1
|
D'Hooghe P, Kopriva S, Avice JC, Trouverie J. Tuning of sulfur flow and sulfur seed metabolism in oilseed rape under sulfate-limited conditions. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:2278-2296. [PMID: 39869110 DOI: 10.1093/jxb/eraf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 01/26/2025] [Indexed: 01/28/2025]
Abstract
The response of oilseed rape to sulfur (S) restriction usually consists of increasing the components of S utilization efficiency (absorption, assimilation, and remobilization) to provide S to seeds. However, source-sink relationships and S management in developing seeds under sulfate restriction are poorly understood. To address this, impacts of sulfate restrictions applied at 'visible bud' or 'start of pod filling' stages were studied in two genotypes, Aviso and Capitol. The two cultivars have similar seed yield, but Capitol has higher seed weight and lower number of seeds per plant under non-limited conditions. S flow at the whole-plant level (using [34S]sulfate labelling) and S metabolism changes [S-compounds, and ATP sulfurylase and adenosine 5'-phosphosulfate reductase (APR) activities] were studied during seed development. Seed yield, protein quality, and accumulation of S metabolites were affected by sulfate restriction less and later in Aviso than in Capitol. This was related to higher S uptake and stronger remobilization of S from vegetative organs to seeds during early seed development in response to sulfate restriction. A higher seed APR activity was observed for Capitol in response to sulfate limitation, suggesting that APR is not limiting for sulfate assimilation and that seed S metabolism is principally devoted to S-amino acids and protein synthesis.
Collapse
Affiliation(s)
- Philippe D'Hooghe
- Normandie Université, UNICAEN, INRAe, UMR 950 Ecophysiologie Végétale, Agronomie & nutritions NCS, SFR Normandie Végétal (FED4277), 14032 Caen CEDEX 05, France
| | - Stanislav Kopriva
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Jean-Christophe Avice
- Normandie Université, UNICAEN, INRAe, UMR 950 Ecophysiologie Végétale, Agronomie & nutritions NCS, SFR Normandie Végétal (FED4277), 14032 Caen CEDEX 05, France
| | - Jacques Trouverie
- Normandie Université, UNICAEN, INRAe, UMR 950 Ecophysiologie Végétale, Agronomie & nutritions NCS, SFR Normandie Végétal (FED4277), 14032 Caen CEDEX 05, France
| |
Collapse
|
2
|
Lu X, Lei Y, Xu Z, Cheng Z, Liu M, Tai Y, Han X, Hao Z, Li M, Zhang D, Yong H, Han J, Wang Z, Li WX, Weng J, Zhou Z, Li X. Natural variations in the promoter of ZmDeSI2 encoding a deSUMOylating isopeptidase controls kernel methionine content in maize. MOLECULAR PLANT 2025; 18:872-891. [PMID: 40269497 DOI: 10.1016/j.molp.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
Improving the methionine (Met) content in maize kernels is of key importance to the animal feed industry; however, the genetic and molecular mechanisms governing maize kernel Met content remain largely unexplored. In this study, we leveraged a panel consisting of 348 diverse inbred maize lines to explore the genetic and molecular mechanisms that control kernel Met levels. A genome-wide association study followed by transcriptomic analysis identified the deSUMOylating isopeptidase gene ZmDeSI2. Further biochemical experiments revealed that ZmDeSI2 directly reduces the SUMOylation and accumulation of the sulfite reductase ZmSIR, thereby repressing Met accumulation. Natural variants in the ZmDeSI2 promoter region were found to serve as key determinants of the expression of this gene, predominantly due to the absence or presence of a ZmWRKY105 transcription factor binding site. The elite ZmDeSI2Hap2 haplotype without this binding site in the ZmDeSI2 promoter was associated with a 1.36-fold increase in Met levels in the kernels of modified near-isogenic lines generated through marker-assisted breeding. Taken together, these results provide new insights into the molecular processes that control Met biosynthesis, highlighting an elite natural variant suitable for application in maize breeding for Met biofortification.
Collapse
Affiliation(s)
- Xin Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Lei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhennan Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zixiang Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxin Tai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohua Han
- Institute of Food Crops, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Zhuanfang Hao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingshun Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Degui Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongjun Yong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jienan Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenhua Wang
- Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wen-Xue Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianfeng Weng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Zhiqiang Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xinhai Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
3
|
Li H, Mori T, Moriyama R, Fujita M, Hatanaka G, Shiotsuka N, Hosomi R, Maruyama-Nakashita A. Non-Targeted Metabolome Analysis with Low-Dose Selenate-Treated Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2025; 14:322. [PMID: 39942884 PMCID: PMC11820405 DOI: 10.3390/plants14030322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025]
Abstract
Selenate, the most common form of selenium (Se) in soil environments, is beneficial for higher plants. Selenate is similar to sulfate in terms of the structure and the manner of assimilation by plants, which involves the reduction of selenate to selenide and the replacement of an S moiety in the organic compounds such as amino acids. The nonspecific incorporation of seleno-amino acids into proteins induce Se toxicity in plants. Selenate alters the plant metabolism, particularly the S metabolism, which is comparable to the responses to S deficiency (-S). However, previous analyses involved high concentrations of selenate, and the effects of lower selenate doses have not been elucidated. In this study, we analyzed the metabolic changes induced by selenate treatment through a non-targeted metabolome analysis and found that 2 µM of selenate decreased the S assimilates and amino acids, and increased the flavonoids, while the glutathione levels were maintained. The results suggest that the decrease in amino acid levels, which is not detected under -S, along with the disruptions in S assimilation, amino acid biosynthesis pathways, and the energy metabolism, present the primary metabolic influences of selenate. These results suggest that selenate targets the energy metabolism and S assimilation first, and induces oxidative stress mitigation, represented by flavonoid accumulation, as a key adaptive response, providing a novel, possible mechanism in plant stress adaptation.
Collapse
Affiliation(s)
- Hongqiao Li
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (H.L.); (R.M.); (M.F.)
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan;
| | - Rintaro Moriyama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (H.L.); (R.M.); (M.F.)
| | - Moeka Fujita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (H.L.); (R.M.); (M.F.)
| | - Genki Hatanaka
- Laboratory of Food and Nutritional Sciences, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan; (G.H.); (R.H.)
| | - Naoki Shiotsuka
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (H.L.); (R.M.); (M.F.)
| | - Ryota Hosomi
- Laboratory of Food and Nutritional Sciences, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan; (G.H.); (R.H.)
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (H.L.); (R.M.); (M.F.)
| |
Collapse
|
4
|
Piotrowska J, Wawrzyńska A, Olszak M, Krzyszton M, Apodiakou A, Alseekh S, Ramos JML, Hoefgen R, Kopriva S, Sirko A. Analysis of the quadruple lsu mutant reveals molecular determinants of the role of LSU proteins in sulfur assimilation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2919-2936. [PMID: 39612294 DOI: 10.1111/tpj.17155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 12/01/2024]
Abstract
Because plants are immobile, they have developed intricate mechanisms to sense and absorb nutrients, adjusting their growth and development accordingly. Sulfur is an essential macroelement, but our understanding of its metabolism and homeostasis is limited. LSU (RESPONSE TO LOW SULFUR) proteins are plant-specific proteins with unknown molecular functions and were first identified during transcriptomic studies on sulfur deficiency in Arabidopsis. These proteins are crucial hubs that integrate environmental signals and are involved in the response to various stressors. Herein, we report the direct involvement of LSU proteins in primary sulfur metabolism. Our findings revealed that the quadruple lsu mutant, q-lsu-KO, which was grown under nonlimiting sulfate conditions, exhibited a molecular response resembling that of sulfur-deficient wild-type plants. This led us to explore the interactions of LSU proteins with sulfate reduction pathway enzymes. We found that all LSU proteins interact with ATPS1 and ATPS3 isoforms of ATP sulfurylase, all three isoforms of adenosine 5´ phosphosulfate reductase (APR), and sulfite reductase (SiR). Additionally, in vitro assays revealed that LSU1 enhances the enzymatic activity of SiR. These results highlight the supportive role of LSU proteins in the sulfate reduction pathway.
Collapse
Affiliation(s)
- Justyna Piotrowska
- Laboratory of Plant Protein Homeostasis, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Anna Wawrzyńska
- Laboratory of Plant Protein Homeostasis, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Olszak
- Laboratory of Plant Protein Homeostasis, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Michal Krzyszton
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Anastasia Apodiakou
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Saleh Alseekh
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - José María López Ramos
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Rainer Hoefgen
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Agnieszka Sirko
- Laboratory of Plant Protein Homeostasis, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Kopriva S, Rahimzadeh Karvansara P, Takahashi H. Adaptive modifications in plant sulfur metabolism over evolutionary time. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4697-4711. [PMID: 38841807 PMCID: PMC11350084 DOI: 10.1093/jxb/erae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Sulfur (S) is an essential element for life on Earth. Plants are able to take up and utilize sulfate (SO42-), the most oxidized inorganic form of S compounds on Earth, through the reductive S assimilatory pathway that couples with photosynthetic energy conversion. Organic S compounds are subsequently synthesized in plants and made accessible to animals, primarily as the amino acid methionine. Thus, plant S metabolism clearly has nutritional importance in the global food chain. S metabolites may be part of redox regulation and drivers of essential metabolic pathways as cofactors and prosthetic groups, such as Fe-S centers, CoA, thiamine, and lipoic acid. The evolution of the S metabolic pathways and enzymes reflects the critical importance of functional innovation and diversifications. Here we review the major evolutionary alterations that took place in S metabolism across different scales and outline research directions that may take advantage of understanding the evolutionary adaptations.
Collapse
Affiliation(s)
- Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Parisa Rahimzadeh Karvansara
- Institute of Molecular Photosynthesis, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hideki Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Fujita M, Tanaka T, Kusajima M, Inoshima K, Narita F, Nakamura H, Asami T, Maruyama-Nakashita A, Nakashita H. Enhanced disease resistance against Botrytis cinerea by strigolactone-mediated immune priming in Arabidopsis thaliana. JOURNAL OF PESTICIDE SCIENCE 2024; 49:186-194. [PMID: 39398504 PMCID: PMC11464267 DOI: 10.1584/jpestics.d24-019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 10/15/2024]
Abstract
Strigolactones (SLs) are a class of plant hormones that play several roles in plants, such as suppressing shoot branching and promoting arbuscular mycorrhizal symbiosis. The positive regulation of plant disease resistance by SLs has recently been demonstrated by analyses using SL-related mutants. In Arabidopsis, SL-mediated signaling has been reported to modulate salicylic acid-mediated disease resistance, in which the priming of plant immunity plays an important role. In this study, we analyzed the effect of the synthetic SL analogue rac-GR24 on resistance against necrotrophic pathogen Botrytis cinerea. In rac-GR24-treated plants, disease resistance against B. cinerea was enhanced in an ethylene- and camalexin-dependent manners. Expression of the ethylene-related genes and the camalexin biosynthetic gene and camalexin accumulation after pathogen infection were enhanced by immune priming in rac-GR24-treated plants. These suggest that SL-mediated immune priming is effective for many types of resistance mechanisms in plant self-defense systems.
