1
|
Zaytseva AK, Kulichik OE, Kostareva AA, Zhorov BS. Biophysical mechanisms of myocardium sodium channelopathies. Pflugers Arch 2024; 476:735-753. [PMID: 38424322 DOI: 10.1007/s00424-024-02930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Genetic variants of gene SCN5A encoding the alpha-subunit of cardiac voltage-gated sodium channel Nav1.5 are associated with various diseases, including long QT syndrome (LQT3), Brugada syndrome (BrS1), and progressive cardiac conduction disease (PCCD). In the last decades, the great progress in understanding molecular and biophysical mechanisms of these diseases has been achieved. The LQT3 syndrome is associated with gain-of-function of sodium channels Nav1.5 due to impaired inactivation, enhanced activation, accelerated recovery from inactivation or the late current appearance. In contrast, BrS1 and PCCD are associated with the Nav1.5 loss-of-function, which in electrophysiological experiments can be manifested as reduced current density, enhanced fast or slow inactivation, impaired activation, or decelerated recovery from inactivation. Genetic variants associated with congenital arrhythmias can also disturb interactions of the Nav1.5 channel with different proteins or drugs and cause unexpected reactions to drug administration. Furthermore, mutations can affect post-translational modifications of the channels and their sensitivity to pH and temperature. Here we briefly review the current knowledge on biophysical mechanisms of LQT3, BrS1 and PCCD. We focus on limitations of studies that use heterologous expression systems and induced pluripotent stem cells (iPSC) derived cardiac myocytes and summarize our understanding of genotype-phenotype relations of SCN5A mutations.
Collapse
Affiliation(s)
- Anastasia K Zaytseva
- Almazov National Medical Research Centre, St. Petersburg, Russia.
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| | - Olga E Kulichik
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | | | - Boris S Zhorov
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- McMaster University, Hamilton, Canada
| |
Collapse
|
2
|
Gutiérrez LK, Moreno-Manuel AI, Jalife J. Kir2.1-Na V1.5 channelosome and its role in arrhythmias in inheritable cardiac diseases. Heart Rhythm 2024; 21:630-646. [PMID: 38244712 DOI: 10.1016/j.hrthm.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
Sudden cardiac death in children and young adults is a relatively rare but tragic event whose pathophysiology is unknown at the molecular level. Evidence indicates that the main cardiac sodium channel (NaV1.5) and the strong inward rectifier potassium channel (Kir2.1) physically interact and form macromolecular complexes (channelosomes) with common partners, including adapter, scaffolding, and regulatory proteins that help them traffic together to their eventual membrane microdomains. Most important, dysfunction of either or both ion channels has direct links to hereditary human diseases. For example, certain mutations in the KCNJ2 gene encoding the Kir2.1 protein result in Andersen-Tawil syndrome type 1 and alter both inward rectifier potassium and sodium inward currents. Similarly, trafficking-deficient mutations in the gene encoding the NaV1.5 protein (SCN5A) result in Brugada syndrome and may also disturb both inward rectifier potassium and sodium inward currents. Moreover, gain-of-function mutations in KCNJ2 result in short QT syndrome type 3, which is extremely rare but highly arrhythmogenic, and can modify Kir2.1-NaV1.5 interactions in a mutation-specific way, further highlighting the relevance of channelosomes in ion channel diseases. By expressing mutant proteins that interrupt or modify Kir2.1 or NaV1.5 function in animal models and patient-specific pluripotent stem cell-derived cardiomyocytes, investigators are defining for the first time the mechanistic framework of how mutation-induced dysregulation of the Kir2.1-NaV1.5 channelosome affects cardiac excitability, resulting in arrhythmias and sudden death in different cardiac diseases.
Collapse
Affiliation(s)
- Lilian K Gutiérrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
3
|
Ma JG, Vandenberg JI, Ng CA. Development of automated patch clamp assays to overcome the burden of variants of uncertain significance in inheritable arrhythmia syndromes. Front Physiol 2023; 14:1294741. [PMID: 38089476 PMCID: PMC10712320 DOI: 10.3389/fphys.2023.1294741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 10/16/2024] Open
Abstract
Advances in next-generation sequencing have been exceptionally valuable for identifying variants in medically actionable genes. However, for most missense variants there is insufficient evidence to permit definitive classification of variants as benign or pathogenic. To overcome the deluge of Variants of Uncertain Significance, there is an urgent need for high throughput functional assays to assist with the classification of variants. Advances in parallel planar patch clamp technologies has enabled the development of automated high throughput platforms capable of increasing throughput 10- to 100-fold compared to manual patch clamp methods. Automated patch clamp electrophysiology is poised to revolutionize the field of functional genomics for inheritable cardiac ion channelopathies. In this review, we outline i) the evolution of patch clamping, ii) the development of high-throughput automated patch clamp assays to assess cardiac ion channel variants, iii) clinical application of these assays and iv) where the field is heading.
