1
|
Luo J, Li Z, Hu M, Xia Y, Yu Q, Hou S. The enhanced excited-state intramolecular proton transfer energy barrier of flavonols induced by deprotonation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 337:126146. [PMID: 40184986 DOI: 10.1016/j.saa.2025.126146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/23/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
The barrierless excited-state intramolecular proton transfer (ESIPT) is believed to account for the non-radiative decays of flavonols composed of 5-hydroxyl group. However, the ESIPT mechanisms of flavonol anions have never been elucidated. In this work, by using the time-dependent density functional theory (TDDFT) calculations, we have determined the barrierless ESIPT in kaempferol and galangin, in agreement with their non-emissive properties. In contrast, deprotonation at the position 7 of them is demonstrated to decrease the basicity of proton acceptor and acidity of proton donor in the excited state, largely increasing the ESIPT barrier and leading to the fluorescence emission from the normal state. A further deprotonation of mono-deprotonated kaempferol is inferred to induce blue shifted emission. These results elucidate the nature of emissive flavonol anions and give a deep insight into the optical properties of flavonols in different matrices.
Collapse
Affiliation(s)
- Jian Luo
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China.
| | - Zheng Li
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Mengrong Hu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Yuhan Xia
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Qin Yu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Siyu Hou
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
2
|
Zhong C, Deng K, Lang X, Shan D, Xie Y, Pan W, Yu J. Therapeutic potential of natural flavonoids in atherosclerosis through endothelium-protective mechanisms: An update. Pharmacol Ther 2025; 271:108864. [PMID: 40274196 DOI: 10.1016/j.pharmthera.2025.108864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/27/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Atherosclerosis and its associated cardiovascular complications remain significant global public health challenges, underscoring the urgent need for effective therapeutic strategies. Endothelial cells are critical for maintaining vascular health and homeostasis, and their dysfunction is a key contributor to the initiation and progression of atherosclerosis. Targeting endothelial dysfunction has, therefore, emerged as a promising approach for the prevention and management of atherosclerosis. Among natural products, flavonoids, a diverse class of plant-derived phenolic compounds, have garnered significant attention for their anti-atherosclerotic properties. A growing body of evidence demonstrates that flavonoids can mitigate endothelial dysfunction, highlighting their potential as endothelial dysfunction-targeted therapeutics for atherosclerosis. In this review, we summarize current knowledge on the roles of natural flavonoids in modulating various aspects of endothelial dysfunction and their therapeutic effects on atherosclerosis, focusing on the underlying molecular mechanisms. We also discuss the challenges and future prospects of translating natural flavonoids into clinical applications for cardiovascular medicine. This review aims to provide critical insights to advance the development of novel endothelium-protective pharmacotherapies for atherosclerosis.
Collapse
Affiliation(s)
- Chao Zhong
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Keke Deng
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoya Lang
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Dan Shan
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yanfei Xie
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wen Pan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang 330006, China.
| | - Jun Yu
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
3
|
Zhang L, Ding Y, Dong H, Liu L, Ji J, Guo C. Genome-wide analysis of alfalfa flavonol synthase genes and functional identification of MsFLS13 in response to cold stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109871. [PMID: 40203558 DOI: 10.1016/j.plaphy.2025.109871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Flavonol synthase (FLS) plays a vital role in flavonol biosynthesis in plants, crucial in their growth, development, and ability to withstand abiotic stress. However, a comprehensive analysis of the FLS gene family and its role in alfalfa (Medicago sativa L.) under cold stress remains unexplored. Therefore, this study aims to employ bioinformatics methods, integrating various databases and computational tools, to systematically investigate the MsFLSs gene family across the entire alfalfa (Medicago sativa L) genome. Furthermore, qRT-PCR experiments were performed to validate expression patterns. Twenty MsFLS genes were identified and classified into five distinct subgroups based on their phylogenetic trees. Gene structure analysis revealed that alfalfa genes contained between one and five introns. The number of introns within members of the same evolutionary branch was generally consistent. The MsFLS promoter region contained a substantial number of hormone-responsive, stress-responsive, light-responsive, and tissue-specific regulatory elements. Additionally, approximately 95 % (19/20) of the alfalfa FLS genes underwent duplication events involving tandem and fragment replications across 47 replication events. Cold stress triggered the expression of the MsFLS gene family, with MsFLS7, MsFLS9, MsFLS10, MsFLS11, MsFLS13, MsFLS16, MsFLS17 and MsFLS18 showing significant upregulation. The overexpression of MsFLS13 significantly improved cold stress tolerance and antioxidant capacity and reduced membrane oxidative damage in alfalfa. These findings offer valuable insights for future research on the functional role of MsFLS genes in response to cold stress in alfalfa.
Collapse
Affiliation(s)
- Lishuang Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, People's Republic of China
| | - Yang Ding
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, People's Republic of China
| | - Haimei Dong
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, People's Republic of China
| | - Lei Liu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, People's Republic of China
| | - Jinqiang Ji
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, People's Republic of China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, People's Republic of China.
| |
Collapse
|
4
|
Zhou M, Di Q, Yan Y, He C, Wang J, Li Y, Yu X, Sun M. Multi-omics reveal the molecular mechanisms of Sodium Nitrophenolate in enhancing cold tolerance through hormonal and antioxidant pathways in cucumber. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109836. [PMID: 40157145 DOI: 10.1016/j.plaphy.2025.109836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/11/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Sodium nitrophenate (CSN) enhanced cold tolerance of cucumber. However, at the omics-level, the molecular mechanism of CSN to cold stress remains unclear. Here, we found that CSN was comparable to abscisic acid and much stronger than 2, 4-epibrassinolide (EBR) in enhancing cold tolerance. RNA-seq indicated that CSN regulated the brassinolides (BR) and cytokinin (CK) synthesis in the late stage of cold stress (LS-CS). CSN reduced the source of BR synthesis, accelerated the conversion of intermediate substances to BR and the deactivation of BR. While, CSN accelerated CK synthesis and CK deactivation by cytokinin dehydrogenase. Hormone content determination showed that CSN increased BR and decreased CK contents during most time-points of cold stress. Kinds of hormone signaling genes at LS-CS were activated by CSN, which may be due to changes in BR and CK contents. CSN also enhanced the expression of 90 % phenylalanine ammonia-lyase genes, participated in phenylpropanoid biosynthesis, at LS-CS. Genes of phenylpropanoid biosynthesis pathway and hormones signal were co-expression during cold stress. The metabolome also showed that CSN participated phenylpropanoid biosynthesis at LS-CS too. However, as for lipid metabolome, CSN up-regulated anthocyanin, flavones and flavonols metabolism at the early stage of cold stress. The autumn and winter field yield test showed that CSN increase cucumber yield by approximately 17.67 % and economic income by 207.67 dollars/667 m2. Collectedly, CSN may regulate lipid metabolism and hormone signaling mediated antioxidant pathways to enhance cold tolerance in the early and late stages of cold stress, respectively.
Collapse
Affiliation(s)
- Mengdi Zhou
- State Key Laboratory of Vegetable Biobreeding, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing, 100081, China
| | - Qinghua Di
- State Key Laboratory of Vegetable Biobreeding, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing, 100081, China
| | - Yan Yan
- State Key Laboratory of Vegetable Biobreeding, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing, 100081, China
| | - Chaoxing He
- State Key Laboratory of Vegetable Biobreeding, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing, 100081, China
| | - Jun Wang
- State Key Laboratory of Vegetable Biobreeding, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing, 100081, China
| | - Yansu Li
- State Key Laboratory of Vegetable Biobreeding, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing, 100081, China.
| | - Xianchang Yu
- State Key Laboratory of Vegetable Biobreeding, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing, 100081, China.
| | - Mintao Sun
- State Key Laboratory of Vegetable Biobreeding, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing, 100081, China.
| |
Collapse
|
5
|
Jia W, Yu Y, Mi Z, Zhang Y, Zhao G, Guo Y, Wang Z, Wang E, He S. Non-Target Metabolomics Reveals Changes in Metabolite Profiles in Distant Hybrid Incompatibility Between Paeonia sect. Moutan and P. lactiflora. PLANTS (BASEL, SWITZERLAND) 2025; 14:1381. [PMID: 40364410 PMCID: PMC12073477 DOI: 10.3390/plants14091381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/24/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025]
Abstract
Peonies are globally renowned ornamental plants, and distant hybridization is a key method for breeding new varieties, though it often faces cross-incompatibility challenges. The metabolic mechanisms underlying the crossing barrier between tree peony (Paeonia sect. Moutan) and herbaceous peony (P. lactiflora) remain unclear. To identify key metabolites involved in cross-incompatibility, we performed a cross between P. ostii 'Fengdanbai' (female parent) and P. lactiflora 'Red Sara' (male parent) and analyzed metabolites in the stigma 12 h after pollination using UPLC-MS. We identified 1242 differential metabolites, with 433 up-regulated and 809 down-regulated, including sugars, nucleotides, amino acids, lipids, organic acids, benzenoids, flavonoids, and alkaloids. Most differential metabolites were down-regulated in hybrid stigmas, potentially affecting pollen germination and pollen tube growth. Cross-pollinated stigma exhibited lower levels of high-energy nutrients (such as amino acids, nucleotides, and tricarboxylic acid cycle metabolites) compared to self-pollinated stigma, which suggests that energy deficiency is a contributing factor to the crossing barrier. Additionally, cross-pollination significantly impacted KEGG pathways such as nucleotide metabolism, purine metabolism, and vitamin B6 metabolism, with most metabolites in these pathways being down-regulated. These findings provide new insights into the metabolic basis of cross-incompatibility between tree and herbaceous peonies, offering a foundation for overcoming hybridization barriers in peony breeding.
Collapse
Affiliation(s)
- Wenqing Jia
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.Y.); (Z.M.); (Y.Z.)
| | - Yingyue Yu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.Y.); (Z.M.); (Y.Z.)
| | - Zhaorong Mi
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.Y.); (Z.M.); (Y.Z.)
| | - Yan Zhang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.Y.); (Z.M.); (Y.Z.)
| | - Guodong Zhao
- Luoyang National Peony Gene Bank, Luoyang 471011, China;
| | - Yingzi Guo
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (Y.G.); (Z.W.)
| | - Zheng Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (Y.G.); (Z.W.)
| | - Erqiang Wang
- Luoyang Academy of Agricultural and Forestry Sciences, Luoyang 471099, China;
| | - Songlin He
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (Y.G.); (Z.W.)
| |
Collapse
|
6
|
Manzoor N, Yuan J, Dongcheng W, Liu Z, Lin C, Mao Z. Integrated transcriptomic and proteomic analyses revealed molecular mechanisms underlying nutritional changes during seed development of Chenopodium quinoa. Genomics 2025; 117:111045. [PMID: 40210023 DOI: 10.1016/j.ygeno.2025.111045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Quinoa (Chenopodium quinoa) is a pseudocereal crop of the Amaranthacea family containing highly nutritious seeds which undergo complex physiological and biochemical changes during their development, resulting in final yield and seed nutritional quality (SN-quality). To obtain new insights into the underlying molecular mechanisms, integrated transcriptomic and proteomic analyses of developing seeds from 7 days after flowering (DAF) to maturation (57 DAF) were conducted. A total of 44,776 genes and 8235 proteins were detected; among them, 4130 genes and 3978 proteins were significantly different in pairwise comparisons of samples at various seed developmental stages. Results showed that genes and proteins associated with pathways of sucrose, fructose, mannose, pentose, glucuronate, starch, amino sugar and nucleotide sugar in carbohydrate metabolism; cyano amino acid, taurine & hypotaurine and storage proteins in amino acid and protein metabolisms; cutin, suberin and wax biosynthesis in lipid metabolism and phenylpropanoid and terpenoid biosynthesis in secondary metabolisms of flavonoids and triterpenoidal saponins play a key role in seed developmental process and SN-quality control. Gene regulatory networks correlated with SN-quality traits identified ABA independent (CqDREB2A, Cyclic dof factor 2 (CqCDF2) and AINTEGUMENTA-like5 (CqAIL5),) as well as dependent (CqABI4 and CqWRKY24) associated transcription factors play dynamic role in quinoa SN-quality control by regulating potential target genes and their encoding proteins related to above-mentioned metabolic pathways. The provided multi-omic data sets presented a dynamic picture regarding the developmental process of quinoa seeds, revealing the temporal specific expression of key candidate genes and proteins and providing the basis for crop improvement.
Collapse
Affiliation(s)
- Nazer Manzoor
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China
| | - Jiahong Yuan
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China
| | - Wenhua Dongcheng
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China
| | - Zhengjie Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming 650201, China
| | - Chun Lin
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming 650201, China.
| | - Zichao Mao
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming 650201, China; The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming 650201, China.
| |
Collapse
|
7
|
Chang Y, Shi M, Wang X, Cheng H, Zhang J, Liu H, Wu H, Ou X, Yu K, Zhang X, Day B, Miao C, Zhao Y, Jiang K. A CRY1-HY5-MYB signaling cascade fine-tunes guard cell reactive oxygen species levels and triggers stomatal opening. THE PLANT CELL 2025; 37:koaf064. [PMID: 40139914 PMCID: PMC11973966 DOI: 10.1093/plcell/koaf064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025]
Abstract
Stomatal opening facilitates CO2 uptake and causes water loss via transpiration. Compared with the considerable progress made toward understanding phototropin-mediated blue light (BL) signaling in guard cells, the significance of cryptochromes (CRYs) in stomatal opening and their downstream elements remain largely unknown. Here, we show that 3 homologous MYB transcription factor genes, namely MYB11, MYB12, and MYB111, are rapidly transactivated in guard cells during the dark-to-light transition in Arabidopsis (Arabidopsis thaliana). Genetic characterization of myb mutants demonstrates that these proteins specifically mediate light-induced stomatal opening by promoting local flavonol accumulation, thereby controlling reactive oxygen species homeostasis in guard cells. In response to light, activation of the plasma membrane H+-ATPase is inhibited in the myb11 myb12 myb111 triple mutant, compromising transmembrane K+ influx in the mutant guard cells. Furthermore, we demonstrate that MYB11/12/111 expression in guard cells upon illumination is induced by a CRY1-specific signaling cascade involving ELONGATED HYPOCOTYL 5 (HY5), a direct transcriptional activator of these MYBs. Overall, our work reveals a mechanism by which the CRY1-HY5-MYB module facilitates light-induced stomatal opening, providing evidence that flavonoid metabolism in guard cells is crucial for plant stress tolerance.