Collapse
Affiliation(s)
- Moeka Fujita
- Graduate school of Bioscience and Biotechnology, Fukui Prefectural University
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University
| | - Tomoya Tanaka
- Graduate school of Bioscience and Biotechnology, Fukui Prefectural University
| | - Miyuki Kusajima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Kengo Inoshima
- Graduate school of Bioscience and Biotechnology, Fukui Prefectural University
| | - Futo Narita
- Graduate school of Bioscience and Biotechnology, Fukui Prefectural University
| | - Hidemitsu Nakamura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | | | - Hideo Nakashita
- Graduate school of Bioscience and Biotechnology, Fukui Prefectural University
| |
Collapse
|
7
|
Sun Q, Zhang T, Ren Y, Qiu Y, Luo X, Yang J, Liu G. A two-photon fluorescent probe for highly selective detection of Cys over GSH and Hcy based on the Michael addition and transcyclization mechanism and its application in bioimaging and protein straining in SDS-PAGE. Anal Chim Acta 2024; 1309:342687. [PMID: 38772659 DOI: 10.1016/j.aca.2024.342687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/27/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Cysteine (Cys), glutathione (GSH), and homocysteine (Hcy), as three major biothiols are involved in a variety of physiological processes and play a crucial role in plant growth. Abnormal levels of Cys can cause plants to fail to grow properly. To date, although a very large number of fluorescent probes have been reported for the detection of biothiols, very few of them can be used for the selective discrimination of Cys from GSH and Hcy due to their structural similarity, and only a few of them can be used for plant imaging. RESULTS Here, three fluorescent probes (o-/m-/p-TMA) based on TMN fluorophore and the ortho-/meta-/para-substituted maleimide recognition groups were constructed to investigate the selective response effect of Cys. Compared to the o-/m-TMA, p-TMA can selectively detect Cys over GSH and Hcy with a rapid response time (10 min) and a low detection limit (0.26 μM). The theoretical calculation confirmed that the intermediate p-TMA-Cys-int has shorter interatomic reaction distances (3.827 Å) compared to o-/m-TMA-Cys (5.533/5.287 Å), making it more suitable for further transcyclization reactions. Additionally, p-TMA has been employed for selective tracking of exogenous and endogenous Cys in Arabidopsis thaliana using both single-/two-photon fluorescence imaging. Furthermore, single cell walls produced obvious two-photon fluorescence signals, indicating that p-TMA can be used for high-concentration Cys analysis in single cells. Surprisingly, p-TMA can be used as a fluorescent dye for protein staining in SDS-PAGE with higher sensitivity (7.49 μg/mL) than classical Coomassie brilliant blue (14.11 μg/mL). SIGNIFICANCE The outstanding properties of p-TMA make it a promising multifunctional molecular tool for the highly selective detection of Cys over GSH and Hcy in various complex environments, including water solutions, zebrafish, and plants. Additionally, it has the potential to be developed as a fluorescent dye for a simple and fast SDS-PAGE fluorescence staining method.
Collapse
Affiliation(s)
- Qi Sun
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum and Chemical Industry and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Ting Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum and Chemical Industry and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Yuchen Ren
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum and Chemical Industry and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Yuan Qiu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum and Chemical Industry and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum and Chemical Industry and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Jingfang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum and Chemical Industry and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| |
Collapse
|
8
|
Soudthedlath K, Nakamura T, Ushiwatari T, Fukazawa J, Osakabe K, Osakabe Y, Maruyama-Nakashita A. SULTR2;1 Adjusts the Bolting Timing by Transporting Sulfate from Rosette Leaves to the Primary Stem. PLANT & CELL PHYSIOLOGY 2024; 65:770-780. [PMID: 38424724 DOI: 10.1093/pcp/pcae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Sulfur (S) is an essential macronutrient for plant growth and metabolism. SULTR2;1 is a low-affinity sulfate transporter facilitating the long-distance transport of sulfate in Arabidopsis. The physiological function of SULTR2;1 in the plant life cycle still needs to be determined. Therefore, we analyzed the sulfate transport, S-containing metabolite accumulation and plant growth using Arabidopsis SULTR2;1 disruption lines, sultr2;1-1 and sultr2;1-2, from seedling to mature growth stages to clarify the metabolic and physiological roles of SULTR2;1. We observed that sulfate distribution to the stems was affected in sultr2;1 mutants, resulting in decreased levels of sulfate, cysteine, glutathione (GSH) and total S in the stems, flowers and siliques; however, the GSH levels increased in the rosette leaves. This suggested the essential role of SULTR2;1 in sulfate transport from rosette leaves to the primary stem. In addition, sultr2;1 mutants unexpectedly bolted earlier than the wild-type without affecting the plant biomass. Correlation between GSH levels in rosette leaves and the bolting timing suggested that the rosette leaf GSH levels or limited sulfate transport to the early stem can trigger bolting. Overall, this study demonstrated the critical roles of SULTR2;1 in maintaining the S metabolite levels in the aerial part and transitioning from the vegetative to the reproductive growth phase.
Collapse
Affiliation(s)
- Khamsalath Soudthedlath
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
- Ministry of Agriculture and Forestry, Biotechnology and Ecology Institute, Vientiane 01170, Laos
| | - Toshiki Nakamura
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Tsukasa Ushiwatari
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Jutarou Fukazawa
- Program of Basic Biology, Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, 739-8528 Japan
| | - Keishi Osakabe
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, 770-8506, Japan
| | - Yuriko Osakabe
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Tokyo, 226-8503, Japan
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| |
Collapse
|
9
|
Fernández JD, Miño I, Canales J, Vidal EA. Gene regulatory networks underlying sulfate deficiency responses in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2781-2798. [PMID: 38366662 DOI: 10.1093/jxb/erae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/14/2024] [Indexed: 02/18/2024]
Abstract
Sulfur (S) is an essential macronutrient for plants and its availability in soils is an important determinant for growth and development. Current regulatory policies aimed at reducing industrial S emissions together with changes in agronomical practices have led to a decline in S contents in soils worldwide. Deficiency of sulfate-the primary form of S accessible to plants in soil-has adverse effects on both crop yield and nutritional quality. Hence, recent research has increasingly focused on unraveling the molecular mechanisms through which plants detect and adapt to a limiting supply of sulfate. A significant part of these studies involves the use of omics technologies and has generated comprehensive catalogs of sulfate deficiency-responsive genes and processes, principally in Arabidopsis together with a few studies centering on crop species such as wheat, rice, or members of the Brassica genus. Although we know that sulfate deficiency elicits an important reprogramming of the transcriptome, the transcriptional regulators orchestrating this response are not yet well understood. In this review, we summarize our current knowledge of gene expression responses to sulfate deficiency and recent efforts towards the identification of the transcription factors that are involved in controlling these responses. We further compare the transcriptional response and putative regulators between Arabidopsis and two important crop species, rice and tomato, to gain insights into common mechanisms of the response to sulfate deficiency.
Collapse
Affiliation(s)
- José David Fernández
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, 8580745, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo - Millennium Science Initiative Program, Millennium Institute for Integrative Biology, 7500565, Santiago, Chile
- Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, 8580745, Santiago, Chile
| | - Ignacio Miño
- Agencia Nacional de Investigación y Desarrollo - Millennium Science Initiative Program, Millennium Institute for Integrative Biology, 7500565, Santiago, Chile
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5110566, Valdivia, Chile
| | - Javier Canales
- Agencia Nacional de Investigación y Desarrollo - Millennium Science Initiative Program, Millennium Institute for Integrative Biology, 7500565, Santiago, Chile
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5110566, Valdivia, Chile
| | - Elena A Vidal
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, 8580745, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo - Millennium Science Initiative Program, Millennium Institute for Integrative Biology, 7500565, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, 8580745, Santiago, Chile
| |
Collapse
|
10
|
Polozsányi Z, Galádová H, Kaliňák M, Jopčík M, Kaliňáková B, Breier A, Šimkovič M. The Antimicrobial Effects of Myrosinase Hydrolysis Products Derived from Glucosinolates Isolated from Lepidium draba. PLANTS (BASEL, SWITZERLAND) 2024; 13:995. [PMID: 38611524 PMCID: PMC11013450 DOI: 10.3390/plants13070995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Lepidium draba (hoary cress) is a perennial plant belonging to the Brassicaceae family that produces two dominant glucosinolates (GLSs): glucoraphanin (GRN) and sinalbin (SBN). They represent the stored form, which is converted upon the myrosinase (Myr) hydrolysis activity to active compounds, mainly isothiocyanates (ITCs) such as sulforaphane (SFN) or p-hydroxybenzyl isothiocyanate (pHBITC). Research on ITCs that have proven anticancer, antimicrobial, and chemoprotective properties is usually conducted with pure commercially available compounds. However, these are chemically reactive, making it difficult to use them directly for preventive purposes in dietary supplements. Efforts are currently being made to prepare dietary supplements enriched with GLS and/or Myr. In this study, we report a simple but efficient chromatographic procedure for the isolation and purification of GLSs from MeOH extract from hoary cress based on a combination of ion exchange and gel permeation chromatography on DEAE-Sephadex A-25 and Sephadex LH-20. To obtain the Myr required for efficient hydrolysis of GLSs into antibacterial ITCs, we developed a rapid method for its extraction from the seeds of Lepidium sativum (garden cress). The yields of GLSs were 22.9 ± 1.2 mg GRN (purity 96%) and 10.4 ± 1.1 mg SBN (purity 92%) from 1 g of dry plant material. Both purified GLSs were used as substrates for the Myr. Analysis of the composition of hydrolysis products (HPs) revealed differences in their hydrolysis rates and in the degree of conversion from GLSs to individual ITCs catalyzed by Myr. When GRNs were cleaved, SFNs were formed in an equimolar ratio, but the formation of pHBITCs was only half that of cleaved SBNs. The decrease in pHBITC content is due to its instability compared to SFN. While SFN is stable in aqueous media during the measurement, pHBITC undergoes non-enzymatic hydrolysis to p-hydroxybenzyl alcohol and thiocyanate ions. Testing of the antimicrobial effects of the HPs formed from GRN by Myr under premix or in situ conditions showed inhibition of the growth of model prokaryotic and eukaryotic microorganisms. This observation could serve as the jumping-off point for the design of a two-component mixture, based on purified GLSs and Myr that is, usable in food or the pharmaceutical industry in the future.
Collapse
Affiliation(s)
- Zoltán Polozsányi
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Helena Galádová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Michal Kaliňák
- Central Laboratories, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Martin Jopčík
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademická 969, 949 01 Nitra, Slovakia
| | - Barbora Kaliňáková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Albert Breier
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia
| | - Martin Šimkovič
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| |
Collapse
|
11
|
Xue C, Sun L, Liu W, Gao Y, Pan X, Yang X, Tai P. Decreased cadmium content in Solanum melongena induced by grafting was related to glucosinolates synthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170115. [PMID: 38232848 DOI: 10.1016/j.scitotenv.2024.170115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Grafting is an effective horticultural method to reduce Cd accumulation in crops. However, the mechanism of grafting inducing the decrease in Cd content in scions remains unclear. This study evaluated the effect of grafting on fruit quality, yield, and Cd content of Solanum melongena, and explored the potential mechanism of grafting reducing Cd content in scions. In the low Cd-contaminated soil, compared with un-grafted (UG) and self-grafted plants (SG), the fruit yield of inter-grafted plants (EG) increased by 38 %, and the fruit quality was not markedly affected. In EG, the decrease in total S and Cd content was not related to organic acids and thiol compounds. The decrease in total S and Cd content in EG leaves and fruits was closely related to the synthesis and transportation of glucosinolates (GSL). The genes encoding GSL synthesis in leaves, such as basic helix-loop-helix, myelocytomatosis proteins, acetyl-CoA, cytochrome P450, and glutathione S-transferases, were significantly downregulated. In EG leaves, the contents of five of the eight amino acids involved in GSL synthesis decreased significantly (P < 0.05). Notably, total GSL in EG stems, leaves, and fruits had a significant linear correlation with total S and Cd. In summary, the decrease in total S and Cd content in scions caused by grafting is closely related to GSL. Our findings provide a theoretical basis for the safe use of Cd-contaminated soil, exploring the long-distance transport of Cd in plants and cultivating crops with low Cd accumulation.