Collapse
Affiliation(s)
- Joanne G. Ma
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Jamie I. Vandenberg
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Chai-Ann Ng
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
4
|
Fouda MA, Ghovanloo MR, Ruben PC. Late sodium current: incomplete inactivation triggers seizures, myotonias, arrhythmias, and pain syndromes. J Physiol 2022; 600:2835-2851. [PMID: 35436004 DOI: 10.1113/jp282768] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/12/2022] [Indexed: 11/08/2022] Open
Abstract
Acquired and inherited dysfunction in voltage-gated sodium channels underlies a wide range of diseases. "In addition to the defects in trafficking and expression, sodium channelopathies are also caused by dysfunction in one or several gating properties, for instance activation or inactivation. Disruption of the channel inactivation leads to the increased late sodium current, which is a common defect in seizure disorders, cardiac arrhythmias skeletal muscle myotonia and pain. An increase in late sodium current leads to repetitive action potential in neurons and skeletal muscles, and prolonged action potential duration in the heart. In this topical review, we compare the effects of late sodium current in brain, heart, skeletal muscle, and peripheral nerves. Abstract figure legend Shows cartoon illustration of general Nav channel transitions between (1) resting, (2) open, and (3) fast inactivated states. Disruption of the inactivation process exacerbates (4) late sodium currents. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mohamed A Fouda
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada.,Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
| | | | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
5
|
Daimi H, Lozano-Velasco E, Aranega A, Franco D. Genomic and Non-Genomic Regulatory Mechanisms of the Cardiac Sodium Channel in Cardiac Arrhythmias. Int J Mol Sci 2022; 23:1381. [PMID: 35163304 PMCID: PMC8835759 DOI: 10.3390/ijms23031381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Nav1.5 is the predominant cardiac sodium channel subtype, encoded by the SCN5A gene, which is involved in the initiation and conduction of action potentials throughout the heart. Along its biosynthesis process, Nav1.5 undergoes strict genomic and non-genomic regulatory and quality control steps that allow only newly synthesized channels to reach their final membrane destination and carry out their electrophysiological role. These regulatory pathways are ensured by distinct interacting proteins that accompany the nascent Nav1.5 protein along with different subcellular organelles. Defects on a large number of these pathways have a tremendous impact on Nav1.5 functionality and are thus intimately linked to cardiac arrhythmias. In the present review, we provide current state-of-the-art information on the molecular events that regulate SCN5A/Nav1.5 and the cardiac channelopathies associated with defects in these pathways.
Collapse
Affiliation(s)
- Houria Daimi
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| |
Collapse
|
6
|
Peters CH, Watkins AR, Poirier OL, Ruben PC. E1784K, the most common Brugada syndrome and long-QT syndrome type 3 mutant, disrupts sodium channel inactivation through two separate mechanisms. J Gen Physiol 2021; 152:151877. [PMID: 32569350 PMCID: PMC7478868 DOI: 10.1085/jgp.202012595] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022] Open
Abstract
Inheritable and de novo variants in the cardiac voltage-gated sodium channel, Nav1.5, are responsible for both long-QT syndrome type 3 (LQT3) and Brugada syndrome type 1 (BrS1). Interestingly, a subset of Nav1.5 variants can cause both LQT3 and BrS1. Many of these variants are found in channel structures that form the channel fast inactivation machinery, altering the rate, voltage dependence, and completeness of the fast inactivation process. We used a series of mutants at position 1784 to show that the most common inheritable Nav1.5 variant, E1784K, alters fast inactivation through two separable mechanisms: (1) a charge-dependent interaction that increases the noninactivating current characteristic of E1784K; and (2) a hyperpolarized voltage dependence and accelerated rate of fast inactivation that decreases the peak sodium current. Using a homology model built on the NavPaS structure, we find that the charge-dependent interaction is between E1784 and K1493 in the DIII-DIV linker of the channel, five residues downstream of the putative inactivation gate. This interaction can be disrupted by a positive charge at position 1784 and rescued with the K1493E/E1784K double mutant that abolishes the noninactivating current. However, the double mutant does not restore either the voltage dependence or rates of fast inactivation. Conversely, a mutant at the bottom of DIVS4, K1641D, causes a hyperpolarizing shift in the voltage dependence of fast inactivation and accelerates the rate of fast inactivation without causing an increase in noninactivating current. These findings provide novel mechanistic insights into how the most common inheritable arrhythmogenic mixed syndrome variant, E1784K, simultaneously decreases transient sodium currents and increases noninactivating currents, leading to both BrS1 and LQT3.
