G, Baldoni E, Iannelli MA, Nicolodi C, Di Giacomo E, Pietrini F, Mele G, Giannino D, Frugis G. Transcription Factor Networks in Leaves of Cichorium endivia: New Insights into the Relationship Between Photosynthesis and Leaf Development. PLANTS (BASEL, SWITZERLAND) 2019; 8:E531. [PMID: 31766484 PMCID: PMC6963412 DOI: 10.3390/plants8120531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/18/2022]
Abstract
Cichorium endivia is a leafy crop closely related to Lactuca sativa that comprises two major botanical varieties characterized by a high degree of intraspecific morphological variation: var. latifolium with broad leaves (escarole) and var. crispum with narrow crisp curly leaves (endive). To investigate the relationship between leaf morphology and photosynthetic activity, escaroles and endives were used as a crop model due to the striking morphological diversity of their leaves. We constructed a leaf database for transcription factors (TFs) and photosynthesis-related genes from a refined C. endivia transcriptome and used RNA-seq transcriptomic data from leaves of four commercial endive and escarole cultivars to explore transcription factor regulatory networks. Cluster and gene co-expression network (GCN) analyses identified two main anticorrelated modules that control photosynthesis. Analysis of the GCN network topological properties identified known and novel hub genes controlling photosynthesis, and candidate developmental genes at the boundaries between shape and function. Differential expression analysis between broad and curly leaves suggested three novel TFs putatively involved in leaf shape diversity. Physiological analysis of the photosynthesis properties and gene expression studies on broad and curly leaves provided new insights into the relationship between leaf shape and function.
Collapse
Affiliation(s)
- Giulio Testone
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Elena Baldoni
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Consiglio Nazionale delle Ricerche (CNR), Via Bassini 15, 20133 Milano, Italy
| | - Maria Adelaide Iannelli
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Chiara Nicolodi
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Elisabetta Di Giacomo
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Fabrizio Pietrini
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km 29,300, 00015 Monterotondo Scalo (Roma), Italy;
| | - Giovanni Mele
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Donato Giannino
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Giovanna Frugis
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| |
Collapse
|
25
|
D'Alessandro S, Mizokami Y, Légeret B, Havaux M. The Apocarotenoid β-Cyclocitric Acid Elicits Drought Tolerance in Plants. iScience 2019; 19:461-473. [PMID: 31437750 PMCID: PMC6710299 DOI: 10.1016/j.isci.2019.08.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/12/2019] [Accepted: 08/01/2019] [Indexed: 12/03/2022] Open
Abstract
β-Cyclocitral (β-CC) is a volatile compound deriving from 1O2 oxidation of β-carotene in plant leaves. β-CC elicits a retrograde signal, modulating 1O2-responsive genes and enhancing tolerance to photooxidative stress. Here, we show that β-CC is converted into water-soluble β-cyclocitric acid (β-CCA) in leaves. This metabolite is a signal that enhances plant tolerance to drought by a mechanism different from known responses such as stomatal closure, osmotic potential adjustment, and jasmonate signaling. This action of β-CCA is a conserved mechanism, being observed in various plant species, and it does not fully overlap with the β-CC-dependent signaling, indicating that β-CCA induces only a branch of β-CC signaling. Overexpressing SCARECROW-LIKE14 (SCL14, a regulator of xenobiotic detoxification) increased drought tolerance and potentiated the protective effect of β-CCA, showing the involvement of the SCL14-dependent detoxification in the phenomenon. β-CCA is a bioactive apocarotenoid that could potentially be used to protect crop plants against drought.
Collapse
Affiliation(s)
- Stefano D'Alessandro
- Aix Marseille University, CEA, CNRS, UMR7265, BIAM, CEA/Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Yusuke Mizokami
- Aix Marseille University, CEA, CNRS, UMR7265, BIAM, CEA/Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Bertrand Légeret
- Aix Marseille University, CEA, CNRS, UMR7265, BIAM, CEA/Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Michel Havaux
- Aix Marseille University, CEA, CNRS, UMR7265, BIAM, CEA/Cadarache, 13108 Saint-Paul-lez-Durance, France.
| |
Collapse
|
26
|
de Oliveira MVV, Jin X, Chen X, Griffith D, Batchu S, Maeda HA. Imbalance of tyrosine by modulating TyrA arogenate dehydrogenases impacts growth and development of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:901-922. [PMID: 30457178 DOI: 10.1111/tpj.14169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
l-Tyrosine is an essential aromatic amino acid required for the synthesis of proteins and a diverse array of plant natural products; however, little is known on how the levels of tyrosine are controlled in planta and linked to overall growth and development. Most plants synthesize tyrosine by TyrA arogenate dehydrogenases, which are strongly feedback-inhibited by tyrosine and encoded by TyrA1 and TyrA2 genes in Arabidopsis thaliana. While TyrA enzymes have been extensively characterized at biochemical levels, their in planta functions remain uncertain. Here we found that TyrA1 suppression reduces seed yield due to impaired anther dehiscence, whereas TyrA2 knockout leads to slow growth with reticulate leaves. The tyra2 mutant phenotypes were exacerbated by TyrA1 suppression and rescued by the expression of TyrA2, TyrA1 or tyrosine feeding. Low-light conditions synchronized the tyra2 and wild-type growth, and ameliorated the tyra2 leaf reticulation. After shifting to normal light, tyra2 transiently decreased tyrosine and subsequently increased aspartate before the appearance of the leaf phenotypes. Overexpression of the deregulated TyrA enzymes led to hyper-accumulation of tyrosine, which was also accompanied by elevated aspartate and reticulate leaves. These results revealed that TyrA1 and TyrA2 have distinct and overlapping functions in flower and leaf development, respectively, and that imbalance of tyrosine, caused by altered TyrA activity and regulation, impacts growth and development of Arabidopsis. The findings provide critical bases for improving the production of tyrosine and its derived natural products, and further elucidating the coordinated metabolic and physiological processes to maintain tyrosine levels in plants.