Collapse
Affiliation(s)
- Chenyang Xue
- Key Lab of Eco-restoration of Reginal Contaminated Environmental, Shenyang University, Ministry of Education, Shenyang 110044, China; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizong Sun
- Key Lab of Eco-restoration of Reginal Contaminated Environmental, Shenyang University, Ministry of Education, Shenyang 110044, China; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Wanbin Liu
- Dalian Pulandian District Modern Agricultural Production Development Service Center, China
| | - Yingmei Gao
- Shenyang Agricultural University, Shenyang 110016, China
| | - Xiangwen Pan
- Key Laboratory of Molecular Breeding and Design, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Xinyao Yang
- Key Lab of Eco-restoration of Reginal Contaminated Environmental, Shenyang University, Ministry of Education, Shenyang 110044, China
| | - Peidong Tai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
12
|
de Jager N, Shukla V, Koprivova A, Lyčka M, Bilalli L, You Y, Zeier J, Kopriva S, Ristova D. Traits linked to natural variation of sulfur content in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1036-1050. [PMID: 37831920 PMCID: PMC10837017 DOI: 10.1093/jxb/erad401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023]
Abstract
Sulfur (S) is an essential mineral nutrient for plant growth and development; it is important for primary and specialized plant metabolites that are crucial for biotic and abiotic interactions. Foliar S content varies up to 6-fold under a controlled environment, suggesting an adaptive value under certain natural environmental conditions. However, a major quantitative regulator of S content in Arabidopsis thaliana has not been identified yet, pointing to the existence of either additional genetic factors controlling sulfate/S content or of many minor quantitative regulators. Here, we use overlapping information of two separate ionomics studies to select groups of accessions with low, mid, and high foliar S content. We quantify series of metabolites, including anions (sulfate, phosphate, and nitrate), thiols (cysteine and glutathione), and seven glucosinolates, gene expression of 20 genes, sulfate uptake, and three biotic traits. Our results suggest that S content is tightly connected with sulfate uptake, the concentration of sulfate and phosphate anions, and glucosinolate and glutathione synthesis. Additionally, our results indicate that the growth of pathogenic bacteria is enhanced in the A. thaliana accessions containing higher S in their leaves, suggesting a complex regulation between S homeostasis, primary and secondary metabolism, and biotic pressures.
Collapse
Affiliation(s)
- Nicholas de Jager
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Varsa Shukla
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Anna Koprivova
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Martin Lyčka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lorina Bilalli
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Yanrong You
- Institute for Molecular Ecophysiology of Plants, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Daniela Ristova
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
13
|
Wang Q, Huang S, Huang Q, Yu Y, Li H, Wan Y. Absorption and Biotransformation of Selenomethionine and Selenomethionine-Oxide by Wheat Seedlings ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:380. [PMID: 38337913 PMCID: PMC10857051 DOI: 10.3390/plants13030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
An in-depth understanding of Se uptake and metabolism in plants is necessary for developing Se biofortification strategies. Thus, hydroponic experiments were conducted to investigate the associated processes and mechanisms of organic Se (selenomethionine (SeMet) and selenomethionine-oxide (SeOMet)) uptake, translocation, transformation and their interaction in wheat, in comparison to inorganic Se. The results showed that Se uptake by the roots and the root-to-shoot translocation factor under the SeMet treatment were higher than those under the selenite, selenate and SeOMet treatments. The uptake and translocation of SeMet were higher than those of SeOMet within 72 h, although the differences gradually narrowed with time. The uptake of SeMet and SeOMet was also sensitive to the aquaporin inhibitor: AgNO3 addition resulted in 99.5% and 99.9% inhibitions of Se in the root in the SeMet and SeOMet treatments, respectively. Once absorbed by the root, they rapidly assimilated to other Se forms, and SeMet and Se-methyl-selenocysteine (MeSeCys) were the dominant species in SeMet- and SeOMet-treated plants, while notably, an unidentified Se form was also found in the root and xylem sap under the SeMet treatment. In addition, within 16 h, SeOMet inhibited the uptake and translocation of SeMet, while the inhibition was weakened with longer treatment time. Taken together, the present study provides new insights for the uptake and transformation processes of organic Se within plants.
Collapse
Affiliation(s)
- Qi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.W.); (S.H.); (H.L.)
| | - Siyu Huang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.W.); (S.H.); (H.L.)
| | - Qingqing Huang
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China;
| | - Yao Yu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China;
| | - Huafen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.W.); (S.H.); (H.L.)
| | - Yanan Wan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.W.); (S.H.); (H.L.)
| |
Collapse
|
14
|
Narayan OP, Kumar P, Yadav B, Dua M, Johri AK. Sulfur nutrition and its role in plant growth and development. PLANT SIGNALING & BEHAVIOR 2023; 18:2030082. [PMID: 35129079 PMCID: PMC10730164 DOI: 10.1080/15592324.2022.2030082] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Sulfur is one of the essential nutrients that is required for the adequate growth and development of plants. Sulfur is a structural component of protein disulfide bonds, amino acids, vitamins, and cofactors. Most of the sulfur in soil is present in organic matter and hence not accessible to the plants. Anionic form of sulfur (SO42-) is the primary source of sulfur for plants that are generally present in minimal amounts in the soil. It is water-soluble, so readily leaches out of the soil. Sulfur and sulfur-containing compounds act as signaling molecules in stress management as well as normal metabolic processes. They also take part in crosstalk of complex signaling network as a mediator molecule. Plants uptake sulfate directly from the soil by using their dedicated sulfate transporters. In addition, plants also use the sulfur transporter of a symbiotically associated organism like bacteria and fungi to uptake sulfur from the soil especially under sulfur depleted conditions. So, sulfur is a very important component of plant metabolism and its analysis with different dimensions is highly required to improve the overall well-being of plants, and dependent animals as well as human beings. The deficiency of sulfur leads to stunted growth of plants and ultimately loss of yield. In this review, we have focused on sulfur nutrition, uptake, transport, and inter-organismic transfer to host plants. Given the strong potential for agricultural use of sulfur sources and their applications, we cover what is known about sulfur impact on the plant health. We identify opportunities to expand our understanding of how the application of soil microbes like AMF or other root endophytic fungi affects plant sulfur uptake and in turn plant growth and development.
Collapse
Affiliation(s)
| | - Paras Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
15
|
Bao J, Yang J, Lu X, Ma L, Shi X, Lan S, Zhao Y, Cao J, Ma S, Li S. Exogenous Melatonin Promotes Glucoraphanin Biosynthesis by Mediating Glutathione in Hairy Roots of Broccoli ( Brassica oleracea L. var. italica Planch). PLANTS (BASEL, SWITZERLAND) 2023; 13:106. [PMID: 38202414 PMCID: PMC10780497 DOI: 10.3390/plants13010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024]
Abstract
To investigate the mechanism of melatonin (MT)-mediated glutathione (GSH) in promoting glucoraphanin (GRA) and sulforaphane (SF) synthesis, the gene expression pattern and protein content of hairy broccoli roots under MT treatment were analyzed by a combination of RNA-seq and tandem mass spectrometry tagging (TMT) techniques in this study. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that both proteins and mRNAs with the same expression trend were enriched in the "Glutathione metabolism (ko00480)" and "Proteasome (ko03050)" pathways, and most of the differentially expressed genes (DEGs) and differentially abundant proteins (DAPs) regulating the two pathways were downregulated. The results showed that endogenous GSH concentration and GR activity were increased in hairy roots after MT treatment. Exogenous GSH could promote the biosynthesis of GRA and SF, and both exogenous MT and GSH could upregulate the expression of the GSTF11 gene related to the sulfur transport gene, thus promoting the biosynthesis of GRA. Taken together, this study provides a new perspective to explore the complex molecular mechanisms of improving GRA and SF synthesis levels by MT and GSH regulation.
Collapse
Affiliation(s)
- Jinyu Bao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.B.); (L.M.)
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jie Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (X.S.); (S.L.); (Y.Z.); (J.C.)
| | - Xu Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
| | - Lei Ma
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.B.); (L.M.)
| | - Xiaotong Shi
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (X.S.); (S.L.); (Y.Z.); (J.C.)
| | - Shimin Lan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (X.S.); (S.L.); (Y.Z.); (J.C.)
| | - Yi Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (X.S.); (S.L.); (Y.Z.); (J.C.)
| | - Jie Cao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (X.S.); (S.L.); (Y.Z.); (J.C.)
| | - Shaoying Ma
- Laboratory and Practice Base Management Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Sheng Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.B.); (L.M.)
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (X.S.); (S.L.); (Y.Z.); (J.C.)
| |
Collapse
|
16
|
Zhang L, Kawaguchi R, Enomoto T, Nishida S, Burow M, Maruyama-Nakashita A. Glucosinolate Catabolism Maintains Glucosinolate Profiles and Transport in Sulfur-Starved Arabidopsis. PLANT & CELL PHYSIOLOGY 2023; 64:1534-1550. [PMID: 37464897 DOI: 10.1093/pcp/pcad075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
Glucosinolates (GSLs) are sulfur (S)-rich specialized metabolites present in Brassicales order plants. Our previous study found that GSL can function as a S source in Arabidopsis seedlings via its catabolism catalyzed by two β-glucosidases (BGLUs), BGLU28 and BGLU30. However, as GSL profiles in plants vary among growth stages and organs, the potential contribution of BGLU28/30-dependent GSL catabolism at the reproductive growth stage needs verification. Thus, in this study, we assessed growth, metabolic and transcriptional phenotypes of mature bglu28/30 double mutants grown under different S conditions. Our results showed that compared to wild-type plants grown under -S, mature bglu28/30 mutants displayed impaired growth and accumulated increased levels of GSL in their reproductive organs and rosette leaves of before-bolting plants. In contrast, the levels of primary S-containing metabolites, glutathione and cysteine decreased in their mature seeds. Furthermore, the transport of GSL from rosette leaves to the reproductive organs was stimulated in the bglu28/30 mutants under -S. Transcriptome analysis revealed that genes related to other biological processes, such as ethylene response, defense response and plant response to heat, responded differentially to -S in the bglu28/30 mutants. Altogether, these findings broadened our understanding of the roles of BGLU28/30-dependent GSL catabolism in plant adaptation to nutrient stress.
Collapse
Affiliation(s)
- Liu Zhang
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Ryota Kawaguchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Takuo Enomoto
- Department of Biological Science Course, Faculty of Agriculture, Saga University, Saga, 840-8502 Japan
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Shimada, 428-8501 Japan
| | - Sho Nishida
- Department of Biological Science Course, Faculty of Agriculture, Saga University, Saga, 840-8502 Japan
| | - Meike Burow
- Department of Plant and Environmental Sciences, DynaMo Center, University of Copenhagen, Frederiksberg DK-1871, Denmark
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg DK-1871, Denmark
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| |
Collapse
|
17
|
Bell L, Chadwick M, Puranik M, Jasper J, Tudor R, Methven L, Wagstaff C. Genotypes of Eruca vesicaria subsp. sativa grown in contrasting field environments differ on transcriptomic and metabolomic levels, significantly impacting nutritional quality. FRONTIERS IN PLANT SCIENCE 2023; 14:1218984. [PMID: 38023917 PMCID: PMC10652768 DOI: 10.3389/fpls.2023.1218984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Rocket (Eruca vesicaria subsp. sativa) is a source of sulfur-containing glucosinolates (GSLs). GSLs and their breakdown hydrolysis products (GHPs) are responsible for health-related benefits, such as anti-cancer and anti-neurodegenerative properties. Understanding how phytochemical composition changes between cultivation environments is key to developing cultivars with improved nutritional quality. Two consecutive harvests (first and second regrowth) of crops, grown in both Italy and the UK, were used to determine the phytochemical and transcriptomic differences between six lines of Eruca. Samples were taken upon delivery from field sites (D0) and after five days of cold storage (D5) for each location. Leaves were analysed for sulfur content, volatile organic compounds (VOCs), GSLs, GHPs, and sugars. Transcriptome data were associated with metabolite profiles to identify differentially expressed genes between plants grown in the two environments. VOC compounds (carbon disulfide, methyl thiocyanate) were associated with growth environment and with differences in sulfur metabolism gene expression (APR2, LSU2, LSU3, SDI1, SiR), GSL biosynthesis (MYB28, FMOGS-OX2) and GHP formation (ESM1, TGG1, TGG2). The concentrations of sugars were an order of magnitude greater in UK grown samples (up to 29.9 mg g-1 dry weight; dw). Sulfur content was significantly higher in the Italy plant samples (11.4 - 20.1 mg g-1 dw), which was in turn associated with higher concentrations of GSLs (pentyl GSL, up to 15.8 μmol g-1 dw; sinigrin, up to 0.005 μmol g-1 dw; glucoraphanin, up to 5.1 μmol g-1 dw; glucorucolamine, up to 23.6 μmol g-1 dw; neoglucobrassicin, up to 5.3 μmol g-1 dw) and hydrolysis products (sativin, up to 13.5 μmol g-1 dw; erucin, up to 1 μmol g-1 dw; sulforaphane, up to 34.7 μmol g-1 dw). VOC profiles of plants cultivated in the UK were distinct from Italy grown plants, with higher relative abundances of alkanes and esters in second cut and shelf-life (D5) samples. The data indicate a significant interaction of cultivar response with environment, highlighting the difficulty of producing Eruca crops with consistent phytochemical and postharvest traits. Genes with differential expression between plants grown in Italy and the UK could be used as markers of phytochemical quality and composition.