Collapse
Affiliation(s)
- Colin H Peters
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Abeline R Watkins
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Olivia L Poirier
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
7
|
Monaco C, Galli A, Chierchia GB, Cecchini F, La Meir M, Brugada P, de Asmundis C. Concomitant thoracoscopic left cardiac sympathectomy and RVOT epicardial ablation of the arrhythmogenic substrate in a patient with Long QT and Brugada syndromes related to uncommon sodium channel beta-subunit mutation. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2021; 44:1282-1286. [PMID: 33687741 DOI: 10.1111/pace.14215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/25/2021] [Accepted: 02/28/2021] [Indexed: 01/03/2023]
Affiliation(s)
- Cinzia Monaco
- Heart Rhythm Management Centre, Postgraduate program in Cardiac Electrophysiology and Pacing, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Alessio Galli
- Heart Rhythm Management Centre, Postgraduate program in Cardiac Electrophysiology and Pacing, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Gian Battista Chierchia
- Heart Rhythm Management Centre, Postgraduate program in Cardiac Electrophysiology and Pacing, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Federico Cecchini
- Heart Rhythm Management Centre, Postgraduate program in Cardiac Electrophysiology and Pacing, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Mark La Meir
- Cardiac Surgery Department, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Pedro Brugada
- Heart Rhythm Management Centre, Postgraduate program in Cardiac Electrophysiology and Pacing, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Carlo de Asmundis
- Heart Rhythm Management Centre, Postgraduate program in Cardiac Electrophysiology and Pacing, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|
8
|
Gökçen E, Savrun A. The impact of fever on myocardial repolarization parameters. J Electrocardiol 2020; 64:45-49. [PMID: 33316550 DOI: 10.1016/j.jelectrocard.2020.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND It has been reported in the literature that the increase in body temperature shortens QT interval on electrocardiogram through heart rate modulation. However, the effects of fever on ventricular repolarization are not clearly known. This study elaborates on QT interval of isolated fever, corrected QT (cQT), Tp-e interval, the ratio of corrected Tp-e (cTp-e) and Tp-e/QT, and their impacts on arrhythmia potential. METHODS This prospective study was performed on 74 patients without any active and chronic diseases other than fever and upper respiratory tract infection. The study included patients at the age of 18-50 years suffering from fever above 38.2 °C. QT and Tp-e intervals of the patients were measured from their ECGs taken in febrile and afebrile periods. cQT and cTp-e values were calculated according to Bazett, Fridericia, and Framingham formulations. RESULTS QT and Tp-e intervals were observed to be shorter in the febrile period (p < 0.001 and p = 0.006 respectively). cTp-e was found to be longer in the febrile period according to Bazett, Fridericia, and Framingham formulations (p < 0.001, p = 0.002, p < 0.001, respectively). Tp-e/QT ratio was found to be higher in the febrile period than in the afebrile period (p < 0.001). CONCLUSION Although QT, cQT, and Tpe intervals were shorter, cTpe interval and Tpe/QT ratio were longer and higher in the febrile period, respectively. These findings may indicate that fever may create a proarrhythmic effect by causing variability in the transmural distribution of myocardial repolarization.
Collapse
Affiliation(s)
- Emre Gökçen
- Department of Emergency Medicine, Bozok University Faculty of Medicine, Yozgat, Turkey.
| | - Atakan Savrun
- Department of Emergency Medicine, Ordu University Faculty of Medicine, Ordu, Turkey
| |
Collapse
|
9
|
Ghisoni E, Marandino L, Lombardi P, Bonzano A, Becco P, Aglietta M, Fizzotti M, Gay F, Rota Scalabrini D. Safe Use of Carfilzomib in a Patient with Multiple Myeloma and Intermittent Type 1 Brugada ECG Pattern: A Case Report. Acta Haematol 2019; 143:481-485. [PMID: 31553985 DOI: 10.1159/000502538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 07/31/2019] [Indexed: 12/09/2022]
Abstract
Cardiovascular adverse events (CVAEs) are of considerable importance in patients with multiple myeloma (MM), given the significant prevalence of coexisting cardiovascular risk factors and the potential treatment-induced toxicity. Brugada syndrome is a rare cardiological disease responsible for arrhythmia and potentially fatal cardiac arrest. Brugada phenocopies (BrP) are clinical entities which show an identical ECG patterns, but prompt resolution after treatment of the trigger event. A 65-year-old female newly diagnosed MM patient treated with a carfilzomib-based chemotherapy developed a type 1 Brugada ECG pattern during a hospitalization course for sepsis. As fever and the septic event resolved, further ECGs showed no abnormalities and carfilzomib-based treatment could be resumed with no further CVAEs. Though fever-induced BrP is a universally known phenomenon, to our knowledge this is the first case of BrP in a patient with MM during active treatment with carfilzomib.