Collapse
Affiliation(s)
- Yuankai Chang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Mianmian Shi
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Xiao Wang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Hui Cheng
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Junli Zhang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Hongrui Liu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Huiruo Wu
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Xiaobin Ou
- Gansu Key laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province 745000, China
| | - Ke Yu
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Chen Miao
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Yi Zhao
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| |
Collapse
|
8
|
Meng L, Zhou H, Tan L, Li Q, Hou Y, Li W, Kafle S, Liang J, Aryal R, Liang Z, Xin H. VaWRKY65 contributes to cold tolerance through dual regulation of soluble sugar accumulation and reactive oxygen species scavenging in Vitis amurensis. HORTICULTURE RESEARCH 2025; 12:uhae367. [PMID: 40078721 PMCID: PMC11896968 DOI: 10.1093/hr/uhae367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/23/2024] [Indexed: 03/14/2025]
Abstract
Although the significance of some plant WRKYs in response to cold stress have been identified, the molecular mechanisms of most WRKYs remain unclear in grapevine. In this study, we demonstrate that cold-induced expression of VaBAM3 in Vitis amurensis executes a beneficial role in enhancing resistance by the regulating starch decomposition. VaWRKY65 was identified as an upstream transcriptional activator of VaBAM3 through yeast one-hybrid library screening and validated to directly interact with the W-box region inside the VaBAM3 promoter. Transgenic Arabidopsis thaliana plants and grapevine roots overexpression VaWRKY65 exhibited improved cold tolerance along with higher BAM activity and soluble sugar levels, whereas opposite changes were observed in VaWRKY65 knockdown lines created by virus-induced gene silencing (VIGS) in grapevine plants and in the knockout wrky65 mutants generated by CRISPR/Cas9 technology in grapevine roots. The transcriptome data show that overexpression of VaWRKY65 led to significant alteration of a diverse set of stress-related genes at the transcriptional level. One of the genes, Peroxidase 36 (VaPOD36), was further verified as a direct target of VaWRKY65. Consistently, VaWRKY65-overexpressing plants had higher VaPOD36 transcript levels and POD activity but a reduced ROS level, while silencing VaWRKY65 results in contrary changes. Collectively, these results reveal that VaWRKY65 enhanced cold tolerance through modulating soluble sugars produced from starch breakdown and ROS scavenging.
Collapse
Affiliation(s)
- Lin Meng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201, Jiufeng 1st Road, Donghu New Technology Development Zone, Wuhan 430074, China
| | - Huimin Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201, Jiufeng 1st Road, Donghu New Technology Development Zone, Wuhan 430074, China
- University of Chinese Academy of Sciences, No.19A, yuquan Road, Shijingshan Zone, Beijing 100049, China
| | - Lisha Tan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201, Jiufeng 1st Road, Donghu New Technology Development Zone, Wuhan 430074, China
| | - Qingyun Li
- University of Chinese Academy of Sciences, No.19A, yuquan Road, Shijingshan Zone, Beijing 100049, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201, Jiufeng 1st Road, Donghu New Technology Development Zone, Wuhan 430074, China
| | - Yujun Hou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201, Jiufeng 1st Road, Donghu New Technology Development Zone, Wuhan 430074, China
- University of Chinese Academy of Sciences, No.19A, yuquan Road, Shijingshan Zone, Beijing 100049, China
| | - Wenjuan Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201, Jiufeng 1st Road, Donghu New Technology Development Zone, Wuhan 430074, China
- University of Chinese Academy of Sciences, No.19A, yuquan Road, Shijingshan Zone, Beijing 100049, China
| | - Subash Kafle
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201, Jiufeng 1st Road, Donghu New Technology Development Zone, Wuhan 430074, China
- University of Chinese Academy of Sciences, No.19A, yuquan Road, Shijingshan Zone, Beijing 100049, China
| | - Ju Liang
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Science, No. 845, munaer Road, Gaochang Zone, Turpan 838000, China
| | - Rishi Aryal
- Department of Horticultural Science, North Carolina State University, 2721 Founders Drive, Raleigh, NC 27695, USA
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, No. 20, nanxincun, xiangshan, Haiding Zone, Beijing 100093, China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201, Jiufeng 1st Road, Donghu New Technology Development Zone, Wuhan 430074, China
| |
Collapse
|
9
|
Shin D, Zhao H, Tucker E, Cho KH, Liu D, Wang Z, Latimer S, Basset G, Wang Y, Ding Y, Kim J. Biosynthesis and Physiological Significance of Organ-Specific Flavonol Glycosides in Solanaceae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645607. [PMID: 40196596 PMCID: PMC11974848 DOI: 10.1101/2025.03.27.645607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Flavonols are subclasses of flavonoids, with hundreds of structures identified in plants. This chemical diversity primarily arises from glycosylation, where sugars are selectively added to the flavonol backbone. While flavonol profiles vary across species and organs, the evolutionary forces shaping this chemodiversity and the physiological significance of specific glycosides remain a mystery. Here, we reveal that finely tuned transcriptional regulation and the sugar selectivity of glycosyltransferases drive the formation of distinct organ specific flavonol profiles and a specific flavonol is necessary for male fertility. In Solanaceae pollen, two flavonol glycosides, K2 (kaempferol 3- O -glucosyl(1 → 2)galactoside) and Q2 (quercetin 3- O -glucosyl(1 → 2)galactoside), are exclusively accumulated. K2 is evolutionarily conserved, while Q2 was lost over time. Consistently, K2 is essential for male fertility, whereas Q2 and aglycones fail to rescue fertility defects. These findings suggest that individual flavonol glycosides have distinct physiological roles, either actively maintained or discarded through evolutionary selection.
Collapse
|
10
|
Qian D, Wang M, Niu Y, Yang Y, Xiang Y. Sexual reproduction in plants under high temperature and drought stress. Cell Rep 2025; 44:115390. [PMID: 40056418 DOI: 10.1016/j.celrep.2025.115390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/27/2025] [Accepted: 02/12/2025] [Indexed: 03/10/2025] Open
Abstract
Climate-change-induced extreme heat and drought increasingly threaten plant growth and development, with a particularly significant impact on sexual reproduction. Heat and drought stress can disrupt key stages of plant sexual reproduction, including flowering time, gametophyte development, pollination, and seed formation, leading to infertility and substantial yield reductions in crops. This review systematically summarizes the latest research on the effects of heat and drought stress on various stages of plant sexual reproduction and proposes specific strategies to mitigate the agricultural hazards posed by these stresses. By providing an in-depth analysis of the underlying mechanisms and regulatory networks, this review offers a theoretical basis for advancing fundamental research and optimizing agricultural practices to address the severe challenges climate change presents to agriculture.
Collapse
Affiliation(s)
- Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Muxuan Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yang Yang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
11
|
Liu G, Gao H, Song Y, Wang H, Zhang D, Wang Y, Liu S, Li Z, Liu C, Sun Y. Multiomic analysis reveals that the flavonoid biosynthesis pathway is associated with cold tolerance in Heracleum moellendorffii Hance. FRONTIERS IN PLANT SCIENCE 2025; 16:1544898. [PMID: 40161225 PMCID: PMC11949932 DOI: 10.3389/fpls.2025.1544898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025]
Abstract
Heracleum moellendorffii Hance is a perennial herbaceous plant that is adaptable to cold environments and has both edible and medicinal value. Given that no reference genome for this species is available, we constructed a high-quality transcript isoform library using full-length transcriptome sequencing and conducted a comparative genomic analysis. Samples were obtained from plants that had been subjected to cold stress for 12, 24 and 36 hours (Cold_12, Cold_24, and Cold_36, respectively) and from control plants (Cold_0) that were not subjected to cold stress and used in transcriptome and nontargeted metabolome analyses. Compared with the genes expressed in CK (Cold_0), the number of differentially expressed genes (DEGs) in Cold 12, Cold_24, and Cold_36 increased gradually over time; plants subjected to 12, 24 and 36 hours of cold stress displayed 669, 6084, and 24,129 DEGs, respectively. The DEGs were clustered into 8 subclasses by k-means clustering; subclasses 2, 3, 4, and 7 were enriched in pathways related to "flavonoid biosynthesis". Nontargeted metabolome analysis revealed that 3719 annotated metabolites were shared by all four groups of samples. We identified 1186, 1087, and 1097 differentially accumulated metabolites (DAMs) in three comparisons: Cold_12 vs. CK, Cold_24 vs. CK, and Cold_36 vs. CK, respectively. The DAMs were predominantly enriched in the "flavonoid biosynthesis pathway". Through WGCNA, we obtained five modules and 29 flavonoid-related metabolites with extremely significant module-metabolite paired relationships (|correlation coefficient|> 0.9, P < 0.01). We analysed the DEGs and DAMs of the flavonoid biosynthetic pathway in H. moellendorffii Hance under cold stress and constructed a correlation network between transcription factors (TFs) and structural genes in the pathway. RT-qPCR was used to confirm the expression of four hub genes from the WGCNA, six TFs, and 15 structural genes of the flavonoid biosynthetic pathway. These data provide a foundation for functional genomics studies of H. moellendorffii Hance and contribute to the study of the molecular mechanisms and transcriptional regulation of flavonoid accumulation by TFs under cold stress conditions in plants.
Collapse
Affiliation(s)
- Guan Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
| | - Huan Gao
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yu Song
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
| | - Hanhui Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
| | - Dongye Zhang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yang Wang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Shuo Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Zhonghua Li
- Heilongjiang Greater Hinggan Mountains Region Agriculture Forestry Research Institute, Da Hinggan Ling, China
| | - Changhua Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yan Sun
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| |
Collapse
|
12
|
Si J, Zhou X, Chen X, Ming H, Liu H, Hui M. Identification and characterization of a key gene controlling purple leaf coloration in non-heading Chinese cabbage (Brassica rapa). PLANTA 2025; 261:80. [PMID: 40048003 DOI: 10.1007/s00425-025-04630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/18/2025] [Indexed: 03/29/2025]
Abstract
MAIN CONCLUSION Chalcone isomerase (BraCHI, BraA03g059660.3C) is the candidate gene controlling purple leaf coloration in non-heading Chinese cabbage. A 10-bp deletion in its promoter enhances gene expression in purple plants, likely by disrupting MYB transcription factor binding, leading to anthocyanin accumulation. Leaf color is a critical trait influencing the commercial and nutritional value of leafy vegetables, with purple-leafed varieties prized for their high anthocyanin content. In this study, we investigated the genetic basis of purple leaf coloration in non-heading Chinese cabbage (Brassica rapa). Using a recombinant inbred line (RIL) population derived from a cross between purple-leafed S45P and green-leafed S45G lines, bulked segregant analysis sequencing (BSA-seq) and fine mapping were performed. The analysis identified BraP2, a locus on chromosome A03 associated with purple leaf coloration. Within the 65.31 kb candidate region, BraA03g059660.3C, encoding chalcone isomerase (CHI), was identified as the strongest candidate gene. Quantitative real-time PCR (qRT-PCR) revealed significantly higher expression of BraA03g059660.3C in purple-leafed S45P plants compared to green-leafed S45G plants. Further sequence analysis uncovered a 10-bp deletion in the promoter region of BraA03g059660.3C in S45P plants. This deletion likely disrupts a MYB transcription factor binding site, enhancing gene expression and promoting anthocyanin accumulation. Our findings demonstrate that BraA03g059660.3C plays a pivotal role in controlling purple leaf coloration in non-heading Chinese cabbage. This discovery advances the understanding of anthocyanin biosynthesis regulation and provides valuable genetic resources for breeding Brassica crops with improved esthetic and nutritional qualities.
Collapse
Affiliation(s)
- Jia Si
- Vegetables Engineering and Technology Research Center of Shaanxi Province, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiaoqing Zhou
- Vegetables Engineering and Technology Research Center of Shaanxi Province, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xinyu Chen
- Vegetables Engineering and Technology Research Center of Shaanxi Province, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huilin Ming
- Vegetables Engineering and Technology Research Center of Shaanxi Province, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hanqiang Liu
- Vegetables Engineering and Technology Research Center of Shaanxi Province, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Maixia Hui
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling Demonstration Zone, Xianyang, Shaanxi, China.
| |
Collapse
|
13
|
Nath R, Manna S, Panda S, Maity A, Bandyopadhyay K, Das A, Khan SA, Debnath B, Akhtar MJ. Flavonoid Based Development of Synthetic Drugs: Chemistry and Biological Activities. Chem Biodivers 2025; 22:e202401899. [PMID: 39462980 DOI: 10.1002/cbdv.202401899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/29/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
The toxicity associated with synthetic drugs used for treating various diseases is common. This led to a growing interest in searching and incorporating natural functional core structures such as flavonoid and their derivatives via chemical modifications to overcome the toxicity problems and enhance their biological spectrum. Natural core structures such as flavonoids are accepted due to their safety to the environment and owing to their varieties of biological activities such as anti-Alzheimer, antimicrobial, anticancer, anti-inflammatory, antidiabetics, and antiviral properties. Based on their chemical structure, flavonoids are classified into various classes such as flavone, flavanol, flavanone, isoflavone, and Anthocyanin, etc. The present review focuses on the potential role of the flavonoid ring-containing derivatives, highlighting their ability to prevent and treat non-communicable diseases such as diabetes, Alzheimer's, and cancer. The pharmacological activities of the flavonoid's derivatives are mainly attributed to their antioxidant effects against free radicals, and reactive oxygen species as well as their ability to act as enzymes inhibitors. The review covers the synthetic strategies of flavonoid derivatives, structure activity relationship (SAR), and in silico studies to improve the efficacy of these compounds. The SAR, molecular docking analysis will enable medicinal chemists to search further, develop potent and newer therapeutic agents.