Collapse
Affiliation(s)
- Marcos V V de Oliveira
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Xing Jin
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Xuan Chen
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Daniel Griffith
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Sai Batchu
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
- Department of Biology, The College of New Jersey, Biology Building, 2000 Pennington Road, Ewing, NJ, 08628, USA
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| |
Collapse
|
27
|
Yang X, Li Y, Qi M, Liu Y, Li T. Targeted Control of Chloroplast Quality to Improve Plant Acclimation: From Protein Import to Degradation. FRONTIERS IN PLANT SCIENCE 2019; 10:958. [PMID: 31402924 PMCID: PMC6670758 DOI: 10.3389/fpls.2019.00958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/09/2019] [Indexed: 05/07/2023]
Abstract
The chloroplast is an important energy-producing organelle acting as an environmental sensor for the plant cell. The normal turnover of the entire damaged chloroplast and its specific components is required for efficient photosynthesis and other metabolic reactions under stress conditions. Nuclear-encoded proteins must be imported into the chloroplast through different membrane transport complexes, and the orderly protein import plays an important role in plant adaptive regulation. Under adverse environmental conditions, the damaged chloroplast or its specific components need to be degraded efficiently to ensure normal cell function. In this review, we discuss the molecular mechanism of protein import and degradation in the chloroplast. Specifically, quality control of chloroplast from protein import to degradation and associated regulatory pathways are discussed to better understand how plants adapt to environmental stress by fine-tuning chloroplast homeostasis, which will benefit breeding approaches to improve crop yield.
Collapse
|
28
|
Rea G, Antonacci A, Lambreva MD, Mattoo AK. Features of cues and processes during chloroplast-mediated retrograde signaling in the alga Chlamydomonas. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:193-206. [PMID: 29807591 DOI: 10.1016/j.plantsci.2018.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/04/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Retrograde signaling is an intracellular communication process defined by cues generated in chloroplast and mitochondria which traverse membranes to their destination in the nucleus in order to regulate nuclear gene expression and protein synthesis. The coding and decoding of such organellar message(s) involve gene medleys and metabolic components about which more is known in higher plants than the unicellular organisms such as algae. Chlamydomonas reinhardtii is an oxygenic microalgal model for genetic and physiological studies. It harbors a single chloroplast and is amenable for generating mutants. The focus of this review is on studies that delineate retrograde signaling in Chlamydomonas vis a vis higher plants. Thus, communication networks between chloroplast and nucleus involving photosynthesis- and ROS-generated signals, functional tetrapyrrole biosynthesis intermediates, and Ca2+-signaling that modulate nuclear gene expression in this alga are discussed. Conceptually, different signaling components converge to regulate either the same or functionally-overlapping gene products.
Collapse
Affiliation(s)
- Giuseppina Rea
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29, 3 00015 Monterotondo Scalo, Rome, Italy
| | - Amina Antonacci
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29, 3 00015 Monterotondo Scalo, Rome, Italy
| | - Maya D Lambreva
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29, 3 00015 Monterotondo Scalo, Rome, Italy
| | - Autar K Mattoo
- The Henry A Wallace Agricultural Research Centre, U.S. Department of Agriculture, Sustainable Agricultural Systems Laboratory, Beltsville, MD 20705, USA.
| |
Collapse
|
29
|
Gudys K, Guzy-Wrobelska J, Janiak A, Dziurka MA, Ostrowska A, Hura K, Jurczyk B, Żmuda K, Grzybkowska D, Śróbka J, Urban W, Biesaga-Koscielniak J, Filek M, Koscielniak J, Mikołajczak K, Ogrodowicz P, Krystkowiak K, Kuczyńska A, Krajewski P, Szarejko I. Prioritization of Candidate Genes in QTL Regions for Physiological and Biochemical Traits Underlying Drought Response in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2018; 9:769. [PMID: 29946328 PMCID: PMC6005862 DOI: 10.3389/fpls.2018.00769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/18/2018] [Indexed: 05/27/2023]
Abstract
Drought is one of the most adverse abiotic factors limiting growth and productivity of crops. Among them is barley, ranked fourth cereal worldwide in terms of harvested acreage and production. Plants have evolved various mechanisms to cope with water deficit at different biological levels, but there is an enormous challenge to decipher genes responsible for particular complex phenotypic traits, in order to develop drought tolerant crops. This work presents a comprehensive approach for elucidation of molecular mechanisms of drought tolerance in barley at the seedling stage of development. The study includes mapping of QTLs for physiological and biochemical traits associated with drought tolerance on a high-density function map, projection of QTL confidence intervals on barley physical map, and the retrievement of positional candidate genes (CGs), followed by their prioritization based on Gene Ontology (GO) enrichment analysis. A total of 64 QTLs for 25 physiological and biochemical traits that describe plant water status, photosynthetic efficiency, osmoprotectant and hormone content, as well as antioxidant activity, were positioned on a consensus map, constructed using RIL populations developed from the crosses between European and Syrian genotypes. The map contained a total of 875 SNP, SSR and CGs, spanning 941.86 cM with resolution of 1.1 cM. For the first time, QTLs for ethylene, glucose, sucrose, maltose, raffinose, α-tocopherol, γ-tocotrienol content, and catalase activity, have been mapped in barley. Based on overlapping confidence intervals of QTLs, 11 hotspots were identified that enclosed more than 60% of mapped QTLs. Genetic and physical map integration allowed the identification of 1,101 positional CGs within the confidence intervals of drought response-specific QTLs. Prioritization resulted in the designation of 143 CGs, among them were genes encoding antioxidants, carboxylic acid biosynthesis enzymes, heat shock proteins, small auxin up-regulated RNAs, nitric oxide synthase, ATP sulfurylases, and proteins involved in regulation of flowering time. This global approach may be proposed for identification of new CGs that underlies QTLs responsible for complex traits.