Collapse
Affiliation(s)
- Eleonora Ghisoni
- Medical Oncology, Candiolo Cancer Institute, FPO/IRCCS, Candiolo, Italy
- Department of Oncology, University of Turin, Turin, Italy
| | - Laura Marandino
- Medical Oncology, Candiolo Cancer Institute, FPO/IRCCS, Candiolo, Italy
- Department of Oncology, University of Turin, Turin, Italy
| | - Pasquale Lombardi
- Medical Oncology, Candiolo Cancer Institute, FPO/IRCCS, Candiolo, Italy,
- Department of Oncology, University of Turin, Turin, Italy,
| | | | - Paolo Becco
- Medical Oncology, Candiolo Cancer Institute, FPO/IRCCS, Candiolo, Italy
- Department of Oncology, University of Turin, Turin, Italy
| | - Massimo Aglietta
- Medical Oncology, Candiolo Cancer Institute, FPO/IRCCS, Candiolo, Italy
- Department of Oncology, University of Turin, Turin, Italy
| | - Marco Fizzotti
- Medical Oncology, Candiolo Cancer Institute, FPO/IRCCS, Candiolo, Italy
| | - Francesca Gay
- Division of Hematology, University of Turin, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza, Turin, Italy
| | | |
Collapse
|
10
|
Zaitsev AV, Torres NS, Cawley KM, Sabry AD, Warren JS, Warren M. Conduction in the right and left ventricle is differentially regulated by protein kinases and phosphatases: implications for arrhythmogenesis. Am J Physiol Heart Circ Physiol 2019; 316:H1507-H1527. [PMID: 30875259 PMCID: PMC6620685 DOI: 10.1152/ajpheart.00660.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/19/2019] [Accepted: 03/07/2019] [Indexed: 12/19/2022]
Abstract
The "stress" kinases cAMP-dependent protein kinase (PKA) and calcium/calmodulin-dependent protein kinase II (CaMKII), phosphorylate the Na+ channel Nav1.5 subunit to regulate its function. However, how the channel regulation translates to ventricular conduction is poorly understood. We hypothesized that the stress kinases positively and differentially regulate conduction in the right (RV) and the left (LV) ventricles. We applied the CaMKII blocker KN93 (2.75 μM), PKA blocker H89 (10 μM), and broad-acting phosphatase blocker calyculin (30 nM) in rabbit hearts paced at a cycle length (CL) of 150-8,000 ms. We used optical mapping to determine the distribution of local conduction delays (inverse of conduction velocity). Control hearts exhibited constant and uniform conduction at all tested CLs. Calyculin (15-min perfusion) accelerated conduction, with greater effect in the RV (by 15.3%) than in the LV (by 4.1%; P < 0.05). In contrast, both KN93 and H89 slowed down conduction in a chamber-, time-, and CL-dependent manner, with the strongest effect in the RV outflow tract (RVOT). Combined KN93 and H89 synergistically promoted conduction slowing in the RV (KN93: 24.7%; H89: 29.9%; and KN93 + H89: 114.2%; P = 0.0016) but not the LV. The progressive depression of RV conduction led to conduction block and reentrant arrhythmias. Protein expression levels of both the CaMKII-δ isoform and the PKA catalytic subunit were higher in the RVOT than in the apical LV (P < 0.05). Thus normal RV conduction requires a proper balance between kinase and phosphatase activity. Dysregulation of this balance due to pharmacological interventions or disease is potentially proarrhythmic. NEW & NOTEWORTHY We show that uniform ventricular conduction requires a precise physiological balance of the activities of calcium/calmodulin-dependent protein kinase II (CaMKII), PKA, and phosphatases, which involves region-specific expression of CaMKII and PKA. Inhibiting CaMKII and/or PKA activity elicits nonuniform conduction depression, with the right ventricle becoming vulnerable to the development of conduction disturbances and ventricular fibrillation/ventricular tachycardia.
Collapse
Affiliation(s)
- Alexey V Zaitsev
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
- Department of Bioengineering, University of Utah , Salt Lake City, Utah
| | - Natalia S Torres
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
| | - Keiko M Cawley
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
| | - Amira D Sabry
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
| | - Junco S Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
- Department of Internal Medicine, School of Medicine, University of Utah , Salt Lake City, Utah
| | - Mark Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
- Department of Bioengineering, University of Utah , Salt Lake City, Utah
| |
Collapse
|
11
|
Wisten A, Krantz P, Stattin EL. Sudden cardiac death among the young in Sweden from 2000 to 2010: an autopsy-based study. Europace 2018; 19:1327-1334. [PMID: 28873959 DOI: 10.1093/europace/euw249] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/13/2016] [Indexed: 01/24/2023] Open
Abstract
Aims To study the incidence and aetiology of sudden cardiac death (SCD) in 1- to 35-year-olds in Sweden from 2000 to 2010. Methods and results We used the database of the Swedish National Board of Forensic Medicine and the Swedish Cause of Death Registry and identified SCD cases by review of forensic files and death certificates. We identified 552 individuals with SCD in 1- to 35-year-olds; 156 (28%) were women. In 393 (71%), a forensic autopsy had been performed; in 131 (24%), a clinical autopsy had been performed; in 28 (5%) with no autopsy, a cardiac disease was diagnosed before death. The incidence of SCD per 100 000 person-years was 1.3 in 1- to 35-year-olds and 1.8 in 15- to 35-year-olds. In women, the incidence rates yearly decreased during the study period by 11% (95% confidence interval 6.6-14.2). The most common aetiology in 1- to 35-year-olds was sudden arrhythmic death syndrome (31%) and coronary artery disease (15%). In cases with forensic autopsy, death occurred during daily activity (48%), sleep (38%), and physical activity (14%); death was unwitnessed in 60%. Co-morbidity in 15- to 35-year-olds, e.g. psychiatric disorder, obesity, or diabetes, was present in 93/340 (27%) (73 men). Conclusion The incidence of SCD among 1- to 35-year-olds in Sweden during 2000-10 was 1.3 per 100 000 person-years (28% women); incidence was decreasing in women. Sudden arrhythmic death syndrome was the most common diagnosis. Co-morbidity such as psychiatric disorders and obesity was common among men.