Collapse
Affiliation(s)
- Luke Bell
- School of Agriculture, Policy & Development, Crop Sciences, University of Reading, Reading, United Kingdom
| | - Martin Chadwick
- School of Chemistry, Food & Pharmacy, Food & Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Manik Puranik
- School of Chemistry, Food & Pharmacy, Food & Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Jake Jasper
- School of Chemistry, Food & Pharmacy, Food & Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Richard Tudor
- Vegetable Plant Breeding, Elsoms Seeds Ltd., Spalding, United Kingdom
| | - Lisa Methven
- School of Chemistry, Food & Pharmacy, Food & Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Carol Wagstaff
- School of Chemistry, Food & Pharmacy, Food & Nutritional Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
18
|
Iwamoto Y, Saito S, Teramoto T, Maruyama-Nakashita A, Kakuta Y. Crystal structure of Arabidopsis thaliana sulfotransferase SOT16 involved in glucosinolate biosynthesis. Biochem Biophys Res Commun 2023; 677:149-154. [PMID: 37586213 DOI: 10.1016/j.bbrc.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Glucosinolates (GSLs), a class of secondary metabolites found in Brassicaceae plants, play important roles in plant defense and contribute distinct flavors and aromas when used as food ingredients. Following tissue damage, GSLs undergo enzymatic hydrolysis to release bioactive volatile compounds. Understanding GSL biosynthesis and enzyme involvement is crucial for improving crop quality and advancing agriculture. Plant sulfotransferases (SOTs) play a key role in the final step of GSL biosynthesis by transferring sulfate groups to the precursor molecules. In the present study, we investigated the enzymatic reaction mechanism and broad substrate specificity of Arabidopsis thaliana sulfotransferase AtSOT16, which is involved in GSL biosynthesis, using crystal structure analysis. Our analysis revealed the specific catalytic residues involved in the sulfate transfer reaction and supported the hypothesis of a concerted acid-base catalytic mechanism. Furthermore, the docking models showed a strong correlation between the substrates with high predicted binding affinities and those experimentally reported to exhibit high activity. These findings provide valuable insights into the enzymatic reaction mechanisms and substrate specificity of GSL biosynthesis. The information obtained in this study may contribute to the development of novel strategies for manipulating GSL synthesis pathways in Brassica plants and has potential agricultural applications.
Collapse
Affiliation(s)
- Yuka Iwamoto
- Laboratory of Biophysical Chemistry, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan; Kyushu University Future Creators in Science Project (QFC-SP), Japan
| | - Seira Saito
- Kyushu University Future Creators in Science Project (QFC-SP), Japan; Meizen High School, Fukuoka, 830-0022, Japan
| | - Takamasa Teramoto
- Laboratory of Biophysical Chemistry, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan; Kyushu University Future Creators in Science Project (QFC-SP), Japan.
| | - Akiko Maruyama-Nakashita
- Laboratory of Plant Nutrition, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshimitsu Kakuta
- Laboratory of Biophysical Chemistry, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan; Kyushu University Future Creators in Science Project (QFC-SP), Japan.
| |
Collapse
|
19
|
Sun SK, Chen J, Zhao FJ. Regulatory mechanisms of sulfur metabolism affecting tolerance and accumulation of toxic trace metals and metalloids in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3286-3299. [PMID: 36861339 DOI: 10.1093/jxb/erad074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/23/2023] [Indexed: 06/08/2023]
Abstract
Soil contamination with trace metals and metalloids can cause toxicity to plants and threaten food safety and human health. Plants have evolved sophisticated mechanisms to cope with excess trace metals and metalloids in soils, including chelation and vacuolar sequestration. Sulfur-containing compounds, such as glutathione and phytochelatins, play a crucial role in their detoxification, and sulfur uptake and assimilation are regulated in response to the stress of toxic trace metals and metalloids. This review focuses on the multi-level connections between sulfur homeostasis in plants and responses to such stresses, especially those imposed by arsenic and cadmium. We consider recent progress in understanding the regulation of biosynthesis of glutathione and phytochelatins and of the sensing mechanism of sulfur homeostasis for tolerance of trace metals and metalloids in plants. We also discuss the roles of glutathione and phytochelatins in controlling the accumulation and distribution of arsenic and cadmium in plants, and possible strategies for manipulating sulfur metabolism to limit their accumulation in food crops.
Collapse
Affiliation(s)
- Sheng-Kai Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Jie Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
20
|
Apodiakou A, Hoefgen R. New insights into the regulation of plant metabolism by O-acetylserine: sulfate and beyond. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3361-3378. [PMID: 37025061 DOI: 10.1093/jxb/erad124] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/04/2023] [Indexed: 06/08/2023]
Abstract
Under conditions of sulfur deprivation, O-acetylserine (OAS) accumulates, which leads to the induction of a common set of six genes, called OAS cluster genes. These genes are induced not only under sulfur deprivation, but also under other conditions where OAS accumulates, such as shift to darkness and stress conditions leading to reactive oxygen species (ROS) or methyl-jasmonate accumulation. Using the OAS cluster genes as a query in ATTED-II, a co-expression network is derived stably spanning several hundred conditions. This allowed us not only to describe the downstream function of the OAS cluster genes but also to score for functions of the members of the co-regulated co-expression network and hence the effects of the OAS signal on the sulfate assimilation pathway and co-regulated pathways. Further, we summarized existing knowledge on the regulation of the OAS cluster and the co-expressed genes. We revealed that the known sulfate deprivation-related transcription factor EIL3/SLIM1 exhibits a prominent role, as most genes are subject to regulation by this transcription factor. The role of other transcription factors in response to OAS awaits further investigation.
Collapse
Affiliation(s)
- Anastasia Apodiakou
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
21
|
Szuba A, Ratajczak E, Leski T, Jasińska AK, Hanć A, Piechalak A, Woźniak G, Jagodziński AM. Physiological response of adult Salix aurita in wetland vegetation affected by flooding with As-rich fine pyrite particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161197. [PMID: 36586699 DOI: 10.1016/j.scitotenv.2022.161197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
An uncontrolled, natural episode of flooding with waters contaminated with As-rich pyrite (FeAsS) particles caused serious ecological damage leading to necrosis of plants growing in a fresh wet meadow located in an area characterized by unique geological structures rich in arsenopyrites. One of the few plant species capable of surviving this event was Salix aurita L., which grew in numbers in the analyzed area, but individual plants were affected differently by toxic flooding. No significant phenotypic changes (Group I), through partial leaf and/or stem necrosis (Group II) up to necrosis of the whole parental plant and root suckers (Group III), were observed for various willow clumps. These varied phenotypic responses of S. aurita to As-rich sediments were compared with the biochemical status of the foliage of willow trees, and with their rhizosphere physiological parameters. Our in situ study revealed that the biochemical status of leaves reflects the phenotypic damage incurred by adult willows growing in their natural environment and affected by the flooding. In leaves of willows with increasingly negative phenotypic changes (Groups I → II → III) as well as increasing levels of reactive oxygen species, malondialdehyde and decreased levels of glutathione and thiol groups were detected. Phytochelatins, commonly considered major As chelators, were not detected in S. aurita leaves. Despite a decrease in the size of leaves with the intensity of tree damage, all leaves expressed a normal level of leaf pigments. Phenotypic changes observed for particular willow clumps were only partly related to soil As levels. Moreover, As and S (but not Fe) foliar levels were related but did not correspond strictly with foliar biochemical features, or with soil As levels, soil pH or soil microbial activity, with the latter two drastically decreased in the rhizospheres of willows from Groups II and III.
Collapse
Affiliation(s)
- Agnieszka Szuba
- Institute of Dendrology, Polish Academy of Sciences, 62-035 Kórnik, Poland.
| | - Ewelina Ratajczak
- Institute of Dendrology, Polish Academy of Sciences, 62-035 Kórnik, Poland.
| | - Tomasz Leski
- Institute of Dendrology, Polish Academy of Sciences, 62-035 Kórnik, Poland.
| | - Anna K Jasińska
- Institute of Dendrology, Polish Academy of Sciences, 62-035 Kórnik, Poland.
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland.
| | - Aneta Piechalak
- Laboratory of Genome Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland.
| | - Gabriela Woźniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | | |
Collapse
|
22
|
Lyčka M, Barták M, Helia O, Kopriva S, Moravcová D, Hájek J, Fojt L, Čmelík R, Fajkus J, Fojtová M. Sulfate supplementation affects nutrient and photosynthetic status of Arabidopsis thaliana and Nicotiana tabacum differently under prolonged exposure to cadmium. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130527. [PMID: 36495640 DOI: 10.1016/j.jhazmat.2022.130527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Hydroponic experiments were performed to examine the effect of prolonged sulfate limitation combined with cadmium (Cd) exposure in Arabidopsis thaliana and a potential Cd hyperaccumulator, Nicotiana tabacum. Low sulfate treatments (20 and 40 µM MgSO4) and Cd stress (4 µM CdCl2) showed adverse effects on morphology, photosynthetic and biochemical parameters and the nutritional status of both species. For example, Cd stress decreased NO3- root content under 20 µM MgSO4 to approximately 50% compared with respective controls. Interestingly, changes in many measured parameters, such as chlorophyll and carotenoid contents, the concentrations of anions, nutrients and Cd, induced by low sulfate supply, Cd exposure or a combination of both factors, were species-specific. Our data showed opposing effects of Cd exposure on Ca, Fe, Mn, Cu and Zn levels in roots of the studied plants. In A. thaliana, levels of glutathione, phytochelatins and glucosinolates demonstrated their distinct involvement in response to sub-optimal growth conditions and Cd stress. In shoot, the levels of phytochelatins and glucosinolates in the organic sulfur fraction were not dependent on sulfate supply under Cd stress. Altogether, our data showed both common and species-specific features of the complex plant response to prolonged sulfate deprivation and/or Cd exposure.
Collapse
Affiliation(s)
- Martin Lyčka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.
| | - Miloš Barták
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Ondřej Helia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Stanislav Kopriva
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany; Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany
| | - Dana Moravcová
- Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Josef Hájek
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lukáš Fojt
- Institute of Biophysics of the Czech Academy of Sciences, 612 00 Brno, Czech Republic
| | - Richard Čmelík
- Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; Institute of Biophysics of the Czech Academy of Sciences, 612 00 Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
23
|
Yang Q, Luo M, Zhou Q, Zhao Y, Chen J, Ji S. Insights into the loss of glucoraphanin in post-harvested broccoli--Possible involvement of the declined supply capacity of sulfur donor. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111580. [PMID: 36587585 DOI: 10.1016/j.plantsci.2022.111580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The loss of characteristic nutrient glucoraphanin during the shelf life seriously affects the nutritional quality of broccoli. Here, we monitored the changes in the levels of sulfur donors (cysteine and glutathione) required for glucoraphanin biosynthesis. Similar to glucoraphanin, cysteine content decreased sharply. Continuous down-regulation of BoCysK1 and BoCysK2 genes encoding cysteine synthase might account for cysteine loss. Contrarily, glutathione content accumulated steadily, which might owe to the up-regulation of biosynthetic gene (BoEC1). Additionally, the change of malondialdehyde content was positively correlated with glutathione, implying that oxidative stress might stimulate glutathione accumulation. Nevertheless, the expression of BoGSTF11 gene encoding glutathione S-transferases was down-regulated, which blocked the supply of glutathione. The increase in the content of raphanusamic acid (degradation product) indicated that insufficient supply of sulfur donors not only could constrain the biosynthesis of glucoraphanin but also triggered its degradation.