Collapse
Affiliation(s)
- Rajarshi Nath
- Department of Pharmacy, Bharat Technology, Howrah, West Bengal, Uluberia, 711316, India
- Department of Pharmaceutical Technology, JIS University, Agarpara Campus, Nilgunj Road, Kolkata-109, Agarpara, KOL-81, India
| | - Swarup Manna
- Department of Pharmacy, Bharat Technology, Howrah, West Bengal, Uluberia, 711316, India
| | - Shambo Panda
- Department of Pharmacy, Bharat Technology, Howrah, West Bengal, Uluberia, 711316, India
| | - Arindam Maity
- Department of Pharmaceutical Technology, JIS University, Agarpara Campus, Nilgunj Road, Kolkata-109, Agarpara, KOL-81, India
| | - Krishnalekha Bandyopadhyay
- Department of Pharmacology, JSS College of Pharmacy, Mysuru, Bangalore-Mysore Road, Bannimantap, Mysuru, Karnataka, 570015, India
| | - Arijit Das
- Department of Pharmacy, Bharat Technology, Howrah, West Bengal, Uluberia, 711316, India
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PC-130, Azaiba, Bousher, Muscat, PO-620, Sultanate of Oman
| | - Biplab Debnath
- Department of Pharmacy, Bharat Technology, Howrah, West Bengal, Uluberia, 711316, India
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PC-130, Azaiba, Bousher, Muscat, PO-620, Sultanate of Oman
| |
Collapse
|
14
|
Yu S, Li P, Liu H, Zhang X, Gao Y, Liu J, Yuan C, Liu X, Yao Y, Song L, Zhao J. A CCA1-like MYB subfamily member CsMYB128 participates in chilling sensitivity and cold tolerance in tea plants (Camellia sinensis). Int J Biol Macromol 2025; 294:139473. [PMID: 39756759 DOI: 10.1016/j.ijbiomac.2025.139473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
While flavonoid accumulation, light radiation, and cold stress are intrinsically connected in tea plants, yet the underlying mechanisms remain elusive. The circadian protein CCA1 and CCA1-like MYB transcription factors (TFs) play important roles in coordinating light and temperature signals in plant-environment interactions, their homologs in tea plants have not been addressed. Here we analyzed CsCCA1-like MYB subfamily in tea genome and found one member, a circadian gene CsMYB128 responding to cold stress. Antisense knockdown of CsMYB128 in tea buds rendered cold tolerance in cold tolerance tests. Metabolite profiling, yeast hybrid and promoter trans-activation assays further demonstrated that CsMYB128 negatively regulated flavonol biosynthesis by repressing CsFLS1 in flavonol biosynthesis and CsCBF1 in cold tolerance. Given CsCBF1 also activated CsMYB128 transcription, the negative feedback regulation loop indicates a balance between tea plant growth promoted by CsMYB128 and cold tolerance meanwhile growth inhibition by CsCBF1. Moreover, CsICE1 interacted with and inhibited CsMYB128 repressor activity to promote cold tolerance. CsMYB128 is thus characterized as an early cold-responsive gene negatively regulating tea plant cold response and balancing tea plant growth and cold tolerance. This study provides insights into the roles of CCA1-like subfamily MYB TFs in regulating tea plant growth and interactions with environments.
Collapse
Affiliation(s)
- Shuwei Yu
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Hongjie Liu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Xiaojia Zhang
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ying Gao
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jiaojiao Liu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Changbo Yuan
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xinyu Liu
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuantao Yao
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lubin Song
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Jian Zhao
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
15
|
Bao H, Yuan L, Luo Y, Zhang J, Liu X, Wu Q, Wang X, Liu J, Zhu G. The transcription factor WRKY41-FLAVONOID 3'-HYDROXYLASE module fine-tunes flavonoid metabolism and cold tolerance in potato. PLANT PHYSIOLOGY 2025; 197:kiaf070. [PMID: 39977116 PMCID: PMC11879589 DOI: 10.1093/plphys/kiaf070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 02/22/2025]
Abstract
Cold stress adversely affects crop growth and productivity. Resolving the genetic basis of freezing tolerance is important for crop improvement. Wild potato (Solanum commersonii) exhibits excellent freezing tolerance. However, the genetic factors underlying its freezing tolerance remain poorly understood. Here, we identified flavonoid 3'-hydroxylase (F3'H), a key gene in the flavonoid biosynthesis pathway, as highly expressed in S. commersonii compared with cultivated potato (S. tuberosum L.). Loss of ScF3'H function impaired freezing tolerance in S. commersonii, while ScF3'H overexpression in cultivated potato enhanced its freezing tolerance. Metabolic analysis revealed that F3'H generates more downstream products by adding hydroxyl (-OH) groups to the flavonoid ring structures. These flavonoids enhance reactive oxygen species scavenging, thereby contributing to freezing tolerance. Furthermore, the W-box element in the F3'H promoter plays a critical role in cold responses. Cold-induced transcription factor ScWRKY41 directly binds to the ScF3'H promoter region and recruits histone acetyltransferase 1 (ScHAC1), which enhances histone acetylation at the F3'H locus and activates its transcription. Overall, we identified the cold-responsive WRKY41-F3'H module that enhances freezing tolerance by augmenting the antioxidant capacity of flavonoids. This study reveals a valuable natural gene module for breeding enhanced freezing tolerance in potato and other crops.
Collapse
Affiliation(s)
- Huihui Bao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Yunnan Key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Energy and Environment Sciences, Yunnan Normal University, Kunming 650500, China
| | - Li Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yongchao Luo
- Yunnan Key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Energy and Environment Sciences, Yunnan Normal University, Kunming 650500, China
| | - Jinxiu Zhang
- Yunnan Key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Energy and Environment Sciences, Yunnan Normal University, Kunming 650500, China
| | - Xi Liu
- Yunnan Key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Energy and Environment Sciences, Yunnan Normal University, Kunming 650500, China
| | - Qiuju Wu
- Yunnan Key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Energy and Environment Sciences, Yunnan Normal University, Kunming 650500, China
| | - Xiyao Wang
- Yunnan Key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Energy and Environment Sciences, Yunnan Normal University, Kunming 650500, China
| | - Jitao Liu
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guangtao Zhu
- Yunnan Key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Energy and Environment Sciences, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
16
|
Qian J, Ren C, Wang F, Cao Y, Guo Y, Zhao X, Liu Y, Zhu C, Li X, Xu H, Chen J, Chen K, Li X. Genome-wide identification of UDP-glycosyltransferases involved in flavonol glycosylation induced by UV-B irradiation in Eriobotrya japonica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109481. [PMID: 39805168 DOI: 10.1016/j.plaphy.2025.109481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/18/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Flavonol glycosides are secondary metabolites important for plant development and stress defense such as UV-B irradiation. UDP-glycosyltransferase (UGT) catalyzes the last step in the biosynthesis of flavonol glycosides. Eriobotrya japonica is abundant in flavonol glycosides, but UGTs responsible for accumulation of flavonol glycosides remain unknown. Here, 13 flavonol glycosides including monoglycosides and diglycosides were characterized in different tissues of loquat by LC-MS/MS. UV-B irradiation significantly increased the accumulation of four quercetin glycosides and two kaempferol glycosides in loquat fruit. Based on UGT gene family analysis, transcriptome analysis, enzyme assays of recombinant proteins as well as transient overexpression assays in Nicotiana benthamiana, three UGTs were identified, i.e. EjUGT78T4 as flavonol 3-O-galactosyltransferase, EjUGT78S3 as flavonol 3-O-glucosyltransferase, and EjUGT91AK7 as flavonol 1 → 6 rhamnosyltransferase. This work elucidates the formation of flavonol glycosides in loquat through UGT-mediated glycosylation.
Collapse
Affiliation(s)
- Jiafei Qian
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Chuanhong Ren
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China; Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Fan Wang
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Yunlin Cao
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Yan Guo
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaoyong Zhao
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Yilong Liu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Changqing Zhu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaoying Li
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Hongxia Xu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Junwei Chen
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Xian Li
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Chen M, Zhang Z, Zhu M, Liu K, Farag MA, Song L, Gao F, Tao H. Biofortification of flavonoids in nuts along the agro-food chain for improved nutritional and health benefits, a comprehensive review and future prespectives. Food Chem 2025; 464:141754. [PMID: 39461312 DOI: 10.1016/j.foodchem.2024.141754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Flavonoids are found ubiquitous in dietary sources with potential antioxidant properties, and have received widespread attention for their health benefits. Nuts, rich in flavonoids, are popular among consumers for their crunchy flavor and nutritious content. The review summarizes studies pertaining to the diverse types and distribution of flavonoids in nuts, their potential health benefits, as well as management strategies for flavonoids accumulation and enhancement across the whole agro-food chain, including the selection of nut varieties, the suitable growing conditions, the optimal harvesting period of nuts, and appropriate post-harvest measures, such as chemical conditioning, ideal storage conditions, and post-harvest processing methods. Furthermore, associated metabolic pathways, and applied metabolic engineering to improve flavonoids´ levels in nuts are described. This review examines the application of flavonoids biofortification in nuts across the agro-food chain, exploring its potential for sustainable development in the nut flavonoids industry, and emphasizing its importance for people's diet and health.
Collapse
Affiliation(s)
- Miaomiao Chen
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Zuying Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang Province 311300, China
| | - Mingwei Zhu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Kexin Liu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang Province 311300, China.
| | - Fei Gao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China.
| | - Han Tao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
18
|
Botes J, Ma X, Chang J, Van de Peer Y, Berger DK. Flavonoids and anthocyanins in seagrasses: implications for climate change adaptation and resilience. FRONTIERS IN PLANT SCIENCE 2025; 15:1520474. [PMID: 39935685 PMCID: PMC11810914 DOI: 10.3389/fpls.2024.1520474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025]
Abstract
Seagrasses are a paraphyletic group of marine angiosperms and retain certain adaptations from the ancestors of all embryophytes in the transition to terrestrial environments. Among these adaptations is the production of flavonoids, versatile phenylpropanoid secondary metabolites that participate in a variety of stress responses. Certain features, such as catalytic promiscuity and metabolon interactions, allow flavonoid metabolism to expand to produce novel compounds and respond to a variety of stimuli. As marine environments expose seagrasses to a unique set of stresses, these plants display interesting flavonoid profiles, the functions of which are often not completely clear. Flavonoids will likely prove to be effective and versatile agents in combating the new host of stress conditions introduced to marine environments by anthropogenic climate change, which affects marine environments differently from terrestrial ones. These new stresses include increased sulfate levels, changes in salt concentration, changes in herbivore distributions, and ocean acidification, which all involve flavonoids as stress response mechanisms, though the role of flavonoids in combatting these climate change stresses is seldom discussed directly in the literature. Flavonoids can also be used to assess the health of seagrass meadows through an interplay between flavonoid and simple phenolic levels, which may prove to be useful in monitoring the response of seagrasses to climate change. Studies focusing on the genetics of flavonoid metabolism are limited for this group, but the large chalcone synthase gene families in some species may provide an interesting topic of research. Anthocyanins are typically studied separately from other flavonoids. The phenomenon of reddening in certain seagrass species typically focuses on the importance of anthocyanins as a UV-screening mechanism, while the role of anthocyanins in cold stress is discussed less often. Both of these stress response functions would be useful for adaptation to climate change-induced deviations in tidal patterns and emersion. However, ocean warming will likely lead to a decrease in anthocyanin content, which may impact the performance of intertidal seagrasses. This review highlights the importance of flavonoids in angiosperm stress response and adaptation, examines research on flavonoids in seagrasses, and hypothesizes on the importance of flavonoids in these organisms under climate change.
Collapse
Affiliation(s)
- Jana Botes
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Xiao Ma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Centre for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jiyang Chang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Centre for Plant Systems Biology, VIB, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Centre for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Dave Kenneth Berger
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
19
|
Quaranta L, Di Marzio P, Fortini P. Quercus cerris Leaf Functional Traits to Assess Urban Forest Health Status for Expeditious Analysis in a Mediterranean European Context. PLANTS (BASEL, SWITZERLAND) 2025; 14:285. [PMID: 39861638 PMCID: PMC11768225 DOI: 10.3390/plants14020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
In the Mediterranean basin, urban forests are widely recognized as essential landscape components, playing a key role in nature-based solutions by enhancing environmental quality and providing a range of ecosystem services. The selection of woody plant species for afforestation and reforestation should prioritize native species that align with the biogeographical and ecological characteristics of the planting sites. Among these, Quercus cerris L. (Turkey oak) is considered a promising candidate for urban reforestation. However, its fitness within urban forest environments remains poorly understood. This study aimed to identify suitable leaf functional traits for assessing the response of Q. cerris in urban forests and to analyze the main climatic variables influencing its performance in urban contexts. We also proposed practical, rapid monitoring tools to compare urban and natural forests across different seasons. The results demonstrated that Q. cerris experiences significant water stress in urban forests due to the combined effects of drought and high temperatures. To find the tools to mitigate this stress, the differences between leaf traits such as specific leaf area, thickness, and the contents of chlorophyll, anthocyanins, and flavonols in urban and natural forests were analyzed. Our findings underscore the high adaptability of Q. cerris to varied climatic and environmental conditions. This study provides a practical method for rapidly assessing the responses of tree species to climate change. In the future, this approach will be tested on other native species that are characteristic of Mediterranean forest ecosystems to help with choosing afforestation and reforestation strategies.