Collapse
Affiliation(s)
- Kornelia Gudys
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
- Department of Botany and Nature Protection, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Justyna Guzy-Wrobelska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Agnieszka Janiak
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Michał A. Dziurka
- Department of Developmental Biology, Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - Agnieszka Ostrowska
- Department of Developmental Biology, Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Hura
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Krakow, Poland
| | - Barbara Jurczyk
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Krakow, Poland
| | - Katarzyna Żmuda
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Krakow, Poland
| | - Daria Grzybkowska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Joanna Śróbka
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Wojciech Urban
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Jolanta Biesaga-Koscielniak
- Department of Developmental Biology, Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - Maria Filek
- Department of Developmental Biology, Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - Janusz Koscielniak
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Krakow, Poland
| | - Krzysztof Mikołajczak
- Department of Biotechnology, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Piotr Ogrodowicz
- Department of Biotechnology, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Karolina Krystkowiak
- Department of Biotechnology, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
- Department of Plant Functional Metabolomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anetta Kuczyńska
- Department of Biotechnology, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Paweł Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| |
Collapse
|
30
|
Sakamoto W, Takami T. Chloroplast DNA Dynamics: Copy Number, Quality Control and Degradation. PLANT & CELL PHYSIOLOGY 2018; 59:1120-1127. [PMID: 29860378 DOI: 10.1093/pcp/pcy084] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/01/2018] [Indexed: 05/16/2023]
Abstract
Endosymbiotically originated chloroplast DNA (cpDNA) encodes part of the genetic information needed to fulfill chloroplast function, including fundamental processes such as photosynthesis. In the last two decades, advances in genome analysis led to the identification of a considerable number of cpDNA sequences from various species. While these data provided the consensus features of cpDNA organization and chloroplast evolution in plants, how cpDNA is maintained through development and is inherited remains to be fully understood. In particular, the fact that cpDNA exists as multiple copies despite its limited genetic capacity raises the important question of how copy number is maintained or whether cpDNA is subjected to quantitative fluctuation or even developmental degradation. For example, cpDNA is abundant in leaves, where it forms punctate structures called nucleoids, which seemingly alter their morphologies and numbers depending on the developmental status of the chloroplast. In this review, we summarize our current understanding of 'cpDNA dynamics', focusing on the changes in DNA abundance. A special focus is given to the cpDNA degradation mechanism, which appears to be mediated by Defective in Pollen organelle DNA degradation 1 (DPD1), a recently discovered organelle exonuclease. The physiological significance of cpDNA degradation in flowering plants is also discussed.
Collapse
Affiliation(s)
- Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| | - Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
31
|
Nawaz G, Lee K, Park SJ, Kim YO, Kang H. A chloroplast-targeted cabbage DEAD-box RNA helicase BrRH22 confers abiotic stress tolerance to transgenic Arabidopsis plants by affecting translation of chloroplast transcripts. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:336-342. [PMID: 29653436 DOI: 10.1016/j.plaphy.2018.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/12/2018] [Accepted: 04/06/2018] [Indexed: 05/06/2023]
Abstract
Although the roles of many DEAD-box RNA helicases (RHs) have been determined in the nucleus as well as in cytoplasm during stress responses, the importance of chloroplast-targeted DEAD-box RHs in stress response remains largely unknown. In this study, we determined the function of BrRH22, a chloroplast-targeted DEAD-box RH in cabbage (Brassica rapa), in abiotic stress responses. The expression of BrRH22 was markedly increased by drought, heat, salt, or cold stress and by ABA treatment, but was largely decreased by UV stress. Expression of BrRH22 in Arabidopsis enhanced germination and plantlet growth under high salinity or drought stress. BrRH22-expressing plants displayed a higher cotyledon greening and better plantlet growth upon ABA treatment due to decreases in the levels of ABI3, ABI4, and ABI5. Further, BrRH22 affected translation of several chloroplast transcripts under stress. Notably, BrRH22 had RNA chaperone function. These results altogether suggest that chloroplast-transported BrRH22 contributes positively to the response of transgenic Arabidopsis to abiotic stress by affecting translation of chloroplast genes via its RNA chaperone activity.
Collapse
Affiliation(s)
- Ghazala Nawaz
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Kwanuk Lee
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Su Jung Park
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Yeon-Ok Kim
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.