Collapse
Affiliation(s)
- Qingxi Yang
- College of Food, Shenyang Agricultural University, Shenyang 110866, China.
| | - Manli Luo
- College of Food, Shenyang Agricultural University, Shenyang 110866, China.
| | - Qian Zhou
- College of Food, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yingbo Zhao
- College of Food, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Shujuan Ji
- College of Food, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
24
|
Wang L, Kuang Y, Zheng S, Tong Y, Zhu Y, Wang Y. Overexpression of the Phosphoserine Phosphatase-Encoding Gene ( AtPSP1) Promotes Starch Accumulation in Lemna turionifera 5511 under Sulfur Deficiency. PLANTS (BASEL, SWITZERLAND) 2023; 12:1012. [PMID: 36903873 PMCID: PMC10005638 DOI: 10.3390/plants12051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Duckweeds are well known for their high accumulation of starch under stress conditions, along with inhibited growth. The phosphorylation pathway of serine biosynthesis (PPSB) was reported as playing a vital role in linking the carbon, nitrogen, and sulfur metabolism in this plant. The overexpression of AtPSP1, the last key enzyme of the PPSB pathway in duckweed, was found to stimulate the accumulation of starch under sulfur-deficient conditions. The growth- and photosynthesis-related parameters were higher in the AtPSP1 transgenic plants than in the WT. The transcriptional analysis showed that the expression of several genes in starch synthesis, TCA, and sulfur absorption, transportation, and assimilation was significantly up- or downregulated. The study suggests that PSP engineering could improve starch accumulation in Lemna turionifera 5511 by coordinating the carbon metabolism and sulfur assimilation under sulfur-deficient conditions.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Yingying Kuang
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Siyu Zheng
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Yana Tong
- Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Yerong Zhu
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Yong Wang
- College of Life Science, Nankai University, Tianjin 300071, China
| |
Collapse
|
25
|
Canales J, Arenas-M A, Medina J, Vidal EA. A Revised View of the LSU Gene Family: New Functions in Plant Stress Responses and Phytohormone Signaling. Int J Mol Sci 2023; 24:ijms24032819. [PMID: 36769138 PMCID: PMC9917515 DOI: 10.3390/ijms24032819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
LSUs (RESPONSE TO LOW SULFUR) are plant-specific proteins of unknown function that were initially identified during transcriptomic studies of the sulfur deficiency response in Arabidopsis. Recent functional studies have shown that LSUs are important hubs of protein interaction networks with potential roles in plant stress responses. In particular, LSU proteins have been reported to interact with members of the brassinosteroid, jasmonate signaling, and ethylene biosynthetic pathways, suggesting that LSUs may be involved in response to plant stress through modulation of phytohormones. Furthermore, in silico analysis of the promoter regions of LSU genes in Arabidopsis has revealed the presence of cis-regulatory elements that are potentially responsive to phytohormones such as ABA, auxin, and jasmonic acid, suggesting crosstalk between LSU proteins and phytohormones. In this review, we summarize current knowledge about the LSU gene family in plants and its potential role in phytohormone responses.
Collapse
Affiliation(s)
- Javier Canales
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Correspondence: (J.C.); (E.A.V.)
| | - Anita Arenas-M
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Joaquín Medina
- Centro de Biotecnología y Genómica de Plantas, INIA-CSIC-Universidad Politécnica de Madrid, 28223 Madrid, Spain
| | - Elena A. Vidal
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
- Correspondence: (J.C.); (E.A.V.)
| |
Collapse
|
26
|
Zhao Q, Geng J, Du Y, Li S, Yuan X, Zhu J, Zhou Z, Wang Q, Du J. The common bean ( Phaseolus vulgaris) SULTR gene family: genome-wide identification, phylogeny, evolutionary expansion and expression patterns. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Qiang Zhao
- Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, P.R. China
- Cereals Germplasm Resources Innovation Laboratory, National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, P.R. China
| | - Jing Geng
- Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, P.R. China
| | - Yanli Du
- Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, P.R. China
- Cereals Germplasm Resources Innovation Laboratory, National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, P.R. China
| | - Siqi Li
- Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, P.R. China
| | - Xiankai Yuan
- Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, P.R. China
| | - Jixing Zhu
- Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, P.R. China
| | - Zhiheng Zhou
- Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, P.R. China
| | - Qi Wang
- Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, P.R. China
| | - Jidao Du
- Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, P.R. China
- Cereals Germplasm Resources Innovation Laboratory, National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, P.R. China
| |
Collapse
|
27
|
Sun L, Xue C, Guo C, Jia C, Yuan H, Pan X, Tai P. Maintenance of grafting reducing cadmium accumulation in soybean (Glycinemax) is mediated by DNA methylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157488. [PMID: 35870595 DOI: 10.1016/j.scitotenv.2022.157488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/17/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) pollution in farmland soil increases the probability of wastage of land resources and compromised food safety. Grafting can change the absorption rates of elements in crops; however, there are few studies on grafting in bulk grain and cash crops. In this study, Glycine max was used as a scion and Luffa aegyptiaca as a rootstock for grafting experiments. The changes in total sulfur and Cd content in the leaves and grains of grafted species were determined for three consecutive generations, and the gene expression and DNA methylation status of the leaves were analyzed. The results show that grafting significantly reduced the total sulfur and Cd content in soybean leaves and grains; the Cd content in soybean leaves and grains decreased by >50 %. The plant's primary sulfur metabolism pathway was not significantly affected. Glucosinolates and DNA methylation may play important roles in reducing total sulfur and Cd accumulation. Notably, low sulfur and low Cd traits can be maintained over two generations. Our study establishes that grafting can reduce the total sulfur and Cd content in soybean, and these traits can be inherited. In summary, grafting technology can be used to prevent soybean from accumulating Cd in farmland soil. This provides a theoretical basis for grafting to cultivate crops with low Cd accumulation.
Collapse
Affiliation(s)
- Lizong Sun
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyang Xue
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Guo
- School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Chunyun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Honghong Yuan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xiangwen Pan
- Key Laboratory of Molecular Breeding and Design, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Peidong Tai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
28
|
Piotrowska J, Jodoi Y, Trang NH, Wawrzynska A, Takahashi H, Sirko A, Maruyama-Nakashita A. The C-Terminal Region of SLIM1 Transcription Factor Is Required for Sulfur Deficiency Response. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192595. [PMID: 36235462 PMCID: PMC9573389 DOI: 10.3390/plants11192595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 05/14/2023]
Abstract
Sulfur LIMitation1 (SLIM1) transcription factor coordinates gene expression in plants in response to sulfur deficiency (-S). SLIM1 belongs to the family of plant-specific EIL transcription factors with EIN3 and EIL1, which regulate the ethylene-responsive gene expression. The EIL domains consist of DNA binding and dimerization domains highly conserved among EIL family members, while the N- and C-terminal regions are structurally variable and postulated to have regulatory roles in this protein family, such that the EIN3 C-terminal region is essential for its ethylene-responsive activation. In this study, we focused on the roles of the SLIM1 C-terminal region. We examined the transactivation activity of the full-length and the truncated SLIM1 in yeast and Arabidopsis. The full-length SLIM1 and the truncated form of SLIM1 with a deletion of C-terminal 106 amino acids (ΔC105) transactivated the reporter gene expression in yeast when they were fused to the GAL4 DNA binding domain, whereas the deletion of additional 15 amino acids to remove the C-terminal 120 amino acids (ΔC120) eliminated such an activity, identifying the necessity of that 15-amino-acid segment for transactivation. In the Arabidopsis slim1-2 mutant, the transcript levels of SULTR1;2 sulfate transporter and the GFP expression derived from the SULTR1;2 promoter-GFP (PSULTR1;2-GFP) transgene construct were restored under -S by introducing the full-length SLIM1, but not with the C-terminal truncated forms ΔC105 and ΔC57. Furthermore, the transcript levels of -S-responsive genes were restored concomitantly with an increase in glutathione accumulation in the complementing lines with the full-length SLIM1 but not with ΔC57. The C-terminal 57 amino acids of SLIM1 were also shown to be necessary for transactivation of a -S-inducible gene, SHM7/MSA1, in a transient expression system using the SHM7/MSA1 promoter-GUS as a reporter. These findings suggest that the C-terminal region is essential for the SLIM1 activity.
Collapse
Affiliation(s)
- Justyna Piotrowska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Yuki Jodoi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
| | - Nguyen Ha Trang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
| | - Anna Wawrzynska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Hideki Takahashi
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
- Correspondence: ; Tel.: +81-92-802-4712
| |
Collapse
|
29
|
Liu Z, Liu D, Fu X, Du X, Zhang Y, Zhen W, Li S, Yang H, He S, Li R. Integrated transcriptomic and metabolomic analyses revealed the regulatory mechanism of sulfur application in grain yield and protein content in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:935516. [PMID: 36186031 PMCID: PMC9523790 DOI: 10.3389/fpls.2022.935516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Sulfur fertilizers play an important role in increasing the yield and improving the dough quality of bread wheat, but their regulatory mechanism remains unclear. In this study, 0 kg·ha-1 (S0) and 60 kg·ha-1 (S60) of sulfur were applied on the anthesis date; subsequently, immature wheat grains at 8, 13, and 18 days post-anthesis (DPA) were subjected to integrated transcriptomic and metabolomic analyses to investigate the changes in the gene/metabolite activity in a typical strong-gluten wheat, Gaoyou2018 (GY2018). Our data show that the S60 treatment could significantly increase the grain yield and grain protein content by 13.2 and 3.6%, respectively. The transcriptomic analysis revealed that 10,694 differentially expressed genes (DEGs) were induced by S60 from 8 to 18 DPA when compared with their corresponding no-sulfur controls, and most DEGs were mainly involved in lipid metabolism and amino acid metabolism pathways. Ninety-seven MYB transcription factors (TFs) were identified as responsive to the S60 treatment; of these, 66 showed significantly differential expression at 13 DPA, and MYB118 might participate in the process of sulfur metabolism by regulating glucosinolate synthesis. In total, 542 significantly enriched differentially expressed (DE) metabolites (DEMs) were identified following the S60 treatment, which mainly included secondary metabolites, carbohydrates, and amino acids. Several metabolites (e.g., glutathione, sucrose, GDP-alpha-D-glucose, and amino acids) exhibited altered abundances following the S60 treatment. The combination of transcriptomic and metabolomic analyses highlighted the important role of amino acid metabolism (especially cysteine, methionine, and glutathione metabolism) and starch and sucrose metabolism pathways after S60 application. Our results provide valuable information enhancing our understanding of the molecular mechanism of the response to sulfur and provide useful clues for grain protein quality formation and yield improvement in bread wheat.
Collapse
Affiliation(s)
- Zhilian Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, China
- Wheat Breeding Center, Gaocheng Institute of Agricultural Sciences, Shijiazhuang, China
| | - Dongcheng Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xiaoyi Fu
- Wheat Research Center, Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xiong Du
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yuechen Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Wenchao Zhen
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Shan Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Haichuan Yang
- Wheat Breeding Center, Gaocheng Institute of Agricultural Sciences, Shijiazhuang, China
| | - Suqin He
- Agricultural Technology Promotion Center, Gaocheng Agricultural and Rural Bureau of Shijiazhuang City, Shijiazhuang, China
| | - Ruiqi Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
30
|
Lin H, Sun J, Hu Z, Cheng C, Lin S, Zou H, Yan X. Variation in Glucosinolate Accumulation among Different Sprout and Seedling Stages of Broccoli (Brassica oleracea var. italica). PLANTS 2022; 11:plants11121563. [PMID: 35736714 PMCID: PMC9227298 DOI: 10.3390/plants11121563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
Glucosinolates (GLs) are plant secondary metabolites that may act against different types of cancers. Broccoli (Brassica oleracea var. italica) is rich in GLs which makes it an excellent source of these nutraceuticals. The composition and concentration of GLs vary among broccoli cultivars and throughout the developmental stages of the plant. To obtain the GL profiles of broccoli, GL compositions and contents in four early developmental stages (seeds, 3-day sprouts, 11-day and 17-day seedlings) were determined for nine cultivars of broccoli in this study. A total of 12 GLs including 9 aliphatic GLs and 3 indole GLs were identified from the nine broccoli cultivars using LC-QTOF-MS. UPLC results showed that aliphatic GLs concentrations decreased with broccoli sprouts and seedling growth for most cultivars. Interestingly, indole GLs amounts increased after germination and reached the highest level in 3-day sprouts or 11-day seedlings, and they fell back to a low level in 17-day seedlings. The GL profiles of nine cultivars documented in this study will provide useful information for high quality germplasm selection for cultivation or genetic engineering, and further understanding of the GL metabolic pathways.