Collapse
Affiliation(s)
- Aase Wisten
- Department of Community Medicine and Rehabilitation, Geriatric Medicine, Sunderby Research Unit, Umeå University, Umeå 90187, Sweden
| | - Peter Krantz
- Department of Forensic Medicine, Lund University, Lund 22362, Sweden
| | - Eva-Lena Stattin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala 75185, Sweden.,Department of Medical Biosciences, Medical and Clinical Genetics, Umeå University, Umeå 90187, Sweden
| |
Collapse
|
12
|
Ghovanloo MR, Abdelsayed M, Peters CH, Ruben PC. A Mixed Periodic Paralysis & Myotonia Mutant, P1158S, Imparts pH-Sensitivity in Skeletal Muscle Voltage-gated Sodium Channels. Sci Rep 2018; 8:6304. [PMID: 29674667 PMCID: PMC5908869 DOI: 10.1038/s41598-018-24719-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/27/2018] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle channelopathies, many of which are inherited as autosomal dominant mutations, include myotonia and periodic paralysis. Myotonia is defined by a delayed relaxation after muscular contraction, whereas periodic paralysis is defined by episodic attacks of weakness. One sub-type of periodic paralysis, known as hypokalemic periodic paralysis (hypoPP), is associated with low potassium levels. Interestingly, the P1158S missense mutant, located in the third domain S4-S5 linker of the "skeletal muscle", Nav1.4, has been implicated in causing both myotonia and hypoPP. A common trigger for these conditions is physical activity. We previously reported that Nav1.4 is relatively insensitive to changes in extracellular pH compared to Nav1.2 and Nav1.5. Given that intense exercise is often accompanied by blood acidosis, we decided to test whether changes in pH would push gating in P1158S towards either phenotype. Our results suggest that, unlike in WT-Nav1.4, low pH depolarizes the voltage-dependence of activation and steady-state fast inactivation, decreases current density, and increases late currents in P1185S. Thus, P1185S turns the normally pH-insensitive Nav1.4 into a proton-sensitive channel. Using action potential modeling we predict a pH-to-phenotype correlation in patients with P1158S. We conclude that activities which alter blood pH may trigger the noted phenotypes in P1158S patients.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Mena Abdelsayed
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Colin H Peters
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada.
| |
Collapse
|
13
|
Affiliation(s)
- Jingjing Zheng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Da Zheng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Terry Su
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jianding Cheng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Abdelsayed M, Ruprai M, Ruben PC. The efficacy of Ranolazine on E1784K is altered by temperature and calcium. Sci Rep 2018; 8:3643. [PMID: 29483621 PMCID: PMC5827758 DOI: 10.1038/s41598-018-22033-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/15/2018] [Indexed: 12/19/2022] Open
Abstract
E1784K is the most common mixed syndrome SCN5a mutation underpinning both Brugada syndrome type 1 (BrS1) and Long-QT syndrome type 3 (LQT3). The charge reversal mutant enhances the late sodium current (INa) passed by the cardiac voltage-gated sodium channel (NaV1.5), delaying cardiac repolarization. Exercise-induced triggers, like elevated temperature and cytosolic calcium, exacerbate E1784K late INa. In this study, we tested the effects of Ranolazine, the late INa blocker, on voltage-dependent and kinetic properties of E1784K at elevated temperature and cytosolic calcium. We used whole-cell patch clamp to measure INa from wild type and E1784K channels expressed in HEK293 cells. At elevated temperature, Ranolazine attenuated gain-of-function in E1784K by decreasing late INa, hyperpolarizing steady-state fast inactivation, and increasing use-dependent inactivation. Both elevated temperature and cytosolic calcium hampered the capacity of Ranolazine to suppress E1784K late INa. In-silico action potential (AP) simulations were done using a modified O'Hara Rudy (ORd) cardiac model. Simulations showed that Ranolazine failed to shorten AP duration, an effect augmented at febrile temperatures. The drug-channel interaction is clearly affected by external triggers, as reported previously with ischemia. Determining drug efficacy under various physiological states in SCN5a cohorts is crucial for accurate management of arrhythmias.