| |
Collapse
|
32
|
Zhang W, Zhong H, Lu H, Zhang Y, Deng X, Huang K, Duanmu D. Characterization of Ferredoxin-Dependent Biliverdin Reductase PCYA1 Reveals the Dual Function in Retrograde Bilin Biosynthesis and Interaction With Light-Dependent Protochlorophyllide Oxidoreductase LPOR in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2018; 9:676. [PMID: 29875782 PMCID: PMC5974162 DOI: 10.3389/fpls.2018.00676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/03/2018] [Indexed: 05/27/2023]
Abstract
Bilins are linear tetrapyrroles commonly used as chromophores of phycobiliproteins and phytochromes for light-harvesting or light-sensing in photosynthetic organisms. Many eukaryotic algae lack both phycobiliproteins and phytochromes, but retain the bilin biosynthetic enzymes including heme oxygenase (HO/HMOX) and ferredoxin-dependent biliverdin reductase (FDBR). Previous studies on Chlamydomonas reinhardtii heme oxygenase mutant (hmox1) have shown that bilins are not only essential retrograde signals to mitigate oxidative stress during diurnal dark-to-light transitions, they are also required for chlorophyll accumulation and maintenance of a functional photosynthetic apparatus in the light. However, the underlying mechanism of bilin-mediated regulation of chlorophyll biosynthesis is unclear. In this study, Chlamydomonas phycocyanobilin:ferredoxin oxidoreductase PCYA1 FDBR domain was found to specifically interact with the rate-limiting chlorophyll biosynthetic enzyme LPOR (light-dependent protochlorophyllide oxidoreductase). PCYA1 is partially associated with chloroplast envelope membrane, consistent with the observed export of bilin from chloroplast to cytosol by cytosolic expression of a bilin-binding reporter protein in Chlamydomonas. Both the pcya1-1 mutant with the carboxyl-terminal extension of PCYA1 eliminated and efficient knockdown of PCYA1 expression by artificial microRNA exhibited no significant impact on algal phototrophic growth and photosynthetic proteins accumulation, indicating that the conserved FDBR domain is sufficient and minimally required for bilin biosynthesis and functioning. Taken together, these studies provide novel insights into the regulatory role of PCYA1 in chlorophyll biosynthesis via interaction with key Chl biosynthetic enzyme.
Collapse
Affiliation(s)
- Weiqing Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huan Zhong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hui Lu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuxiang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuan Deng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
33
|
Ties that bind: the integration of plastid signalling pathways in plant cell metabolism. Essays Biochem 2018; 62:95-107. [PMID: 29563221 DOI: 10.1042/ebc20170011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022]
Abstract
Plastids are critical organelles in plant cells that perform diverse functions and are central to many metabolic pathways. Beyond their major roles in primary metabolism, of which their role in photosynthesis is perhaps best known, plastids contribute to the biosynthesis of phytohormones and other secondary metabolites, store critical biomolecules, and sense a range of environmental stresses. Accordingly, plastid-derived signals coordinate a host of physiological and developmental processes, often by emitting signalling molecules that regulate the expression of nuclear genes. Several excellent recent reviews have provided broad perspectives on plastid signalling pathways. In this review, we will highlight recent advances in our understanding of chloroplast signalling pathways. Our discussion focuses on new discoveries illuminating how chloroplasts determine life and death decisions in cells and on studies elucidating tetrapyrrole biosynthesis signal transduction networks. We will also examine the role of a plastid RNA helicase, ISE2, in chloroplast signalling, and scrutinize intriguing results investigating the potential role of stromules in conducting signals from the chloroplast to other cellular locations.
Collapse
|
34
|
Ishiga Y, Watanabe M, Ishiga T, Tohge T, Matsuura T, Ikeda Y, Hoefgen R, Fernie AR, Mysore KS. The SAL-PAP Chloroplast Retrograde Pathway Contributes to Plant Immunity by Regulating Glucosinolate Pathway and Phytohormone Signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:829-841. [PMID: 28703028 DOI: 10.1094/mpmi-03-17-0055-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chloroplasts have a crucial role in plant immunity against pathogens. Increasing evidence suggests that phytopathogens target chloroplast homeostasis as a pathogenicity mechanism. In order to regulate the performance of chloroplasts under stress conditions, chloroplasts produce retrograde signals to alter nuclear gene expression. Many signals for the chloroplast retrograde pathway have been identified, including chlorophyll intermediates, reactive oxygen species, and metabolic retrograde signals. Although there is a reasonably good understanding of chloroplast retrograde signaling in plant immunity, some signals are not well-understood. In order to understand the role of chloroplast retrograde signaling in plant immunity, we investigated Arabidopsis chloroplast retrograde signaling mutants in response to pathogen inoculation. sal1 mutants (fry1-2 and alx8) responsible for the SAL1-PAP retrograde signaling pathway showed enhanced disease symptoms not only to the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000 but, also, to the necrotrophic pathogen Pectobacterium carotovorum subsp. carotovorum EC1. Glucosinolate profiles demonstrated the reduced accumulation of aliphatic glucosinolates in the fry1-2 and alx8 mutants compared with the wild-type Col-0 in response to DC3000 infection. In addition, quantification of multiple phytohormones and analyses of their gene expression profiles revealed that both the salicylic acid (SA)- and jasmonic acid (JA)-mediated signaling pathways were down-regulated in the fry1-2 and alx8 mutants. These results suggest that the SAL1-PAP chloroplast retrograde pathway is involved in plant immunity by regulating the SA- and JA-mediated signaling pathways.
Collapse
Affiliation(s)
- Yasuhiro Ishiga
- 1 Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- 2 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Mutsumi Watanabe
- 3 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; and
| | - Takako Ishiga
- 1 Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- 2 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Takayuki Tohge
- 3 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; and
| | - Takakazu Matsuura
- 4 Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Yoko Ikeda
- 4 Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Rainer Hoefgen
- 3 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; and
| | - Alisdair R Fernie
- 3 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; and
| | | |
Collapse
|
35
|
Börner T. The discovery of plastid-to-nucleus retrograde signaling-a personal perspective. PROTOPLASMA 2017; 254:1845-1855. [PMID: 28337540 PMCID: PMC5610210 DOI: 10.1007/s00709-017-1104-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/10/2017] [Indexed: 05/21/2023]
Abstract
DNA and machinery for gene expression have been discovered in chloroplasts during the 1960s. It was soon evident that the chloroplast genome is relatively small, that most genes for chloroplast-localized proteins reside in the nucleus and that chloroplast membranes, ribosomes, and protein complexes are composed of proteins encoded in both the chloroplast and the nuclear genome. This situation has made the existence of mechanisms highly probable that coordinate the gene expression in plastids and nucleus. In the 1970s, the first evidence for plastid signals controlling nuclear gene expression was provided by studies on plastid ribosome deficient mutants with reduced amounts and/or activities of nuclear-encoded chloroplast proteins including the small subunit of Rubisco, ferredoxin NADP+ reductase, and enzymes of the Calvin cycle. This review describes first models of plastid-to-nucleus signaling and their discovery. Today, many plastid signals are known. They do not only balance gene expression in chloroplasts and nucleus during developmental processes but are also generated in response to environmental changes sensed by the organelles.