Collapse
|
31
|
Abstract
As sessile organisms, plants have developed sophisticated mechanism to sense and utilize nutrients from the environment, and modulate their growth and development according to the nutrient availability. Research in the past two decades revealed that nutrient assimilation is not occurring spontaneously, but nutrient signaling networks are complexly regulated and integrate sensing and signaling, gene expression, and metabolism to ensure homeostasis and coordination with plant energy conversion and other processes. Here, we review the importance of the macronutrient sulfur (S) and compare the knowledge of S signaling with other important macronutrients, such as nitrogen (N) and phosphorus (P). We focus on key advances in understanding sulfur sensing and signaling, uptake and assimilation, and we provide new analysis of published literature, to identify core genes regulated by the key transcriptional factor in S starvation response, SLIM1/EIL3, and compare the impact on other nutrient deficiency and stresses on S-related genes.
Collapse
Affiliation(s)
- Daniela Ristova
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Stanislav Kopriva
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Zülpicher Str. 47b, 50674 Cologne, Germany
| |
Collapse
|
32
|
The Genome-Wide Identification of Long Non-Coding RNAs Involved in Floral Thermogenesis in Nelumbo nucifera Gaertn. Int J Mol Sci 2022; 23:ijms23094901. [PMID: 35563291 PMCID: PMC9102460 DOI: 10.3390/ijms23094901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
The sacred lotus (Nelumbo nucifera Gaertn.) can maintain a stable floral chamber temperature when blooming, despite ambient temperature fluctuations; however, the long non-coding RNAs (lncRNAs) involved in floral thermogenesis remain unclear. In the present study, we obtain comprehensive lncRNAs expression profiles from receptacles at five developmental stages by strand-specific RNA sequencing to reveal the lncRNAs regulatory mechanism of the floral thermogenesis of N. nucifera. A total of 22,693 transcripts were identified as lncRNAs, of which approximately 44.78% had stage-specific expression patterns. Subsequently, we identified 2579 differential expressed lncRNAs (DELs) regulating 2367 protein-coding genes mainly involved in receptacle development and reproductive process. Then, lncRNAs with floral thermogenesis identified by weighted gene co-expression network analysis (WGCNA) were mainly related to sulfur metabolism and mitochondrial electron transport chains. Meanwhile, 70 lncRNAs were predicted to act as endogenous target mimics (eTMs) for 29 miRNAs and participate in the regulation of 16 floral thermogenesis-related genes. Our dual luciferase reporter assays indicated that lncRNA LTCONS_00068702 acted as eTMs for miR164a_4 to regulate the expression of TrxL2 gene. These results deepen our understanding of the regulation mechanism of floral thermogenesis by lncRNAs and accumulate data for further research.
Collapse
|
33
|
Hill CR, Shafaei A, Balmer L, Lewis JR, Hodgson JM, Millar AH, Blekkenhorst LC. Sulfur compounds: From plants to humans and their role in chronic disease prevention. Crit Rev Food Sci Nutr 2022; 63:8616-8638. [PMID: 35380479 DOI: 10.1080/10408398.2022.2057915] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sulfur is essential for the health of plants and is an indispensable dietary component for human health and disease prevention. Its incorporation into our food supply is heavily reliant upon the uptake of sulfur into plant tissue and our subsequent intake. Dietary requirements for sulfur are largely calculated based upon requirements for the sulfur-containing amino acids (SAA), cysteine and methionine, to meet the demands for synthesis of proteins, enzymes, co-enzymes, vitamins, and hormones. SAA are found in abundance in animal sources and are relatively low in plants. However, some plants, particularly cruciferous and allium vegetables, produce many protective sulfur-containing secondary metabolites, such as glucosinolates and cysteine sulfoxides. The variety and quantity of these sulfur-containing metabolites are extensive and their effects on human health are wide-reaching. Many benefits appear to be related to sulfur's role in redox biochemistry, protecting against uncontrolled oxidative stress and inflammation; features consistent within cardiometabolic dysfunction and many chronic metabolic diseases of aging. This narrative explores the origins and importance of sulfur, its incorporation into our food supply and dietary sources. It also explores the overarching potential of sulfur for human health, particularly around the amelioration of oxidative stress and chronic inflammation, and subsequent chronic disease prevention.
Collapse
Affiliation(s)
- Caroline R Hill
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
| | - Armaghan Shafaei
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Joondalup, Australia
| | - Lois Balmer
- Centre for Precision Health, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Australia
| | - Joshua R Lewis
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
- Centre for Kidney Research, Children's Hospital at Westmead School of Public Health, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Lauren C Blekkenhorst
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| |
Collapse
|
34
|
Guo M, Ruan W, Zhang Y, Zhang Y, Wang X, Guo Z, Wang L, Zhou T, Paz-Ares J, Yi K. A reciprocal inhibitory module for Pi and iron signaling. MOLECULAR PLANT 2022; 15:138-150. [PMID: 34562666 DOI: 10.1016/j.molp.2021.09.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/15/2021] [Accepted: 09/19/2021] [Indexed: 05/16/2023]
Abstract
Phosphorous (P) and iron (Fe), two essential nutrients for plant growth and development, are highly abundant elements in the earth's crust but often display low availability to plants. Due to the ability to form insoluble complexes, the antagonistic interaction between P and Fe nutrition in plants has been noticed for decades. However, the underlying molecular mechanism modulating the signaling and homeostasis between them remains obscure. Here, we show that the possible iron sensors HRZs, the iron deficiency-induced E3 ligases, could interact with the central regulator of phosphate (Pi) signaling, PHR2, and prompt its ubiquitination at lysine residues K319 and K328, leading to its degradation in rice. Consistent with this, the hrzs mutants displayed a high Pi accumulation phenotype. Furthermore, we found that iron deficiency could attenuate Pi starvation signaling by inducing the expression of HRZs, which in turn trigger PHR2 protein degradation. Interestingly, on the other hand, rice PHRs could negatively regulate the expression of HRZs to modulate iron deficiency responses. Therefore, PHR2 and HRZs form a reciprocal inhibitory module to coordinate Pi and iron signaling and homeostasis in rice. Taken together, our results uncover a molecular link between Pi and iron master regulators, which fine-tunes plant adaptation to Pi and iron availability in rice.
Collapse
Affiliation(s)
- Meina Guo
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenyuan Ruan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yibo Zhang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuxin Zhang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xueqing Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenhui Guo
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tian Zhou
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Javier Paz-Ares
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
35
|
Wang Q, Kong L, Huang Q, Li H, Wan Y. Uptake and translocation mechanisms of different forms of organic selenium in rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:970480. [PMID: 36072317 PMCID: PMC9441932 DOI: 10.3389/fpls.2022.970480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/02/2022] [Indexed: 05/12/2023]
Abstract
Selenium (Se) is an essential trace element for human and animal health, and toward an understanding of the uptake and translocation of Se in plants is important from the perspective of Se biofortification. In this study, we conducted hydroponic experiments to investigate the mechanisms of organic Se [selenomethionine (SeMet) and selenomethionine-oxide (SeOMet)] uptake, translocation, and the interactions between SeMet and SeOMet in rice. We also investigated differences in the dynamics of organic and inorganic Se uptake by rice roots. Concentration-dependent kinetic results revealed that SeMet uptake during a 1 h exposure was 3.19-16.0 times higher than that of three other Se chemical forms, with uptake capacity (Vmax ) values ordered as follows: SeMet>SeOMet>selenite>selenate. Furthermore, time-dependent kinetic analysis revealed that SeMet uptake by roots and content in shoots were initially clearly higher than those of SeOMet, although the differences gradually diminished with prolonged exposure time; while no significant difference was found in the transfer factor of Se from rice roots to shoots between SeMet and SeOMet. Root uptake of SeOMet was significantly inhibited by carbonyl cyanide 3-chlorophenylhydrazone (CCCP) (30.4%), AgNO3 (41.8%), and tetraethylammonium chloride (TEACl) (45.6%), indicating that SeOMet uptake is a metabolically active process, and that it could be mediated via aquaporins and K+ channels. Contrarily, SeMet uptake was insensitive to CCCP, although markedly inhibited by AgNO3 (93.1%), indicating that rice absorbs SeMet primarily via aquaporins. Furthermore, Se uptake and translocation in rice treated simultaneously with both SeMet and SeOMet were considerably lower than those in rice treated with SeMet treatment alone and notably lower than the theoretical quantity, indicating interactions between SeMet and SeOMet. Our findings provide important insights into the mechanisms underlying the uptake and translocation of organic Se within plants.
Collapse
Affiliation(s)
- Qi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, China Agricultural University, Beijing, China
| | - Lingxuan Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, China Agricultural University, Beijing, China
| | - Qingqing Huang
- Innovation Team of Remediation of Heavy Metal-Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Huafen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, China Agricultural University, Beijing, China
| | - Yanan Wan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, China Agricultural University, Beijing, China
- *Correspondence: Yanan Wan,
| |
Collapse
|
36
|
Zhang N, Huang L, Zhang Y, Liu L, Sun C, Lin X. Sulfur deficiency exacerbates phytotoxicity and residues of imidacloprid through suppression of thiol-dependent detoxification in lettuce seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118221. [PMID: 34740294 DOI: 10.1016/j.envpol.2021.118221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/21/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Sulfur, an essential macronutrient, plays important roles in plant development and stress mitigation. Sulfur deficiency, a common problem in agricultural soils, may disturb plant stress resistance and xenobiotic detoxification. In the present study, the function and mechanism of limited sulfur nutrition on the residues and phtotoxicity of imidacloprid were investigated in lettuce plants. Sulfur deficiency significantly increased imidacloprid accumulation in lettuce tissues, exacerbated imidacloprid biological toxicity by enhancing the accumulation of toxic metabolites, like imidacloprid-olefin. Simultaneously, imidacloprid-induced detoxification enzymes including cytochromes P450, glutathione S-transferases (GSTs) and glycosyltransferases were inhibited under limited sulfur supply. On the other hand, sulfur deficiency further enhanced the generation of reactive oxygen species and exacerbated lipid peroxidation in lettuce tissues. Sulfur deficiency mainly reduced the abundance of thiol groups, which are essential redox modulators as well as xenobiotic conjugators, and significantly inhibited GSTs expression. These results clearly suggested that sulfur deficiency inhibited the synthesis of sulfur-containing compounds, leading to increased accumulation of pesticide residues and toxic metabolites as well as reduced detoxification capacity, consequently leading to oxidative damage to plants. Therefore, moderate sulfur supply in regions where neonicotinoid insecticides are intensively and indiscriminately used may be an efficient strategy to reduce pesticide residues and the potential risk to ecosystem.
Collapse
Affiliation(s)
- Nan Zhang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lin Huang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuxue Zhang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lijuan Liu
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
37
|
Reginato M, Luna V, Papenbrock J. Current knowledge about Na 2SO 4 effects on plants: what is different in comparison to NaCl? JOURNAL OF PLANT RESEARCH 2021; 134:1159-1179. [PMID: 34365525 DOI: 10.1007/s10265-021-01335-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
In some areas of the world, high levels of sodium sulfate (Na2SO4) are found in the soil together with sodium chloride (NaCl). However, most studies on salinity are performed utilizing only NaCl as a salinizing agent. Generally, plant species have different tolerance/susceptibility responses when grown in the presence of these salts. Some studies showed that Na2SO4 seems to be more inhibitory than NaCl for the growth of species such as barley, wheat, sugar cane, beet, tomato, wild potato, and others. However, studies focusing on how Na2SO4 can affect the biochemical and physiological processes of plants are very scarce. This review provides an overview on the effects of Na2SO4 on different crops and plants species with a special emphasis on the tolerance/non-tolerance mechanisms of the halophyte Prosopis strombulifera under elevated NaCl and Na2SO4. A better understanding of the tolerance mechanisms in this particular species will help to identify cultivars of crop species that are more tolerant to Na2SO4. This knowledge could be used to extent cultivation of certain crop plants on Na2SO4 containing soils.