Collapse
Affiliation(s)
- Mena Abdelsayed
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Manpreet Ruprai
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
15
|
Ghovanloo MR, Peters CH, Ruben PC. Effects of acidosis on neuronal voltage-gated sodium channels: Nav1.1 and Nav1.3. Channels (Austin) 2018; 12:367-377. [PMID: 30362397 PMCID: PMC6284583 DOI: 10.1080/19336950.2018.1539611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 01/14/2023] Open
Abstract
Voltage-gated sodium channels are key contributors to membrane excitability. These channels are expressed in a tissue-specific manner. Mutations and modulation of these channels underlie various physiological and pathophysiological manifestations. The effects of changes in extracellular pH on channel gating have been studied on several sodium channel subtypes. Among these, Nav1.5 is the most pH-sensitive channel, with Nav1.2 and Nav1.4 being mostly pH-resistant channels. However, pH effects have not been characterized on other sodium channel subtypes. In this study, we sought to determine whether Nav1.1 and Nav1.3 display resistance or sensitivity to changes in extracellular pH. These two sodium channel subtypes are predominantly found in inhibitory neurons. The expression of these channels highly depends on age and the developmental stage of neurons, with Nav1.3 being found mostly in neonatal neurons, and Nav1.1 being found in adult neurons. Our present results indicate that, during extracellular acidosis, both channels show a depolarization in the voltage-dependence of activation and moderate reduction in current density. Voltage-dependence of steady-state fast inactivation and recovery from fast inactivation were unchanged. We conclude that Nav1.1 and Nav1.3 have similar pH-sensitivities.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Colin H. Peters
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Peter C. Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
16
|
Peters CH, Ghovanloo MR, Gershome C, Ruben PC. pH Modulation of Voltage-Gated Sodium Channels. Handb Exp Pharmacol 2018; 246:147-160. [PMID: 29460150 DOI: 10.1007/164_2018_99] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Changes in blood and tissue pH accompany physiological and pathophysiological conditions including exercise, cardiac ischemia, ischemic stroke, and cocaine ingestion. These conditions are known to trigger the symptoms of electrical diseases in patients carrying sodium channel mutations. Protons cause a diverse set of changes to sodium channel gating, which generally lead to decreases in the amplitude of the transient sodium current and increases in the fraction of non-inactivating channels that pass persistent currents. These effects are shared with disease-causing mutants in neuronal, skeletal muscle, and cardiac tissue and may be compounded in mutants that impart greater proton sensitivity to sodium channels, suggesting a role of protons in triggering acute symptoms of electrical disease.In this chapter, we review the mechanisms of proton block of the sodium channel pore and a suggested mode of action by which protons alter channel gating. We discuss the available data on isoform specificity of proton effects and tissue level effects. Finally, we review the role that protons play in disease and our own recent studies on proton-sensitizing mutants in cardiac and skeletal muscle sodium channels.
Collapse
Affiliation(s)
- Colin H Peters
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Mohammad-Reza Ghovanloo
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Cynthia Gershome
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
17
|
Tomé G, Freitas J. Induced Brugada syndrome: Possible sources of arrhythmogenesis. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.repce.2017.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
18
|
Induced Brugada syndrome: Possible sources of arrhythmogenesis. Rev Port Cardiol 2017; 36:945-956. [PMID: 29233646 DOI: 10.1016/j.repc.2017.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 11/24/2022] Open
|
19
|
Mangold KE, Brumback BD, Angsutararux P, Voelker TL, Zhu W, Kang PW, Moreno JD, Silva JR. Mechanisms and models of cardiac sodium channel inactivation. Channels (Austin) 2017; 11:517-533. [PMID: 28837385 PMCID: PMC5786193 DOI: 10.1080/19336950.2017.1369637] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022] Open
Abstract
Shortly after cardiac Na+ channels activate and initiate the action potential, inactivation ensues within milliseconds, attenuating the peak Na+ current, INa, and allowing the cell membrane to repolarize. A very limited number of Na+ channels that do not inactivate carry a persistent INa, or late INa. While late INa is only a small fraction of peak magnitude, it significantly prolongs ventricular action potential duration, which predisposes patients to arrhythmia. Here, we review our current understanding of inactivation mechanisms, their regulation, and how they have been modeled computationally. Based on this body of work, we conclude that inactivation and its connection to late INa would be best modeled with a "feet-on-the-door" approach where multiple channel components participate in determining inactivation and late INa. This model reflects experimental findings showing that perturbation of many channel locations can destabilize inactivation and cause pathological late INa.
Collapse
Affiliation(s)
- Kathryn E. Mangold
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Brittany D. Brumback
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Paweorn Angsutararux
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Taylor L. Voelker
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Wandi Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Po Wei Kang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jonathan D. Moreno
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jonathan R. Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
20
|
Peters CH, Yu A, Zhu W, Silva JR, Ruben PC. Depolarization of the conductance-voltage relationship in the NaV1.5 mutant, E1784K, is due to altered fast inactivation. PLoS One 2017; 12:e0184605. [PMID: 28898267 PMCID: PMC5595308 DOI: 10.1371/journal.pone.0184605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022] Open
Abstract
E1784K is the most common mixed long QT syndrome/Brugada syndrome mutant in the cardiac voltage-gated sodium channel NaV1.5. E1784K shifts the midpoint of the channel conductance-voltage relationship to more depolarized membrane potentials and accelerates the rate of channel fast inactivation. The depolarizing shift in the midpoint of the conductance curve in E1784K is exacerbated by low extracellular pH. We tested whether the E1784K mutant shifts the channel conductance curve to more depolarized membrane potentials by affecting the channel voltage-sensors. We measured ionic currents and gating currents at pH 7.4 and pH 6.0 in Xenopus laevis oocytes. Contrary to our expectation, the movement of gating charges is shifted to more hyperpolarized membrane potentials by E1784K. Voltage-clamp fluorimetry experiments show that this gating charge shift is due to the movement of the DIVS4 voltage-sensor being shifted to more hyperpolarized membrane potentials. Using a model and experiments on fast inactivation-deficient channels, we show that changes to the rate and voltage-dependence of fast inactivation are sufficient to shift the conductance curve in E1784K. Our results localize the effects of E1784K to DIVS4, and provide novel insight into the role of the DIV-VSD in regulating the voltage-dependencies of activation and fast inactivation.