Collapse
Affiliation(s)
- Luca Quaranta
- Department Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (P.D.M.); (P.F.)
| | - Piera Di Marzio
- Department Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (P.D.M.); (P.F.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Paola Fortini
- Department Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (P.D.M.); (P.F.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
20
|
Chen L, Zhang Y, Li Q, Sun X, Gao J, Li D, Guo N. Exploring the differences in traits and genes between brown cotton and white cotton hybrid offspring (Gossypium hirsutum L.). PLANTA 2025; 261:35. [PMID: 39810063 DOI: 10.1007/s00425-024-04601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025]
Abstract
Brown cotton and white cotton are two important raw materials used in the cotton fiber industry. Clarifying the differences in morphology, agronomic traits, and fiber pigments between these varieties can facilitate the implementation of corresponding cultivation and breeding techniques. Therefore, we obtained F2 generation brown cotton plants through hybridization and compared them with their parents. In terms of agronomic traits, plant morphology and leaf shape were similar, but brown cotton presented more villi on the main stem. The first fruiting branch node was within the range of 4-6 cm, and the first fruiting branch node height was greater than that of TM-1, i.e., between 13.25 cm and 22.79 cm, with no difference compared with that of P26. The plant height was greater than that of the parents, and the number of bolls was essentially the same as that in TM-1 and greater than that in P26. The lint percentage and average fiber length were lower in TM-1 than in P26, and the seed index was greater than that in TM-1 and P26. Pigment measurements revealed that the chlorophyll a content in brown cotton during the boll stage was lower than that in white cotton, and the content of proanthocyanidin in the cotton fibers was greater in brown cotton than in white cotton. At 15 days after pollination, the highest content was 159.8 mg/g. To determine the differences in gene expression levels, we conducted transcriptome sequencing. Gene Ontology (GO) analysis revealed that the differentially expressed genes (DEGs) were enriched in pathways related to the cell wall and enzyme activity, whereas Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the DEGs were enriched in flavonoid synthesis pathways. Transcription factor analysis revealed that the expression of the MYB3 transcription factor (Ghir_D07G002110) was higher in brown cotton, and bioinformatics analysis revealed that this gene has regulatory effects on the CHS, CHI1, and F3H genes.
Collapse
Affiliation(s)
- Long Chen
- School of Life Science, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, People's Republic of China
- Cotton Research Institute of Anhui Academy of Agricultural Sciences, 40 Nongke South Road, Hefei, 230031, People's Republic of China
| | - Yujiang Zhang
- School of Life Science, Anhui University, 111 Jiu Long Road, Hefei, 230601, People's Republic of China
| | - Qinghua Li
- School of Life Science, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, People's Republic of China
| | - Xu Sun
- School of Life Science, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, People's Republic of China
| | - Junshan Gao
- School of Life Science, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, People's Republic of China
| | - Dahui Li
- School of Life Science, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, People's Republic of China
| | - Ning Guo
- School of Life Science, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, People's Republic of China.
| |
Collapse
|
21
|
Liu G, Zhang Z, Tian Y, Yang J, Xu X, Liu X. VvbZIP22 regulates quercetin synthesis to enhances cold resistance in grape. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112293. [PMID: 39414149 DOI: 10.1016/j.plantsci.2024.112293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Grapes are one of the important fruit crops widely cultivated in the world, with high nutritional and economic value. However, with the intensification of global warming, extreme low temperature has seriously affected the development of the grape industry. Quercetin is a highly antioxidant active substance that can enhance the tolerance of plants to external environmental stress, but its function and mechanism in response to low-temperature stress in grapes are still unclear. Here, we found that grapes accumulate more quercetin under low-temperature stress, and exogenous quercetin can significantly improve the cold resistance of grapes. The key quercetin synthesis gene VvFLS1 (flavanol synthase 1) is up-regulated after low-temperature treatment, and overexpression of VvFLS1 increases quercetin content and enhances the cold resistance of grape. Yeast one-hybrid and dual luciferase reporter systems demonstrate that VvbZIP22 (basic-leucine zipper 22) directly binds to the VvFLS1 promoter, and VvbZIP22 has cold-induced expression characteristics. Overexpression of VvbZIP22 significantly improves the cold resistance of grape. The above results indicate that quercetin plays an important role in the response of grapes to low-temperature stress. Under low temperature, VvbZIP22 can mediate quercetin synthesis through regulating VvFLS1, alleviate oxidative damage, and improve the cold resistance of grapes.
Collapse
Affiliation(s)
- Guangchao Liu
- College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Zhe Zhang
- College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Ye Tian
- College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Jie Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xin Liu
- College of Life Science, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
22
|
Su L, Lv A, Wen W, Fan N, You X, Gao L, Zhou P, Shi F, An Y. MsMYB206-MsMYB450-MsHY5 complex regulates alfalfa tolerance to salt stress via regulating flavonoid biosynthesis during the day and night cycles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17216. [PMID: 39706170 DOI: 10.1111/tpj.17216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/23/2024]
Abstract
Flavonoids are the major secondary metabolites participating in many biological processes of plants. Although flavonoid biosynthesis has been extensively studied, its regulatory mechanisms during the day and night cycles remain poorly understood. In this study, three proteins, MsMYB206, MsMYB450, and MsHY5, were found to interact with each other, in which MsMYB206 directly transactivated two flavonoid biosynthetic genes, MsFLS and MsF3'H. The expression patterns of MsMYB206, MsMYB450, MsFLS, and MsF3'H were fully consistent at regular intervals across day/night cycles that were higher at night than in the daytime. On the contrary, both gene expression levels and protein contents of MsHY5 increased in the daytime but decreased at night, and the lower expression of MsHY5 at night led to strengthened interaction between MsMYB206 and MsMYB450. The MsMYB206-overexpression plants were more salt-tolerant and their flavonoid contents were higher than the WT during the day/night cycles. This study revealed one mechanism interpreting the fluctuating flavonoid contents during day/night cycles regulated by the MsMYB206/MsMYB450/MsHY5-MsFLS/MsF3'H module that also contributed to salt tolerance in alfalfa.
Collapse
Affiliation(s)
- Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Aimin Lv
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Nana Fan
- College of life science, Yulin University, Yulin, China
| | - Xiangkai You
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Fengling Shi
- College of Grassland and Resources and Environment, Inner Mongolia Agricultural University, Inner Mongolia Hohhot, China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
| |
Collapse
|
23
|
Agati G, Brunetti C, dos Santos Nascimento LB, Gori A, Lo Piccolo E, Tattini M. Antioxidants by nature: an ancient feature at the heart of flavonoids' multifunctionality. THE NEW PHYTOLOGIST 2025; 245:11-26. [PMID: 39434218 PMCID: PMC11617662 DOI: 10.1111/nph.20195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024]
Affiliation(s)
- Giovanni Agati
- Institute of Applied Physics ‘Carrara’ (IFAC)National Research Council of ItalyVia Madonna del Piano 10I‐50019Sesto Fiorentino, FlorenceItaly
| | - Cecilia Brunetti
- Institute for Sustainable Plant Protection (IPSP)National Research Council of ItalyVia Madonna del Piano 10I‐50019Sesto Fiorentino, FlorenceItaly
| | | | - Antonella Gori
- Department of Agri‐Food Production and Environmental Sciences (DAGRI)University of FlorenceViale delle Idee 30I‐50019Sesto Fiorentino, FlorenceItaly
| | - Ermes Lo Piccolo
- Department of Agri‐Food Production and Environmental Sciences (DAGRI)University of FlorenceViale delle Idee 30I‐50019Sesto Fiorentino, FlorenceItaly
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection (IPSP)National Research Council of ItalyVia Madonna del Piano 10I‐50019Sesto Fiorentino, FlorenceItaly
| |
Collapse
|
24
|
Cai H, Zhang S, Yu W, Jia X, Yu L, Xu B, Wang Y. Transcriptomics and metabolomics analyses reveal pollen abortion mechanism in alfalfa early stage male sterile lines. FRONTIERS IN PLANT SCIENCE 2024; 15:1464747. [PMID: 39741675 PMCID: PMC11687225 DOI: 10.3389/fpls.2024.1464747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/22/2024] [Indexed: 01/03/2025]
Abstract
Alfalfa (Medicago sativa L.), a prominent perennial forage in the legume family, is widely cultivated across Europe and America. Given its substantial economic value for livestock, breeding efforts have focused on developing high-yield and high-quality varieties since the discovery of CMS lines. However, progress is restricted by the limitations of existing CMS lines, necessitating the development of new lines and study of the molecular mechanisms underlying pollen abortion. This study investigates early-stage anther development in cytoplasmic male sterile (CMS) alfalfa lines (MSJN1A) in relation to the isotypic maintainer line (MSJN1B). Histological analyses revealed abnormal degradation of tapetal cells post-meiosis in the CMS line. Notably, during the early mononuclear stage, the central vacuoles in the microspores were absent, leading to evident pollen abortion. These findings suggest that pollen abortion in the CMS line is associated with the delayed disintegration of the tapetum and structural anomalies in microspore vacuoles. Non-targeted metabolome sequencing revealed 401 and 405 metabolites at late tetrad and early mononuclear stages of alfalfa, respectively. Among these, 39 metabolites were consistently upregulated, whereas 85 metabolites were downregulated. Differential analysis revealed 45 and 37 unique metabolites at each respective stage. These metabolites were primarily featured in pathways related to energy, phenylpropane, sucrose and starch, and fatty acid metabolism. Integrated analysis demonstrated that differentially expressed genes and differential metabolites were co-enriched in these pathways. Additionally, quantitative real-time PCR and physiological index analysis confirmed downregulation of key genes involved in anther development, illustrating that changes in upstream gene regulation could significantly impact downstream metabolite levels, ultimately influencing pollen fertility. Pollen abortion is related to abnormal phenylpropane metabolism, fatty acid metabolism and starch and sucrose pathway, which provides reference for further research on the causes of pollen abortion of alfalfa.
Collapse
Affiliation(s)
- Huicai Cai
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Shuhe Zhang
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Weijie Yu
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Xue Jia
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Lan Yu
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Bo Xu
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Yingzhe Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS), Changchun, China
| |
Collapse
|
25
|
Buitrago S, Yang X, Wang L, Pan R, Zhang W. Evolutionary analysis of anthocyanin biosynthetic genes: insights into abiotic stress adaptation. PLANT MOLECULAR BIOLOGY 2024; 115:6. [PMID: 39680184 DOI: 10.1007/s11103-024-01540-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024]
Abstract
Anthocyanin regulation can be fruitfully explored from a diverse perspective by studying distantly related model organisms. Land plants pioneers faced a huge evolutionary leap, involving substantial physiological and genetic changes. Anthocyanins have evolved alongside these changes, becoming versatile compounds capable of mitigating terrestrial challenges such as drought, salinity, extreme temperatures and high radiation. With the accessibility of whole-genome sequences from ancient plant lineages, deeper insights into the evolution of key metabolic pathways like phenylpropanoids have emerged. Despite understanding the function of anthocyanins under stress, gaps remain in uncovering the precise metabolic and regulatory mechanisms driving their overproduction under stressful conditions. For example, the regulatory effect of reactive oxygen species (ROS) on well-known transcription factors like MYBs is not fully elucidated. This manuscript presents an evolutionary analysis of the anthocyanin biosynthetic pathway to elucidate key genes. CINNAMATE 4-HYDROXYLASE (C4H) and CHALCONE ISOMERASE (CHI2) received particular attention. C4H exposes remarkable differences between aquatic and land plants, while CHI2 demonstrates substantial variation in gene copy number and sequence similarity across species. The role of transcription factors, such as MYB, and the involvement of ROS in the regulation of anthocyanin biosynthesis are discussed. Complementary gene expression analyses under abiotic stress in Arabidopsis thaliana, Selaginella moellendorffii, and Marchantia polymorpha reveal intriguing gene-stress relationships. This study highlights evolutionary trends and the regulatory complexity of anthocyanin production under abiotic stress, providing insights and opening avenues for future research.