Collapse
Affiliation(s)
- Mariana Reginato
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804BYA, Río Cuarto, Argentina.
- Instituto de Investigaciones Agrobiotecnológicas (INIAB-UNRC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36. Km. 601, X5804BYA, Rio Cuarto, Argentina.
| | - Virginia Luna
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804BYA, Río Cuarto, Argentina
- Instituto de Investigaciones Agrobiotecnológicas (INIAB-UNRC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36. Km. 601, X5804BYA, Rio Cuarto, Argentina
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, Herrenhäuserstr. 2, 30419, Hannover, Germany
| |
Collapse
|
38
|
A Low Level of NaCl Stimulates Plant Growth by Improving Carbon and Sulfur Assimilation in Arabidopsis thaliana. PLANTS 2021; 10:plants10102138. [PMID: 34685947 PMCID: PMC8541631 DOI: 10.3390/plants10102138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/03/2022]
Abstract
High-salinity stress represses plant growth by inhibiting various metabolic processes. In contrast to the well-studied mechanisms mediating tolerance to high levels of salt, the effects of low levels of salts have not been well studied. In this study, we examined the growth of Arabidopsis thaliana plants under different NaCl concentrations. Interestingly, both shoot and root biomass increased in the presence of 5 mM NaCl, whereas more than 10 mM NaCl decreased plant biomass. To clarify the biological mechanism by which a low level of NaCl stimulated plant growth, we analyzed element accumulation in plants grown under different NaCl concentrations. In addition to the Na and Cl contents, C, S, Zn, and Cu contents were increased under 5 mM NaCl in shoots; this was not observed at higher NaCl concentrations. Adverse effects of high salinity, such as decreased levels of nitrate, phosphate, sulfate, and some cations, did not occur in the presence of 5 mM NaCl. An increase in C was possibly attributed to increased photosynthesis supported by Cl, Zn, and Cu, which also increased in shoots after NaCl application. Salt stress-responsive gene expression was enhanced under 20 mM NaCl but not at lower doses. Among the S metabolites analyzed, cysteine (Cys) was increased by 5 mM NaCl, suggesting that S assimilation was promoted by this dose of NaCl. These results indicate the usefulness of NaCl for plant growth stimulation.
Collapse
|
39
|
Li L, Zhang H, Chai X, Wei S, Luo S, Wang H, Lv J, Yu J, Liu Z. Transcriptome and Proteome Conjoint Analysis Revealed That Exogenous Sulfur Regulates Glucosinolate Synthesis in Cabbage. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10102104. [PMID: 34685913 PMCID: PMC8539766 DOI: 10.3390/plants10102104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Glucosinolates (GLS) are important anionic secondary metabolites that are rich in thiocyanin in cabbage, Brassica oleracea L. var. capitata. GLS are important in food flavor, plant antimicrobial activity, insect resistance, disease resistance, and human anti-cancer effects. Sulfur is an important raw material of GLS, directly affecting their synthesis. However, the mechanism of sulfur regulation of GLS biosynthesis in cabbage is unclear. In the present study, cabbage was treated with sulfur-free Hoagland nutrient solution (control; -S), and normal Hoagland nutrient solution (treatment; +S). Through joint transcriptomic and proteomic analyses, the effect of exogenous S on GLS synthesis was explored. S application induced GLS accumulation; especially, indole glycosides. Transcriptome analysis showed that +S treatment correlated positively with differentially expressed genes and proteins involved in amino acid biosynthesis, carbon metabolism, and plant hormone signal transduction. Compared with -S treatment, the mRNA expression of GLS synthesis genes (CYP, GSTU, UGT, and FMO) and those encoding transcription factors (RLK, MYB, AP2, bHLH, AUX/IAA, and WRKY) were upregulated significantly in the +S group. Combined transcriptome and proteome analysis suggested that the main pathway influenced by S during GLS synthesis in cabbage is amino acid biosynthesis. Moreover, S treatment activated GLS synthesis and accumulation.
Collapse
Affiliation(s)
- Lushan Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (L.L.); (H.Z.); (S.W.); (S.L.); (H.W.); (J.L.)
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua 617000, China
| | - Hui Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (L.L.); (H.Z.); (S.W.); (S.L.); (H.W.); (J.L.)
| | - Xiaohong Chai
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China;
| | - Shouhui Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (L.L.); (H.Z.); (S.W.); (S.L.); (H.W.); (J.L.)
| | - Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (L.L.); (H.Z.); (S.W.); (S.L.); (H.W.); (J.L.)
| | - Huiping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (L.L.); (H.Z.); (S.W.); (S.L.); (H.W.); (J.L.)
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (L.L.); (H.Z.); (S.W.); (S.L.); (H.W.); (J.L.)
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (L.L.); (H.Z.); (S.W.); (S.L.); (H.W.); (J.L.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (L.L.); (H.Z.); (S.W.); (S.L.); (H.W.); (J.L.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
40
|
Jiang L, Wang Y, Xia A, Wang Q, Zhang X, Jez JM, Li Z, Tan W, He Y. A natural single-nucleotide polymorphism variant in sulfite reductase influences sulfur assimilation in maize. THE NEW PHYTOLOGIST 2021; 232:692-704. [PMID: 34254312 DOI: 10.1111/nph.17616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Plants absorb sulfur from the environment and assimilate it into suitable forms for the biosynthesis of a broad range of molecules. Although the biochemical pathway of sulfur assimilation is known, how genetic differences contribute to natural variation in sulfur assimilation remains poorly understood. Here, using a genome-wide association study, we uncovered a single-nucleotide polymorphism (SNP) variant in the sulfite reductase (SiR) gene that was significantly associated with SiR protein abundance in a maize natural association population. We also demonstrated that the synonymous C to G base change at SNP69 may repress translational activity by altering messenger RNA secondary structure, which leads to reduction in ZmSiR protein abundance and sulfur assimilation activity. Population genetic analyses showed that the SNP69C allele was likely a variant occurring after the initial maize domestication and accumulated with the spread of maize cultivation from tropical to temperate regions. This study provides the first evidence that genetic polymorphisms in the exon of ZmSiR could influence the protein abundance through a posttranscriptional mechanism and in part contribute to natural variation in sulfur assimilation. These findings provide a prospective target to improve maize varieties with proper sulfur nutrient levels assisted by molecular breeding and engineering.
Collapse
Affiliation(s)
- Luguang Jiang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Yan Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Aiai Xia
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Qi Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Xiaolei Zhang
- Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Joseph M Jez
- Department of Biology, Washington University in St Louis, St Louis, MO, 63130, USA
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Weiming Tan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Yan He
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| |
Collapse
|
41
|
Jiang H, Lin W, Jiao H, Liu J, Chan L, Liu X, Wang R, Chen T. Uptake, transport, and metabolism of selenium and its protective effects against toxic metals in plants: a review. Metallomics 2021; 13:6310585. [PMID: 34180517 DOI: 10.1093/mtomcs/mfab040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/21/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022]
Abstract
Selenium (Se) is an essential trace element of fundamental importance to humans, animals, and plants. However, the uptake, transport, and metabolic processes of Se and its underlying mechanisms in plants have not been well characterized. Here, we review our current understanding of the adsorption and assimilation of Se in plants. First, we discussed the conversion of Se from inorganic Se into organic forms, the mechanisms underlying the formation of seleno-amino acids, and the detoxification of Se. We then discussed the ways in which Se protects plants against toxic metal ions in the environment, such as by alleviating oxidative stress, regulating the activity of antioxidant enzymes, sequestering metal ions, and preventing metal ion uptake and accumulation. Generally, this review will aid future research examining the molecular mechanisms underlying the antagonistic relationships between Se and toxic metals in plants.
Collapse
Affiliation(s)
- Haiyan Jiang
- Guangdong Province Research Center for Geoanalysis, Guangzhou 510080, China
| | - Weiqiang Lin
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Hongpeng Jiao
- Guangdong Province Research Center for Geoanalysis, Guangzhou 510080, China
| | - Jinggong Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111 Dade Rd, Guangzhou 510120, China
| | - Leung Chan
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Xiaoying Liu
- Shenzhen Agricultural Product Quality and Safety Inspection and Testing Center (Guangdong Provincial Key Laboratory of Supervision and Administration of Edible Agricultural Products, Market Supervision Administration), Shenzhen 518000, China
| | - Rui Wang
- Shenzhen Agricultural Product Quality and Safety Inspection and Testing Center (Guangdong Provincial Key Laboratory of Supervision and Administration of Edible Agricultural Products, Market Supervision Administration), Shenzhen 518000, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
42
|
Abstract
Specialized (secondary) metabolites have been largely considered bioactive “end” products synthesized from primary metabolites. We report biochemical evidence of a retrograde flow of sulfur atoms from specialized metabolites (glucosinolates) to primary metabolites (cysteine) in Arabidopsis thaliana. The reaction begins with glucosinolate breakdown by specific beta-glucosidases, which facilitates sulfur deficiency tolerance, demonstrating a physiological advantage of utilizing specialized metabolites as nutrient reservoirs. Our findings address the breadth of turnover systems in nature and enhance our understanding of how plants coordinate primary and specialized metabolism under different environmental conditions. Specialized (secondary) metabolic pathways in plants have long been considered one-way routes of leading primary metabolite precursors to bioactive end products. Conversely, endogenous degradation of such “end” products in plant tissues has been observed following environmental stimuli, including nutrition stress. Therefore, it is of general interest whether specialized metabolites can be reintegrated into primary metabolism to recover the invested resources, especially in the case of nitrogen- or sulfur-rich compounds. Here, we demonstrate that endogenous glucosinolates (GLs), a class of sulfur-rich plant metabolites, are exploited as a sulfur source by the reallocation of sulfur atoms to primary metabolites such as cysteine in Arabidopsis thaliana. Tracer experiments using 34S- or deuterium-labeled GLs depicted the catabolic processing of GL breakdown products in which sulfur is mobilized from the thioglucoside group in GL molecules, potentially accompanied by the release of the sulfate group. Moreover, we reveal that beta-glucosidases BGLU28 and BGLU30 are the major myrosinases that initiate sulfur reallocation by hydrolyzing particular GL species, conferring sulfur deficiency tolerance in A. thaliana, especially during early development. The results delineate the physiological function of GL as a sulfur reservoir, in addition to their well-known functions as defense chemicals. Overall, our findings demonstrate the bidirectional interaction between primary and specialized metabolism, which enhances our understanding of the underlying metabolic mechanisms via which plants adapt to their environments.
Collapse
|
43
|
Teng Z, Yu Y, Zhu Z, Hong SB, Yang B, Zang Y. Melatonin elevated Sclerotinia sclerotiorum resistance via modulation of ATP and glucosinolate biosynthesis in Brassica rapa ssp. pekinensis. J Proteomics 2021; 243:104264. [PMID: 33992838 DOI: 10.1016/j.jprot.2021.104264] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/13/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022]
Abstract
Sclerotinia stem rot is a common disease found in Brassica rapa that is caused by the necrotic plant pathogen Sclerotinia sclerotiorum. Melatonin (MT) has known biological activity and effectively relieved this type of Sclerotinia stem rot in B. rapa. To better understand the mechanisms behind MT-induced S. sclerotiorum resistance in B. rapa, we performed both proteomic and metabolomic analysis. Our results showed that during S. sclerotiorum infection, thiamine synthesis was activated and defended against it. In infected leaves, ribosomal synthesis-related proteins responded positively to MT treatment. Integrated proteomic and metabolomic analysis showed that amino acid metabolism was activated by MT treatment. After MT treatment, adenosine-triphosphate (ATP) content and the activity of antioxidant enzymes were both increased in B. rapa infected leaves. Cysteine synthase, sulfur transfer-related proteins, and glucosinolate (GS) were all increased after MT treatment in infected B. rapa leaves. Taken together, these results indicated that B. rapa leaves promoted thiamine formation to defend against S. sclerotiorum infection. Moreover, MT helped further induce antioxidant activation in B. rapa in an ATP-dependent manner and stimulating GS biosynthesis to well inhibit the S. sclerotiorum infection. SIGNIFICANCE: Melatonin (MT) has biological activity and effectively relieved the Sclerotinia stem rot of Brassica rapa caused by the necrotic plant pathogen Sclerotinia sclerotiorum. In order to reveal the molecular mechanisms of MT-induced S. sclerotiorum resistance in B. rapa, comprehensive proteomic and metabolomic analyses were conducted. The integration analysis of omic-data illustrated that the modulation of ATP and glucosinolate biosynthesis induced by MT administration helped to defend the infection of S. sclerotiorum in B. rapa. Our results will provide insights into MT-induced anti-fungal mechanism and therapeutic strategies to mitigate Sclerotinia stem rot of B. rapa, thereby increasing plant yield and decreasing economic losses.