Collapse
Affiliation(s)
- Thomas Börner
- Institute of Biology, Molecular Genetics, Humboldt University Berlin, Rhoda Erdmann Haus, Philippstr 13, 10115, Berlin, Germany.
| |
Collapse
|
36
|
Liu Y, Zhang W, Zhang K, You Q, Yan H, Jiao Y, Jiang J, Xu W, Su Z. Genome-wide mapping of DNase I hypersensitive sites reveals chromatin accessibility changes in Arabidopsis euchromatin and heterochromatin regions under extended darkness. Sci Rep 2017. [PMID: 28642500 PMCID: PMC5481438 DOI: 10.1038/s41598-017-04524-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Light, as the energy source in photosynthesis, is essential for plant growth and development. Extended darkness causes dramatic gene expression changes. In this study, we applied DNase-seq (DNase I hypersensitive site sequencing) to study changes of chromatin accessibility in euchromatic and heterochromatic regions under extended darkness in Arabidopsis. We generated 27 Gb DNase-seq and 67.6 Gb RNA-seq data to investigate chromatin accessibility changes and global gene expression under extended darkness and control condition in Arabidopsis. We found that ~40% DHSs (DNaseI hypersensitive sites) were diminished under darkness. In non-TE regions, the majority of DHS-changed genes were DHS-diminished under darkness. A total of 519 down-regulated genes were associated with diminished DHSs under darkness, mainly involved in photosynthesis process and retrograde signaling, and were regulated by chloroplast maintenance master regulators such as GLK1. In TE regions, approximately half of the DHS-changed TEs were DHS-increased under darkness and were primarily associated with the LTR/Gypsy retrotransposons in the heterochromatin flanking the centromeres. In contrast, DHS-diminished TEs under darkness were enriched in Copia, LINE, and MuDR dispersed across chromosomes. Together, our results indicated that extended darkness resulted in more increased chromatin compaction in euchromatin and decompaction in heterochromatin, thus further leading to gene expression changes in Arabidopsis.
Collapse
Affiliation(s)
- Yue Liu
- College of Biological Sciences, China Agricultural University, State key Laboratory of Plant Physiology and Biochemistry, Beijing, China
| | - Wenli Zhang
- Nanjing Agricultural University, State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing, China
| | - Kang Zhang
- College of Biological Sciences, China Agricultural University, State key Laboratory of Plant Physiology and Biochemistry, Beijing, China
| | - Qi You
- College of Biological Sciences, China Agricultural University, State key Laboratory of Plant Physiology and Biochemistry, Beijing, China
| | - Hengyu Yan
- College of Biological Sciences, China Agricultural University, State key Laboratory of Plant Physiology and Biochemistry, Beijing, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Jiming Jiang
- University of Wisconsin-Madison, Department of Horticulture, Madison, WI, USA
| | - Wenying Xu
- College of Biological Sciences, China Agricultural University, State key Laboratory of Plant Physiology and Biochemistry, Beijing, China
| | - Zhen Su
- College of Biological Sciences, China Agricultural University, State key Laboratory of Plant Physiology and Biochemistry, Beijing, China.
| |
Collapse
|
37
|
de Souza A, Wang JZ, Dehesh K. Retrograde Signals: Integrators of Interorganellar Communication and Orchestrators of Plant Development. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:85-108. [PMID: 27813652 DOI: 10.1146/annurev-arplant-042916-041007] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Interorganellar cooperation maintained via exquisitely controlled retrograde-signaling pathways is an evolutionary necessity for maintenance of cellular homeostasis. This signaling feature has therefore attracted much research attention aimed at improving understanding of the nature of these communication signals, how the signals are sensed, and ultimately the mechanism by which they integrate targeted processes that collectively culminate in organellar cooperativity. The answers to these questions will provide insight into how retrograde-signal-mediated regulatory mechanisms are recruited and which biological processes are targeted, and will advance our understanding of how organisms balance metabolic investments in growth against adaptation to environmental stress. This review summarizes the present understanding of the nature and the functional complexity of retrograde signals as integrators of interorganellar communication and orchestrators of plant development, and offers a perspective on the future of this critical and dynamic area of research.