Collapse
Affiliation(s)
- Sebastian Buitrago
- Research Center of Crop Stresses Resistance Technologies/ MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, 434025, China
| | - Xinsun Yang
- Hubei Sweet Potato Engineering and Technology Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Lianjun Wang
- Hubei Sweet Potato Engineering and Technology Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Rui Pan
- Research Center of Crop Stresses Resistance Technologies/ MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, 434025, China.
| | - Wenying Zhang
- Research Center of Crop Stresses Resistance Technologies/ MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
26
|
Chen S, Zhang W, Zhang Q, Li B, Zhang M, Qin J, Shi W, Jia C. SlNAC12, a novel NAC-type transcription factor, confers salt stress tolerance in tomato. PLANT CELL REPORTS 2024; 44:5. [PMID: 39674815 DOI: 10.1007/s00299-024-03400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
KEY MESSAGE SlNAC12 enhances salt stress tolerance of transgenic tomato by regulating ion homeostasis, antioxidant activity and flavonoids biosynthesis Soil salinization is a major environmental factor that adversely affects plant growth and development. NAC (NAM, ATAF1/2, and CUC2) is a large family of plant-specific transcription factors that play crucial roles in stress response. Here, we investigated the role of a novel NAC transcription factor, SlNAC12, in conferring salt stress tolerance in tomato (Solanum lycopersicum). Subcellular localization and yeast assays studies revealed that SlNAC12 is localized in the nucleus with weak transcriptional activity. SlNAC12 transcript was induced by salt stress in the leaves and roots of tomato seedlings. Overexpression of SlNAC12 in tomato led to significantly reduced plant height and root length. Transgenic tomato lines overexpressing of SlNAC12 (OE#1 and OE#3) exhibited enhanced tolerance to salinity, as evidenced by reduced the inhibitory effect of growth parameters under salt stress compared to wild type (WT). Overexpression of SlNAC12 in tomato affected Na+ and K+ homeostasis, leading to reduced Na+/K+ ratio, enhanced activity of antioxidant enzymes and decreased reactive oxygen species (ROS) accumulation under salt stress. Furthermore, the transcript levels of several genes involved in flavonoids metabolism and the levels of flavonoids accumulation were increased in SlNAC12-overexpressing tomato lines. Collectively, this study suggests that SlNAC12 transcription factor enhances salt stress tolerance in tomato is correlated with ion homeostasis, antioxidant enzyme systems, and flavonoids accumulation.
Collapse
Affiliation(s)
- Siqi Chen
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Wenxin Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Qi Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Bin Li
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Mingzhe Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Jianchun Qin
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Wuliang Shi
- College of Plant Science, Jilin University, Changchun, 130062, China.
| | - Chengguo Jia
- College of Plant Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
27
|
Li Z, Yang L, Wu Y, Zhang R, Yu S, Fu L. TOR balances plant growth and cold tolerance by orchestrating amino acid-derived metabolism in tomato. HORTICULTURE RESEARCH 2024; 11:uhae253. [PMID: 39664689 PMCID: PMC11630258 DOI: 10.1093/hr/uhae253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/26/2024] [Indexed: 12/13/2024]
Abstract
The target of rapamycin (TOR) kinase is a central signaling hub that plays a crucial role in precisely orchestrating plant growth, development, and stress responses. This suggests that TOR is intricately involved in maintaining the balance between plant growth and stress responses. Nevertheless, despite the observed effects, the specific mechanisms through which TOR operates in these processes remain obscure. In this study, we investigated how the tomato (Solanum lycopersicum) TOR (SlTOR) affects plant growth and cold responses. We demonstrated that SlTOR inhibition transcriptionally primes cold stress responses, consequently enhancing tomato cold tolerance. A widely targeted metabolomics analysis revealed the disruption of amino acid metabolism homeostasis under cold stress upon SlTOR inhibition, which led to the accumulation of two important cryoprotective metabolites: salicylic acid (SA) and putrescine (Put). Next, we discovered SlPGH1 (2-PHOSPHO-D-GLYCERATE HYDRO-LYASE 1) as a direct substrate of SlTOR. Inhibiting SlTOR led to increased SlCBF1 (C-REPEAT-BINDING FACTOR 1) expression via SlPGH1, potentially triggering the activation of cold-responsive genes and subsequent metabolic alterations. Our study provides a mechanistic framework that elucidates how SlTOR modulates amino acid-related metabolism to enhance tomato cold tolerance, which sheds light on the complex interplay between growth and stress responses orchestrated by TOR.
Collapse
Affiliation(s)
- Zihao Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Yang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanni Wu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ran Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sen Yu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liwen Fu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
28
|
Magedans YVS, Antonelo FA, Rodrigues-Honda KCS, Ribeiro POS, Alves-Áquila ME, Fett-Neto AG. Phytotoxic Activity of Myrciaria cuspidata O. Berg, a Dominant Myrtaceae Woodland Tree Native of Brazil. PLANTS (BASEL, SWITZERLAND) 2024; 13:3293. [PMID: 39683086 DOI: 10.3390/plants13233293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Limited phytodiversity and regeneration rates occur in some of the southern Brazilian formations known as the Myrtacean Woodlands. Data on phytotoxicity, chemical composition, and allelopathic potential of Myrciaria cuspidata O. Berg, a dominant species in such woodlands, is missing. In this study, both the chemical composition and phytotoxic activity of an aqueous extract (AE) from M. cuspidata leaves were investigated. Target plants were the model species Lactuca sativa L. and the weed Bidens pilosa L. Germination rates, seedling growth, and phenotypic responses of target species were assessed following AE application to determine the inhibitory capacity of M. cuspidata leaf extract. Germination of L. sativa was reduced and delayed in the presence of AE. Strong inhibition of germination was recorded in B. pilosa achenes under the same treatment. Pre-germinated seedlings of L. sativa were essentially not affected by AE, whereas those of the weed showed some negative developmental responses. Overall, inhibitory responses were consistent both in vitro and in soil substrate. Detrimental effects were most apparent in roots and included tip darkening and growth anomalies often preceded by loss of mitochondrial viability. AE proved rich in phytotoxic phenolic compounds including quercetin, gallic and tannic acid. To sum up, AE shows potential as an environmentally friendly pre-emergence bioherbicide of low residual effect and minor environmental impact. Experimental data in laboratory conditions were consistent with potential allelopathic activity of this tree, as inferred from field observations of dominance in the Myrtaceae Woodlands.
Collapse
Affiliation(s)
- Yve V S Magedans
- Plant Physiology Laboratory, Center for Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
- Plant Physiology Laboratory, Department of Botany, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| | - Fábio A Antonelo
- Plant Physiology Laboratory, Center for Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| | - Kelly C S Rodrigues-Honda
- Plant Physiology Laboratory, Department of Botany, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| | - Paula O S Ribeiro
- Plant Physiology Laboratory, Center for Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| | - Maria E Alves-Áquila
- Plant Physiology Laboratory, Department of Botany, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| | - Arthur G Fett-Neto
- Plant Physiology Laboratory, Center for Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
- Plant Physiology Laboratory, Department of Botany, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| |
Collapse
|
29
|
Wang W, Liu Y, Cheng X, Yu Q, Hou S, Zhao J, Luo J. Fluorescence Enhancement of Nonemissive Monodeprotonated Luteolin in a Poly(vinyl alcohol) Film. J Phys Chem B 2024; 128:11328-11334. [PMID: 39484864 DOI: 10.1021/acs.jpcb.4c06452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Solid polymer matrixes can modulate the electronic states of embedded chromophores and have been widely used in flexible optoelectronic and optical materials. Luteolin is one of the most common natural flavonoids, and its neutral and monodeprotonated forms are nonemissive in aqueous solution induced by ultrafast excited-state proton transfer (ESPT) followed by nonradiative relaxation. In this study, we have incorporated luteolin into poly(vinyl alcohol) (PVA) films and studied their fluorescence behaviors. Neutral and one monodeprotonated luteolin coexist in the PVA film. Weak steady-state fluorescence of neutral luteolin peaking at about 440 nm is observed for the first time. In addition, the monodeprotonated luteolin in PVA film exhibits obvious fluorescence peaking at 500 nm, with a fluorescence quantum yield of as high as 0.4 and a fluorescence lifetime of as long as 2.4 ns. Time-dependent density functional theory calculations have determined that the ESPT of neutral luteolin is barrierless but that of monodeprotonated luteolin needs to surmount a barrier, explaining their distinct emission properties. These results indicate the modulation ability of the PVA film in both ground-state deprotonation and ESPT, broadening the application areas of the solid polymer matrix.
Collapse
Affiliation(s)
- Weili Wang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Yan Liu
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Xiaolan Cheng
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Qin Yu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Siyu Hou
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Jie Zhao
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Jian Luo
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
30
|
Bulgakov VP, Fialko AV, Yugay YA. Involvement of epigenetic factors in flavonoid accumulation during plant cold adaptation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109096. [PMID: 39250844 DOI: 10.1016/j.plaphy.2024.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Plant responses to cold stress include either induction of flavonoid biosynthesis as part of defense responses or initially elevated levels of these substances to mitigate sudden temperature fluctuations. The role of chromatin modifying factors and, in general, epigenetic variability in these processes is not entirely clear. In this work, we review the literature to establish the relationship between flavonoids, cold and chromatin modifications. We demonstrate the relationship between cold acclimation and flavonoid accumulation, and then describe the cold adaptation signaling pathways and their relationship with chromatin modifying factors. Particular attention was paid to the cold signaling module OST1-HOS1-ICE1 and the novel function of the E3 ubiquitin protein ligase HOS1 (a protein involved in chromatin modification during cold stress) in flavonoid regulation.
Collapse
Affiliation(s)
- Victor P Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022, Russia; Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, 5 Radio Str., Vladivostok, 690041, Russia.
| | - Alexandra V Fialko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022, Russia; Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, 5 Radio Str., Vladivostok, 690041, Russia
| | - Yulia A Yugay
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022, Russia
| |
Collapse
|
31
|
Dainelli M, Chiavacci B, Colzi I, Coppi A, Corti E, Daghio M, Falsini S, Ristori S, Papini A, Toni E, Viti C, Gonnelli C. Impact of PET micro/nanoplastics on the symbiotic system Azolla filiculoides-Trichormus azollae. CHEMOSPHERE 2024; 368:143718. [PMID: 39521286 DOI: 10.1016/j.chemosphere.2024.143718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The symbiotic system Azolla filiculoides-Trichormus azollae was exposed for ten days to environmentally relevant concentrations (i.e. 0.05 and 0.1 g L-1) of polyethylene terephthalate micro-nanoplastics (PET-MNPs). Plastic particles did not induce any visible toxicity symptoms or growth disorders to the fern, as well as any effects on leaf anatomy and chlorophyll fluorescence parameters. Nonetheless, in treated plants a decrease of chlorophyll content occurred and was coupled to reduction of Nitrogen Balance Index (NBI), an informative parameter of the plant nitrogen status. In the presence of MNPs, plants exhibited a substantial decline in the absorption of essential elements, as evidenced by decreased tissue concentration of Ca, Mg, Co and Mn. The exposure to the pollutants compromised root integrity and possibly its functioning in nutrient accumulation, with evident physical damages not only in the rhizodermis and cortex, but also in the vascular system. In addition, a DNA-based estimation of T. azollae revealed a decreasing trend in the relative abundance of the N2-fixing cyanobacteria for PET-treated samples. This was coupled with an alteration of the symbiont's phenotype highlighted by microscopy analysis, showing a reduction in number of vegetative cells between two consecutive heterocysts and in heterocyst size. This work is the first evidence of MNPs disturbing a strict symbiosis, with possible implications on nitrogen cycling in ecosystems, bio fertilization of agricultural lands and evolutionary pathways.
Collapse
Affiliation(s)
- Marco Dainelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| | - Beatrice Chiavacci
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| | - Ilaria Colzi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| | - Andrea Coppi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| | - Emilio Corti
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| | - Matteo Daghio
- Department of Agriculture, Food, Environment and Forestry (DAGRI), Piazzale delle Cascine 18, Firenze, 50144, Italy.
| | - Sara Falsini
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| | - Sandra Ristori
- Department of Chemistry & CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Firenze, Italy.
| | - Alessio Papini
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| | - Elisabetta Toni
- Department of Agriculture, Food, Environment and Forestry (DAGRI), Piazzale delle Cascine 18, Firenze, 50144, Italy.
| | - Carlo Viti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), Piazzale delle Cascine 18, Firenze, 50144, Italy.
| | - Cristina Gonnelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| |
Collapse
|
32
|
Gao Y, Dong X, Wang R, Zhang Y, Hao F, Niu X, Zhang H, Lin G. Effects of exogenous calcium on flavonoid biosynthesis and accumulation in peanut roots under salt stress through multi-omics. Front Nutr 2024; 11:1434170. [PMID: 39539375 PMCID: PMC11557398 DOI: 10.3389/fnut.2024.1434170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Flavonoids possess antioxidant properties and are crucial in enhancing plant resistance to abiotic stress. Exogenous calcium has been found to regulate the biosynthesis and accumulation of secondary metabolites, including flavonoids. However, the mechanism by which exogenous calcium influences flavonoid regulation in peanut roots under salt stress remains unclear. In this study, four treatment conditions were established: no salt stress, salt stress, exogenous calcium, and a combination of salt stress and exogenous calcium. The peanut root flavonoid profile was comprehensively analyzed using both a broadly targeted metabolomic approach and an absolute quantitative flavonoid metabolome. A total of 168 flavonoids were identified in the broad-target metabolome, while 68 were quantified in the absolute quantification analysis. The findings revealed that salt stress generally increased flavonoid content in peanut roots, while co-treatment with exogenous calcium significantly reduced this accumulation. Additionally, the activities of key enzymes and the expression of genes involved in the flavonoid biosynthesis pathway were upregulated under salt stress, but downregulated following the combined treatment. This study offers valuable insights into the physiological and ecological roles of flavonoids in response to environmental stressors in economically important crops.