Collapse
Affiliation(s)
- Colin H. Peters
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alec Yu
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Wandi Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Jonathan R. Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Peter C. Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
21
|
Vinculin variant M94I identified in sudden unexplained nocturnal death syndrome decreases cardiac sodium current. Sci Rep 2017; 7:42953. [PMID: 28218286 PMCID: PMC5317164 DOI: 10.1038/srep42953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/17/2017] [Indexed: 02/01/2023] Open
Abstract
Sudden unexplained nocturnal death syndrome (SUNDS) remains an autopsy negative disorder with unclear etiology. Vinculin (VCL) was linked to sudden arrhythmia death in VCL knockout mice prior to the appearance of cardiomyopathy. We hypothesized VCL mutations underlie risk for SUNDS. A rare heterozygous variant VCL-M94I was found in a SUNDS victim who suffered sudden nocturnal tachypnea and lacked pathogenic variants in known arrhythmia-causing genes. VCL was identified to interact with SCN5A in vitro/vivo. The VCL-M94I was co-expressed with the cardiac sodium channel in HEK293 cells and also overexpressed in induced pluripotent stem cells derived cardiomyocytes (iPSCs-CM). In HEK293 cells with pH 7.4, VCL-M94I caused ~30% decrease in peak sodium current (INa) amplitude compared to WT; under acidotic conditions (pH 7.0) typically found with hypoxia during sleep apnea, M94I resulted in 37% reduction in peak INa compared to WT and the combination of VCL-M94I and pH 7.0 decreased peak INa by ~56% compared to WT at pH 7.4. In iPSCs-CM, similar effects of M94I on reduction of peak INa were observed. This study initially shows both physical and functional interaction between VCL and cardiac sodium channel, and suggests an important role for respiratory acidosis in triggering the fatal arrhythmia underlying SUNDS.
Collapse
|
22
|
Zheng J, Zhou F, Su T, Huang L, Wu Y, Yin K, Wu Q, Tang S, Makielski JC, Cheng J. The biophysical characterization of the first SCN5A mutation R1512W identified in Chinese sudden unexplained nocturnal death syndrome. Medicine (Baltimore) 2016; 95:e3836. [PMID: 27281089 PMCID: PMC4907667 DOI: 10.1097/md.0000000000003836] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Increasing evidence observed in clinical phenotypes show that abrupt breathing disorders during sleep may play an important role in the pathogenesis of sudden unexplained nocturnal death syndrome (SUNDS). The reported Brugada syndrome causing mutation R1512W in cardiac sodium channel α subunit encoded gene SCN5A, without obvious loss of function of cardiac sodium channel in previous in vitro study, was identified as the first genetic cause of Chinese SUNDS by us. The R1512W carrier was a 38-year-old male SUNDS victim who died suddenly after tachypnea in nocturnal sleep without any structural heart disease. To test our hypothesis that slight acidosis conditions may contribute to the significant loss of function of mutant cardiac sodium channels underlying SUNDS, the biophysical characterization of SCN5A mutation R1512W was performed under both extracellular and intracellular slight acidosis at pH 7.0. The cDNA of R1512W was created using site-directed mutagenesis methods in the pcDNA3 plasmid vector. The wild type (WT) or mutant cardiac sodium channel R1512W was transiently transfected into HEK293 cells. Macroscopic voltage-gated sodium current (INa) was measured 24 hours after transfection with the whole-cell patch clamp method at room temperature in the HEK293 cells. Under the baseline conditions at pH 7.4, R1512W (-175 ± 15 pA/pF) showed about 30% of reduction in peak INa compared to WT (-254 ± 23 pA/pF, P < 0.05). Under the acidosis condition at pH 7.0, R1512W (-130 ± 17 pA/pF) significantly decreased the peak INa by nearly 50% compared to WT (-243 ± 23 pA/pF, P < 0.005). Compared to baseline condition at pH 7.4, the acidosis at pH 7.0 did not affect the peak INa in WT (P > 0.05) but decreased peak INa in R1512W (P < 0.05). This initial functional study for SCN5A mutation in the Chinese SUNDS victim revealed that the acidosis aggravated the loss of function of mutant channel R1512W and suggested that nocturnal sleep disorders-associated slight acidosis may trigger the lethal arrhythmia underlying the sudden death of SUNDS cases in the setting of genetic defect.