Collapse
Affiliation(s)
- Zhiyan Teng
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Science, Zhejiang A&F University, Wusu Street 666, Lin'an, Hangzhou 311300, China
| | - Youjian Yu
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Science, Zhejiang A&F University, Wusu Street 666, Lin'an, Hangzhou 311300, China
| | - Zhujun Zhu
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Science, Zhejiang A&F University, Wusu Street 666, Lin'an, Hangzhou 311300, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX 77058-1098, USA
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| | - Yunxiang Zang
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Science, Zhejiang A&F University, Wusu Street 666, Lin'an, Hangzhou 311300, China.
| |
Collapse
|
44
|
de Bang TC, Husted S, Laursen KH, Persson DP, Schjoerring JK. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. THE NEW PHYTOLOGIST 2021; 229:2446-2469. [PMID: 33175410 DOI: 10.1111/nph.17074] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 05/22/2023]
Abstract
The visual deficiency symptoms developing on plants constitute the ultimate manifestation of suboptimal nutrient supply. In classical plant nutrition, these symptoms have been extensively used as a tool to characterise the nutritional status of plants and to optimise fertilisation. Here we expand this concept by bridging the typical deficiency symptoms for each of the six essential macronutrients to their molecular and physiological functionalities in higher plants. We focus on the most recent insights obtained during the last decade, which now allow us to better understand the links between symptom and function for each element. A deep understanding of the mechanisms underlying the visual deficiency symptoms enables us to thoroughly understand how plants react to nutrient limitations and how these disturbances may affect the productivity and biodiversity of terrestrial ecosystems. A proper interpretation of visual deficiency symptoms will support the potential for sustainable crop intensification through the development of new technologies that facilitate automatised management practices based on imaging technologies, remote sensing and in-field sensors, thereby providing the basis for timely application of nutrients via smart and more efficient fertilisation.
Collapse
Affiliation(s)
- Thomas Christian de Bang
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Søren Husted
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Kristian Holst Laursen
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Daniel Pergament Persson
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Jan Kofod Schjoerring
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| |
Collapse
|
45
|
Mitreiter S, Gigolashvili T. Regulation of glucosinolate biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:70-91. [PMID: 33313802 DOI: 10.1093/jxb/eraa479] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 05/18/2023]
Abstract
Glucosinolates are secondary defense metabolites produced by plants of the order Brassicales, which includes the model species Arabidopsis and many crop species. In the past 13 years, the regulation of glucosinolate synthesis in plants has been intensively studied, with recent research revealing complex molecular mechanisms that connect glucosinolate production with responses to other central pathways. In this review, we discuss how the regulation of glucosinolate biosynthesis is ecologically relevant for plants, how it is controlled by transcription factors, and how this transcriptional machinery interacts with hormonal, environmental, and epigenetic mechanisms. We present the central players in glucosinolate regulation, MYB and basic helix-loop-helix transcription factors, as well as the plant hormone jasmonate, which together with other hormones and environmental signals allow the coordinated and rapid regulation of glucosinolate genes. Furthermore, we highlight the regulatory connections between glucosinolates, auxin, and sulfur metabolism and discuss emerging insights and open questions on the regulation of glucosinolate biosynthesis.
Collapse
Affiliation(s)
- Simon Mitreiter
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Tamara Gigolashvili
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
46
|
Aarabi F, Naake T, Fernie AR, Hoefgen R. Coordinating Sulfur Pools under Sulfate Deprivation. TRENDS IN PLANT SCIENCE 2020; 25:1227-1239. [PMID: 32800669 DOI: 10.1016/j.tplants.2020.07.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 05/22/2023]
Abstract
Plants display manifold metabolic changes on sulfate deficiency (S deficiency) with all sulfur-containing pools of primary and secondary metabolism affected. O-Acetylserine (OAS), whose levels are rapidly altered on S deficiency, is correlated tightly with novel regulators of plant sulfur metabolism that have key roles in balancing plant sulfur pools, including the Sulfur Deficiency Induced genes (SDI1 and SDI2), More Sulfur Accumulation1 (MSA1), and GGCT2;1. Despite the importance of OAS in the coordination of S pools under stress, mechanisms of OAS perception and signaling have remained elusive. Here, we put particular focus on the general OAS-responsive genes but also elaborate on the specific roles of SDI1 and SDI2 genes, which downregulate the glucosinolate (GSL) pool size. We also highlight the key open questions in sulfur partitioning.
Collapse
Affiliation(s)
- Fayezeh Aarabi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Thomas Naake
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
47
|
Li Q, Gao Y, Yang A. Sulfur Homeostasis in Plants. Int J Mol Sci 2020; 21:E8926. [PMID: 33255536 PMCID: PMC7727837 DOI: 10.3390/ijms21238926] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022] Open
Abstract
Sulfur (S) is an essential macronutrient for plant growth and development. S is majorly absorbed as sulfate from soil, and is then translocated to plastids in leaves, where it is assimilated into organic products. Cysteine (Cys) is the first organic product generated from S, and it is used as a precursor to synthesize many S-containing metabolites with important biological functions, such as glutathione (GSH) and methionine (Met). The reduction of sulfate takes place in a two-step reaction involving a variety of enzymes. Sulfate transporters (SULTRs) are responsible for the absorption of SO42- from the soil and the transport of SO42- in plants. There are 12-16 members in the S transporter family, which is divided into five categories based on coding sequence homology and biochemical functions. When exposed to S deficiency, plants will alter a series of morphological and physiological processes. Adaptive strategies, including cis-acting elements, transcription factors, non-coding microRNAs, and phytohormones, have evolved in plants to respond to S deficiency. In addition, there is crosstalk between S and other nutrients in plants. In this review, we summarize the recent progress in understanding the mechanisms underlying S homeostasis in plants.
Collapse
Affiliation(s)
| | | | - An Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; (Q.L.); (Y.G.)
| |
Collapse
|
48
|
Glucosinolate Biosynthesis and the Glucosinolate–Myrosinase System in Plant Defense. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10111786] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Insect pests represent a major global challenge to important agricultural crops. Insecticides are often applied to combat such pests, but their use has caused additional challenges such as environmental contamination and human health issues. Over millions of years, plants have evolved natural defense mechanisms to overcome insect pests and pathogens. One such mechanism is the production of natural repellents or specialized metabolites like glucosinolates. There are three types of glucosinolates produced in the order Brassicales: aliphatic, indole, and benzenic glucosinolates. Upon insect herbivory, a “mustard oil bomb” consisting of glucosinolates and their hydrolyzing enzymes (myrosinases) is triggered to release toxic degradation products that act as insect deterrents. This review aims to provide a comprehensive summary of glucosinolate biosynthesis, the “mustard oil bomb”, and how these metabolites function in plant defense against pathogens and insects. Understanding these defense mechanisms will not only allow us to harness the benefits of this group of natural metabolites for enhancing pest control in Brassicales crops but also to transfer the “mustard oil bomb” to non-glucosinolate producing crops to boost their defense and thereby reduce the use of chemical pesticides.
Collapse
|
49
|
Canales J, Uribe F, Henríquez-Valencia C, Lovazzano C, Medina J, Vidal EA. Transcriptomic analysis at organ and time scale reveals gene regulatory networks controlling the sulfate starvation response of Solanum lycopersicum. BMC PLANT BIOLOGY 2020; 20:385. [PMID: 32831040 PMCID: PMC7444261 DOI: 10.1186/s12870-020-02590-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/10/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND Sulfur is a major component of biological molecules and thus an essential element for plants. Deficiency of sulfate, the main source of sulfur in soils, negatively influences plant growth and crop yield. The effect of sulfate deficiency on plants has been well characterized at the physiological, transcriptomic and metabolomic levels in Arabidopsis thaliana and a limited number of crop plants. However, we still lack a thorough understanding of the molecular mechanisms and regulatory networks underlying sulfate deficiency in most plants. In this work we analyzed the impact of sulfate starvation on the transcriptome of tomato plants to identify regulatory networks and key transcriptional regulators at a temporal and organ scale. RESULTS Sulfate starvation reduces the growth of roots and leaves which is accompanied by major changes in the organ transcriptome, with the response being temporally earlier in roots than leaves. Comparative analysis showed that a major part of the Arabidopsis and tomato transcriptomic response to sulfate starvation is conserved between these plants and allowed for the identification of processes specifically regulated in tomato at the transcript level, including the control of internal phosphate levels. Integrative gene network analysis uncovered key transcription factors controlling the temporal expression of genes involved in sulfate assimilation, as well as cell cycle, cell division and photosynthesis during sulfate starvation in tomato roots and leaves. Interestingly, one of these transcription factors presents a high identity with SULFUR LIMITATION1, a central component of the sulfate starvation response in Arabidopsis. CONCLUSIONS Together, our results provide the first comprehensive catalog of sulfate-responsive genes in tomato, as well as novel regulatory targets for future functional analyses in tomato and other crops.
Collapse
Affiliation(s)
- Javier Canales
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.
| | - Felipe Uribe
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Carlos Henríquez-Valencia
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Carlos Lovazzano
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Joaquín Medina
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Elena A Vidal
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
| |
Collapse
|
50
|
Sikorska-Zimny K, Beneduce L. The glucosinolates and their bioactive derivatives in Brassica: a review on classification, biosynthesis and content in plant tissues, fate during and after processing, effect on the human organism and interaction with the gut microbiota. Crit Rev Food Sci Nutr 2020; 61:2544-2571. [PMID: 32584172 DOI: 10.1080/10408398.2020.1780193] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present study is a systematic review of the scientific literature reporting content, composition and biosynthesis of glucosinolates (GLS), and their derivative compounds in Brassica family. An amended classification of brassica species, varieties and their GLS content, organized for the different plant organs and in uniformed concentration measure unit, is here reported for the first time in a harmonized and comparative manner. In the last years, the studies carried out on the effect of processing on vegetables and the potential benefits for human health has increased rapidly and consistently the knowledge on the topic. Therefore, there was the need for an updated revision of the scientific literature of pre- and post-harvest modifications of GLS content, along with the role of gut microbiota in influencing their bioavailability once they are ingested. After analyzing and standardizing over 100 articles and the related data, the highest GLS content in Brassica, was declared in B. nigra (L.) W. D. J. Koch (201.95 ± 53.36 µmol g-1), followed by B. oleracea Alboglabra group (180.9 ± 70.3 µmol g-1). The authors also conclude that food processing can influence significantly the final content of GLS, considering the most popular methods: boiling, blanching, steaming, the latter can be considered as the most favorable to preserve highest level of GLS and their deriviatives. Therefore, a mild-processing strategic approach for GLS or their derivatives in food is recommended, in order to minimize the loss of actual bioactive impact. Finally, the human gut microbiota is influenced by Brassica-rich diet and can contribute in certain conditions to the increasing of GLS bioavailability but further studies are needed to assess the actual role of microbiomes in the bioavailability of healthy glucosinolate derivatives.
Collapse
Affiliation(s)
- Kalina Sikorska-Zimny
- Fruit and Vegetables Storage and Processing Department, Storage and Postharvest Physiology of Fruit and Vegetables Laboratory, Research Institute of Horticulture, Skierniewice, Poland.,Stefan Batory State University, Skierniewice, Poland
| | - Luciano Beneduce
- Department of the Sciences of Agriculture, Food and Environment (SAFE), University of Foggia, Foggia, Italy
| |
Collapse
|