Collapse
Affiliation(s)
- Yan Gao
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, Liaoning, China
| | - Xuan Dong
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, Liaoning, China
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University of Sichuan Province, Xichang, Sichuan, China
| | - Rongjin Wang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, Liaoning, China
| | - Yongyong Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, Liaoning, China
| | - Fei Hao
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, Liaoning, China
| | - Xuguang Niu
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, Liaoning, China
| | - Hui Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, Liaoning, China
| | - Guolin Lin
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, Liaoning, China
| |
Collapse
|
33
|
Findik BT, Yildiz H, Akdeniz M, Yener I, Yilmaz MA, Cakir O, Ertas A. Phytochemical profile, enzyme inhibition, antioxidant, and antibacterial activity of Rosa pimpinellifolia L.: A comprehensive study to investigate the bioactivity of different parts (whole fruit, pulp, and seed part) of the fruit. Food Chem 2024; 455:139921. [PMID: 38843718 DOI: 10.1016/j.foodchem.2024.139921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024]
Abstract
The pharmaceutical and nutraceutical potentials of whole fruit, pulp and seeds of Rosa pimpinellifolia L. were evaluated. Forty-two phenolic compounds and two triterpenoids were identified in extracts by LC-MS/MS and GC-MS, respectively. The most prominent compounds were ellagic acid, catechin, epicatechin, tannic acid, quercetin, oleanolic acid, and ursolic acid. The highest enzyme inhibitory activities of the extracts (94.83%) were obtained against angiotensin-converting enzyme and were almost equal to those of the commercial standard (lisinopril, 98.99%). Whole fruit and pulp extracts (IC50:2.47 and 1.52 μg DW/mL) exhibited higher antioxidant capacity than the standards (α-tocopherol, IC50:9.89 μg DW/mL). The highest antibacterial activity was obtained against Bacillus cereus (MIC: 256 μg/mL) for the whole fruit extract. Correlation analyses were conducted to find the correlation between individual phenolics and enzyme inhibitory activities. The results showed the remarkable future of not only the edible part but also the seeds of black rose hips in phytochemical and functional aspects.
Collapse
Affiliation(s)
- Bahar Tuba Findik
- Nevsehir Hacı Bektas Veli University, Faculty of Arts and Sciences, Department of Chemistry, 50300 Nevsehir, Turkiye.
| | - Hilal Yildiz
- Nevsehir Hacı Bektas Veli University, Faculty of Engineering and Architecture, Department of Food Engineering, 50300 Nevsehir, Turkiye.
| | - Mehmet Akdeniz
- The Council of Forensic Medicine, Diyarbakir Group Chairmanship, 21280 Diyarbakir, Turkiye
| | - Ismail Yener
- Dicle University, Faculty of Pharmacy, Department of Analytical Chemistry, 21280 Diyarbakir, Turkiye.
| | - Mustafa Abdullah Yilmaz
- Dicle University, Faculty of Pharmacy, Department of Analytical Chemistry, 21280 Diyarbakir, Turkiye
| | - Ozlem Cakir
- Bayburt University, Faculty of Engineering, Department of Food Engineering, 69000 Bayburt, Turkiye.
| | - Abdulselam Ertas
- Dicle University, Faculty of Pharmacy, Department of Analytical Chemistry, 21280 Diyarbakir, Turkiye
| |
Collapse
|
34
|
Postiglione AE, Delange AM, Ali MF, Wang EY, Houben M, Hahn SL, Khoury MG, Roark CM, Davis M, Reid RW, Pease JB, Loraine AE, Muday GK. Flavonols improve tomato pollen thermotolerance during germination and tube elongation by maintaining reactive oxygen species homeostasis. THE PLANT CELL 2024; 36:4511-4534. [PMID: 39102899 PMCID: PMC11449072 DOI: 10.1093/plcell/koae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Elevated temperatures impair pollen performance and reproductive success, resulting in lower crop yields. The tomato (Solanum lycopersicum) anthocyanin reduced (are) mutant harbors a mutation in FLAVANONE 3-HYDROXYLASE (F3H), resulting in impaired flavonol antioxidant biosynthesis. The are mutant has reduced pollen performance and seed set relative to the VF36 parental line, phenotypes that are accentuated at elevated temperatures. Transformation of are with the wild-type F3H gene, or chemical complementation with flavonols, prevented temperature-dependent reactive oxygen species (ROS) accumulation in pollen and restored the reduced viability, germination, and tube elongation of are to VF36 levels. Overexpression of F3H in VF36 prevented temperature-driven ROS increases and impaired pollen performance, revealing that flavonol biosynthesis promotes thermotolerance. Although stigmas of are had reduced flavonol and elevated ROS levels, the growth of are pollen tubes was similarly impaired in both are and VF36 pistils. RNA-seq was performed at optimal and stress temperatures in are, VF36, and the F3H overexpression line at multiple timepoints across pollen tube elongation. The number of differentially expressed genes increased over time under elevated temperatures in all genotypes, with the greatest number in are. These findings suggest potential agricultural interventions to combat the negative effects of heat-induced ROS in pollen that lead to reproductive failure.
Collapse
Affiliation(s)
- Anthony E Postiglione
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Allison M Delange
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Mohammad Foteh Ali
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Eric Y Wang
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Maarten Houben
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Stacy L Hahn
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Maleana G Khoury
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Colleen M Roark
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Molly Davis
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC 28223, USA
| | - Robert W Reid
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC 28223, USA
| | - James B Pease
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Ann E Loraine
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC 28223, USA
| | - Gloria K Muday
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
35
|
Zhang M, Zhao Y, Nan T, Jiao H, Yue S, Huang L, Yuan Y. Genome-wide analysis of Citrus medica ABC transporters reveals the regulation of fruit development by CmABCB19 and CmABCC10. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109027. [PMID: 39154422 DOI: 10.1016/j.plaphy.2024.109027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
ATP-binding cassette (ABC) transporters are vital for plant growth and development as they facilitate the transport of essential molecules. Despite the family's significance, limited information exists about its functional distinctions in Citrus medica. Our study identified 119 genes encoding ABC transporter proteins in the C. medica genome. Through an evolutionary tree and qPCR analysis, two ABC genes, CmABCB19 and CmABCC10, were implicated in C. medica fruit development, showing upregulation in normal fruits compared to malformed fruits. CmABCB19 was found to localize to the plasma membrane of Nicotiana tabacum, exhibiting indole-3-acetic acid (IAA) efflux activity in the yeast mutant strain yap1. CmABCC10, a tonoplast-localized transporter, exhibited efflux of diosmin, nobiletin, and naringin, with rutin influx in strain ycf1. Transgenic expression of CmABCB19 and CmABCC10 in Arabidopsis thaliana induced alterations in auxin and flavonoid content, impacting silique and seed size. This effect was attributed to the modulation of structural genes in the auxin biosynthesis (YUC5/9, CYP79B2, CYP83B1, SUR1) and flavonoid biosynthesis (4CL2/3, CHS, CHI, FLS1/3) pathways. In summary, the functional characterization of CmABCB19 and CmABCC10 illuminates auxin and flavonoid transport, offering insights into their interplay with biosynthetic pathways and providing a foundation for understanding the transporter's role in fruit development.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China; National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China.
| | - Yuyang Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China; National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Tiegui Nan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China; National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Honghong Jiao
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China.
| | - Shiyan Yue
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China; National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Yuan Yuan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China; National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China.
| |
Collapse
|
36
|
Nguyen TH, Kim MJ, Kim J. The transcription factor LBD10 sustains pollen tube growth and integrity by modulating reactive oxygen species homeostasis via the regulation of flavonol biosynthesis in Arabidopsis. THE NEW PHYTOLOGIST 2024; 244:131-146. [PMID: 39113420 DOI: 10.1111/nph.20029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/11/2024] [Indexed: 09/17/2024]
Abstract
Reproduction in angiosperms relies on the precise growth of pollen tubes, facilitating the delivery of sperm cells to the ovule for double fertilization. LATERAL ORGAN BOUNDARIES DOMAIN10 (LBD10), a plant-specific transcription factor, plays a pivotal role in Arabidopsis pollen development. Here, we uncovered LBD10's function in sustaining pollen tube growth and integrity. The lbd10 mutant exhibited elevated levels of reactive oxygen species (ROS) and hydrogen peroxide (H2O2) in both pollen grains and tubes, leading to compromised pollen tube growth. The inhibition of ROS synthesis and scavenging of excess ROS with an antioxidant treatment each alleviated these defects in lbd10. The lbd10 mutant displayed reduced flavonol accumulation in both pollen grains and tubes. All the altered phenotypes of lbd10 were complemented by expressing LBD10 under its native promoter. Exogenous application of flavonoids recused the defects in pollen tube growth and integrity in lbd10, along with reducing the excess levels of ROS and H2O2. LBD10 directly binds the promoters of key flavonol biosynthesis genes in chromatin and promotes reporter gene expression in Arabidopsis mesophyll protoplasts. Our findings indicate that LBD10 modulates ROS homeostasis by transcriptionally activating genes crucial for flavonol biosynthesis, thereby maintaining pollen tube growth and integrity.
Collapse
Affiliation(s)
- Thu-Hien Nguyen
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea
| | - Min Jung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea
| | - Jungmook Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Korea
| |
Collapse
|
37
|
Ciceu A, Fenyvesi F, Hermenean A, Ardelean S, Dumitra S, Puticiu M. Advancements in Plant-Based Therapeutics for Hepatic Fibrosis: Molecular Mechanisms and Nanoparticulate Drug Delivery Systems. Int J Mol Sci 2024; 25:9346. [PMID: 39273295 PMCID: PMC11394827 DOI: 10.3390/ijms25179346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Chronic liver injuries often lead to hepatic fibrosis, a condition characterized by excessive extracellular matrix accumulation and abnormal connective tissue hyperplasia. Without effective treatment, hepatic fibrosis can progress to cirrhosis or hepatocellular carcinoma. Current treatments, including liver transplantation, are limited by donor shortages and high costs. As such, there is an urgent need for effective therapeutic strategies. This review focuses on the potential of plant-based therapeutics, particularly polyphenols, phenolic acids, and flavonoids, in treating hepatic fibrosis. These compounds have demonstrated anti-fibrotic activities through various signaling pathways, including TGF-β/Smad, AMPK/mTOR, Wnt/β-catenin, NF-κB, PI3K/AKT/mTOR, and hedgehog pathways. Additionally, this review highlights the advancements in nanoparticulate drug delivery systems that enhance the pharmacokinetics, bioavailability, and therapeutic efficacy of these bioactive compounds. Methodologically, this review synthesizes findings from recent studies, providing a comprehensive analysis of the mechanisms and benefits of these plant-based treatments. The integration of novel drug delivery systems with plant-based therapeutics holds significant promise for developing effective treatments for hepatic fibrosis.
Collapse
Affiliation(s)
- Alina Ciceu
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Ferenc Fenyvesi
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Anca Hermenean
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Simona Ardelean
- Faculty of Pharmacy, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Simona Dumitra
- Faculty of Medicine, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Monica Puticiu
- Faculty of Medicine, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| |
Collapse
|
38
|
Aguilar-Méndez ED, Monribot-Villanueva JL, Guerrero-Analco JA, De-la-Peña C. Chlorophyll deficiency in Agave angustifolia Haw.: unveiling the impact on secondary metabolite production. PLANTA 2024; 260:77. [PMID: 39164400 DOI: 10.1007/s00425-024-04506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
MAIN CONCLUSIONS The albino phenotype of Agave angustifolia Haw. accumulates higher levels of phenylalanine and phenylpropanoids, while the green phenotype has a greater concentration of phenolic compounds. The metabolic consequences of chlorophyll deficiency in plants continue to be a captivating field of research, especially in relation to production of metabolic compounds. This study conducts a thorough analysis of the metabolome in green (G), variegated (V), and albino (A) phenotypes of Agave angustifolia Haw. Specifically, it examines the differences in the accumulation of compounds related to the phenylpropanoid and flavonoid biosynthesis pathways. Methanol extracts of leaf and meristem tissues from the three phenotypes grown in vitro were analyzed using liquid chromatography coupled with quadrupole time-of-flight high-resolution mass spectrometry (UPLC-MS-QTOF) for untargeted metabolomics and triple quadrupole (QqQ) mass spectrometry for targeted metabolomic analyses. By employing these methods, we discovered notable differences in the levels of important metabolites such as L-phenylalanine, 4-hydroxyphenylpyruvic acid, and various flavonoids among the different phenotypes. The results of our study indicate that the A phenotype shows a significant increase in the levels of phenylalanine and phenylpropanoids in both leaf and meristem tissues. This is in contrast to a decrease in flavonoids, suggesting a metabolic reprogramming to compensate for the lack of chlorophyll. Significantly, compounds such as kaempferol-3-O-glucoside and rutin exhibited significant quantitative reduction in the A leaves, suggesting a subtle modification in the production of flavonols and potentially a changed mechanism for antioxidant protection. This study emphasizes the complex metabolic changes in A. angustifolia´s chlorophyll-deficient phenotypes, providing insight into the complex interplay between primary and secondary metabolism in response to chlorophyll deficiency. Our research not only enhances the comprehension of plant metabolism in albino phenotypes but also opens new avenues for exploring the biochemical and genetic basis of such adaptations, with potential biotechnological applications of these distinct plant variants.
Collapse
Affiliation(s)
- Edder D Aguilar-Méndez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 X 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Juan L Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C, Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, México
| | - José A Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C, Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, México
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 X 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México.
| |
Collapse
|
39
|
Symonds K, Smith MA, Esme O, Plaxton WC, Snedden WA. Characterization of Arabidopsis aldolases AtFBA4, AtFBA5, and their inhibition by morin and interaction with calmodulin. FEBS Lett 2024; 598:1864-1876. [PMID: 38997224 DOI: 10.1002/1873-3468.14979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/14/2024]
Abstract
Fructose bisphosphate aldolases (FBAs) catalyze the reversible cleavage of fructose 1,6-bisphosphate into dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. We analyzed two previously uncharacterized cytosolic Arabidopsis FBAs, AtFBA4 and AtFBA5. Based on a recent report, we examined the interaction of AtFBA4 with calmodulin (CaM)-like protein 11 (AtCML11). AtFBA4 did not bind AtCML11; however, we found that CaM bound AtFBA5 in a Ca2+-dependent manner with high specificity and affinity (KD ~ 190 nm) and enhanced its stability. AtFBA4 and AtFBA5 exhibited Michaelis-Menten kinetics with Km and Vmax values of 180 μm and 4.9 U·mg-1 for AtFBA4, and 6.0 μm and 0.30 U·mg-1 for AtFBA5, respectively. The flavonoid morin inhibited both isozymes. Our study suggests that Ca2+ signaling and flavanols may influence plant glycolysis/gluconeogenesis.