Collapse
Affiliation(s)
- Jinxiang Zheng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
| | - Feng Zhou
- Detachment of Traffic Police, Public Security Bureau of Dongguan City, Dongguan, China
| | - Terry Su
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
| | - Lei Huang
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
| | - Yeda Wu
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
| | - Kun Yin
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
| | - Qiuping Wu
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
| | - Shuangbo Tang
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
| | - Jonathan C. Makielski
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI
| | - Jianding Cheng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
- ∗Correspondence: Jianding Cheng, Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhongshan 2nd Road, Guangzhou, Guangdong 510080, China (e-mail: )
| |
Collapse
|
23
|
Jones DK, Liu F, Dombrowski N, Joshi S, Robertson GA. Dominant negative consequences of a hERG 1b-specific mutation associated with intrauterine fetal death. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 120:67-76. [PMID: 26772437 DOI: 10.1016/j.pbiomolbio.2016.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 12/16/2022]
Abstract
The human ether-a-go-go related gene (hERG) encodes two subunits, hERG 1a and hERG 1b, that combine in vivo to conduct the rapid delayed rectifier potassium current (IKr). Reduced IKr slows cardiac action potential (AP) repolarization and is an underlying cause of cardiac arrhythmias associated with long QT syndrome (LQTS). Although the physiological importance of hERG 1b has been elucidated, the effects of hERG 1b disease mutations on cardiac IKr and AP behavior have not been described. To explore the disease mechanism of a 1b-specific mutation associated with a case of intrauterine fetal death, we examined the effects of the 1b-R25W mutation on total protein, trafficking and membrane current levels in HEK293 cells at physiological temperatures. By all measures the 1b-R25W mutation conferred diminished expression, and exerted a temperature-sensitive, dominant-negative effect over the WT hERG 1a protein with which it was co-expressed. Membrane currents were reduced by 60% with no apparent effect on voltage dependence or deactivation kinetics. The dominant-negative effects of R25W were demonstrated in iPSC-CMs, where 1b-R25W transfection diminished native IKr compared to controls. R25W also slowed AP repolarization, and increased AP triangulation and variability in iPSC-CMs, reflecting cellular manifestations of pro-arrhythmia. These data demonstrate that R25W is a dominant-negative mutation with significant pathophysiological consequences, and provide the first direct link between hERG 1b mutation and cardiomyocyte dysfunction.
Collapse
Affiliation(s)
- David K Jones
- Dept. of Neuroscience, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison WI 53705, USA
| | - Fang Liu
- Dept. of Neuroscience, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison WI 53705, USA
| | - Natasha Dombrowski
- Dept. of Neuroscience, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison WI 53705, USA
| | - Sunita Joshi
- Dept. of Neuroscience, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison WI 53705, USA
| | - Gail A Robertson
- Dept. of Neuroscience, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison WI 53705, USA.
| |
Collapse
|
24
|
Quinn TA, Ripplinger CM. Recent developments in biophysics & molecular biology of heart rhythm. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 120:1-2. [PMID: 26777585 DOI: 10.1016/j.pbiomolbio.2016.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Canada.
| | | |
Collapse
|
25
|
Zile MA, Trayanova NA. Rate-dependent force, intracellular calcium, and action potential voltage alternans are modulated by sarcomere length and heart failure induced-remodeling of thin filament regulation in human heart failure: A myocyte modeling study. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 120:270-80. [PMID: 26724571 DOI: 10.1016/j.pbiomolbio.2015.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/24/2015] [Accepted: 12/23/2015] [Indexed: 01/26/2023]
Abstract
Microvolt T-wave alternans (MTWA) testing identifies heart failure patients at risk for lethal ventricular arrhythmias at near-resting heart rates (<110 beats per minute). Since pressure alternans occurs simultaneously with MTWA and has a higher signal to noise ratio, it may be a better predictor of arrhythmia, although the mechanism remains unknown. Therefore, we investigated the relationship between force alternans (FORCE-ALT), the cellular manifestation of pressure alternans, and action potential voltage alternans (APV-ALT), the cellular driver of MTWA. Our goal was to uncover the mechanisms linking APV-ALT and FORCE-ALT in failing human myocytes and to investigate how the link between those alternans was affected by pacing rate and by physiological conditions such as sarcomere length and heart failure induced-remodeling of mechanical parameters. To achieve this, a mechanically-based, strongly coupled human electromechanical myocyte model was constructed. Reducing the sarcoplasmic reticulum calcium uptake current (Iup) to 27% was incorporated to simulate abnormal calcium handling in human heart failure. Mechanical remodeling was incorporated to simulate altered thin filament activation and crossbridge (XB) cycling rates. A dynamical pacing protocol was used to investigate the development of intracellular calcium concentration ([Ca]i), voltage, and active force alternans at different pacing rates. FORCE-ALT only occurred in simulations incorporating reduced Iup, demonstrating that alternans in the intracellular calcium concentration (CA-ALT) induced FORCE-ALT. The magnitude of FORCE-ALT was found to be largest at clinically relevant pacing rates (<110 bpm), where APV-ALT was smallest. We found that the magnitudes of FORCE-ALT, CA-ALT and APV-ALT were altered by heart failure induced-remodeling of mechanical parameters and sarcomere length due to the presence of myofilament feedback. These findings provide important insight into the relationship between heart-failure-induced electrical and mechanical alternans and how they are altered by physiological conditions at near-resting heart rates.
Collapse
Affiliation(s)
- Melanie A Zile
- Institute for Computational Medicine and Department of Biomedical Engineering at Johns Hopkins University, 3400N Charles St, 316 Hackerman Hall, Baltimore, MD 21218, USA.
| | - Natalia A Trayanova
- Institute for Computational Medicine and Department of Biomedical Engineering at Johns Hopkins University, 3400N Charles St, 316 Hackerman Hall, Baltimore, MD 21218, USA.
| |
Collapse
|