Collapse
Affiliation(s)
- Amancio de Souza
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521;
| | - Jin-Zheng Wang
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521;
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521;
| |
Collapse
|
38
|
Vidal-Meireles A, Neupert J, Zsigmond L, Rosado-Souza L, Kovács L, Nagy V, Galambos A, Fernie AR, Bock R, Tóth SZ. Regulation of ascorbate biosynthesis in green algae has evolved to enable rapid stress-induced response via the VTC2 gene encoding GDP-l-galactose phosphorylase. THE NEW PHYTOLOGIST 2017; 214:668-681. [PMID: 28112386 DOI: 10.1111/nph.14425] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/04/2016] [Indexed: 05/22/2023]
Abstract
Ascorbate (vitamin C) plays essential roles in stress resistance, development, signaling, hormone biosynthesis and regulation of gene expression; however, little is known about its biosynthesis in algae. In order to provide experimental proof for the operation of the Smirnoff-Wheeler pathway described for higher plants and to gain more information on the regulation of ascorbate biosynthesis in Chlamydomonas reinhardtii, we targeted the VTC2 gene encoding GDP-l-galactose phosphorylase using artificial microRNAs. Ascorbate concentrations in VTC2 amiRNA lines were reduced to 10% showing that GDP-l-galactose phosphorylase plays a pivotal role in ascorbate biosynthesis. The VTC2 amiRNA lines also grow more slowly, have lower chlorophyll content, and are more susceptible to stress than the control strains. We also demonstrate that: expression of the VTC2 gene is rapidly induced by H2 O2 and 1 O2 resulting in a manifold increase in ascorbate content; in contrast to plants, there is no circadian regulation of ascorbate biosynthesis; photosynthesis is not required per se for ascorbate biosynthesis; and Chlamydomonas VTC2 lacks negative feedback regulation by ascorbate in the physiological concentration range. Our work demonstrates that ascorbate biosynthesis is also highly regulated in Chlamydomonas albeit via mechanisms distinct from those previously described in land plants.
Collapse
Affiliation(s)
- André Vidal-Meireles
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Juliane Neupert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Laura Zsigmond
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Laise Rosado-Souza
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Valéria Nagy
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Anikó Galambos
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| |
Collapse
|
39
|
ATHB17 enhances stress tolerance by coordinating photosynthesis associated nuclear gene and ATSIG5 expression in response to abiotic stress. Sci Rep 2017; 7:45492. [PMID: 28358040 PMCID: PMC5371990 DOI: 10.1038/srep45492] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/28/2017] [Indexed: 11/08/2022] Open
Abstract
Photosynthesis is sensitive to environmental stress and must be efficiently modulated in response to abiotic stress. However, the underlying mechanisms are not well understood. Here we report that ARABIDOPSIS THALIANA HOMEOBOX 17 (ATHB17), an Arabidopsis HD-Zip transcription factor, regulated the expression of a number of photosynthesis associated nuclear genes (PhANGs) involved in the light reaction and ATSIG5 in response to abiotic stress. ATHB17 was responsive to ABA and multiple stress treatments. ATHB17-overexpressing plants displayed enhanced stress tolerance, whereas its knockout mutant was more sensitive compared to the wild type. Through RNA-seq and quantitative real-time reverse transcription PCR (qRT-PCR) analysis, we found that ATHB17 did not affect the expression of many known stress-responsive marker genes. Interestingly, we found that ATHB17 down-regulated many PhANGs and could directly modulate the expression of several PhANGs by binding to their promoters. Moreover, we identified ATSIG5, encoding a plastid sigma factor, as one of the target genes of ATHB17. Loss of ATSIG5 reduced salt tolerance while overexpression of ATSIG5 enhanced salt tolerance, similar to that of ATHB17. ATHB17 can positively modulate the expression of many plastid encoded genes (PEGs) through regulation of ATSIG5. Taken together, our results suggest that ATHB17 may play an important role in protecting plants by adjusting expression of PhANGs and PEGs in response to abiotic stresses.
Collapse
|
40
|
Sun YH, Hung CY, Qiu J, Chen J, Kittur FS, Oldham CE, Henny RJ, Burkey KO, Fan L, Xie J. Accumulation of high OPDA level correlates with reduced ROS and elevated GSH benefiting white cell survival in variegated leaves. Sci Rep 2017; 7:44158. [PMID: 28276518 PMCID: PMC5343462 DOI: 10.1038/srep44158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/02/2017] [Indexed: 12/19/2022] Open
Abstract
Variegated 'Marble Queen' (Epipremnum aureum) plant has white (VMW) and green (VMG) sectors within the same leaf. The white sector cells containing undifferentiated chloroplasts are viable, but the underlying mechanism for their survival and whether these white cells would use any metabolites as signal molecules to communicate with the nucleus for maintaining their viability remain unclear. We analyzed and compared phytohormone levels with their precursors produced in chloroplasts between VMW and VMG, and further compared their transcriptomes to understand the consequences related to the observed elevated 12-oxo phytodienoic acid (OPDA), which was 9-fold higher in VMW than VMG. Transcriptomic study showed that a large group of OPDA-responsive genes (ORGs) were differentially expressed in VMW, including stress-related transcription factors and genes for reactive oxygen species (ROS) scavengers, DNA replication and repair, and protein chaperones. Induced expression of these ORGs could be verified in OPDA-treated green plants. Reduced level of ROS and higher levels of glutathione in VMW were further confirmed. Our results suggest that elevated OPDA or its related compounds are recruited by white cells as a signaling molecule(s) to up-regulate stress and scavenging activity related genes that leads to reduced ROS levels and provides survival advantages to the white cells.