Collapse
Affiliation(s)
- Kyle Symonds
- Department of Biology, Queen's University, Kingston, Canada
| | - Milena A Smith
- Department of Biology, Queen's University, Kingston, Canada
| | - Oona Esme
- Department of Biology, Queen's University, Kingston, Canada
| | | | | |
Collapse
|
40
|
Crestani G, Večeřová K, Cunningham N, Badmus UO, Urban O, Jansen MAK. Comprehensive Modulation of Secondary Metabolites in Terpenoid-Accumulating Mentha spicata L. via UV Radiation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1746. [PMID: 38999586 PMCID: PMC11243551 DOI: 10.3390/plants13131746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024]
Abstract
In plants, secondary metabolites change in response to environmental conditions. These changes co-regulate resilience to stressful environmental conditions, plant growth and development, and interactions between plants and the wider ecosystem, while also affecting soil carbon storage and atmospheric and climatic conditions. The objective of this study was to determine the association between UV exposure and the contents of key metabolites, including amino acids, phenolics, flavonoids, terpenoids, carotenoids, tocopherols, and phytosterols. Mentha spicata plantlets were grown in tissue culture boxes for 30 days and then exposed to a low dose of broadband UV-B (291-315 nm; 2.8 kJm-2 biologically effective UV) enriched light for eight days. Metabolite contents were quantified either immediately after the final UV exposure, or after seven days of recovery under photosynthetically active radiation. It was found that UV promoted the production of flavonoids (1.8-fold) ahead of phenolic acids (unchanged). Furthermore, the majority of monoterpenes and sesquiterpenes, constituents of valuable mint essential oil, were significantly increased through UV treatment (up to 90-fold for α-linalool). In contrast, the contents of carotenoids and tocopherols did not increase following UV exposure. A comparison between plants sampled immediately after UV exposure and after seven days of recovery showed that there was an overall increase in the content of carotenoids, mono- and sesquiterpenes, phenolics, and amino acids following recovery, while the contents of sterols and tocopherols decreased. These UV-induced changes in metabolite profile may have important consequences for agriculture, ecology, and even the global climate, and they also provide an exciting opportunity to enhance crop value, facilitating the development of improved products with higher levels of essential oils and added benefits of enhanced flavour, colour, and bioactive content.
Collapse
Affiliation(s)
- Gaia Crestani
- School of Biological, Earth and Environmental Science, Environmental Research Institute, University College Cork, North Mall Campus, T23 TK30 Cork, Ireland
| | - Kristýna Večeřová
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Natalie Cunningham
- School of Biological, Earth and Environmental Science, Environmental Research Institute, University College Cork, North Mall Campus, T23 TK30 Cork, Ireland
| | - Uthman O. Badmus
- School of Biological, Earth and Environmental Science, Environmental Research Institute, University College Cork, North Mall Campus, T23 TK30 Cork, Ireland
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Marcel A. K. Jansen
- School of Biological, Earth and Environmental Science, Environmental Research Institute, University College Cork, North Mall Campus, T23 TK30 Cork, Ireland
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| |
Collapse
|
41
|
Fernandes de Oliveira A, Piga GK, Najoui S, Becca G, Marceddu S, Rigoldi MP, Satta D, Bagella S, Nieddu G. UV light and adaptive divergence of leaf physiology, anatomy, and ultrastructure drive heat stress tolerance in genetically distant grapevines. FRONTIERS IN PLANT SCIENCE 2024; 15:1399840. [PMID: 38957604 PMCID: PMC11217527 DOI: 10.3389/fpls.2024.1399840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024]
Abstract
The genetic basis of plant response to light and heat stresses had been unveiled, and different molecular mechanisms of leaf cell homeostasis to keep high physiological performances were recognized in grapevine varieties. However, the ability to develop heat stress tolerance strategies must be further elucidated since the morpho-anatomical and physiological traits involved may vary with genotype × environment combination, stress intensity, and duration. A 3-year experiment was conducted on potted plants of Sardinian red grapevine cultivars Cannonau (syn. Grenache) and Carignano (syn. Carignan), exposed to prolonged heat stress inside a UV-blocking greenhouse, either submitted to low daily UV-B doses of 4.63 kJ m-2 d-1 (+UV) or to 0 kJ m-2 d-1 (-UV), and compared to a control (C) exposed to solar radiation (4.05 kJ m-2 d-1 average UV-B dose). Irrigation was supplied to avoid water stress, and canopy light and thermal microclimate were monitored continuously. Heat stress exceeded one-third of the duration inside the greenhouse and 6% in C. In vivo spectroscopy, including leaf reflectance and fluorescence, allowed for characterizing different patterns of leaf traits and metabolites involved in oxidative stress protection. Cannonau showed lower stomatal conductance under C (200 mmol m-2 s-1) but more than twice the values inside the greenhouse (400 to 900 mmol m-2 s-1), where water use efficiency was reduced similarly in both varieties. Under severe heat stress and -UV, Cannonau showed a sharper decrease in primary photochemical activity and higher leaf pigment reflectance indexes and leaf mass area. UV-B increased the leaf pigments, especially in Carignano, and different leaf cell regulatory traits to prevent oxidative damage were observed in leaf cross-sections. Heat stress induced chloroplast swelling, plastoglobule diffusion, and the accumulation of secretion deposits in both varieties, aggravated in Cannonau -UV by cell vacuolation, membrane dilation, and diffused leaf blade spot swelling. Conversely, in Carignano UV-B, cell wall barriers and calcium oxalate crystals proliferated in mesophyll cells. These responses suggest an adaptive divergence among cultivars to prolonged heat stress and UV-B light. Further research on grapevine biodiversity, heat, and UV-B light interactions may give new insights on the extent of stress tolerance to improve viticulture adaptive strategies in climate change hotspots.
Collapse
Affiliation(s)
| | | | - Soumiya Najoui
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Giovanna Becca
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Salvatore Marceddu
- Institute of Sciences of Food Production, National Research Council, Sassari, Italy
| | - Maria Pia Rigoldi
- Agris Sardegna, Agricultural Research Agency of Sardinia, Sassari, Italy
| | - Daniela Satta
- Agris Sardegna, Agricultural Research Agency of Sardinia, Sassari, Italy
| | - Simonetta Bagella
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Giovanni Nieddu
- Department of Agriculture, University of Sassari, Sassari, Italy
| |
Collapse
|
42
|
Paolillo I, Roscigno G, Innangi M, Zorrilla JG, Petraglia G, Russo MT, Carraturo F, Guida M, Pollice A, Cimmino A, Masi M, Calabrò V. Health-Promoting Properties of Natural Flavonol Glycosides Isolated from Staphylea pinnata L. Int J Mol Sci 2024; 25:5582. [PMID: 38891769 PMCID: PMC11171919 DOI: 10.3390/ijms25115582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Staphylea, also called bladdernuts, is a genus of plants belonging to the family Staphyleaceae, widespread in tropical or temperate climates of America, Europe, and the Far East. Staphylea spp. produce bioactive metabolites with antioxidant properties, including polyphenols which have not been completely investigated for their phytotherapeutic potential, even though they have a long history of use for food. Here, we report the isolation of six flavonol glycosides from the hydroalcoholic extract of aerial parts of Staphylea pinnata L., collected in Italy, using a solid-phase extraction technique. They were identified using spectroscopic, spectrometric, and optical methods as three quercetin and three isorhamnetin glycosides. Among the flavonol glycosides isolated, isoquercetin and quercetin malonyl glucoside showed powerful antioxidant, antimicrobial, and wound healing promoting activity and thus are valuable as antiaging ingredients for cosmeceutical applications and for therapeutic applications in skin wound repair.
Collapse
Affiliation(s)
- Ida Paolillo
- Department of Biology, Complesso Universitario Monte Sant’Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy; (I.P.); (G.R.); (F.C.); (M.G.); (A.P.); (V.C.)
| | - Giuseppina Roscigno
- Department of Biology, Complesso Universitario Monte Sant’Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy; (I.P.); (G.R.); (F.C.); (M.G.); (A.P.); (V.C.)
| | - Michele Innangi
- EnviXLab, Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy;
| | - Jesús G. Zorrilla
- Department of Chemical Sciences, Complesso Universitario Monte Sant’Angelo, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy; (J.G.Z.); (G.P.); (M.T.R.); (A.C.)
- Allelopathy Group, Department of Organic Chemistry, Facultad de Ciencias, Institute of Biomolecules (INBIO), University of Cadiz, C/Avenida República Saharaui, s/n, 11510 Puerto Real, Spain
| | - Gianmarco Petraglia
- Department of Chemical Sciences, Complesso Universitario Monte Sant’Angelo, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy; (J.G.Z.); (G.P.); (M.T.R.); (A.C.)
| | - Maria Teresa Russo
- Department of Chemical Sciences, Complesso Universitario Monte Sant’Angelo, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy; (J.G.Z.); (G.P.); (M.T.R.); (A.C.)
| | - Federica Carraturo
- Department of Biology, Complesso Universitario Monte Sant’Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy; (I.P.); (G.R.); (F.C.); (M.G.); (A.P.); (V.C.)
| | - Marco Guida
- Department of Biology, Complesso Universitario Monte Sant’Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy; (I.P.); (G.R.); (F.C.); (M.G.); (A.P.); (V.C.)
| | - Alessandra Pollice
- Department of Biology, Complesso Universitario Monte Sant’Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy; (I.P.); (G.R.); (F.C.); (M.G.); (A.P.); (V.C.)
| | - Alessio Cimmino
- Department of Chemical Sciences, Complesso Universitario Monte Sant’Angelo, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy; (J.G.Z.); (G.P.); (M.T.R.); (A.C.)
| | - Marco Masi
- Department of Chemical Sciences, Complesso Universitario Monte Sant’Angelo, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy; (J.G.Z.); (G.P.); (M.T.R.); (A.C.)
| | - Viola Calabrò
- Department of Biology, Complesso Universitario Monte Sant’Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy; (I.P.); (G.R.); (F.C.); (M.G.); (A.P.); (V.C.)
| |
Collapse
|
43
|
Postiglione AE, Delange AM, Ali MF, Wang EY, Houben M, Hahn SL, Khoury MG, Roark CM, Davis M, Reid RW, Pease JB, Loraine AE, Muday GK. Flavonols improve thermotolerance in tomato pollen during germination and tube elongation by maintaining ROS homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.23.573189. [PMID: 38187649 PMCID: PMC10769439 DOI: 10.1101/2023.12.23.573189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Elevated temperatures impair pollen performance and reproductive success, resulting in lower crop yields. The Solanum lycopersicum anthocyanin reduced ( are ) mutant has a FLAVANONE 3 HYDROXYLASE ( F3H ) gene mutation resulting in impaired synthesis of flavonol antioxidants. The are mutant has reduced pollen performance and seed set relative to the VF36 parental line, which is accentuated at elevated temperatures. Transformation of are with the wild-type F3H gene, or chemical complementation with flavonols, prevented temperature-dependent ROS accumulation in pollen and reversed are's reduced viability, germination, and tube elongation to VF36 levels. VF36 transformed with an F3H overexpression construct prevented temperature driven ROS increases and impaired pollen performance, revealing thermotolerance results from elevated flavonol synthesis. Although stigmas of are had reduced flavonols and elevated ROS, the growth of are pollen tubes were similarly impaired in both are and VF36 pistils. RNA-Seq was performed at optimal and stress temperatures in are , VF36, and the VF36 F3H overexpression line at multiple timepoints across pollen tube elongation. Differentially expressed gene numbers increased with duration of elevated temperature in all genotypes, with the largest number in are . These findings suggest potential agricultural interventions to combat the negative effects of heat-induced ROS in pollen that leads to reproductive failure. One sentence summary Flavonol antioxidants reduce the negative impacts of elevated temperatures on pollen performance by reducing levels of heat induced reactive oxygen species and modulation of heat-induced changes in the pollen transcriptome.
Collapse
|
44
|
Pu X, Zhang J, He J, Ai Z, He X, Zhou X, Tong S, Dai X, Wu Q, Hu J, He J, Wang H, Wang W, Liao J, Zhang L. Discovery of a novel flavonol O-methyltransferase possessing sequential 4'- and 7-O-methyltransferase activity from Camptotheca acuminata Decne. Int J Biol Macromol 2024; 266:131381. [PMID: 38580009 DOI: 10.1016/j.ijbiomac.2024.131381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
The biosynthetic route for flavonol in Camptotheca acuminata has been recently elucidated from a chemical point of view. However, the genes involved in flavonol methylation remain unclear. It is a critical step for fully uncovering the flavonol metabolism in this ancient plant. In this study, the multi-omics resource of this plant was utilized to perform flavonol O-methyltransferase-oriented mining and screening. Two genes, CaFOMT1 and CaFOMT2 are identified, and their recombinant CaFOMT proteins are purified to homogeneity. CaFOMT1 exhibits strict substrate and catalytic position specificity for quercetin, and selectively methylates only the 4'-OH group. CaFOMT2 possesses sequential O-methyltransferase activity for the 4'-OH and 7-OH of quercetin. These CaFOMT genes are enriched in the leaf and root tissues. The catalytic dyad and critical substrate-binding sites of the CaFOMTs are determined by molecular docking and further verified through site-mutation experiments. PHE181 and MET185 are designated as the critical sites for flavonol substrate selectivity. Genomic environment analysis indicates that CaFOMTs evolved independently and that their ancestral genes are different from that of the known Ca10OMT. This study provides molecular insights into the substrate-binding pockets of two new CaFOMTs responsible for flavonol metabolism in C. acuminata.
Collapse
Affiliation(s)
- Xiang Pu
- College of Science, Sichuan Agricultural University, Ya'an 625104, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Ya'an 625104, China.
| | - Jiahua Zhang
- College of Science, Sichuan Agricultural University, Ya'an 625104, China
| | - Jinwei He
- College of Science, Sichuan Agricultural University, Ya'an 625104, China
| | - Zhihui Ai
- College of Science, Sichuan Agricultural University, Ya'an 625104, China
| | - Xiaoxue He
- College of Science, Sichuan Agricultural University, Ya'an 625104, China
| | - Xiaojun Zhou
- College of Science, Sichuan Agricultural University, Ya'an 625104, China
| | - Shiyuan Tong
- College of Science, Sichuan Agricultural University, Ya'an 625104, China
| | - Xinyue Dai
- College of Science, Sichuan Agricultural University, Ya'an 625104, China
| | - Qiqi Wu
- College of Science, Sichuan Agricultural University, Ya'an 625104, China
| | - Jiayu Hu
- College of Science, Sichuan Agricultural University, Ya'an 625104, China
| | - Jingshu He
- College of Science, Sichuan Agricultural University, Ya'an 625104, China
| | - Hanguang Wang
- College of Science, Sichuan Agricultural University, Ya'an 625104, China
| | - Wei Wang
- College of Science, Sichuan Agricultural University, Ya'an 625104, China
| | - Jinqiu Liao
- College of Life Science, Sichuan Agricultural University, Ya'an 625104, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Ya'an 625104, China
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Ya'an 625104, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Ya'an 625104, China.
| |
Collapse
|
45
|
Ali MF, Muday GK. Reactive oxygen species are signaling molecules that modulate plant reproduction. PLANT, CELL & ENVIRONMENT 2024; 47:1592-1605. [PMID: 38282262 DOI: 10.1111/pce.14837] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
Reactive oxygen species (ROS) can serve as signaling molecules that are essential for plant growth and development but abiotic stress can lead to ROS increases to supraoptimal levels resulting in cellular damage. To ensure efficient ROS signaling, cells have machinery to locally synthesize ROS to initiate cellular responses and to scavenge ROS to prevent it from reaching damaging levels. This review summarizes experimental evidence revealing the role of ROS during multiple stages of plant reproduction. Localized ROS synthesis controls the formation of pollen grains, pollen-stigma interactions, pollen tube growth, ovule development, and fertilization. Plants utilize ROS-producing enzymes such as respiratory burst oxidase homologs and organelle metabolic pathways to generate ROS, while the presence of scavenging mechanisms, including synthesis of antioxidant proteins and small molecules, serves to prevent its escalation to harmful levels. In this review, we summarized the function of ROS and its synthesis and scavenging mechanisms in all reproductive stages from gametophyte development until completion of fertilization. Additionally, we further address the impact of elevated temperatures induced ROS on impairing these reproductive processes and of flavonol antioxidants in maintaining ROS homeostasis to minimize temperature stress to combat the impact of global climate change on agriculture.
Collapse
Affiliation(s)
- Mohammad Foteh Ali
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston Salem, NC, United States
| | - Gloria K Muday
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston Salem, NC, United States
| |
Collapse
|
46
|
Gasperini D, Howe GA. Phytohormones in a universe of regulatory metabolites: lessons from jasmonate. PLANT PHYSIOLOGY 2024; 195:135-154. [PMID: 38290050 PMCID: PMC11060663 DOI: 10.1093/plphys/kiae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Small-molecule phytohormones exert control over plant growth, development, and stress responses by coordinating the patterns of gene expression within and between cells. Increasing evidence indicates that currently recognized plant hormones are part of a larger group of regulatory metabolites that have acquired signaling properties during the evolution of land plants. This rich assortment of chemical signals reflects the tremendous diversity of plant secondary metabolism, which offers evolutionary solutions to the daunting challenges of sessility and other unique aspects of plant biology. A major gap in our current understanding of plant regulatory metabolites is the lack of insight into the direct targets of these compounds. Here, we illustrate the blurred distinction between classical phytohormones and other bioactive metabolites by highlighting the major scientific advances that transformed the view of jasmonate from an interesting floral scent to a potent transcriptional regulator. Lessons from jasmonate research generally apply to other phytohormones and thus may help provide a broad understanding of regulatory metabolite-protein interactions. In providing a framework that links small-molecule diversity to transcriptional plasticity, we hope to stimulate future research to explore the evolution, functions, and mechanisms of perception of a broad range of plant regulatory metabolites.
Collapse
Affiliation(s)
- Debora Gasperini
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle 06120, Germany
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 42284, USA
| |
Collapse
|
47
|
Lin J, Lin H, Li C, Liao N, Zheng Y, Yu X, Sun Y, Wu L. Unveiling characteristic metabolic accumulation over enzymatic-catalyzed process of Tieguanyin oolong tea manufacturing by DESI-MSI and multiple-omics. Food Res Int 2024; 181:114136. [PMID: 38448105 DOI: 10.1016/j.foodres.2024.114136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 03/08/2024]
Abstract
To achieve an integrative understanding of the spatial distribution and chronological flavoring compounds accumulation, desorption-electrospray-ionization coupled mass-spectrometry-imaging (DESI-MSI) and multi-omics techniques were performed on the leaf samples collected from the enzymatic-catalyzed-process (ECP) stage of Tieguanyin oolong tea manufacturing. The result of DESI-MSI visualization indicated transform or re-distribution of catechins, flavonols and amino acids were on-going attributing to the multi-stress over ECP stage. Out of identified 2621 non-volatiles and 45,771 transcripts, 43 non-volatiles and 12 co-expressed pathways were screened out as biomarkers and key cascades in response to adverse conditions. The targeted metabolic analysis on the characteristic flavoring compounds showed that the accumulations of free amino acids were enhanced, while catechins, flavonol glycosides, and alkaloids exhibited dynamic changes. This result suggests withering and turning-over process are compatible and collectively regulate the metabolic accumulation and development of flavoring metabolites, facilitating to the development of characteristic quality of Tieguanyin tea.
Collapse
Affiliation(s)
- Jiaqi Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian Province 350002, PR China
| | - Hongzheng Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian Province 350002, PR China
| | - Chenxue Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian Province 350002, PR China
| | - Ningkai Liao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian Province 350002, PR China
| | - Yucheng Zheng
- College of Tea and Food Science, Wuyi University, 358 Baihua Road, Wuyishan City, Fujian Province 354300, PR China
| | - Xinru Yu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian Province 350002, PR China
| | - Yun Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian Province 350002, PR China.
| | - Liangyu Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian Province 350002, PR China.
| |
Collapse
|
48
|
Su S, Wang L, Geng Y, Wang J. Flavonol profiles of mature leaves allow discriminating Toona sinensis Roem from different north-south geographical origins across China with varied antioxidant activities. Heliyon 2024; 10:e27040. [PMID: 38439854 PMCID: PMC10909761 DOI: 10.1016/j.heliyon.2024.e27040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/24/2023] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
Toona sinensis (A. Juss.) Roem, a multipurpose economic tree, is widely cultivated across Asia, but its high-yielding mature leaves are largely overlooked. This study systematically analysed the flavonols in the mature leaves of T. sinensis from 44 different geographic locations across China, using HPLC-DAD and HPLC-ESI-MS2 techniques. In total, 18 flavonols were detected, among which 6 (f1, f3, f7, f14, f15, and f17) were firstly identified in this plant. Significant variations in quality among different T. sinensis varieties were observed (p < 0.01). Through OPLS-DA analysis, all samples could be clearly categorised into two distinct geographical groups. The northern varieties (N1-N20) exhibited concise flavonol fingerprints with higher total flavonol content (TFC) (727.55 ± 22.79 mg/100 g fresh weight, FW), predominantly non-acylated flavonols (705.95 ± 21.65 mg/100 g FW), particularly quercetin glycosides (614.60 ± 22.76 mg/100 g FW). In contrast, the southern varieties (S1-S24) presented more intricate flavonol profiles with lower TFC (622.81 ± 21.82 mg/100 g FW) and balanced amounts of quercetin (344.75 ± 16.41 mg/100 g FW) and kaempferol glycosides (278.06 ± 12.29 mg/100 g FW). Notably, the southern samples possessed higher content of acylated flavonols (184.50 ± 12.87 mg/100 g FW), especially galloylated ones, which contributed to their heightened antioxidant activities. Quercetin 3-O-rhamnoside (f11') and kaempferol 3-O-galloyglucoside (f11) were determined to be the crucial biomarkers for quality discrimination. Considering quality control of mature T. sinensis leaves as potential resources for natural flavonol extraction, this study suggested that their northern/southern geographic origins should be distinguished first. Additionally, the flavonol profiles allow for discriminating the origin and assessing the quality of T. sinensis.
Collapse
Affiliation(s)
- Shang Su
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Lijin Wang
- Laboratory of Molecular Sensory Science, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Yonghang Geng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
49
|
Lv X, Zhu L, Ma D, Zhang F, Cai Z, Bai H, Hui J, Li S, Xu X, Li M. Integrated Metabolomics and Transcriptomics Analyses Highlight the Flavonoid Compounds Response to Alkaline Salt Stress in Glycyrrhiza uralensis Leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5477-5490. [PMID: 38416716 DOI: 10.1021/acs.jafc.3c07139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Glycyrrhiza uralensis is a saline-alkali-tolerant plant whose aerial parts are rich in flavonoids; however, the role of these flavonoids in saline-alkali tolerance remains unclear. Herein, we performed physiological, metabolomics, and transcriptomics analyses in G. uralensis leaves under alkaline salt stress for different durations. Alkaline salt stress stimulated excessive accumulation of reactive oxygen species and consequently destroyed the cell membrane, causing cell death, and G. uralensis initiated osmotic regulation and the antioxidant system to respond to stress. In total, 803 metabolites, including 244 flavonoids, were detected via metabolomics analysis. Differentially altered metabolites and differentially expressed genes were coenriched in flavonoid-related pathways. Genes such as novel.4890, Glyur001511s00039602, and Glyur000775s00025737 were highly expressed, and flavonoid metabolites such as 2'-hydroxygenistein, apigenin, and 3-O-methylquercetin were upregulated. Thus, flavonoids as nonenzymatic antioxidants play an important role in stress tolerance. These findings provide novel insights into the response of G. uralensis to alkaline salt stress.
Collapse
Affiliation(s)
- Xuelian Lv
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China
- Agricultural Biotechnology Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Lin Zhu
- College of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Dongmei Ma
- College of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Fengju Zhang
- College of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Zhengyun Cai
- Department of Life and Food Science, Ningxia University, Yinchuan 750021, China
| | - Haibo Bai
- Agricultural Biotechnology Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Jian Hui
- Agricultural Biotechnology Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Shuhua Li
- Agricultural Biotechnology Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Xing Xu
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China
| | - Ming Li
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| |
Collapse
|
50
|
Wu L, Chen X, Zhang P, Yan S, Zhang T, Li Y. TON1 recruiting motif 21 positively regulates the flavonoid metabolic pathway at the translational level in Arabidopsis thaliana. PLANTA 2024; 259:65. [PMID: 38329545 PMCID: PMC10853083 DOI: 10.1007/s00425-024-04337-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024]
Abstract
MAIN CONCLUSION This study reveals that TRM21 acts as a positive regulator of flavonoid biosynthesis at the translational level in Arabidopsis, impacting both secondary metabolites and genes associated with root hair growth. TRM (TONNEAU1-recruiting motif) superfamily proteins are reported to be involved in microtubule assembly. However, the functions of this protein family are just beginning to be uncovered. Here, we provide metabolomic and genetic evidence that 1 of the 34 TRM members, TRM21, positively regulates the biosynthesis of flavonoids at the translational level in Arabidopsis thaliana. A loss-of-function mutation in TRM21 led to root hair growth defects and stunted plant growth, accompanied by significant alterations in secondary metabolites, particularly a marked reduction in flavonoid content. Interestingly, our study revealed that the transcription levels of genes involved in the flavonoid biosynthesis pathway remained unchanged in the trm21 mutants, but there was a significant downregulation in the translation levels of certain genes [flavanone 3-hydroxylase (F3H), dihydroflavonol-4-reductase (DFR), anthocyanidin reductase (ANR), flavanone 3'-hydroxylase (F3'H), flavonol synthase (FLS), chalcone synthase (CHS)]. Additionally, the translation levels of some genes related to root hair growth [RHO-related GTPases of plant 2 (ROP2), root hair defective 6 (RHD6), root hair defective 2 (RHD2)] were also reduced in the trm21 mutants. Taken together, these results indicate that TRM21 functions as a positive regulator of flavonoid biosynthesis at the translational level in Arabidopsis.
Collapse
Affiliation(s)
- Ling Wu
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan Province, China
- Syoung Cosmetics Manufacturing Co., Ltd., Changsha, 410000, Hunan Province, China
| | - Xuan Chen
- Changsha Yuelu Experimental High School, Changsha, 410000, Hunan Province, China
| | - Ping Zhang
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan Province, China
| | - Shaowei Yan
- Syoung Cosmetics Manufacturing Co., Ltd., Changsha, 410000, Hunan Province, China
| | - Tingzhi Zhang
- Syoung Cosmetics Manufacturing Co., Ltd., Changsha, 410000, Hunan Province, China
| | - Yuanyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, Hunan Province, China.
| |
Collapse
|