Collapse
Affiliation(s)
- Ying-Hsuan Sun
- Department of Forestry, National Chung Hsing University, Taichung 402, Taiwan
| | - Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Jie Qiu
- Department of Agronomy, Zhejiang University, Hangzhou 310029, China
| | - Jianjun Chen
- Environmental Horticulture Department and Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703, USA
| | - Farooqahmed S. Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Carla E. Oldham
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Richard J. Henny
- Environmental Horticulture Department and Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703, USA
| | - Kent O. Burkey
- USDA-ARS Plant Science Research Unit and Department of Crop Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Longjiang Fan
- Department of Agronomy, Zhejiang University, Hangzhou 310029, China
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
41
|
do Amaral MN, Souza GM. The Challenge to Translate OMICS Data to Whole Plant Physiology: The Context Matters. FRONTIERS IN PLANT SCIENCE 2017; 8:2146. [PMID: 29321792 PMCID: PMC5733541 DOI: 10.3389/fpls.2017.02146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/04/2017] [Indexed: 05/19/2023]
|
42
|
Shaikhali J, Wingsle G. Redox-regulated transcription in plants: Emerging concepts. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.3.301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
43
|
Van Dingenen J, Blomme J, Gonzalez N, Inzé D. Plants grow with a little help from their organelle friends. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6267-6281. [PMID: 27815330 DOI: 10.1093/jxb/erw399] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chloroplasts and mitochondria are indispensable for plant development. They not only provide energy and carbon sources to cells, but also have evolved to become major players in a variety of processes such as amino acid metabolism, hormone biosynthesis and cellular signalling. As semi-autonomous organelles, they contain a small genome that relies largely on nuclear factors for its maintenance and expression. An intensive crosstalk between the nucleus and the organelles is therefore essential to ensure proper functioning, and the nuclear genes encoding organellar proteins involved in photosynthesis and oxidative phosphorylation are obviously crucial for plant growth. Organ growth is determined by two main cellular processes: cell proliferation and cell expansion. Here, we review how plant growth is affected in mutants of organellar proteins that are differentially expressed during leaf and root development. Our findings indicate a clear role for organellar proteins in plant organ growth, primarily during cell proliferation. However, to date, the role of the nuclear-encoded organellar proteins in the cellular processes driving organ growth has not been investigated in much detail. We therefore encourage researchers to extend their phenotypic characterization beyond macroscopic features in order to get a better view on how chloroplasts and mitochondria regulate the basic processes of cell proliferation and cell expansion, essential to driving growth.
Collapse
Affiliation(s)
- Judith Van Dingenen
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Jonas Blomme
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
44
|
Shmakov NA, Vasiliev GV, Shatskaya NV, Doroshkov AV, Gordeeva EI, Afonnikov DA, Khlestkina EK. Identification of nuclear genes controlling chlorophyll synthesis in barley by RNA-seq. BMC PLANT BIOLOGY 2016; 16:245. [PMID: 28105957 PMCID: PMC5123340 DOI: 10.1186/s12870-016-0926-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Albinism in plants is characterized by lack of chlorophyll and results in photosynthesis impairment, abnormal plant development and premature death. These abnormalities are frequently encountered in interspecific crosses and tissue culture experiments. Analysis of albino mutant phenotypes with full or partial chlorophyll deficiency can shed light on genetic determinants and molecular mechanisms of albinism. Here we report analysis of RNA-seq transcription profiling of barley (Hordeum vulgare L.) near-isogenic lines, one of which is a carrier of mutant allele of the Alm gene for albino lemma and pericarp phenotype (line i:BwAlm). RESULTS 1221 genome fragments have statistically significant changes in expression levels between lines i:BwAlm and Bowman, with 148 fragments having increased expression levels in line i:BwAlm, and 1073 genome fragments, including 42 plastid operons, having decreased levels of expression in line i:BwAlm. We detected functional dissimilarity between genes with higher and lower levels of expression in i:BwAlm line. Genes with lower level of expression in the i:BwAlm line are mostly associated with photosynthesis and chlorophyll synthesis, while genes with higher expression level are functionally associated with vesicle transport. Differentially expressed genes are shown to be involved in several metabolic pathways; the largest fraction of such genes was observed for the Calvin-Benson-Bassham cycle. Finally, de novo assembly of transcriptome contains several transcripts, not annotated in current H. vulgare genome version. CONCLUSIONS Our results provide the new information about genes which could be involved in formation of albino lemma and pericarp phenotype. They demonstrate the interplay between nuclear and chloroplast genomes in this physiological process.
Collapse
Affiliation(s)
- Nickolay A. Shmakov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | | | | | | | - Dmitry A. Afonnikov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Elena K. Khlestkina
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
45
|
Carmody M, Waszczak C, Idänheimo N, Saarinen T, Kangasjärvi J. ROS signalling in a destabilised world: A molecular understanding of climate change. JOURNAL OF PLANT PHYSIOLOGY 2016; 203:69-83. [PMID: 27364884 DOI: 10.1016/j.jplph.2016.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 05/29/2023]
Abstract
Climate change results in increased intensity and frequency of extreme abiotic and biotic stress events. In plants, reactive oxygen species (ROS) accumulate in proportion to the level of stress and are major signalling and regulatory metabolites coordinating growth, defence, acclimation and cell death. Our knowledge of ROS homeostasis, sensing, and signalling is therefore key to understanding the impacts of climate change at the molecular level. Current research is uncovering new insights into temporal-spatial, cell-to-cell and systemic ROS signalling pathways, particularly how these affect plant growth, defence, and more recently acclimation mechanisms behind stress priming and long term stress memory. Understanding the stabilising and destabilising factors of ROS homeostasis and signalling in plants exposed to extreme and fluctuating stress will concomitantly reveal how to address future climate change challenges in global food security and biodiversity management.
Collapse
Affiliation(s)
- Melanie Carmody
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Cezary Waszczak
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Niina Idänheimo
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Timo Saarinen
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Jaakko Kangasjärvi
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland; Distinguished Scientist Fellowship Program, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
46
|
Pasoreck EK, Su J, Silverman IM, Gosai SJ, Gregory BD, Yuan JS, Daniell H. Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off-target pathways through metabolite signalling. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1862-75. [PMID: 27507797 PMCID: PMC4980996 DOI: 10.1111/pbi.12548] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/03/2016] [Accepted: 02/08/2016] [Indexed: 05/09/2023]
Abstract
The impact of metabolic engineering on nontarget pathways and outcomes of metabolic engineering from different genomes are poorly understood questions. Therefore, squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum chloroplast (C), nuclear (N) or both (CN) genomes to promote squalene biosynthesis. SQS levels were ~4300-fold higher in C and CN lines than in N, but all accumulated ~150-fold higher squalene due to substrate or storage limitations. Abnormal leaf and flower phenotypes, including lower pollen production and reduced fertility, were observed regardless of the compartment or level of transgene expression. Substantial changes in metabolomes of all lines were observed: levels of 65-120 unrelated metabolites, including the toxic alkaloid nicotine, changed by as much as 32-fold. Profound effects of transgenesis on nontarget gene expression included changes in the abundance of 19 076 transcripts by up to 2000-fold in CN; 7784 transcripts by up to 1400-fold in N; and 5224 transcripts by as much as 2200-fold in C. Transporter-related transcripts were induced, and cell cycle-associated transcripts were disproportionally repressed in all three lines. Transcriptome changes were validated by qRT-PCR. The mechanism underlying these large changes likely involves metabolite-mediated anterograde and/or retrograde signalling irrespective of the level of transgene expression or end product, due to imbalance of metabolic pools, offering new insight into both anticipated and unanticipated consequences of metabolic engineering.
Collapse
Affiliation(s)
- Elise K Pasoreck
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jin Su
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian M Silverman
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sager J Gosai
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua S Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
47
|
Plastid-nucleus communication involves calcium-modulated MAPK signalling. Nat Commun 2016; 7:12173. [PMID: 27399341 PMCID: PMC4942575 DOI: 10.1038/ncomms12173] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/08/2016] [Indexed: 12/21/2022] Open
Abstract
Chloroplast retrograde signals play important roles in coordinating the plastid and nuclear gene expression and are critical for proper chloroplast biogenesis and for maintaining optimal chloroplast functions in response to environmental changes in plants. Until now, the signals and the mechanisms for retrograde signalling remain poorly understood. Here we identify factors that allow the nucleus to perceive stress conditions in the chloroplast and to respond accordingly by inducing or repressing specific nuclear genes encoding plastid proteins. We show that ABI4, which is known to repress the LHCB genes during retrograde signalling, is activated through phosphorylation by the MAP kinases MPK3/MPK6 and the activity of these kinases is regulated through 14-3-3ω-mediated Ca(2+)-dependent scaffolding depending on the chloroplast calcium sensor protein CAS. These findings uncover an additional mechanism in which chloroplast-modulated Ca(2+) signalling controls the MAPK pathway for the activation of critical components of the retrograde signalling chain.
Collapse
|
48
|
Ishiga Y, Ishiga T, Ikeda Y, Matsuura T, Mysore KS. NADPH-dependent thioredoxin reductase C plays a role in nonhost disease resistance against Pseudomonas syringae pathogens by regulating chloroplast-generated reactive oxygen species. PeerJ 2016; 4:e1938. [PMID: 27168965 PMCID: PMC4860297 DOI: 10.7717/peerj.1938] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/24/2016] [Indexed: 12/21/2022] Open
Abstract
Chloroplasts are cytoplasmic organelles for photosynthesis in eukaryotic cells. In addition, recent studies have shown that chloroplasts have a critical role in plant innate immunity against invading pathogens. Hydrogen peroxide is a toxic by-product from photosynthesis, which also functions as a signaling compound in plant innate immunity. Therefore, it is important to regulate the level of hydrogen peroxide in response to pathogens. Chloroplasts maintain components of the redox detoxification system including enzymes such as 2-Cys peroxiredoxins (2-Cys Prxs), and NADPH-dependent thioredoxin reductase C (NTRC). However, the significance of 2-Cys Prxs and NTRC in the molecular basis of nonhost disease resistance is largely unknown. We evaluated the roles of Prxs and NTRC using knock-out mutants of Arabidopsis in response to nonhost Pseudomonas syringae pathogens. Plants lacking functional NTRC showed localized cell death (LCD) accompanied by the elevated accumulation of hydrogen peroxide in response to nonhost pathogens. Interestingly, the Arabidopsis ntrc mutant showed enhanced bacterial growth and disease susceptibility of nonhost pathogens. Furthermore, the expression profiles of the salicylic acid (SA) and jasmonic acid (JA)-mediated signaling pathways and phytohormone analyses including SA and JA revealed that the Arabidopsis ntrc mutant shows elevated JA-mediated signaling pathways in response to nonhost pathogen. These results suggest the critical role of NTRC in plant innate immunity against nonhost P. syringae pathogens.
Collapse
Affiliation(s)
- Yasuhiro Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan; Plant Biology, The Samuel Roberts Noble Foundation, Ardmore, OK, USA
| | - Takako Ishiga
- Plant Biology, The Samuel Roberts Noble Foundation , Ardmore, OK , USA
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University , Kurashiki , Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University , Kurashiki , Japan
| | | |
Collapse
|
49
|
Sun AZ, Guo FQ. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:398. [PMID: 27066042 PMCID: PMC4814484 DOI: 10.3389/fpls.2016.00398] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/14/2016] [Indexed: 05/19/2023]
Abstract
It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants.
Collapse
Affiliation(s)
| | - Fang-Qing Guo
- The National Key Laboratory of Plant Molecular Genetics, National Center of Plant Gene Research (Shanghai) and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| |
Collapse
|
50
|
Sun AZ, Guo FQ. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:398. [PMID: 27066042 DOI: 10.3389/fpls.2016.00398/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/14/2016] [Indexed: 05/28/2023]
Abstract
It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants.
Collapse
Affiliation(s)
- Ai-Zhen Sun
- The National Key Laboratory of Plant Molecular Genetics, National Center of Plant Gene Research (Shanghai) and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Fang-Qing Guo
- The National Key Laboratory of Plant Molecular Genetics, National Center of Plant Gene Research (Shanghai) and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| |
Collapse
|